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Preface to the second edition

Sales of the first edition of this book surpassed expectations (at least
those of the author). Almost all of those who have contacted the author
seem to like the book, and while other textbooks have been published
since that date in the broad area of financial econometrics, none is really
at the introductory level. All of the motivations for the first edition,
described below, seem just as important today. Given that the book
seems to have gone down well with readers, I have left the style largely
unaltered and made small changes to the structure, described below.

The main motivations for writing the first edition of the book were:

® To write a book that focused on using and applying the techniques rather
than deriving proofs and learning formulae

® To write an accessible textbook that required no prior knowledge of
econometrics, but which also covered more recently developed ap-
proaches usually found only in more advanced texts

® To use examples and terminology from finance rather than economics
since there are many introductory texts in econometrics aimed at stu-
dents of economics but none for students of finance

o To litter the book with case studies of the use of econometrics in prac-
tice taken from the academic finance literature

® To include sample instructions, screen dumps and computer output
from two popular econometrics packages. This enabled readers to see
how the techniques can be implemented in practice

® To develop a companion web site containing answers to end-of-chapter
questions, PowerPoint slides and other supporting materials.

Xix
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Why | thought a second edition was needed

The second edition includes a number of important new features.

(1)

®

(4)

It could have reasonably been argued that the first edition of the book
had a slight bias towards time-series methods, probably in part as a
consequence of the main areas of interest of the author. This second
edition redresses the balance by including two new chapters, on lim-
ited dependent variables and on panel techniques. Chapters 3 and 4
from the first edition, which provided the core material on linear re-
gression, have now been expanded and reorganised into three chapters
(2 to 4) in the second edition.

As a result of the length of time it took to write the book, to produce
the final product, and the time that has elapsed since then, the data
and examples used in the book are already several years old. More
importantly, the data used in the examples for the first edition were
almost all obtained from Datastream International, an organisation
which expressly denied the author permission to distribute the data
or to put them on a web site. By contrast, this edition as far as possi-
ble uses fully updated datasets from freely available sources, so that
readers should be able to directly replicate the examples used in the
text.

A number of new case studies from the academic finance literature are
employed, notably on the pecking order hypothesis of firm financing,
credit ratings, banking competition, tests of purchasing power parity,
and evaluation of mutual fund manager performance.

The previous edition incorporated sample instructions from EViews
and WiIinRATS. As a result of the additional content of the new chap-
ters, and in order to try to keep the length of the book manageable,
it was decided to include only sample instructions and outputs from
the EViews package in the revised version. WinRATS will continue to
be supported, but in a separate handbook published by Cambridge
University Press (ISBN: 9780521896955).

Motivations for the first edition

This book had its genesis in two sets of lectures given annually by the
author at the ICMA Centre (formerly ISMA Centre), University of Reading
and arose partly from several years of frustration at the lack of an appro-
priate textbook. In the past, finance was but a small sub-discipline drawn
from economics and accounting, and therefore it was generally safe to
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assume that students of finance were well grounded in economic prin-
ciples; econometrics would be taught using economic motivations and
examples.

However, finance as a subject has taken on a life of its own in recent
years. Drawn in by perceptions of exciting careers and telephone-number
salaries in the financial markets, the number of students of finance has
grown phenomenally, all around the world. At the same time, the diversity
of educational backgrounds of students taking finance courses has also
expanded. It is not uncommon to find undergraduate students of finance
even without advanced high-school qualifications in mathematics or eco-
nomics. Conversely, many with PhDs in physics or engineering are also
attracted to study finance at the Masters level. Unfortunately, authors of
textbooks have failed to keep pace, thus far, with the change in the nature
of students. In my opinion, the currently available textbooks fall short of
the requirements of this market in three main regards, which this book
seeks to address:

(1) Books fall into two distinct and non-overlapping categories: the intro-
ductory and the advanced. Introductory textbooks are at the appro-
priate level for students with limited backgrounds in mathematics or
statistics, but their focus is too narrow. They often spend too long
deriving the most basic results, and treatment of important, interest-
ing and relevant topics (such as simulations methods, VAR modelling,
etc.) is covered in only the last few pages, if at all. The more advanced
textbooks, meanwhile, usually require a quantum leap in the level of
mathematical ability assumed of readers, so that such books cannot be
used on courses lasting only one or two semesters, or where students
have differing backgrounds. In this book, I have tried to sweep a broad
brush over a large number of different econometric techniques that
are relevant to the analysis of financial and other data.

(2) Many of the currently available textbooks with broad coverage are too
theoretical in nature and students can often, after reading such a
book, still have no idea of how to tackle real-world problems them-
selves, even if they have mastered the techniques in theory. To this
end, in this book, I have tried to present examples of the use of the
techniques in finance, together with annotated computer instructions
and sample outputs for an econometrics package (EViews). This should
assist students who wish to learn how to estimate models for them-
selves - for example, if they are required to complete a project or dis-
sertation. Some examples have been developed especially for this book,
while many others are drawn from the academic finance literature. In



xxii

Preface

my opinion, this is an essential but rare feature of a textbook that
should help to show students how econometrics is really applied. It is
also hoped that this approach will encourage some students to delve
deeper into the literature, and will give useful pointers and stimulate
ideas for research projects. It should, however, be stated at the out-
set that the purpose of including examples from the academic finance
print is not to provide a comprehensive overview of the literature or to
discuss all of the relevant work in those areas, but rather to illustrate
the techniques. Therefore, the literature reviews may be considered de-
liberately deficient, with interested readers directed to the suggested
readings and the references therein.

(3) With few exceptions, almost all textbooks that are aimed at the intro-
ductory level draw their motivations and examples from economics,
which may be of limited interest to students of finance or business.
To see this, try motivating regression relationships using an example
such as the effect of changes in income on consumption and watch
your audience, who are primarily interested in business and finance
applications, slip away and lose interest in the first ten minutes of
your course.

Who should read this book?

The intended audience is undergraduates or Masters/MBA students who
require a broad knowledge of modern econometric techniques commonly
employed in the finance literature. It is hoped that the book will also be
useful for researchers (both academics and practitioners), who require an
introduction to the statistical tools commonly employed in the area of
finance. The book can be used for courses covering financial time-series
analysis or financial econometrics in undergraduate or postgraduate pro-
grammes in finance, financial economics, securities and investments.

Although the applications and motivations for model-building given in
the book are drawn from finance, the empirical testing of theories in many
other disciplines, such as management studies, business studies, real es-
tate, economics and so on, may usefully employ econometric analysis. For
this group, the book may also prove useful.

Finally, while the present text is designed mainly for students at the
undergraduate or Masters level, it could also provide introductory read-
ing in financial time-series modelling for finance doctoral programmes
where students have backgrounds which do not include courses in mod-
ern econometric techniques.
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Pre-requisites for good understanding of this material

In order to make the book as accessible as possible, the only background
recommended in terms of quantitative techniques is that readers have
introductory knowledge of calculus, algebra (including matrices) and basic
statistics. However, even these are not necessarily prerequisites since they
are covered briefly in an appendix to the text. The emphasis throughout
the book is on a valid application of the techniques to real data and
problems in finance.

In the finance and investment area, it is assumed that the reader has
knowledge of the fundamentals of corporate finance, financial markets
and investment. Therefore, subjects such as portfolio theory, the Capital
Asset Pricing Model (CAPM) and Arbitrage Pricing Theory (APT), the effi-
cient markets hypothesis, the pricing of derivative securities and the term
structure of interest rates, which are frequently referred to throughout the
book, are not treated in this text. There are very many good books available
in corporate finance, in investments, and in futures and options, includ-
ing those by Brealey and Myers (2005), Bodie, Kane and Marcus (2008) and
Hull (2005) respectively.

Chris Brooks, October 2007
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This chapter sets the scene for the book by discussing in broad terms
the questions of what is econometrics, and what are the ‘stylised facts’
describing financial data that researchers in this area typically try to cap-
ture in their models. It also collects together a number of preliminary
issues relating to the construction of econometric models in finance.

Learning Outcomes

In this chapter, you will learn how to

® Distinguish between different types of data

® Describe the steps involved in building an econometric model
® (Calculate asset price returns

® Construct a workfile, import data and accomplish simple tasks
in EViews

What is econometrics?

The literal meaning of the word econometrics is ‘measurement in eco-
nomics’. The first four letters of the word suggest correctly that the origins
of econometrics are rooted in economics. However, the main techniques
employed for studying economic problems are of equal importance in
financial applications. As the term is used in this book, financial econo-
metrics will be defined as the application of statistical techniques to problems
in finance. Financial econometrics can be useful for testing theories in
finance, determining asset prices or returns, testing hypotheses concern-
ing the relationships between variables, examining the effect on financial
markets of changes in economic conditions, forecasting future values of
financial variables and for financial decision-making. A list of possible
examples of where econometrics may be useful is given in box 1.1.
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Box 1.1 The value of econometrics

1.2

(1) Testing whether financial markets are weak-form informationally efficient
(2) Testing whether the Capital Asset Pricing Model (CAPM) or Arbitrage Pricing Theory
(APT) represent superior models for the determination of returns on risky assets
) Measuring and forecasting the volatility of bond returns
) Explaining the determinants of bond credit ratings used by the ratings agencies
) Modelling long-term relationships between prices and exchange rates
6) Determining the optimal hedge ratio for a spot position in oil
) Testing technical trading rules to determine which makes the most money
8) Testing the hypothesis that earnings or dividend announcements have no effect on
stock prices
(9) Testing whether spot or futures markets react more rapidly to news
(10) Forecasting the correlation between the stock indices of two countries.

The list in box 1.1 is of course by no means exhaustive, but it hopefully
gives some flavour of the usefulness of econometric tools in terms of their
financial applicability.

Is financial econometrics different from ‘economic
econometrics’?

As previously stated, the tools commonly used in financial applications are
fundamentally the same as those used in economic applications, although
the emphasis and the sets of problems that are likely to be encountered
when analysing the two sets of data are somewhat different. Financial
data often differ from macroeconomic data in terms of their frequency,
accuracy, seasonality and other properties.

In economics, a serious problem is often a lack of data at hand for testing
the theory or hypothesis of interest - this is often called a ‘small samples
problem’. It might be, for example, that data are required on government
budget deficits, or population figures, which are measured only on an
annual basis. If the methods used to measure these quantities changed a
quarter of a century ago, then only at most twenty-five of these annual
observations are usefully available.

Two other problems that are often encountered in conducting applied
econometric work in the arena of economics are those of measurement
error and data revisions. These difficulties are simply that the data may be
estimated, or measured with error, and will often be subject to several
vintages of subsequent revisions. For example, a researcher may estimate
an economic model of the effect on national output of investment in
computer technology using a set of published data, only to find that the
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data for the last two years have been revised substantially in the next,
updated publication.

These issues are rarely of concern in finance. Financial data come in
many shapes and forms, but in general the prices and other entities that
are recorded are those at which trades actually took place, or which were
quoted on the screens of information providers. There exists, of course, the
possibility for typos and possibility for the data measurement method to
change (for example, owing to stock index re-balancing or re-basing). But
in general the measurement error and revisions problems are far less
serious in the financial context.

Similarly, some sets of financial data are observed at much higher frequen-
cies than macroeconomic data. Asset prices or yields are often available
at daily, hourly, or minute-by-minute frequencies. Thus the number of ob-
servations available for analysis can potentially be very large - perhaps
thousands or even millions, making financial data the envy of macro-
econometricians! The implication is that more powerful techniques can
often be applied to financial than economic data, and that researchers
may also have more confidence in the results.

Furthermore, the analysis of financial data also brings with it a num-
ber of new problems. While the difficulties associated with handling and
processing such a large amount of data are not usually an issue given
recent and continuing advances in computer power, financial data often
have a number of additional characteristics. For example, financial data
are often considered very ‘noisy’, which means that it is more difficult
to separate underlying trends or patterns from random and uninteresting
features. Financial data are also almost always not normally distributed
in spite of the fact that most techniques in econometrics assume that
they are. High frequency data often contain additional ‘patterns’ which
are the result of the way that the market works, or the way that prices
are recorded. These features need to be considered in the model-building
process, even if they are not directly of interest to the researcher.

Types of data

There are broadly three types of data that can be employed in quantitative
analysis of financial problems: time series data, cross-sectional data, and
panel data.

Time series data

Time series data, as the name suggests, are data that have been collected
over a period of time on one or more variables. Time series data have



4 Introductory Econometrics for Finance

Box 1.2 Time series data

Series Frequency

Industrial production Monthly, or quarterly
Government budget deficit  Annually

Money supply Weekly

The value of a stock As transactions occur

associated with them a particular frequency of observation or collection
of data points. The frequency is simply a measure of the interval over, or
the regularity with which, the data are collected or recorded. Box 1.2 shows
some examples of time series data.

A word on ‘As transactions occur’ is necessary. Much financial data does
not start its life as being regularly spaced. For example, the price of common
stock for a given company might be recorded to have changed whenever
there is a new trade or quotation placed by the financial information
recorder. Such recordings are very unlikely to be evenly distributed over
time - for example, there may be no activity between, say, 5p.m. when
the market closes and 8.30a.m. the next day when it reopens; there is
also typically less activity around the opening and closing of the market,
and around lunch time. Although there are a number of ways to deal
with this issue, a common and simple approach is simply to select an
appropriate frequency, and use as the observation for that time period
the last prevailing price during the interval.

It is also generally a requirement that all data used in a model be
of the same frequency of observation. So, for example, regressions that seek
to estimate an arbitrage pricing model using monthly observations on
macroeconomic factors must also use monthly observations on stock re-
turns, even if daily or weekly observations on the latter are available.

The data may be quantitative (e.g. exchange rates, prices, number of
shares outstanding), or qualitative (e.g. the day of the week, a survey of the
financial products purchased by private individuals over a period of time,
a credit rating, etc.).

Problems that could be tackled using time series data:
How the value of a country’s stock index has varied with that country’s
macroeconomic fundamentals
How the value of a company’s stock price has varied when it announced
the value of its dividend payment
The effect on a country’s exchange rate of an increase in its trade deficit.
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In all of the above cases, it is clearly the time dimension which is the
most important, and the analysis will be conducted using the values of
the variables over time.

Cross-sectional data

Cross-sectional data are data on one or more variables collected at a single
point in time. For example, the data might be on:

® A poll of usage of Internet stockbroking services

® A cross-section of stock returns on the New York Stock Exchange
(NYSE)

® A sample of bond credit ratings for UK banks.

Problems that could be tackled using cross-sectional data:

® The relationship between company size and the return to investing in
its shares

© The relationship between a country’s GDP level and the probability that
the government will default on its sovereign debt.

Panel data

Panel data have the dimensions of both time series and cross-sections,
e.g. the daily prices of a number of blue chip stocks over two years. The
estimation of panel regressions is an interesting and developing area, and
will be examined in detail in chapter 10.

Fortunately, virtually all of the standard techniques and analysis in
econometrics are equally valid for time series and cross-sectional data.
For time series data, it is usual to denote the individual observation num-
bers using the index t, and the total number of observations available for
analysis by T. For cross-sectional data, the individual observation numbers
are indicated using the index i, and the total number of observations avail-
able for analysis by N. Note that there is, in contrast to the time series
case, no natural ordering of the observations in a cross-sectional sample.
For example, the observations i might be on the price of bonds of differ-
ent firms at a particular point in time, ordered alphabetically by company
name. So, in the case of cross-sectional data, there is unlikely to be any
useful information contained in the fact that Northern Rock follows Na-
tional Westminster in a sample of UK bank credit ratings, since it is purely
by chance that their names both begin with the letter ‘N’. On the other
hand, in a time series context, the ordering of the data is relevant since
the data are usually ordered chronologically.
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In this book, the total number of observations in the sample will be
given by T even in the context of regression equations that could apply
either to cross-sectional or to time series data.

Continuous and discrete data

As well as classifying data as being of the time series or cross-sectional
type, we could also distinguish it as being either continuous or discrete,
exactly as their labels would suggest. Continuous data can take on any value
and are not confined to take specific numbers; their values are limited only
by precision. For example, the rental yield on a property could be 6.2%,
6.24% or 6.238%, and so on. On the other hand, discrete data can only take
on certain values, which are usually integers' (whole numbers), and are
often defined to be count numbers. For instance, the number of people in
a particular underground carriage or the number of shares traded during
a day. In these cases, having 86.3 passengers in the carriage or 5857%;
shares traded would not make sense.

Cardinal, ordinal and nominal numbers

Another way in which we could classify numbers is according to whether
they are cardinal, ordinal, or nominal. Cardinal numbers are those where
the actual numerical values that a particular variable takes have meaning,
and where there is an equal distance between the numerical values. On
the other hand, ordinal numbers can only be interpreted as providing a
position or an ordering. Thus, for cardinal numbers, a figure of 12 implies
a measure that is ‘twice as good’ as a figure of 6. Examples of cardinal
numbers would be the price of a share or of a building, and the number
of houses in a street. On the other hand, for an ordinal scale, a figure of 12
may be viewed as ‘better’ than a figure of 6, but could not be considered
twice as good. Examples of ordinal numbers would be the position of
a runner in a race (e.g. second place is better than fourth place, but it
would make little sense to say it is ‘twice as good’) or the level reached in
a computer game.

The final type of data that could be encountered would be where there is
no natural ordering of the values at all, so a figure of 12 is simply different
to that of a figure of 6, but could not be considered to be better or worse
in any sense. Such data often arise when numerical values are arbitrarily
assigned, such as telephone numbers or when codings are assigned to

1 Discretely measured data do not necessarily have to be integers. For example, until
recently when they became ‘decimalised’, many financial asset prices were quoted to the
nearest 1/16 or 1/32 of a dollar.
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qualitative data (e.g. when describing the exchange that a US stock is
traded on, ‘1’ might be used to denote the NYSE, ‘2’ to denote the NASDAQ
and ‘3’ to denote the AMEX). Sometimes, such variables are called nominal
variables. Cardinal, ordinal and nominal variables may require different
modelling approaches or at least different treatments, as should become
evident in the subsequent chapters.

Returns in financial modelling

In many of the problems of interest in finance, the starting point is a time
series of prices - for example, the prices of shares in Ford, taken at 4p.m.
each day for 200 days. For a number of statistical reasons, it is preferable
not to work directly with the price series, so that raw price series are
usually converted into series of returns. Additionally, returns have the
added benefit that they are unitfree. So, for example, if an annualised
return were 10%, then investors know that they would have got back £110
for a £100 investment, or £1,100 for a £1,000 investment, and so on.

There are two methods used to calculate returns from a series of prices,
and these involve the formation of simple returns, and continuously com-
pounded returns, which are achieved as follows:

Simple returns Continuously compounded returns
Ro= 2Pt q00% (11)  ro = 100% x In (i> (1.2)
Pt—1 Pt—1

where: R; denotes the simple return at time t, ry denotes the continuously
compounded return at time t, p; denotes the asset price at time t, and In
denotes the natural logarithm.

If the asset under consideration is a stock or portfolio of stocks, the
total return to holding it is the sum of the capital gain and any divi-
dends paid during the holding period. However, researchers often ignore
any dividend payments. This is unfortunate, and will lead to an under-
estimation of the total returns that accrue to investors. This is likely to
be negligible for very short holding periods, but will have a severe im-
pact on cumulative returns over investment horizons of several years.
Ignoring dividends will also have a distortionary effect on the cross-
section of stock returns. For example, ignoring dividends will imply that
‘growth’ stocks, with large capital gains will be inappropriately favoured
over income stocks (e.g. utilities and mature industries) that pay high
dividends.
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Box 1.3 Log returns

(1) Log-returns have the nice property that they can be interpreted as continuously com-
pounded returns — so that the frequency of compounding of the return does not
matter and thus returns across assets can more easily be compared.
Continuously compounded returns are time-additive. For example, suppose that a
weekly returns series is required and daily log returns have been calculated for five
days, numbered 1 to 5, representing the returns on Monday through Friday. It is valid
to simply add up the five daily returns to obtain the return for the whole week:

Monday return =In(py/po) =Inp1 — Inpo
Tuesday return =1In(p2/p1) =Inp, — Inp;
Wednesday return r3 =In(ps/pz) =Inps — Inp,
(
In(

(2

—

Thursday return r4 =In(ps/p3) =Inps — In p3

Friday return ps/Ps) = Inps — In py

Return over the week In ps — In po = In (ps/ po)

Alternatively, it is possible to adjust a stock price time series so that
the dividends are added back to generate a total return index. If p; were
a total return index, returns generated using either of the two formulae
presented above thus provide a measure of the total return that would
accrue to a holder of the asset during time t.

The academic finance literature generally employs the log-return for-
mulation (also known as log-price relatives since they are the log of the
ratio of this period’s price to the previous period’s price). Box 1.3 shows
two key reasons for this.

There is, however, also a disadvantage of using the logreturns. The
simple return on a portfolio of assets is a weighted average of the simple
returns on the individual assets:

N
Rpt = Y wiRit (1.3)
i=1

But this does not work for the continuously compounded returns, so that
they are not additive across a portfolio. The fundamental reason why this
is the case is that the log of a sum is not the same as the sum of a log,
since the operation of taking a log constitutes a non-linear transformation.
Calculating portfolio returns in this context must be conducted by first
estimating the value of the portfolio at each time period and then deter-
mining the returns from the aggregate portfolio values. Or alternatively,
if we assume that the asset is purchased at time t — K for price P;_g
and then sold K periods later at price P;, then if we calculate simple
returns for each period, R;, Riy1, ..., Rk, the aggregate return over all K



Introduction 9
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periods is
P — P P P P P
R = Pk P _1=|: L P tK+1:|_l
Pi—k Pk Pi1 P Pk
=[1+R)Q+Ri-1)...(1+ Ri—k4+1)] — 1

(1.4)

In the limit, as the frequency of the sampling of the data is increased
so that they are measured over a smaller and smaller time interval, the
simple and continuously compounded returns will be identical.

1.5 Steps involved in formulating an econometric model

Although there are of course many different ways to go about the process
of model building, a logical and valid approach would be to follow the
steps described in figure 1.1.

The steps involved in the model construction process are now listed and
described. Further details on each stage are given in subsequent chapters
of this book.

© Step 1a and 1b: general statement of the problem This will usually involve
the formulation of a theoretical model, or intuition from financial the-
ory that two or more variables should be related to one another in
a certain way. The model is unlikely to be able to completely capture
every relevant real-world phenomenon, but it should present a suffi-
ciently good approximation that it is useful for the purpose at hand.
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® Step 2: collection of data relevant to the model The data required may be
available electronically through a financial information provider, such
as Reuters or from published government figures. Alternatively, the re-
quired data may be available only via a survey after distributing a set
of questionnaires i.e. primary data.

® Step 3: choice of estimation method relevant to the model proposed in step 1
For example, is a single equation or multiple equation technique to be
used?

© Step 4: statistical evaluation of the model What assumptions were required
to estimate the parameters of the model optimally? Were these assump-
tions satisfied by the data or the model? Also, does the model adequately
describe the data? If the answer is ‘yes’, proceed to step 5; if not, go back
to steps 1-3 and either reformulate the model, collect more data, or
select a different estimation technique that has less stringent require-
ments.

© Step 5: evaluation of the model from a theoretical perspective Are the param-
eter estimates of the sizes and signs that the theory or intuition from
step 1 suggested? If the answer is ‘yes’, proceed to step 6; if not, again
return to stages 1-3.

® Step 6: use of model When a researcher is finally satisfied with the model,
it can then be used for testing the theory specified in step 1, or for for-
mulating forecasts or suggested courses of action. This suggested course
of action might be for an individual (e.g. ‘if inflation and GDP rise, buy
stocks in sector X’), or as an input to government policy (e.g. ‘when
equity markets fall, program trading causes excessive volatility and so
should be banned’).

It is important to note that the process of building a robust empirical
model is an iterative one, and it is certainly not an exact science. Often,
the final preferred model could be very different from the one originally
proposed, and need not be unique in the sense that another researcher
with the same data and the same initial theory could arrive at a different
final specification.

Points to consider when reading articles in empirical finance

As stated above, one of the defining features of this book relative to others
in the area is in its use of published academic research as examples of the
use of the various techniques. The papers examined have been chosen for
a number of reasons. Above all, they represent (in this author’s opinion) a
clear and specific application in finance of the techniques covered in this
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Box 1.4 Points to consider when reading a published paper

(1) Does the paper involve the development of a theoretical model or is it merely a
technique looking for an application so that the motivation for the whole exercise is
poor?

(2) Are the data of ‘good quality’? Are they from a reliable source? Is the size of the
sample sufficiently large for the model estimation task at hand?

(3) Have the techniques been validly applied? Have tests been conducted for possible
violations of any assumptions made in the estimation of the model?

(4) Have the results been interpreted sensibly? Is the strength of the results exagger-
ated? Do the results actually obtained relate to the questions posed by the author(s)?
Can the results be replicated by other researchers?

(5) Are the conclusions drawn appropriate given the results, or has the importance of
the results of the paper been overstated?

book. They were also required to be published in a peer-reviewed journal,
and hence to be widely available.

When I was a student, I used to think that research was a very pure
science. Now, having had first-hand experience of research that academics
and practitioners do, I know that this is not the case. Researchers often cut
corners. They have a tendency to exaggerate the strength of their results,
and the importance of their conclusions. They also have a tendency not to
bother with tests of the adequacy of their models, and to gloss over or omit
altogether any results that do not conform to the point that they wish
to make. Therefore, when examining papers from the academic finance
literature, it is important to cast a very critical eye over the research -
rather like a referee who has been asked to comment on the suitability
of a study for a scholarly journal. The questions that are always worth
asking oneself when reading a paper are outlined in box 1.4.

Bear these questions in mind when reading my summaries of the ar-
ticles used as examples in this book and, if at all possible, seek out and
read the entire articles for yourself.

1.7 Econometric packages for modelling financial data

As the name suggests, this section contains descriptions of various com-
puter packages that may be employed to estimate econometric models. The
number of available packages is large, and over time, all packages have
improved in breadth of available techniques, and have also converged in
terms of what is available in each package. Some readers may already be
familiar with the use of one or more packages, and if this is the case,
this section may be skipped. For those who do not know how to use any
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Econometric software packages for
modelling financial data

Package software supplier*

EViews QMS Software

GAUSS Aptech Systems

LIMDEP Econometric Software
MATLAB The MathWorks

RATS Estima

SAS SAS Institute

SHAZAM Northwest Econometrics
SPLUS Insightful Corporation
SPSS SPSS

TSP TSP International

* Full contact details for all software suppliers
can be found in the appendix at the end of this
chapter.

econometrics software, or have not yet found a package which suits their
requirements, then read on.

What packages are available?

Although this list is by no means exhaustive, a set of widely used packages
is given in table 1.1. The programs can usefully be categorised according to
whether they are fully interactive, (menu-driven), command-driven (so that
the user has to write mini-programs), or somewhere in between. Menu-
driven packages, which are usually based on a standard Microsoft Win-
dows graphical user interface, are almost certainly the easiest for novices
to get started with, for they require little knowledge of the structure of
the package, and the menus can usually be negotiated simply. EViews is
a package that falls into this category.

On the other hand, some such packages are often the least flexible,
since the menus of available options are fixed by the developers, and
hence if one wishes to build something slightly more complex or just
different, then one is forced to consider alternatives. EViews, however,
has a command-based programming language as well as a click-and-point
interface so that it offers flexibility as well as user-friendliness.

Choosing a package

Choosing an econometric software package is an increasingly difficult
task as the packages become more powerful but at the same time more
homogeneous. For example, LIMDEP, a package originally developed for
the analysis of a certain class of cross-sectional data, has many useful
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features for modelling financial time series. Also, many packages devel-
oped for time series analysis, such as TSP (‘Time Series Processor’), can also
now be used for cross-sectional or panel data. Of course, this choice may
be made for you if your institution offers or supports only one or two of
the above possibilities. Otherwise, sensible questions to ask yourself are:

o [s the package suitable for your intended applications — for example, does

the software have the capability for the models that you want to esti-

mate? Can it handle sufficiently large databases?

Is the package userfriendly?

Is it fast?

How much does it cost?

Is it accurate?

Is the package discussed or supported in a standard textbook, as EViews

is in this book?

® Does the package have readable and comprehensive manuals? Is help avail-
able online?

® Does the package come with free technical support so that you can e-mail
the developers with queries?

A great deal of useful information can be obtained most easily from the
web pages of the software developers. Additionally, many journals (includ-
ing the Journal of Applied Econometrics, the Economic Journal, the International
Journal of Forecasting and the American Statistician) publish software reviews
that seek to evaluate and compare the packages’ usefulness for a given
purpose. Three reviews that this author has been involved with, that are
relevant for chapter 8 of this text in particular, are Brooks (1997) and
Brooks, Burke and Persand (2001, 2003).

The EViews package will be employed in this text because it is simple
to use, menu-driven, and will be sufficient to estimate most of the models
required for this book. The following section gives an introduction to this
software and outlines the key features and how basic tasks are executed.?

Accomplishing simple tasks using EViews

EViews is a simple to use, interactive econometrics software package, pro-
viding the tools most frequently used in practical econometrics. EViews
is built around the concept of objects with each object having its own
window, its own menu, its own procedure and its own view of its data.

2 The first edition of this text also incorporated a detailed discussion of the WinRATS
package, but in the interests of keeping the book at a manageable length with two new
chapters included, the support for WinRATS users will now be given in a separate
handbook that accompanies the main text, ISBN: 9780521896955.
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Using menus, it is easy to change between displays of a spreadsheet, line
and bar graphs, regression results, etc. One of the most important fea-
tures of EViews that makes it useful for model-building is the wealth of
diagnostic (misspecification) tests, that are automatically computed, mak-
ing it possible to test whether the model is econometrically valid or not.
You work your way through EViews using a combination of windows, but-
tons, menus and sub-menus. A good way of familiarising yourself with
EViews is to learn about its main menus and their relationships through
the examples given in this and subsequent chapters.

This section assumes that readers have obtained a licensed copy of
EViews, and have successfully loaded it onto an available computer. There
now follows a description of the EViews package, together with instruc-
tions to achieve standard tasks and sample output. Any instructions that
must be entered or icons to be clicked are illustrated throughout this book
by bold-faced type. The objective of the treatment in this and subsequent
chapters is not to demonstrate the full functionality of the package, but
rather to get readers started quickly and to explain how the techniques
are implemented. For further details, readers should consult the software
manuals in the first instance, which are now available electronically with
the software as well as in hard copy.® Note that EViews is not case-sensitive,
so that it does not matter whether commands are entered as lower-case
or CAPITAL letters.

Opening the software
To load EViews from Windows, choose Start, All Programs, EViews6 and
finally, EViews6 again.

Reading in data

EViews provides support to read from or write to various file types, in-
cluding ‘ASCII’ (text) files, Microsoft Excel *.XLS’ files (reading from any
named sheet in the Excel workbook), Lotus *.WKS1’ and ‘*.WKS3’ files. It is
usually easiest to work directly with Excel files, and this will be the case
throughout this book.

Creating a workfile and importing data
The first step when the EViews software is opened is to create a workfile
that will hold the data. To do this, select New from the File menu. Then

3 A student edition of EViews 4.1 is available at a much lower cost than the full version,
but with reduced functionality and restrictions on the number of observations and
objects that can be included in each workfile.
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choose Workfile. The ‘Workfile Create’ window in screenshot 1.1 will be
displayed.

Workfile Create

Workfile structure type Date specification
| Dated - regular frequency |¥ | Frequency Monthly v

Start date: | 1991:01

Irregular Dated and Panel End date:  2007:05

workfiles may be made from

Unstructured workfiles by

later specifying date and/or

other identifier series. Names (optional)

WF:

Page: |

oK Cancel

We are going to use as an example a time series of UK average house
price data obtained from Nationwide,* which comprises 197 monthly ob-
servations from January 1991 to May 2007. The frequency of the data
(Monthly) should be set and the start (1991:01) and end (2007:05) dates
should be inputted. Click OK. An untitled workfile will be created.

Under ‘Workfile structure type’, keep the default option, Dated - regu-
lar frequency. Then, under ‘Date specification’, choose Monthly. Note the
format of date entry for monthly and quarterly data: YYYY:M and YYYY:Q,
respectively. For daily data, a US date format must usually be used depend-
ing on how EViews has been set up: MM/DD|YYYY (e.g. 03/01/1999 would
be 1st March 1999, not 3rd January). Caution therefore needs to be exer-
cised here to ensure that the date format used is the correct one. Type
the start and end dates for the sample into the boxes: 1991:01 and 2007:05
respectively. Then click OK. The workfile will now have been created. Note
that two pairs of dates are displayed, ‘Range’ and ‘Sample”: the first one is
the range of dates contained in the workfile and the second one (which
is the same as above in this case) is for the current workfile sample. Two

4 Full descriptions of the sources of data used will be given in appendix 3 and on the web
site accompanying this book.
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objects are also displayed: C (which is a vector that will eventually contain
the parameters of any estimated models) and RESID (a residuals series,
which will currently be empty). See chapter 2 for a discussion of these
concepts. All EViews workfiles will contain these two objects, which are
created automatically.

Now that the workfile has been set up, we can import the data from
the Excel file UKHP.XLS. So from the File menu, select Import and Read
Text-Lotus-Excel. You will then be prompted to select the directory and file
name. Once you have found the directory where the file is stored, enter
UKHPXLS in the ‘file name’ box and select the file type ‘Excel (x.xls). The
window in screenshot 1.2 (‘Excel Spreadsheet Import’) will be displayed.

Excel Spreadsheet Import @

Data order Upper-left data cell Excel 5+ sheet name
(©) By Observation - series in columns

=] B2
{_) By Series - series in rows

liames for series or Number if named in file

HF

Import sample
Reset sample to:

[] Current sample
(] Workfile range
[[] To end of range

1991m01 2007m05

o ] [coen ]

You have to choose the order of your data: by observations (series in
columns as they are in this and most other cases) or by series (series in
rows). Also you could provide the names for your series in the relevant
box. If the names of the series are already in the imported Excel data file,
you can simply enter the number of series (which you are importing) in
the ‘Names for series or Number if named in file’ field in the dialog box.
In this case, enter HP, say, for house prices. The ‘Upper-left data cell’ refers
to the first cell in the spreadsheet that actually contains numbers. In this
case, it can be left at B2 as the first column in the spreadsheet contains
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only dates and we do not need to import those since EViews will date the
observations itself. You should also choose the sample of the data that you
wish to import. This box can almost always be left at EViews’ suggestion
which defaults to the current workfile sample. Click OK and the series will
be imported. The series will appear as a new icon in the workfile window,
as in screenshot 1.3.

[ShoveJ[Fetch[store [petete [ Genr [Sam

Range: 1991M01 2007M05 -- 197 obs Display Filter: *
Sample: 1991M01 2007M05 -- 197 obs

EA resid

<) |1% : Untitled é New Page ﬁ

Verifying the data

Double click on the new hp icon that has appeared, and this will open
up a spreadsheet window within EViews containing the monthly house
price values. Make sure that the data file has been correctly imported by
checking a few observations at random.

The next step is to save the workfile: click on the Save As button from
the File menu and select Save Active Workfile and click OK. A save dialog
box will open, prompting you for a workfile name and location. You should
enter XX (where XX is your chosen name for the file), then click OK. EViews
will save the workfile in the specified directory with the name XX.WF1.
The saved workfile can be opened later by selecting File/Open/EViews Work-
file...from the menu bar.
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Transformations

Variables of interest can be created in EViews by selecting the Genr button
from the workfile toolbar and typing in the relevant formulae. Suppose,
for example, we have a time series called Z. The latter can be modified in
the following ways so as to create Variables A, B, C, etc.

A=7Z2 Dividing

B =172 Multiplication

C=172"2 Squaring

D = LOG(Z) Taking the logarithms
E = EXP(Z) Taking the exponential
F=7(-1) Lagging the data

G = LOG(Z|Z(-1)) Creating the log-returns

Other functions that can be used in the formulae include: abs, sin, cos, etc.
Notice that no special instruction is necessary; simply type ‘new variable =
function of old variable(s). The variables will be displayed in the same
workfile window as the original (imported) series.

In this case, it is of interest to calculate simple percentage changes in
the series. Click Genr and type DHP = 100%HP-HP(-1))/HP(-1). It is important
to note that this new series, DHP, will be a series of monthly changes and
will not be annualised.

Computing summary statistics

Descriptive summary statistics of a series can be obtained by selecting
Quick/Series Statistics/Histogram and Stats and typing in the name of
the variable (DHP). The view in screenshot 1.4 will be displayed in the
window.

As can be seen, the histogram suggests that the series has a longer upper
tail than lower tail (note the x-axis scale) and is centred slightly above
zero. Summary statistics including the mean, maximum and minimum,
standard deviation, higher moments and a test for whether the series is
normally distributed are all presented. Interpreting these will be discussed
in subsequent chapters. Other useful statistics and transformations can
be obtained by selecting the command Quick/Series Statistics, but these are
covered later in this book.

Plots

EViews supports a wide range of graph types including line graphs, bar
graphs, pie charts, mixed line-bar graphs, high-low graphs and scatter-
plots. A variety of options permits the user to select the line types, colour,
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EOX

B8 Series: DHP Workfile: UNTITLED::Untitled\

|View ||Pruc |0bject||Pmperties| |PrintﬂName |Freeze| |Sample ||Genr||sheetEGraph IStats|

Sernies: DHP
Sample 1991M01 2007M05
Observations 196

0.636252
0.656686
3.802188
-2.322131
1.146288
0.036656
3.138358

Mean
Median
Maximum
Minimum
Std. Dev.
Skewness
Kurtosis

0.200226
0.904735

Jarque-Bera
Probability

border characteristics, headings, shading and scaling, including logarith-
mic scale and dual scale graphs. Legends are automatically created (al-
though they can be removed if desired), and customised graphs can be
incorporated into other Windows applications using copy-and-paste, or by
exporting as Windows metafiles.

From the main menu, select Quick/Graph and type in the name of the
series that you want to plot (HP to plot the level of house prices) and click
OK. You will be prompted with the Graph window where you choose the
type of graph that you want (line, bar, scatter or pie charts). There is a
Show Option button, which you click to make adjustments to the graphs.
Choosing a line graph would produce screenshot 1.5.

Scatter plots can similarly be produced by selecting ‘Scatter’ in the
‘Graph Type’ box after opening a new graph object.

Printing results

Results can be printed at any point by selecting the Print button on the ob-
ject window toolbar. The whole current window contents will be printed.
Choosing View/Print Selected from the workfile window prints the default
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B Graph: UNTITLED Workfile: UNTITLED::Untitled\ =]
iViewﬂProc lobject| Pn‘nt"Name |AddText||Line{Shade||Remove| |Temp|ate ]|Options| Zoom

HP

200,000

180,000

160,000

140,000

120.000

100,000

60,000

60,000

40;000 IIIIIll“!lliIIIIIIIIIIIIIIIIIIIIlllll“llllIIIIIIIIIIIIIIIIIIIII
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view for all of the selected objects. Graphs can be copied into the clipboard
if desired by right clicking on the graph and choosing Copy.

Saving data results and workfile

Data generated in EViews can be exported to other Windows applications,
e.g. Microsoft Excel. From the object toolbar, select Procs/Export/Write Text-
Lotus-Excel. You will then be asked to provide a name for the exported file
and to select the appropriate directory. The next window will ask you to
select all the series that you want to export, together with the sample
period.

Assuming that the workfile has been saved after the importation of
the data set (as mentioned above), additional work can be saved by just
selecting Save from the File menu. It will ask you if you want to overwrite
the existing file, in which case you click on the Yes button. You will also
be prompted to select whether the data in the file should be saved in
‘single precision’ or ‘double precision’. The latter is preferable for obvious
reasons unless the file is likely to be very large because of the quantity
of variables and observations it contains (single precision will require less
space). The workfile will be saved including all objects in it - data, graphs,
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equations, etc. so long as they have been given a title. Any untitled objects
will be lost upon exiting the program.

Econometric tools available in EViews

Box 1.5 describes the features available in EViews, following the format
of the user guides for version 6, with material discussed in this book
indicated by italics.

Box 1.5 Features of EViews

The EViews user guide is now split into two volumes. Volume | contains parts | to Ill as
described below, while Volume Il contains Parts IV to VIII.

PART | (EVIEWS FUNDAMENTALS)

Chapters 1-4 contain introductory material describing the basics of Windows and
EViews, how workfiles are constructed and how to deal with objects.

Chapters 5 and 6 document the basics of working with data. Importing data into
EViews, using EViews to manipulate and manage data, and exporting from EViews
into spreadsheets, text files and other Windows applications are discussed.
Chapters 7-10 describe the EViews database and other advanced data and workfile
handling features.

PART Il (BASIC DATA ANALYSIS)

Chapter 11 describes the series object. Series are the basic unit of data in EViews
and are the basis for all univariate analysis. This chapter documents the basic
graphing and data analysis features associated with series.

Chapter 12 documents the group object. Groups are collections of series that form
the basis for a variety of multivariate graphing and data analyses.

Chapter 13 provides detailed documentation for explanatory data analysis using
distribution graphs, density plots and scatter plot graphs.

Chapters 14 and 15 describe the creation and customisation of more advanced
tables and graphs.

PART Il (COMMANDS AND PROGRAMMING)

Chapters 16-23 describe in detail how to write programs using the EViews
programming language.

PART IV (BASIC SINGLE EQUATION ANALYSIS)

Chapter 24 outlines the basics of ordinary least squares estimation (OLS) in EViews.
Chapter 25 discusses the weighted least squares, two-stage least squares and
non-linear least squares estimation techniques.

Chapter 26 describes single equation regression techniques for the analysis of time
series data: testing for serial correlation, estimation of ARMA models, using
polynomial distributed lags, and unit root tests for non-stationary time series.
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Chapter 27 describes the fundamentals of using EViews to forecast from estimated
equations.
Chapter 28 describes the specification testing procedures available in EViews.

PART V. (ADVANCED SINGLE EQUATION ANALYSIS)

Chapter 29 discusses ARCH and GARCH estimation and outlines the EViews tools
for modelling the conditional variance of a variable.

Chapter 30 documents EViews functions for estimating qualitative and limited
dependent variable models. EViews provides estimation routines for binary or
ordered (e.g. probit and logit), censored or truncated (tobit, etc.) and integer valued
(count) data.

Chapter 31 discusses the fashionable topic of the estimation of quantile
regressions.

Chapter 32 shows how to deal with the log-likelihood object, and how to solve
problems with non-linear estimation.

PART VI (MULTIPLE EQUATION ANALYSIS)

Chapters 33-36 describe estimation techniques for systems of equations including
VAR and VEC models, and state space models.

PART VIl (PANEL AND POOLED DATA)

Chapter 37 outlines tools for working with pooled time series, cross-section data and
estimating standard equation specifications that account for the pooled structure of
the data.

Chapter 38 describes how to structure a panel of data and how to analyse it, while
chapter 39 extends the analysis to look at panel regression model estimation.

PART VIII  (OTHER MULTIVARIATE ANALYSIS)

Chapter 40, the final chapter of the manual, explains how to conduct factor analysis
in EViews.

1.8 Outline of the remainder of this book

Chapter 2

This introduces the classical linear regression model (CLRM). The ordinary
least squares (OLS) estimator is derived and its interpretation discussed.
The conditions for OLS optimality are stated and explained. A hypothesis
testing framework is developed and examined in the context of the linear
model. Examples employed include Jensen’s classic study of mutual fund
performance measurement and tests of the ‘overreaction hypothesis’ in
the context of the UK stock market.
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Chapter 3

This continues and develops the material of chapter 2 by generalising the
bivariate model to multiple regression - i.e. models with many variables.
The framework for testing multiple hypotheses is outlined, and measures
of how well the model fits the data are described. Case studies include
modelling rental values and an application of principal components anal-
ysis to interest rate modelling.

Chapter 4

Chapter 4 examines the important but often neglected topic of diagnos-
tic testing. The consequences of violations of the CLRM assumptions are
described, along with plausible remedial steps. Model-building philoso-
phies are discussed, with particular reference to the general-to-specific
approach. Applications covered in this chapter include the determination
of sovereign credit ratings.

Chapter 5

This presents an introduction to time series models, including their moti-
vation and a description of the characteristics of financial data that they
can and cannot capture. The chapter commences with a presentation of
the features of some standard models of stochastic (white noise, moving
average, autoregressive and mixed ARMA) processes. The chapter contin-
ues by showing how the appropriate model can be chosen for a set of
actual data, how the model is estimated and how model adequacy checks
are performed. The generation of forecasts from such models is discussed,
as are the criteria by which these forecasts can be evaluated. Examples in-
clude model-building for UK house prices, and tests of the exchange rate
covered and uncovered interest parity hypotheses.

Chapter 6

This extends the analysis from univariate to multivariate models. Multi-
variate models are motivated by way of explanation of the possible
existence of bi-directional causality in financial relationships, and the
simultaneous equations bias that results if this is ignored. Estimation
techniques for simultaneous equations models are outlined. Vector auto-
regressive (VAR) models, which have become extremely popular in the
empirical finance literature, are also covered. The interpretation of VARs
is explained by way of joint tests of restrictions, causality tests, impulse
responses and variance decompositions. Relevant examples discussed in
this chapter are the simultaneous relationship between bid-ask spreads
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and trading volume in the context of options pricing, and the relationship
between property returns and macroeconomic variables.

Chapter 7

The first section of the chapter discusses unit root processes and presents
tests for non-stationarity in time series. The concept of and tests for coin-
tegration, and the formulation of error correction models, are then dis-
cussed in the context of both the single equation framework of Engle-
Granger, and the multivariate framework of Johansen. Applications stud-
ied in chapter 7 include spot and futures markets, tests for cointegration
between international bond markets and tests of the purchasing power
parity hypothesis and of the expectations hypothesis of the term struc-
ture of interest rates.

Chapter 8

This covers the important topic of volatility and correlation modelling
and forecasting. This chapter starts by discussing in general terms the
issue of non-linearity in financial time series. The class of ARCH (AutoRe-
gressive Conditionally Heteroscedastic) models and the motivation for this
formulation are then discussed. Other models are also presented, includ-
ing extensions of the basic model such as GARCH, GARCH-M, EGARCH
and GJR formulations. Examples of the huge number of applications are
discussed, with particular reference to stock returns. Multivariate GARCH
models are described, and applications to the estimation of conditional
betas and time-varying hedge ratios, and to financial risk measurement,
are given.

Chapter 9

This discusses testing for and modelling regime shifts or switches of be-
haviour in financial series that can arise from changes in government
policy, market trading conditions or microstructure, among other causes.
This chapter introduces the Markov switching approach to dealing with
regime shifts. Threshold autoregression is also discussed, along with issues
relating to the estimation of such models. Examples include the modelling
of exchange rates within a managed floating environment, modelling and
forecasting the gilt-equity yield ratio, and models of movements of the
difference between spot and futures prices.

Chapter 10

This new chapter focuses on how to deal appropriately with longitudinal
data - that is, data having both time series and cross-sectional dimensions.
Fixed effect and random effect models are explained and illustrated by way
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of examples on banking competition in the UK and on credit stability in
Central and Eastern Europe. Entity fixed and time-fixed effects models are
elucidated and distinguished.

Chapter 11

The second new chapter describes various models that are appropriate
for situations where the dependent variable is not continuous. Readers
will learn how to construct, estimate and interpret such models, and to
distinguish and select between alternative specifications. Examples used
include a test of the pecking order hypothesis in corporate finance and
the modelling of unsolicited credit ratings.

Chapter 12

This presents an introduction to the use of simulations in econometrics
and finance. Motivations are given for the use of repeated sampling, and a
distinction is drawn between Monte Carlo simulation and bootstrapping.
The reader is shown how to set up a simulation, and examples are given
in options pricing and financial risk management to demonstrate the
usefulness of these techniques.

Chapter 13

This offers suggestions related to conducting a project or dissertation in
empirical finance. It introduces the sources of financial and economic data
available on the Internet and elsewhere, and recommends relevant online
information and literature on research in financial markets and financial
time series. The chapter also suggests ideas for what might constitute a
good structure for a dissertation on this subject, how to generate ideas for
a suitable topic, what format the report could take, and some common
pitfalls.

Chapter 14

This summarises the book and concludes. Several recent developments in
the field, which are not covered elsewhere in the book, are also mentioned.
Some tentative suggestions for possible growth areas in the modelling of
financial time series are also given.

Further reading

EViews 6 User’s Guides I and II - Quantitative Micro Software (2007), QMS, Irvine, CA
EViews 6 Command Reference — Quantitative Micro Software (2007), QMS, Irvine, CA
Startz, R. EViews Illustrated for Version 6 (2007) QMS, Irvine, CA
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Econometric software package suppliers

Package  Contact information

EViews QMS Software, Suite 336, 4521 Campus Drive #336, Irvine, CA 92612-2621, USA
Tel: (+1) 949 856 3368; Fax: (+1) 949 856 2044; Web: www.eviews.com

GAUSS Aptech Systems Inc, PO Box 250, Black Diamond, WA 98010, USA
Tel: (+1) 425 432 7855; Fax: (+1) 425 432 7832; Web: www.aptech.com

LIMDEP Econometric Software, 15 Gloria Place, Plainview, NY 11803, USA
Tel: (+1) 516 938 5254; Fax: (+1) 516 938 2441; Web: www.limdep.com

MATLAB  The MathWorks Inc., 3 Applie Hill Drive, Natick, MA 01760-2098, USA
Tel: (+1) 508 647 7000; Fax: (+1) 508 647 7001; Web: www.mathworks.com

RATS Estima, 1560 Sherman Avenue, Evanson, IL 60201, USA
Tel: (+1) 847 864 8772; Fax: (+1) 847 864 6221; Web: www.estima.com

SAS SAS Institute, 100 Campus Drive, Cary NC 27513-2414, USA
Tel: (+1) 919 677 8000; Fax: (+1) 919 677 4444; Web: www.sas.com

SHAZAM  Northwest Econometrics Ltd., 277 Arbutus Reach, Gibsons, B.C. VON 1V8,
Canada
Tel: —; Fax: (+1) 707 317 5364; Web: shazam.econ.ubc.ca

SPLUS Insightful Corporation, 1700 Westlake Avenue North, Suite 500, Seattle, WA
98109-3044, USA
Tel: (+1) 206 283 8802; Fax: (+1) 206 283 8691; Web: www.splus.com

SPSS SPSS Inc, 233 S. Wacker Drive, 11th Floor, Chicago, IL 60606-6307, USA
Tel: (+1) 800 543 2185; Fax: (+1) 800 841 0064; Web: www.spss.com

TSP TSP International, PO Box 61015 Station A, Palo Alto, CA 94306, USA
Tel: (+1) 650 326 1927; Fax: (+1) 650 328 4163; Web: www.tspintl.com

Key concepts

The key terms to be able to define and explain from this chapter are
® financial econometrics ® continuously compounded returns

® time series ® cross-sectional data

® panel data ® pooled data

® continuous data ® discrete data
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Learning Outcomes
In this chapter, you will learn how to

® Derive the OLS formulae for estimating parameters and their
standard errors

® Explain the desirable properties that a good estimator should
have

® Discuss the factors that affect the sizes of standard errors

® Test hypotheses using the test of significance and confidence
interval approaches

® Interpret p-values

® Estimate regression models and test single hypotheses in
EViews

2.1 What is a regression model?

Regression analysis is almost certainly the most important tool at the
econometrician’s disposal. But what is regression analysis? In very general
terms, regression is concerned with describing and evaluating the relation-
ship between a given variable and one or more other variables. More specifically,
regression is an attempt to explain movements in a variable by reference
to movements in one or more other variables.

To make this more concrete, denote the variable whose movements
the regression seeks to explain by y and the variables which are used to
explain those variations by X1, X2,..., Xx. Hence, in this relatively simple
setup, it would be said that variations in k variables (the Xs) cause changes
in some other variable, y. This chapter will be limited to the case where
the model seeks to explain changes in only one variable y (although this
restriction will be removed in chapter 6).

27
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Box 2.1 Names for y and xs in regression models

Names for y Names for the xs
Dependent variable Independent variables
Regressand Regressors

Effect variable Causal variables
Explained variable Explanatory variables

There are various completely interchangeable names for y and the
xs, and all of these terms will be used synonymously in this book (see
box 2.1).

2.2 Regression versus correlation

All readers will be aware of the notion and definition of correlation. The
correlation between two variables measures the degree of linear association
between them. If it is stated that y and X are correlated, it means that y
and x are being treated in a completely symmetrical way. Thus, it is not
implied that changes in X cause changes in Yy, or indeed that changes in
y cause changes in x. Rather, it is simply stated that there is evidence
for a linear relationship between the two variables, and that movements
in the two are on average related to an extent given by the correlation
coefficient.

In regression, the dependent variable (y) and the independent vari-
able(s) (xs) are treated very differently. The y variable is assumed to be
random or ‘stochastic’ in some way, i.e. to have a probability distribution.
The x variables are, however, assumed to have fixed (‘non-stochastic’) val-
ues in repeated samples.! Regression as a tool is more flexible and more
powerful than correlation.

2.3 Simple regression

For simplicity, suppose for now that it is believed that y depends on only
one X variable. Again, this is of course a severely restricted case, but the
case of more explanatory variables will be considered in the next chap-
ter. Three examples of the kind of relationship that may be of interest
include:

1 Strictly, the assumption that the xs are non-stochastic is stronger than required, an
issue that will be discussed in more detail in chapter 4.
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© How asset returns vary with their level of market risk

® Measuring the long-term relationship between stock prices and
dividends

® Constructing an optimal hedge ratio.

Suppose that a researcher has some idea that there should be a relation-
ship between two variables y and X, and that financial theory suggests
that an increase in x will lead to an increase in y. A sensible first stage
to testing whether there is indeed an association between the variables
would be to form a scatter plot of them. Suppose that the outcome of this
plot is figure 2.1.

In this case, it appears that there is an approximate positive linear
relationship between x and y which means that increases in X are usually
accompanied by increases in Yy, and that the relationship between them
can be described approximately by a straight line. It would be possible
to draw by hand onto the graph a line that appears to fit the data. The
intercept and slope of the line fitted by eye could then be measured from
the graph. However, in practice such a method is likely to be laborious
and inaccurate.

It would therefore be of interest to determine to what extent this rela-
tionship can be described by an equation that can be estimated using a de-
fined procedure. It is possible to use the general equation for a straight line

y = o+ BX (2.1)
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Box 2.2 Reasons for the inclusion of the disturbance term

Even in the general case where there is more than one explanatory variable, some
determinants of y; will always in practice be omitted from the model. This might, for
example, arise because the number of influences on y is too large to place in a
single model, or because some determinants of y may be unobservable or not
measurable.

There may be errors in the way that y is measured which cannot be modelled.
There are bound to be random outside influences on y that again cannot be
modelled. For example, a terrorist attack, a hurricane or a computer failure could all
affect financial asset returns in a way that cannot be captured in a model and
cannot be forecast reliably. Similarly, many researchers would argue that human
behaviour has an inherent randomness and unpredictability!

to get the line that best ‘fits’ the data. The researcher would then be
seeking to find the values of the parameters or coefficients, « and S,
which would place the line as close as possible to all of the data points
taken together.

However, this equation (y = « + x) is an exact one. Assuming that this
equation is appropriate, if the values of @ and g had been calculated, then
given a value of X, it would be possible to determine with certainty what
the value of y would be. Imagine - a model which says with complete
certainty what the value of one variable will be given any value of the
other!

Clearly this model is not realistic. Statistically, it would correspond to
the case where the model fitted the data perfectly - that is, all of the data
points lay exactly on a straight line. To make the model more realistic, a
random disturbance term, denoted by u, is added to the equation, thus

Yt = o + BXt + Ut (2.2)

where the subscript t(= 1, 2, 3, ...) denotes the observation number. The
disturbance term can capture a number of features (see box 2.2).

So how are the appropriate values of @ and 8 determined? « and g are
chosen so that the (vertical) distances from the data points to the fitted
lines are minimised (so that the line fits the data as closely as possible).
The parameters are thus chosen to minimise collectively the (vertical)
distances from the data points to the fitted line. This could be done by
‘eye-balling’ the data and, for each set of variables y and x, one could
form a scatter plot and draw on a line that looks as if it fits the data well
by hand, as in figure 2.2.

Note that the vertical distances are usually minimised rather than the
horizontal distances or those taken perpendicular to the line. This arises
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Scatter plot of two
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as a result of the assumption that x is fixed in repeated samples, so that
the problem becomes one of determining the appropriate model for y
given (or conditional upon) the observed values of X.

This ‘eye-balling’ procedure may be acceptable if only indicative results
are required, but of course this method, as well as being tedious, is likely
to be imprecise. The most common method used to fit a line to the data is
known as ordinary least squares (OLS). This approach forms the workhorse
of econometric model estimation, and will be discussed in detail in this
and subsequent chapters.

Two alternative estimation methods (for determining the appropriate
values of the coefficients « and ) are the method of moments and the
method of maximum likelihood. A generalised version of the method of
moments, due to Hansen (1982), is popular, but beyond the scope of this
book. The method of maximum likelihood is also widely employed, and
will be discussed in detail in chapter 8.

Suppose now, for ease of exposition, that the sample of data contains
only five observations. The method of OLS entails taking each vertical
distance from the point to the line, squaring it and then minimising
the total sum of the areas of squares (hence ‘least squares’), as shown in
figure 2.3. This can be viewed as equivalent to minimising the sum of the
areas of the squares drawn from the points to the line.

Tightening up the notation, let y; denote the actual data point for ob-
servation t and let §; denote the fitted value from the regression line - in
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Figure 2.3 [
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other words, for the given value of x of this observation t, J; is the value
for y which the model would have predicted. Note that a hat (") over a
variable or parameter is used to denote a value estimated by a model.
Finally, let (; denote the residual, which is the difference between the
actual value of y and the value fitted by the model for this data point -
i.e. (Yt — ¥t). This is shown for just one observation t in figure 2.4.

What is done is to minimise the sum of the (2. The reason that the sum
of the squared distances is minimised rather than, for example, finding
the sum of {; that is as close to zero as possible, is that in the latter case
some points will lie above the line while others lie below it. Then, when
the sum to be made as close to zero as possible is formed, the points
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above the line would count as positive values, while those below would
count as negatives. So these distances will in large part cancel each other
out, which would mean that one could fit virtually any line to the data,
so long as the sum of the distances of the points above the line and the
sum of the distances of the points below the line were the same. In that
case, there would not be a unique solution for the estimated coefficients.
In fact, any fitted line that goes through the mean of the observations
(i.e. X, y) would set the sum of the {; to zero. However, taking the squared
distances ensures that all deviations that enter the calculation are positive
and therefore do not cancel out.

So minimising the sum of squared distances is given by minimising
(02 + 03 + 03 + (3 + 02), or minimising

()

This sum is known as the residual sum of squares (RSS) or the sum of squared
residuals. But what is 0;? Again, it is the difference between the actual
point and the line, y; — . So minimising ", G is equivalent to minimis-
ing > (Yt — 9t)2-A

Letting @ and 8 denote the values of @ and g selected by minimising the
RSS, respectively, the equation for the fitted line is given by §; = & + Bx:.
Now let L denote the RSS, which is also known as a loss function. Take
the summation over all of the observations, i.e. fromt =1 to T, where T
is the number of observations

T T
L= Z(yt —9)? = Z(Yt — & — Bxe)% (2.3)
=1 =1

L is minimised with respect to (w.r.t.) & and §, to find the values of « and 8
which minimise the residual sum of squares to give the line that is closest
to the data. So L is differentiated w.r.t. & and B, setting the first derivatives
to zero. A derivation of the ordinary least squares (OLS) estimator is given
in the appendix to this chapter. The coefficient estimators for the slope
and the intercept are given by

2% —TXY 24 23

>
Il
<l
|
>
x|

Equations (2.4) and (2.5) state that, given only the sets of observations X;
and V;, it is always possible to calculate the values of the two parameters,
@ and B, that best fit the set of data. Equation (2.4) is the easiest formula
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Table 2.1

Example 2.1
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Sample data on fund XXX to motivate OLS estimation

Excess return on Excess return on
Year, t fund XXX = rxxx.t — rfi market index = rm; — rf;
1 17.8 13.7
2 39.0 23.2
3 12.8 6.9
4 24.2 16.8
5 17.2 12.3

to use to calculate the slope estimate, but the formula can also be written,
more intuitively, as

2 (e =) —Y)
a 2 (e = x)?
which is equivalent to the sample covariance between x and y divided by
the sample variance of X.

To reiterate, this method of finding the optimum is known as OLS. It
is also worth noting that it is obvious from the equation for & that the
regression line will go through the mean of the observations - i.e. that
the point (X, y) lies on the regression line.

>

(2.6)

___________________________________________________________________________________|
Suppose that some data have been collected on the excess returns on a
fund manager’s portfolio (‘fund XXX’) together with the excess returns on
a market index as shown in table 2.1.

The fund manager has some intuition that the beta (in the CAPM
framework) on this fund is positive, and she therefore wants to find
whether there appears to be a relationship between x and y given the data.
Again, the first stage could be to form a scatter plot of the two variables
(figure 2.5).

Clearly, there appears to be a positive, approximately linear relation-
ship between x and Yy, although there is not much data on which to base
this conclusion! Plugging the five observations in to make up the for-
mulae given in (2.4) and (2.5) would lead to the estimates & = —1.74 and
B = 1.64. The fitted line would be written as

~

Vi = —1.74 + 1.64x%, (2.7)

where X; is the excess return of the market portfolio over the risk free
rate (i.e. rm — rf), also known as the market risk premium.
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What are & and B used for?

This question is probably best answered by posing another question. If an
analyst tells you that she expects the market to yield a return 20% higher
than the risk-free rate next year, what would you expect the return on
fund XXX to be?

The expected value of y = *~1.74 + 1.64 x value of x’, so plug X = 20
into (2.7)

§ = —1.74 4+ 1.64 x 20 = 31.06 (2.8)

Thus, for a given expected market risk premium of 20%, and given its
riskiness, fund XXX would be expected to earn an excess over the risk-
free rate of approximately 31%. In this setup, the regression beta is also
the CAPM beta, so that fund XXX has an estimated beta of 1.64, sug-
gesting that the fund is rather risky. In this case, the residual sum of
squares reaches its minimum value of 30.33 with these OLS coefficient
values.

Although it may be obvious, it is worth stating that it is not advisable
to conduct a regression analysis using only five observations! Thus the
results presented here can be considered indicative and for illustration of
the technique only. Some further discussions on appropriate sample sizes
for regression analysis are given in chapter 4.

The coefficient estimate of 1.64 for g is interpreted as saying that, ‘if
X increases by 1 unit, y will be expected, everything else being equal,
to increase by 1.64 units’. Of course, if 8 had been negative, a rise in x
would on average cause a fall in y. &, the intercept coefficient estimate, is
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Figure 2.6

No observations
close to the y-axis

Introductory Econometrics for Finance

y
A

v

interpreted as the value that would be taken by the dependent variable y
if the independent variable X took a value of zero. ‘Units’ here refer to the
units of measurement of x; and ;. So, for example, suppose that 8 = 1.64,
X is measured in per cent and Yy is measured in thousands of US dollars.
Then it would be said that if x rises by 1%, y will be expected to rise on
average by $1.64 thousand (or $1,640). Note that changing the scale of y
or X will make no difference to the overall results since the coefficient
estimates will change by an off-setting factor to leave the overall relation-
ship between y and x unchanged (see Gujarati, 2003, pp. 169-173 for a
proof). Thus, if the units of measurement of y were hundreds of dollars
instead of thousands, and everything else remains unchanged, the slope
coefficient estimate would be 16.4, so that a 1% increase in X would lead
to an increase in y of $16.4 hundreds (or $1,640) as before. All other prop-
erties of the OLS estimator discussed below are also invariant to changes
in the scaling of the data.

A word of caution is, however, in order concerning the reliability of
estimates of the constant term. Although the strict interpretation of the
intercept is indeed as stated above, in practice, it is often the case that
there are no values of x close to zero in the sample. In such instances,
estimates of the value of the intercept will be unreliable. For example,
consider figure 2.6, which demonstrates a situation where no points are
close to the y-axis.
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In such cases, one could not expect to obtain robust estimates of the
value of y when X is zero as all of the information in the sample pertains
to the case where x is considerably larger than zero.

A similar caution should be exercised when producing predictions for
y using values of x that are a long way outside the range of values in
the sample. In example 2.1, x takes values between 7% and 23% in the
available data. So, it would not be advisable to use this model to determine
the expected excess return on the fund if the expected excess return on
the market were, say 1% or 30%, or —5% (i.e. the market was expected to
fall).

Some further terminology

The population and the sample

The population is the total collection of all objects or people to be studied. For
example, in the context of determining the relationship between risk and
return for UK equities, the population of interest would be all time series
observations on all stocks traded on the London Stock Exchange (LSE).

The population may be either finite or infinite, while a sample is a
selection of just some items from the population. In general, either all of the
observations for the entire population will not be available, or they may be
so many in number that it is infeasible to work with them, in which case
a sample of data is taken for analysis. The sample is usually random, and
it should be representative of the population of interest. A random sample
is a sample in which each individual item in the population is equally
likely to be drawn. The size of the sample is the number of observations
that are available, or that it is decided to use, in estimating the regression
equation.

The data generating process, the population regression function and the
sample regression function

The population regression function (PRF) is a description of the model
that is thought to be generating the actual data and it represents the true
relationship between the variables. The population regression function is also
known as the data generating process (DGP). The PRF embodies the true
values of @ and 8, and is expressed as

Yt = a + BXt + Ut (2.9)

Note that there is a disturbance term in this equation, so that even if one
had at one’s disposal the entire population of observations on x and VY,
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2.4.3
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it would still in general not be possible to obtain a perfect fit of the line
to the data. In some textbooks, a distinction is drawn between the PRF
(the underlying true relationship between y and x) and the DGP (the
process describing the way that the actual observations on y come about),
although in this book, the two terms will be used synonymously.

The sample regression function, SRF, is the relationship that has been
estimated using the sample observations, and is often written as

§i =a+ Bx (2.10)

Notice that there is no error or residual term in (2.10); all this equation
states is that given a particular value of x, multiplying it by 8 and adding
a will give the model fitted or expected value for y, denoted . It is also
possible to write

Yo =&+ Bx + Ot (2.11)

Equation (2.11) splits the observed value of y into two components: the
fitted value from the model, and a residual term.

The SRF is used to infer likely values of the PRF. That is, the estimates
& and B are constructed, for the sample of data at hand, but what is really
of interest is the true relationship between x and y - in other words,
the PRF is what is really wanted, but all that is ever available is the SRF!
However, what can be said is how likely it is, given the figures calculated
for @ and B, that the corresponding population parameters take on certain
values.

Linearity and possible forms for the regression function

In order to use OLS, a model that is linear is required. This means that,
in the simple bivariate case, the relationship between X and y must be
capable of being expressed diagramatically using a straight line. More
specifically, the model must be linear in the parameters (¢ and g), but it
does not necessarily have to be linear in the variables (y and x). By ‘linear
in the parameters’, it is meant that the parameters are not multiplied
together, divided, squared, or cubed, etc.

Models that are not linear in the variables can often be made to take
a linear form by applying a suitable transformation or manipulation. For
example, consider the following exponential regression model

Y. = AXPel (2.12)
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Taking logarithms of both sides, applying the laws of logs and rearranging
the right-hand side (RHS)

InY; = In(A) + B In X + u; (2.13)

where A and 8 are parameters to be estimated. Now let « = In(A), y; = InY;
and X; = In Xt

Yo = o + BX¢ + U (2.14)

This is known as an exponential regression model since Y varies according
to some exponent (power) function of X. In fact, when a regression equa-
tion is expressed in ‘double logarithmic form’, which means that both
the dependent and the independent variables are natural logarithms, the
coefficient estimates are interpreted as elasticities (strictly, they are unit
changes on a logarithmic scale). Thus a coefficient estimate of 1.2 for 4 in
(2.13) or (2.14) is interpreted as stating that ‘a rise in X of 1% will lead on
average, everything else being equal, to a rise in Y of 1.2%’. Conversely, for
y and X in levels rather than logarithmic form (e.g. (2.9)), the coefficients
denote unit changes as described above.

Similarly, if theory suggests that x should be inversely related to y ac-
cording to a model of the form

Vi =+ E + Uy¢ (215)
Xt
the regression can be estimated using OLS by setting
1
Iy = —
Xt

and regressing y on a constant and z. Clearly, then, a surprisingly varied
array of models can be estimated using OLS by making suitable transfor-
mations to the variables. On the other hand, some models are intrinsically
non-linear, e.g.

Yo = a + Bx{ +u (2.16)

Such models cannot be estimated using OLS, but might be estimable using
a non-linear estimation method (see chapter 8).

Estimator or estimate?

Estimators are the formulae used to calculate the coefficients — for example,
the expressions given in (2.4) and (2.5) above, while the estimates, on
the other hand, are the actual numerical values for the coefficients that are
obtained from the sample.
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Simple linear regression in EViews — estimation
of an optimal hedge ratio

This section shows how to run a bivariate regression using EViews. The
example considers the situation where an investor wishes to hedge a long
position in the S&P500 (or its constituent stocks) using a short position
in futures contracts. Many academic studies assume that the objective of
hedging is to minimise the variance of the hedged portfolio returns. If
this is the case, then the appropriate hedge ratio (the number of units
of the futures asset to sell per unit of the spot asset held) will be the
slope estimate (i.e. B) in a regression where the dependent variable is a
time series of spot returns and the independent variable is a time series
of futures returns.?

This regression will be run using the file ‘SandPhedge.xls’, which con-
tains monthly returns for the S&P500 index (in column 2) and S&P500
futures (in column 3). As described in chapter 1, the first step is to
open an appropriately dimensioned workfile. Open EViews and click on
File/New|/Workfile; choose Dated - regular frequency and Monthly fre-
quency data. The start date is 2002:02 and the end date is 2007:07. Then
import the Excel file by clicking Import and Read Text-Lotus-Excel. The
data start in B2 and as for the previous example in chapter 1, the first
column contains only dates which we do not need to read in. In ‘Names
for series or Number if named in file’, we can write Spot Futures. The
two imported series will now appear as objects in the workfile and can
be verified by checking a couple of entries at random against the original
Excel file.

The first step is to transform the levels of the two series into percentage
returns. It is common in academic research to use continuously com-
pounded returns rather than simple returns. To achieve this (i.e. to pro-
duce continuously compounded returns), click on Genr and in the ‘Enter
Equation’ dialog box, enter dfutures=100*dlog(futures). Then click Genr
again and do the same for the spot series: dspot=100*dlog(spot). Do not
forget to Save the workfile. Continue to re-save it at regular intervals to
ensure that no work is lost!

Before proceeding to estimate the regression, now that we have im-
ported more than one series, we can examine a number of descriptive
statistics together and measures of association between the series. For ex-
ample, click Quick and Group Statistics. From there you will see that it
is possible to calculate the covariances or correlations between series and

2 See chapter 8 for a detailed discussion of why this is the appropriate hedge ratio.
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a number of other measures that will be discussed later in the book. For
now, click on Descriptive Statistics and Common Sample.? In the dialog
box that appears, type rspot rfutures and click OK. Some summary statis-
tics for the spot and futures are presented, as displayed in screenshot 2.1,
and these are quite similar across the two series, as one would expect.

:
Summary statistics EH Group: UNTITLED Workfile: SANDPHEDGE::Untitled\ | @@

for spot and futures  ffview][proc]object] [Print [Name[Freeze] [sample [Sheet IIStawlIsDecl
RSPOT | RFUTURES | |

Mean 0.421203 0.467466 | &
Median | 0993048 0907114 ]
Maximum 8.291442 6663863

Minimum 1165612  -8647693

Std. Dev. 3.542992 3.313925

Skewness -0.778888 -0.862431

Kurtosis 4603577 3.985059

Jarque-Bera 13.53659 10.68570
Probability 0.001150 0.004782

Sum | 2737817 3038530
Sum Sq. Dev. 803.3787 702.8542

Observations 65 65

Note that the number of observations has reduced from 66 for the levels
of the series to 65 when we computed the returns (as one observation is
‘lost’ in constructing the t — 1 value of the prices in the returns formula).
If you want to save the summary statistics, you must name them by click-
ing Name and then choose a name, e.g. Descstats. The default name is
‘group01’, which could have also been used. Click OK.

We can now proceed to estimate the regression. There are several ways to
do this, but the easiest is to select Quick and then Estimate Equation. You

3 ‘Common sample’ will use only the part of the sample that is available for all the series
selected, whereas ‘Individual sample’ will use all available observations for each
individual series. In this case, the number of observations is the same for both series
and so identical results would be observed for both options.
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Screenshot 2.2

Equation estimation
window
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Equation Estimation @

Specification | Options |

Equation specification

Dependent variable followed by list of regressors including ARMA
and PDL terms, OR an explicit equation like Y=c(1)+c(2)*X.

i rspot c rfutures

Estimation settings

r
Method:|LS - Least Squares (NLS and ARMA) |

Sample:| 2002M02 2007M07

OK H Cancel ]

will be presented with a dialog box, which, when it has been completed,
will look like screenshot 2.2.

In the ‘Equation Specification’ window, you insert the list of variables
to be used, with the dependent variable (y) first, and including a constant
(c), so type rspot c rfutures. Note that it would have been possible to write
this in an equation format as rspot = c(1) 4+ c(2)*rfutures, but this is more
cumbersome.

In the ‘Estimation settings’ box, the default estimation method is OLS
and the default sample is the whole sample, and these need not be modi-
fied. Click OK and the regression results will appear, as in screenshot 2.3.

The parameter estimates for the intercept (&) and slope (8) are 0.36 and
0.12 respectively. Name the regression results returnreg, and it will now
appear as a new object in the list. A large number of other statistics are
also presented in the regression output - the purpose and interpretation
of these will be discussed later in this and subsequent chapters.

Now estimate a regression for the levels of the series rather than
the returns (i.e. run a regression of spot on a constant and futures) and
examine the parameter estimates. The return regression slope parame-
ter estimated above measures the optimal hedge ratio and also measures
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B Fquation: UNTITLED Workfile: SANDPHEDGE::Unti... E]@@

| View |Proc“0bject| |Print ||NameuFreeze| |Estimate || Forecast ||Stats MResidsl

Dependent Variable: RSPOT

Method: Least Squares

Date: 08/09/07 Time: 10:17

Sample (adjusted): 2002M03 2007M07
Included observations: 65 after adjustments

Coefficient ~ Std. Error  t-Statistic Prob.
C 0363302 0444369 0817569  0.4167
RFUTURES 0.123860 0.133790  0.925781 0.3581
R-squared 0.013422 Mean dependent var 0.421203
Adjusted R-squared  -0.002238 S.D. dependent var 3.542992
S.E. of regression 3.546955 Akaike info criterion 5400342
Sum squared resid 7925960 Schwarz criterion 5467246
Log likelihood -173.5111  Hannan-Quinn criter. 5426740
F-statistic 0.857070 Durbin-Watson stat 2.116689
Prob(F-statistic) 0.358093

the short run relationship between the two series. By contrast, the slope
parameter in a regression using the raw spot and futures indices (or the
log of the spot series and the log of the futures series) can be interpreted
as measuring the long run relationship between them. This issue of the
long and short runs will be discussed in detail in chapter 4. For now, click
Quick/Estimate Equation and enter the variables spot c futures in the
Equation Specification dialog box, click OK, then name the regression
results ‘levelreg’. The intercept estimate (&) in this regression is 21.11
and the slope estimate (B) is 0.98. The intercept can be considered to ap-
proximate the cost of carry, while as expected, the long-term relationship
between spot and futures prices is almost 1:1 — see chapter 7 for further
discussion of the estimation and interpretation of this long-term relation-
ship. Finally, click the Save button to save the whole workfile.

The assumptions underlying the classical linear regression model

The model y; = o + X + U; that has been derived above, together with
the assumptions listed below, is known as the classical linear regression model
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Box 2.3 Assumptions concerning disturbance terms and their interpretation

Technical notation Interpretation

(1) E(u) =0 The errors have zero mean

(2) var(u)) = 02 < oo The variance of the errors is constant and
finite over all values of X,

(3) cov(uj, uj) =0 The errors are linearly independent of
one another
(4) cov(ug, x¢) =0 There is no relationship between the error

and corresponding x variate

(CLRM). Data for x; is observable, but since y; also depends on Uy, it is neces-
sary to be specific about how the u; are generated. The set of assumptions
shown in box 2.3 are usually made concerning the u;s, the unobservable
error or disturbance terms. Note that no assumptions are made concern-
ing their observable counterparts, the estimated model’s residuals.

As long as assumption 1 holds, assumption 4 can be equivalently written
E(xu;) = 0. Both formulations imply that the regressor is orthogonal to
(i.e. unrelated to) the error term. An alternative assumption to 4, which
is slightly stronger, is that the X; are non-stochastic or fixed in repeated
samples. This means that there is no sampling variation in X;, and that
its value is determined outside the model.

A fifth assumption is required to make valid inferences about the pop-
ulation parameters (the actual « and g) from the sample parameters (&
and B) estimated using a finite amount of data:

(5)ur ~ N(0, o?)—i.e. that u; is normally distributed

2.7 Properties of the OLS estimator

If assumptions 1-4 hold, then the estimators @ and § determined by OLS
will have a number of desirable properties, and are known as Best Linear
Unbiased Estimators (BLUE). What does this acronym stand for?

‘Estimator’ - @ and B are estimators of the true value of & and g
‘Linear’ - @ and ,3 are linear estimators - that means that the formulae
for @and B are linear combinations of the random variables (in this
case, Y)

‘Unbiased’ - on average, the actual values of @ and g will be equal to
their true values
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® ‘Best’ - means that the OLS estimator # has minimum variance among
the class of linear unbiased estimators; the Gauss-Markov theorem
proves that the OLS estimator is best by examining an arbitrary alter-
native linear unbiased estimator and showing in all cases that it must
have a variance no smaller than the OLS estimator.

Under assumptions 1-4 listed above, the OLS estimator can be shown
to have the desirable properties that it is consistent, unbiased and effi-
cient. Unbiasedness and efficiency have already been discussed above, and
consistency is an additional desirable property. These three characteristics
will now be discussed in turn.

Consistency

The least squares estimators & and B are consistent. One way to state this
algebraically for g (with the obvious modifications made for &) is

im PrlIB —Bl>8]=0 V§=>0 (2.17)

This is a technical way of stating that the probability (Pr) that B is more
than some arbitrary fixed distance § away from its true value tends to
zero as the sample size tends to infinity, for all positive values of §. In
the limit (i.e. for an infinite number of observations), the probability of
the estimator being different from the true value is zero. That is, the
estimates will converge to their true values as the sample size increases
to infinity. Consistency is thus a large sample, or asymptotic property. The
assumptions that E(x¢U;) =0 and E(u;) = 0 are sufficient to derive the
consistency of the OLS estimator.

Unbiasedness

The least squares estimates of @ and § are unbiased. That is
E(@) =« (2.18)
and

E(B) =8 (2.19)

Thus, on average, the estimated values for the coefficients will be equal to
their true values. That is, there is no systematic overestimation or under-
estimation of the true coefficients. To prove this also requires the assump-
tion that cov(u, X;) = 0. Clearly, unbiasedness is a stronger condition than
consistency, since it holds for small as well as large samples (i.e. for all
sample sizes).
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Efficiency

An estimator 8 of a parameter f§ is said to be efficient if no other estima-
tor has a smaller variance. Broadly speaking, if the estimator is efficient,
it will be minimising the probability that it is a long way off from the
true value of $. In other words, if the estimator is ‘best’, the uncertainty
associated with estimation will be minimised for the class of linear un-
biased estimators. A technical way to state this would be to say that an
efficient estimator would have a probability distribution that is narrowly
dispersed around the true value.

Precision and standard errors

Any set of regression estimates & and B are specific to the sample used
in their estimation. In other words, if a different sample of data was
selected from within the population, the data points (the x; and y;) will
be different, leading to different values of the OLS estimates.

Recall that the OLS estimators (& and f) are given by (2.4) and (2.5). It
would be desirable to have an idea of how ‘good’ these estimates of « and
B are in the sense of having some measure of the reliability or precision of
the estimators (& and B). It is thus useful to know whether one can have
confidence in the estimates, and whether they are likely to vary much
from one sample to another sample within the given population. An idea
of the sampling variability and hence of the precision of the estimates
can be calculated using only the sample of data available. This estimate is
given by its standard error. Given assumptions 1-4 above, valid estimators
of the standard errors can be shown to be given by

thz B thz
T Z(Xt —X)2 S . ((th2> - T)_(2> (2.20)

A 1 1
SE(B) = s/m = S\/W (2.21)

where s is the estimated standard deviation of the residuals (see below).
These formulae are derived in the appendix to this chapter.

It is worth noting that the standard errors give only a general indication
of the likely accuracy of the regression parameters. They do not show
how accurate a particular set of coefficient estimates is. If the standard
errors are small, it shows that the coefficients are likely to be precise
on average, not how precise they are for this particular sample. Thus
standard errors give a measure of the degree of uncertainty in the estimated

SE@) = s
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values for the coefficients. It can be seen that they are a function of
the actual observations on the explanatory variable, x, the sample size,
T, and another term, S. The last of these is an estimate of the variance
of the disturbance term. The actual variance of the disturbance term is
usually denoted by 2. How can an estimate of o be obtained?

Estimating the variance of the error term (o%)

From elementary statistics, the variance of a random variable u; is given by
var(ur) = E[(ur) — E(up))? (2.22)

Assumption 1 of the CLRM was that the expected or average value of the
errors is zero. Under this assumption, (2.22) above reduces to

var(uy) = E[u?] (2.23)

So what is required is an estimate of the average value of u?, which could
be calculated as

1
s? = = >ou? (2.24)

Unfortunately (2.24) is not workable since u; is a series of population
disturbances, which is not observable. Thus the sample counterpart to Uy,
which is (, is used

1
2+ ~2
s'=3 > 0 (2.25)

But this estimator is a biased estimator of . An unbiased estimator,
s2, would be given by the following equation instead of the previous one

2

$2 — Z Ut

T-2

where Y 02 is the residual sum of squares, so that the quantity of rele-
vance for the standard error formulae is the square root of (2.26)

n2
20 (2.27)

T-2

(2.26)

S =

s is also known as the standard error of the regression or the standard error
of the estimate. It is sometimes used as a broad measure of the fit of the
regression equation. Everything else being equal, the smaller this quantity
is, the closer is the fit of the line to the actual data.

Some comments on the standard error estimators

It is possible, of course, to derive the formulae for the standard errors
of the coefficient estimates from first principles using some algebra, and
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this is left to the appendix to this chapter. Some general intuition is now
given as to why the formulae for the standard errors given by (2.20) and
(2.21) contain the terms that they do and in the form that they do. The
presentation offered in box 2.4 loosely follows that of Hill, Griffiths and
Judge (1997), which is the clearest that this author has seen.

Box 2.4 Standard error estimators

(1) The larger the sample size, T, the smaller will be the coefficient standard errors.
Tappears explicitly in SE (@) and implicitly in SE(/§). Tappears implicitly since the
sum Y (% — X)? is from t = 1 to T. The reason for this is simply that, at least for
now, it is assumed that every observation on a series represents a piece of useful
information which can be used to help determine the coefficient estimates. So the
larger the size of the sample, the more information will have been used in estimation
of the parameters, and hence the more confidence will be placed in those estimates.

(2) Both SE (@) and SE(B) depend on s2 (or s). Recall from above that s2 is the estimate
of the error variance. The larger this quantity is, the more dispersed are the residuals,
and so the greater is the uncertainty in the model. If s? is large, the data points are
collectively a long way away from the line.

(3) The sum of the squares of the x; about their mean appears in both formulae — since
> (xe — X)? appears in the denominators. The larger the sum of squares, the smaller
the coefficient variances. Consider what happens if > (x; — )"()2 is small or large, as
shown in figures 2.7 and 2.8, respectively.

In figure 2.7, the data are close together so that Y (x; — X)? is small. In this first
case, it is more difficult to determine with any degree of certainty exactly where the
line should be. On the other hand, in figure 2.8, the points are widely dispersed

y
Effect on the A
standard errors of
the coefficient
estimates when

(% — X) are narrowly
dispersed

»

v
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across a long section of the line, so that one could hold more confidence in the
estimates in this case.
The term ) xf affects only the intercept standard error and not the slope standard
error. The reason is that )" x2 measures how far the points are away from the y-axis.
Consider figures 2.9 and 2.10.

In figure 2.9, all of the points are bunched a long way from the y-axis, which makes
it more difficult to accurately estimate the point at which the estimated line crosses
the y-axis (the intercept). In figure 2.10, the points collectively are closer to

y
Effect on the 3
standard errors of
the coefficient
estimates when
(x¢ — x) are widely
dispersed

(4

<=

4

v

Figure 2.9

Effect on the A
standard errors of
xZ large
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7
Effect on the A
standard errors of

x2 small

»
»

0 X
the y-axis and hence it will be easier to determine where the line actually crosses

the axis. Note that this intuition will work only in the case where all of the x; are
positive!

Example 2.2

Assume that the following data have been calculated from a regression of
y on a single variable X and a constant over 22 observations

> Xyt =830102, T =22, X =416.5, y =86.65,
> " xZ = 3919654, RSS = 130.6

Determine the appropriate values of the coefficient estimates and their
standard errors.

This question can simply be answered by plugging the appropriate num-
bers into the formulae given above. The calculations are
830102 — (22 x 416.5 x 86.65)
3919654 — 22 x (416.5)2
@ = 86.65 — 0.35 x 416.5 = —59.12

=»
Il

=0.35

The sample regression function would be written as

§r = a + Px;
yt = —-59.12 + 0.35Xt
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Now, turning to the standard error calculations, it is necessary to obtain
an estimate, s, of the error variance

. /362 130.6
(regression), s T3 20

3910654
E@) = 2. _3.
SE(@) = 2.5 \/ 22 % (3919654 — 22 x 416.59) — >0
X 1
SE(B) = 2.55 \/3919654 o< a6~ 0007®

With the standard errors calculated, the results are written as

)A’t = -59.12 + 0.35Xt

(3.35) (0.0079) (2.28)

The standard error estimates are usually placed in parentheses under the
relevant coefficient estimates.

2.9 An introduction to statistical inference

Often, financial theory will suggest that certain coefficients should take
on particular values, or values within a given range. It is thus of interest
to determine whether the relationships expected from financial theory
are upheld by the data to hand or not. Estimates of « and S have been
obtained from the sample, but these values are not of any particular in-
terest; the population values that describe the true relationship between
the variables would be of more interest, but are never available. Instead,
inferences are made concerning the likely population values from the re-
gression parameters that have been estimated from the sample of data
to hand. In doing this, the aim is to determine whether the differences
between the coefficient estimates that are actually obtained, and expecta-
tions arising from financial theory, are a long way from one another in a
statistical sense.

EXam ple 2. 3 10
Suppose the following regression results have been calculated:

(2.29)
(14.38) (0.2561)

B = 0.5091 is a single (point) estimate of the unknown population param-
eter, 8. As stated above, the reliability of the point estimate is measured
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by the coefficient’s standard error. The information from one or more of
the sample coefficients and their standard errors can be used to make
inferences about the population parameters. So the estimate of the slope
coefficient is 8 = 0.5091, but it is obvious that this number is likely to
vary to some degree from one sample to the next. It might be of interest
to answer the question, ‘Is it plausible, given this estimate, that the true
population parameter, 3, could be 0.5? Is it plausible that g could be 17,
etc. Answers to these questions can be obtained through hypothesis testing.

Hypothesis testing: some concepts

In the hypothesis testing framework, there are always two hypotheses that
go together, known as the null hypothesis (denoted Hy or occasionally Hy)
and the alternative hypothesis (denoted H; or occasionally Hp). The null hy-
pothesis is the statement or the statistical hypothesis that is actually being
tested. The alternative hypothesis represents the remaining outcomes of
interest.

For example, suppose that given the regression results above, it is of
interest to test the hypothesis that the true value of g is in fact 0.5. The
following notation would be used.

Ho:pB =05
Hy:p#05

This states that the hypothesis that the true but unknown value of g could
be 0.5 is being tested against an alternative hypothesis where § is not 0.5.
This would be known as a two-sided test, since the outcomes of both
B < 0.5 and B > 0.5 are subsumed under the alternative hypothesis.

Sometimes, some prior information may be available, suggesting for
example that 8 > 0.5 would be expected rather than 8 < 0.5. In this case,
B < 0.5 is no longer of interest to us, and hence a one-sided test would be
conducted:

H0ﬁ=05
Hi: B >05

Here the null hypothesis that the true value of g is 0.5 is being tested
against a one-sided alternative that g is more than 0.5.

On the other hand, one could envisage a situation where there is prior
information that g < 0.5 is expected. For example, suppose that an in-
vestment bank bought a piece of new risk management software that is
intended to better track the riskiness inherent in its traders’ books and
that g is some measure of the risk that previously took the value 0.5.
Clearly, it would not make sense to expect the risk to have risen, and so
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B > 0.5, corresponding to an increase in risk, is not of interest. In this
case, the null and alternative hypotheses would be specified as

H0:,3=0.5
Hl:IB<O.5

This prior information should come from the financial theory of the prob-
lem under consideration, and not from an examination of the estimated
value of the coefficient. Note that there is always an equality under the
null hypothesis. So, for example, 8 < 0.5 would not be specified under
the null hypothesis.

There are two ways to conduct a hypothesis test: via the test of significance
approach or via the confidence interval approach. Both methods centre on
a statistical comparison of the estimated value of the coefficient, and its
value under the null hypothesis. In very general terms, if the estimated
value is a long way away from the hypothesised value, the null hypothesis
is likely to be rejected; if the value under the null hypothesis and the esti-
mated value are close to one another, the null hypothesis is less likely to
be rejected. For example, consider B = 0.5091 as above. A hypothesis that
the true value of g is 5 is more likely to be rejected than a null hypothesis
that the true value of 8 is 0.5. What is required now is a statistical decision
rule that will permit the formal testing of such hypotheses.

The probability distribution of the least squares estimators

In order to test hypotheses, assumption 5 of the CLRM must be used,
namely that u; ~ N(0, 0?) —i.e. that the error term is normally distributed.
The normal distribution is a convenient one to use for it involves only
two parameters (its mean and variance). This makes the algebra involved
in statistical inference considerably simpler than it otherwise would have
been. Since y; depends partially on u, it can be stated that if u; is normally
distributed, y; will also be normally distributed.

Further, since the least squares estimators are linear combinations of
the random variables, i.e. ,3 = ) wiY;, where w; are effectively weights,
and since the weighted sum of normal random variables is also normally
distributed, it can be said that the coefficient estimates will also be nor-
mally distributed. Thus

& ~ N(a,var(@) and B ~ N(B, var(B))

Will the coefficient estimates still follow a normal distribution if the er-
rors do not follow a normal distribution? Well, briefly, the answer is usu-
ally ‘yes’, provided that the other assumptions of the CLRM hold, and the
sample size is sufficiently large. The issue of non-normality, how to test
for it, and its consequences, will be further discussed in chapter 4.
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Figure 2.11

The normal
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J(x)

A

u x

Standard normal variables can be constructed from & and j by subtract-
ing the mean and dividing by the square root of the variance

Ao Nt ¢ PP
Vvar(a) O an Vvar(f)

The square roots of the coefficient variances are the standard errors. Unfor-
tunately, the standard errors of the true coefficient values under the PRF
are never known - all that is available are their sample counterparts, the
calculated standard errors of the coefficient estimates, SE(@) and SE(B).*

Replacing the true values of the standard errors with the sample es-
timated versions induces another source of uncertainty, and also means
that the standardised statistics follow a t-distribution with T — 2 degrees
of freedom (defined below) rather than a normal distribution, so

ad—o ,é - B
sE@ T M &)

This result is not formally proved here. For a formal proof, see Hill,
Griffiths and Judge (1997, pp. 88-90).

~ N(0, 1)

tr 2

A note on the t and the normal distributions

The normal distribution, shown in figure 2.11, should be familiar to read-
ers. Note its characteristic ‘bell’ shape and its symmetry around the mean
(of zero for a standard normal distribution).

4 Strictly, these are the estimated standard errors conditional on the parameter estimates,
and so should be denoted SE(&) and SE(B), but the additional layer of hats will be
omitted here since the meaning should be obvious from the context.
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Table 2.2 Critical values from the standard normal versus

Figure 2.12
The t-distribution
versus the normal

t-distribution

Significance level (%) N(0,1) ta0 iy
50% 0 0 0
5% 1.64 1.68 2.13
2.5% 1.96 2.02 2.78
0.5% 2.57 2.70 4.60
J)
A

normal distribution

t-distribution

u x

A normal variate can be scaled to have zero mean and unit variance
by subtracting its mean and dividing by its standard deviation. There is a
specific relationship between the t- and the standard normal distribution,
and the t-distribution has another parameter, its degrees of freedom.

What does the t-distribution look like? It looks similar to a normal
distribution, but with fatter tails, and a smaller peak at the mean, as
shown in figure 2.12.

Some examples of the percentiles from the normal and t-distributions
taken from the statistical tables are given in table 2.2. When used in the
context of a hypothesis test, these percentiles become critical values. The
values presented in table 2.2 would be those critical values appropriate
for a one-sided test of the given significance level.

It can be seen that as the number of degrees of freedom for the t-
distribution increases from 4 to 40, the critical values fall substantially.
In figure 2.12, this is represented by a gradual increase in the height of
the distribution at the centre and a reduction in the fatness of the tails as
the number of degrees of freedom increases. In the limit, a t-distribution
with an infinite number of degrees of freedom is a standard normal, i.e.
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t.o = N(0, 1), so the normal distribution can be viewed as a special case of
the 1.

Putting the limit case, t,,, aside, the critical values for the t-distribution
are larger in absolute value than those from the standard normal. This
arises from the increased uncertainty associated with the situation where
the error variance must be estimated. So now the t-distribution is used,
and for a given statistic to constitute the same amount of reliable evidence
against the null, it has to be bigger in absolute value than in circumstances
where the normal is applicable.

There are broadly two approaches to testing hypotheses under regres-
sion analysis: the test of significance approach and the confidence interval
approach. Each of these will now be considered in turn.

2.9.4 The test of significance approach

Assume the regression equation is given by VY=o + X+ Ut =
1,2,...,T. The steps involved in doing a test of significance are shown
in box 2.5.

Box 2.5 Conducting a test of significance

(1) Estimate &, B and SE(&), SE(B) in the usual way.

(2) Calculate the test statistic. This is given by the formula

B —B*

SE(B)

where g* is the value of g under the null hypothesis. The null hypothesis is Hp : g

= B* and the alternative hypothesis is H; : B # g* (for a two-sided test).

A tabulated distribution with which to compare the estimated test statistics is re-

quired. Test statistics derived in this way can be shown to follow a t-distribution with

T — 2 degrees of freedom.

(4) Choose a ‘significance level’, often denoted « (not the same as the regression
intercept coefficient). It is conventional to use a significance level of 5%.

(5) Given a significance level, a rejection region and non-rejection region can be de-
termined. If a 5% significance level is employed, this means that 5% of the total
distribution (5% of the area under the curve) will be in the rejection region. That
rejection region can either be split in half (for a two-sided test) or it can all fall on
one side of the y-axis, as is the case for a one-sided test.

For a two-sided test, the 5% rejection region is split equally between the two tails,
as shown in figure 2.13.

For a one-sided test, the 5% rejection region is located solely in one tail of the
distribution, as shown in figures 2.14 and 2.15, for a test where the alternative
is of the ‘less than’ form, and where the alternative is of the ‘greater than’ form,
respectively.

test statistic =

(2.30)

©
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Figure 2.13 |
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Box 2.5 contd.

(6) Use the t-tables to obtain a critical value or values with which to compare the test
statistic. The critical value will be that value of x that puts 5% into the rejection
region.

(7) Finally perform the test. If the test statistic lies in the rejection region then reject
the null hypothesis (Hp), else do not reject Hy.

Steps 2-7 require further comment. In step 2, the estimated value of § is
compared with the value that is subject to test under the null hypothesis,
but this difference is ‘normalised’ or scaled by the standard error of the
coefficient estimate. The standard error is a measure of how confident
one is in the coefficient estimate obtained in the first stage. If a standard
error is small, the value of the test statistic will be large relative to the
case where the standard error is large. For a small standard error, it would
not require the estimated and hypothesised values to be far away from one
another for the null hypothesis to be rejected. Dividing by the standard
error also ensures that, under the five CLRM assumptions, the test statistic
follows a tabulated distribution.

In this context, the number of degrees of freedom can be interpreted
as the number of pieces of additional information beyond the minimum
requirement. If two parameters are estimated (¢ and S - the intercept
and the slope of the line, respectively), a minimum of two observations is
required to fit this line to the data. As the number of degrees of freedom
increases, the critical values in the tables decrease in absolute terms, since
less caution is required and one can be more confident that the results
are appropriate.

The significance level is also sometimes called the size of the test (note
that this is completely different from the size of the sample) and it de-
termines the region where the null hypothesis under test will be rejected
or not rejected. Remember that the distributions in figures 2.13-2.15 are
for a random variable. Purely by chance, a random variable will take on
extreme values (either large and positive values or large and negative val-
ues) occasionally. More specifically, a significance level of 5% means that
a result as extreme as this or more extreme would be expected only 5%
of the time as a consequence of chance alone. To give one illustration, if
the 5% critical value for a one-sided test is 1.68, this implies that the test
statistic would be expected to be greater than this only 5% of the time by
chance alone. There is nothing magical about the test - all that is done is
to specify an arbitrary cutoff value for the test statistic that determines
whether the null hypothesis would be rejected or not. It is conventional
to use a 5% size of test, but 10% and 1% are also commonly used.
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However, one potential problem with the use of a fixed (e.g. 5%) size
of test is that if the sample size is sufficiently large, any null hypothesis
can be rejected. This is particularly worrisome in finance, where tens of
thousands of observations or more are often available. What happens is
that the standard errors reduce as the sample size increases, thus leading
to an increase in the value of all t-test statistics. This problem is frequently
overlooked in empirical work, but some econometricians have suggested
that a lower size of test (e.g. 1%) should be used for large samples (see, for
example, Leamer, 1978, for a discussion of these issues).

Note also the use of terminology in connection with hypothesis tests:
it is said that the null hypothesis is either rejected or not rejected. It is
incorrect to state that if the null hypothesis is not rejected, it is ‘accepted’
(although this error is frequently made in practice), and it is never said
that the alternative hypothesis is accepted or rejected. One reason why
it is not sensible to say that the null hypothesis is ‘accepted’ is that it
is impossible to know whether the null is actually true or not! In any
given situation, many null hypotheses will not be rejected. For example,
suppose that Hy : 8 = 0.5 and Hp : 8 = 1 are separately tested against the
relevant two-sided alternatives and neither null is rejected. Clearly then it
would not make sense to say that ‘Hyp : 8 = 0.5 is accepted’and ‘Hp : g =1
is accepted’, since the true (but unknown) value of f cannot be both 0.5
and 1. So, to summarise, the null hypothesis is either rejected or not
rejected on the basis of the available evidence.

The confidence interval approach to hypothesis testing (box 2.6)

To give an example of its usage, one might estimate a parameter, say B, to
be 0.93, and a ‘95% confidence interval’ to be (0.77, 1.09). This means that
in many repeated samples, 95% of the time, the true value of 8 will be
contained within this interval. Confidence intervals are almost invariably
estimated in a two-sided form, although in theory a one-sided interval
can be constructed. Constructing a 95% confidence interval is equivalent
to using the 5% level in a test of significance.

The test of significance and confidence interval approaches always
give the same conclusion

Under the test of significance approach, the null hypothesis that g = g*
will not be rejected if the test statistic lies within the non-rejection region,
i.e. if the following condition holds

~

*

SE(B)

—terit < < +Lerit
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Box 2.6 Carrying out a hypothesis test using confidence intervals

(1) Calculate &, B and SE(&), SE(B) as before.
(2) Choose a significance level, o (again the convention is 5%). This is equivalent to
choosing a (1 — @)*100% confidence interval

i.e. 5% significance level = 95% confidence interval

(3) Use the t-tables to find the appropriate critical value, which will again have T —2
degrees of freedom.
(4) The confidence interval for g is given by

(B — terit - SE(B). B + terit - SE(B))

Note that a centre dot (-) is sometimes used instead of a cross (x) to denote when
two quantities are multiplied together.

(5) Perform the test: if the hypothesised value of g (i.e. 8*) lies outside the confidence
interval, then reject the null hypothesis that g = g*, otherwise do not reject the null.

Rearranging, the null hypothesis would not be rejected if
~toric - SE(B) < B — " < + terit - SE(B)
i.e. one would not reject if
B — Lerit - SE(B) = ,3* =< B + terit - SE(B)
But this is just the rule for non-rejection under the confidence interval
approach. So it will always be the case that, for a given significance level,
the test of significance and confidence interval approaches will provide

the same conclusion by construction. One testing approach is simply an
algebraic rearrangement of the other.

Exam ple 2.4 1
Given the regression results above

(14.38) (0.2561) © | (2331)

Using both the test of significance and confidence interval approaches, test

the hypothesis that 8 = 1 against a two-sided alternative. This hypothesis

might be of interest, for a unit coefficient on the explanatory variable

implies a 1:1 relationship between movements in x and movements in Y.
The null and alternative hypotheses are respectively:

Hy:8=1
Hi:B#1
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Figure 2.16

Critical values and
rejection regions for
a o5

The test of significance and confidence interval approaches compared

Test of significance approach Confidence interval approach
test stat = © E_é
('B) Find g = t20;5% = +2.086
0.5091 —1
0.2561

B =+ Lrit - SE(B)
Find terit = to0:500 = £2.086 = 0.5091 + 2.086 - 0.2561
= (—0.0251, 1.0433)
Do not reject Hy since test statistic Do not reject Hy since 1 lies
lies within non-rejection region within the confidence interval

The results of the test according to each approach are shown in box 2.7.

A couple of comments are in order. First, the critical value from the
t-distribution that is required is for 20 degrees of freedom and at the 5%
level. This means that 5% of the total distribution will be in the rejec-
tion region, and since this is a two-sided test, 2.5% of the distribution
is required to be contained in each tail. From the symmetry of the t-
distribution around zero, the critical values in the upper and lower tail
will be equal in magnitude, but opposite in sign, as shown in figure 2.16.

What if instead the researcher wanted to test Hy: 8 =0 or Hp: 8 = 2?
In order to test these hypotheses using the test of significance approach,
the test statistic would have to be reconstructed in each case, although the
critical value would be the same. On the other hand, no additional work
would be required if the confidence interval approach had been adopted,

i

2.5%
rejection region

2.5%

95% non-rejection region . £ .
rejection region

-2.086 +2.086 X
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since it effectively permits the testing of an infinite number of hypotheses.
So for example, suppose that the researcher wanted to test

Ho:8=0
versus

Hi:8#0
and

Hy:8=2
versus

Hy: B #2

In the first case, the null hypothesis (that 8 = 0) would not be rejected
since 0 lies within the 95% confidence interval. By the same argument, the
second null hypothesis (that 8 =2) would be rejected since 2 lies outside
the estimated confidence interval.

On the other hand, note that this book has so far considered only the
results under a 5% size of test. In marginal cases (e.g. Hy : 8 = 1, where the
test statistic and critical value are close together), a completely different
answer may arise if a different size of test was used. This is where the test
of significance approach is preferable to the construction of a confidence
interval.

For example, suppose that now a 10% size of test is used for the null
hypothesis given in example 2.4. Using the test of significance approach,

B—B*
SE(B)
050911
~0.2561

as above. The only thing that changes is the critical t-value. At the 10%
level (so that 5% of the total distribution is placed in each of the tails
for this two-sided test), the required critical value is tyg.100 = £1.725. So
now, as the test statistic lies in the rejection region, Hy would be rejected.
In order to use a 10% test under the confidence interval approach, the
interval itself would have to have been re-estimated since the critical value
is embedded in the calculation of the confidence interval.

So the test of significance and confidence interval approaches both have
their relative merits. The testing of a number of different hypotheses is
easier under the confidence interval approach, while a consideration of

test statistic =

= —1.917
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the effect of the size of the test on the conclusion is easier to address
under the test of significance approach.

Caution should therefore be used when placing emphasis on or making
decisions in the context of marginal cases (i.e. in cases where the null
is only just rejected or not rejected). In this situation, the appropriate
conclusion to draw is that the results are marginal and that no strong in-
ference can be made one way or the other. A thorough empirical analysis
should involve conducting a sensitivity analysis on the results to deter-
mine whether using a different size of test alters the conclusions. It is
worth stating again that it is conventional to consider sizes of test of 10%,
5% and 1%. If the conclusion (i.e. ‘reject’ or ‘do not reject’) is robust to
changes in the size of the test, then one can be more confident that the
conclusions are appropriate. If the outcome of the test is qualitatively al-
tered when the size of the test is modified, the conclusion must be that
there is no conclusion one way or the other!

It is also worth noting that if a given null hypothesis is rejected using a
1% significance level, it will also automatically be rejected at the 5% level,
so that there is no need to actually state the latter. Dougherty (1992,
p. 100), gives the analogy of a high jumper. If the high jumper can clear
2 metres, it is obvious that the jumper could also clear 1.5 metres. The
1% significance level is a higher hurdle than the 5% significance level.
Similarly, if the null is not rejected at the 5% level of significance, it will
automatically not be rejected at any stronger level of significance (e.g. 1%).
In this case, if the jumper cannot clear 1.5 metres, there is no way s/he
will be able to clear 2 metres.

Some more terminology

If the null hypothesis is rejected at the 5% level, it would be said that the
result of the test is ‘statistically significant’. If the null hypothesis is not
rejected, it would be said that the result of the test is ‘not significant’, or
that it is ‘insignificant’. Finally, if the null hypothesis is rejected at the
1% level, the result is termed ‘highly statistically significant’.

Note that a statistically significant result may be of no practical sig-
nificance. For example, if the estimated beta for a stock under a CAPM
regression is 1.05, and a null hypothesis that 8 = 1 is rejected, the result
will be statistically significant. But it may be the case that a slightly higher
beta will make no difference to an investor’s choice as to whether to buy
the stock or not. In that case, one would say that the result of the test
was statistically significant but financially or practically insignificant.
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Table 2.3 Classifying hypothesis testing errors and correct conclusions

Reality
Hp is true Hy is false
Significant Typelerror =a ./
Result of test (reject Hp)
Insignificant J Type II error = B

(do not reject Hy)

2.9.8 Classifying the errors that can be made using hypothesis tests

Hp is usually rejected if the test statistic is statistically significant at a
chosen significance level. There are two possible errors that could be made:

(1) Rejecting Hy when it was really true; this is called a type I error.
(2) Not rejecting Hy when it was in fact false; this is called a type II error.

The possible scenarios can be summarised in table 2.3.

The probability of a type I error is just «, the significance level or size
of test chosen. To see this, recall what is meant by ‘significance’ at the 5%
level: it is only 5% likely that a result as or more extreme as this could
have occurred purely by chance. Or, to put this another way, it is only 5%
likely that this null would be rejected when it was in fact true.

Note that there is no chance for a free lunch (i.e. a cost-less gain) here!
What happens if the size of the test is reduced (e.g. from a 5% test to a
1% test)? The chances of making a type I error would be reduced...but so
would the probability that the null hypothesis would be rejected at all,
so increasing the probability of a type II error. The two competing effects
of reducing the size of the test can be shown in box 2.8.

So there always exists, therefore, a direct trade-off between type I
and type II errors when choosing a significance level. The only way to

Box 2.8 Type | and Type Il errors

Less likely Lower

to falsely —chance of
Reduce size—More strict —Reject null ~reject type | error
of test (e.g. criterion for hypothesis\,
5% to 1%) rejection less often  More likely to  Higher

incorrectly —chance of
not reject type Il error
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reduce the chances of both is to increase the sample size or to select
a sample with more variation, thus increasing the amount of informa-
tion upon which the results of the hypothesis test are based. In practice,
up to a certain level, type I errors are usually considered more serious
and hence a small size of test is usually chosen (5% or 1% are the most
common).

The probability of a type I error is the probability of incorrectly reject-
ing a correct null hypothesis, which is also the size of the test. Another
important piece of terminology in this area is the power of a test. The power
of a test is defined as the probability of (appropriately) rejecting an incor-
rect null hypothesis. The power of the test is also equal to one minus the
probability of a type II error.

An optimal test would be one with an actual test size that matched
the nominal size and which had as high a power as possible. Such a test
would imply, for example, that using a 5% significance level would result
in the null being rejected exactly 5% of the time by chance alone, and
that an incorrect null hypothesis would be rejected close to 100% of the
time.

A special type of hypothesis test: the t-ratio

Recall that the formula under a test of significance approach to hypothesis
testing using a t-test for the slope parameter was

L B—p
test statistic = = 2.32
isti SE(,B) ( )

with the obvious adjustments to test a hypothesis about the intercept. If
the test is

H02,3=0
Hi:8#0

i.e. a test that the population parameter is zero against a two-sided alter-
native, this is known as a t-ratio test. Since 8* = 0, the expression in (2.32)
collapses to
.. P
test statistic = —— (2.33)
SE(B)
Thus the ratio of the coefficient to its standard error, given by this
expression, is known as the t-ratio or t-statistic.
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___________________________________________________________________________________|
Suppose that we have calculated the estimates for the intercept and the
slope (1.10 and —19.88 respectively) and their corresponding standard er-
rors (1.35 and 1.98 respectively). The t-ratios associated with each of the
intercept and slope coefficients would be given by

a B
Coefficient 1.10 —19.88
SE 1.35 1.98
t-ratio 0.81 —10.04

Note that if a coefficient is negative, its t-ratio will also be negative. In
order to test (separately) the null hypotheses that « = 0 and g = 0, the
test statistics would be compared with the appropriate critical value from
a t-distribution. In this case, the number of degrees of freedom, given by
T —k, is equal to 15-3=12. The 5% critical value for this two-sided test
(remember, 2.5% in each tail for a 5% test) is 2.179, while the 1% two-sided
critical value (0.5% in each tail) is 3.055. Given these t-ratios and critical
values, would the following null hypotheses be rejected?

Ho: « =0? (No)
Ho: =07 (Yes)

If Hyp is rejected, it would be said that the test statistic is significant. If the
variable is not ‘significant’, it means that while the estimated value of the
coefficient is not exactly zero (e.g. 1.10 in the example above), the coeffi-
cient is indistinguishable statistically from zero. If a zero were placed in
the fitted equation instead of the estimated value, this would mean that
whatever happened to the value of that explanatory variable, the depen-
dent variable would be unaffected. This would then be taken to mean that
the variable is not helping to explain variations in Yy, and that it could
therefore be removed from the regression equation. For example, if the t-
ratio associated with x had been —1.04 rather than —10.04 (assuming that
the standard error stayed the same), the variable would be classed as in-
significant (i.e. not statistically different from zero). The only insignificant
term in the above regression is the intercept. There are good statistical
reasons for always retaining the constant, even if it is not significant; see
chapter 4.

It is worth noting that, for degrees of freedom greater than around 25,
the 5% two-sided critical value is approximately £2. So, as a rule of thumb
(i.e. a rough guide), the null hypothesis would be rejected if the t-statistic
exceeds 2 in absolute value.
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Some authors place the t-ratios in parentheses below the corresponding
coefficient estimates rather than the standard errors. One thus needs to
check which convention is being used in each particular application, and
also to state this clearly when presenting estimation results.

There will now follow two finance case studies that involve only the
estimation of bivariate linear regression models and the construction and
interpretation of t-ratios.

2.11 An example of the use of a simple t-test to test a theory in
finance: can US mutual funds beat the market?

Jensen (1968) was the first to systematically test the performance of mutual
funds, and in particular examine whether any ‘beat the market’. He used
a sample of annual returns on the portfolios of 115 mutual funds from
1945-64. Each of the 115 funds was subjected to a separate OLS time series
regression of the form

Rit — Rit = aj 4+ Bj(Rmt — Ret) + Ujt (2.52)

where Rj; is the return on portfolio j at time t, Ry is the return on a
risk-free proxy (a 1-year government bond), Ry is the return on a mar-
ket portfolio proxy, uj; is an error term, and «j, Bj are parameters to be
estimated. The quantity of interest is the significance of «j, since this
parameter defines whether the fund outperforms or underperforms the
market index. Thus the null hypothesis is given by: Hp : oj = 0. A positive
and significant «j for a given fund would suggest that the fund is able
to earn significant abnormal returns in excess of the market-required re-
turn for a fund of this given riskiness. This coefficient has become known
as ‘Jensen’s alpha’. Some summary statistics across the 115 funds for the
estimated regression results for (2.52) are given in table 2.4.

Table 2.4 Summary statistics for the estimated regression results for (2.52)

Extremal values

Item Mean value Median value Minimum Maximum
a —0.011 —0.009 —0.080 0.058

B 0.840 0.848 0.219 1.405
Sample size 17 19 10 20

Source: Jensen (1968). Reprinted with the permission of Blackwell Publishers.
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Figure 2.17

Frequency
distribution of
t-ratios of mutual
fund alphas (gross
of transactions
costs) Source:
Jensen (1968).
Reprinted with the
permission of
Blackwell Publishers

Figure 2.18

Frequency
distribution of
t-ratios of mutual
fund alphas (net of
transactions costs)
Source: Jensen
(1968). Reprinted
with the permission
of Blackwell
Publishers
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As table 2.4 shows, the average (defined as either the mean or the me-
dian) fund was unable to ‘beat the market’, recording a negative alpha
in both cases. There were, however, some funds that did manage to per-
form significantly better than expected given their level of risk, with the
best fund of all yielding an alpha of 0.058. Interestingly, the average fund
had a beta estimate of around 0.85, indicating that, in the CAPM context,
most funds were less risky than the market index. This result may be
attributable to the funds investing predominantly in (mature) blue chip
stocks rather than small caps.

The most visual method of presenting the results was obtained by plot-
ting the number of mutual funds in each t-ratio category for the alpha
coefficient, first gross and then net of transactions costs, as in figure 2.17
and figure 2.18, respectively.
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Summary statistics for unit trust returns, January 1979-May 2000
Mean Minimum Maximum Median
(%) (%) (%) (%)
Average monthly
return, 1979-2000 1.0 0.6 14 1.0
Standard deviation of
returns over time 5.1 4.3 6.9 5.0

The appropriate critical value for a two-sided test of «j = 0 is approx-
imately 2.10 (assuming 20 years of annual data leading to 18 degrees of
freedom). As can be seen, only five funds have estimated t-ratios greater
than 2 and are therefore implied to have been able to outperform the
market before transactions costs are taken into account. Interestingly, five
firms have also significantly underperformed the market, with t-ratios
of -2 or less.

When transactions costs are taken into account (figure 2.18), only one
fund out of 115 is able to significantly outperform the market, while 14
significantly underperform it. Given that a nominal 5% two-sided size of
test is being used, one would expect two or three funds to ‘significantly
beat the market’ by chance alone. It would thus be concluded that, during
the sample period studied, US fund managers appeared unable to system-
atically generate positive abnormal returns.

Can UK unit trust managers beat the market?

Jensen’s study has proved pivotal in suggesting a method for conducting
empirical tests of the performance of fund managers. However, it has been
criticised on several grounds. One of the most important of these in the
context of this book is that only between 10 and 20 annual observations
were used for each regression. Such a small number of observations is
really insufficient for the asymptotic theory underlying the testing proce-
dure to be validly invoked.

A variant on Jensen’s test is now estimated in the context of the UK
market, by considering monthly returns on 76 equity unit trusts. The
data cover the period January 1979-May 2000 (257 observations for each
fund). Some summary statistics for the funds are presented in table 2.5.

From these summary statistics, the average continuously compounded
return is 1.0% per month, although the most interesting feature is the
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Table 2.6 CAPM regression results for unit trust returns, January 1979-May 2000

Performance of UK
unit trusts,
1979-2000

Estimates of Mean Minimum Maximum Median
a(%) —0.02 —0.54 0.33 —0.03
B 0.91 0.56 1.09 0.91
t-ratio on « —0.07 —2.44 3.11 —0.25
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wide variation in the performances of the funds. The worst-performing
fund yields an average return of 0.6% per month over the 20-year pe-
riod, while the best would give 1.4% per month. This variability is further
demonstrated in figure 2.19, which plots over time the value of £100 in-
vested in each of the funds in January 1979.

A regression of the form (2.52) is applied to the UK data, and the sum-
mary results presented in table 2.6. A number of features of the regression
results are worthy of further comment. First, most of the funds have esti-
mated betas less than one again, perhaps suggesting that the fund man-
agers have historically been risk-averse or investing disproportionately in
blue chip companies in mature sectors. Second, gross of transactions costs,
nine funds of the sample of 76 were able to significantly outperform the
market by providing a significant positive alpha, while seven funds yielded
significant negative alphas. The average fund (where ‘average’is measured
using either the mean or the median) is not able to earn any excess return
over the required rate given its level of risk.
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Box 2.9 Reasons for stock market overreactions

(1) That the ‘overreaction effect’ is just another manifestation of the ‘size effect’. The size
effect is the tendency of small firms to generate on average, superior returns to large
firms. The argument would follow that the losers were small firms and that these
small firms would subsequently outperform the large firms. DeBondt and Thaler did
not believe this a sufficient explanation, but Zarowin (1990) found that allowing for
firm size did reduce the subsequent return on the losers.

(2) That the reversals of fortune reflect changes in equilibrium required returns. The losers
are argued to be likely to have considerably higher CAPM betas, reflecting investors’
perceptions that they are more risky. Of course, betas can change over time, and a
substantial fall in the firms’ share prices (for the losers) would lead to a rise in their
leverage ratios, leading in all likelihood to an increase in their perceived riskiness.
Therefore, the required rate of return on the losers will be larger, and their ex post
performance better. Ball and Kothari (1989) find the CAPM betas of losers to be
considerably higher than those of winners.

2.13 The overreaction hypothesis and the UK stock market

2.13.1 Motivation

Two studies by DeBondt and Thaler (1985, 1987) showed that stocks expe-
riencing a poor performance over a 3-5-year period subsequently tend to
outperform stocks that had previously performed relatively well. This im-
plies that, on average, stocks which are ‘losers’ in terms of their returns
subsequently become ‘winners’, and vice versa. This chapter now exam-
ines a paper by Clare and Thomas (1995) that conducts a similar study
using monthly UK stock returns from January 1955 to 1990 (36 years) on
all firms traded on the London Stock exchange.

This phenomenon seems at first blush to be inconsistent with the effi-
cient markets hypothesis, and Clare and Thomas propose two explanations
(box 2.9).

Zarowin (1990) also finds that 80% of the extra return available from
holding the losers accrues to investors in January, so that almost all of
the ‘overreaction effect’ seems to occur at the start of the calendar year.

2.13.2 Methodology

Clare and Thomas take a random sample of 1,000 firms and, for each, they
calculate the monthly excess return of the stock for the market over a 12-,
24- or 36-month period for each stock i
Ui=Rif—Rmt=1,...,n; i=1,...,1000;
n=12,24 or 36 (2.53)
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Box 2.10 Ranking stocks and forming portfolios

Portfolio Ranking

Portfolio 1 Best performing 20% of firms
Portfolio 2 Next 20%

Portfolio 3 Next 20%

Portfolio 4 Next 20%

Portfolio 5 Worst performing 20% of firms

Box 2.11 Portfolio monitoring

Estimate R; for year 1
Monitor portfolios for year 2
Estimate R; for year 3

Monitor portfolios for year 36

Then the average monthly return over each stock i for the first 12-, 24-, or
36-month period is calculated:

_ 18
Ri==) Ug (2.54)
n t=1

The stocks are then ranked from highest average return to lowest and
from these 5 portfolios are formed and returns are calculated assuming
an equal weighting of stocks in each portfolio (box 2.10).

The same sample length n is used to monitor the performance of each
portfolio. Thus, for example, if the portfolio formation period is one, two
or three years, the subsequent portfolio tracking period will also be one,
two or three years, respectively. Then another portfolio formation period
follows and so on until the sample period has been exhausted. How many
samples of length n will there be? n = 1, 2, or 3 years. First, suppose n =
1 year. The procedure adopted would be as shown in box 2.11.

So if n = 1, there are 18 independent (non-overlapping) observation
periods and 18 independent tracking periods. By similar arguments, n = 2
gives 9 independent periods and n = 3 gives 6 independent periods. The
mean return for each month over the 18, 9, or 6 periods for the winner
and loser portfolios (the top 20% and bottom 20% of firms in the portfolio
formation period) are denoted by _Ii“;‘{ and Iibt, respectively. Define the
difference between these as Rp; = Rlﬁt — R‘[’)‘{.
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Is there an overreaction effect in the UK stock market?

Panel A: All Months

n=12 n=24 n =36
Return on loser 0.0033 0.0011 0.0129
Return on winner 0.0036 —0.0003 0.0115
Implied annualised return difference —0.37% 1.68% 1.56%
Coefficient for (2.55): & —0.00031 0.0014** 0.0013
(0.29) (2.01) (1.55)
Coefficients for (2.56): &2 —0.00034 0.00147** 0.0013*
(—0.30) (2.01) (1.41)
Coefficients for (2.56): 8 —0.022 0.010 —0.0025
(—0.25) (0.21) (—0.06)
Panel B: all months except January
Coefficient for (2.55): & —0.0007 0.0012* 0.0009
(—0.72) (1.63) (1.05)

Notes: t-ratios in parentheses; * and ** denote significance at the 10% and 5% levels,
respectively.

Source: Clare and Thomas (1995). Reprinted with the permission of Blackwell
Publishers.

The first regression to be performed is of the excess return of the losers
over the winners on a constant only

Rot = a1 + nt (2.55)

where 7, is an error term. The test is of whether «; is significant and
positive. However, a significant and positive «; is not a sufficient condition
for the overreaction effect to be confirmed because it could be owing to
higher returns being required on loser stocks owing to loser stocks being
more risky. The solution, Clare and Thomas (1995) argue, is to allow for
risk differences by regressing against the market risk premium

Rot = a2 + B(Rmt — Rt) + ny (2.56)

where Ry is the return on the FTA All-share, and Ry is the return on a
UK government three-month Treasury Bill. The results for each of these
two regressions are presented in table 2.7.

As can be seen by comparing the returns on the winners and losers in
the first two rows of table 2.7, 12 months is not a sufficiently long time
for losers to become winners. By the two-year tracking horizon, however,
the losers have become winners, and similarly for the three-year samples.
This translates into an average 1.68% higher return on the losers than the
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winners at the two-year horizon, and 1.56% higher return at the three-year
horizon. Recall that the estimated value of the coefficient in a regression
of a variable on a constant only is equal to the average value of that vari-
able. It can also be seen that the estimated coefficients on the constant
terms for each horizon are exactly equal to the differences between the
returns of the losers and the winners. This coefficient is statistically signif-
icant at the two-year horizon, and marginally significant at the three-year
horizon.

In the second test regression, B represents the difference between the
market betas of the winner and loser portfolios. None of the beta coeffi-
cient estimates are even close to being significant, and the inclusion of
the risk term makes virtually no difference to the coefficient values or
significances of the intercept terms.

Removal of the January returns from the samples reduces the subse-
quent degree of overperformance of the loser portfolios, and the signif-
icances of the @; terms is somewhat reduced. It is concluded, therefore,
that only a part of the overreaction phenomenon occurs in January. Clare
and Thomas then proceed to examine whether the overreaction effect is
related to firm size, although the results are not presented here.

Conclusions
The main conclusions from Clare and Thomas’ study are:

(1) There appears to be evidence of overreactions in UK stock returns, as
found in previous US studies.

(2) These over-reactions are unrelated to the CAPM beta.

(3) Losers that subsequently become winners tend to be small, so that
most of the overreaction in the UK can be attributed to the size effect.

The exact significance level

The exact significance level is also commonly known as the p-value. It
gives the marginal significance level where one would be indifferent between
rejecting and not rejecting the null hypothesis. If the test statistic is ‘large’
in absolute value, the p-value will be small, and vice versa. For example,
consider a test statistic that is distributed as a tg, and takes a value of 1.47.
Would the null hypothesis be rejected? It would depend on the size of the
test. Now, suppose that the p-value for this test is calculated to be 0.12:

o [s the null rejected at the 5% level? No
® Is the null rejected at the 10% level?  No
® Is the null rejected at the 20% level?  Yes
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Part of the EViews regression output revisited

Coefficient Std. Error t-Statistic Prob.

C 0.363302 0444369 0.817569  0.4167
RFUTURES 0.123860 0.133790 0.925781 0.3581

In fact, the null would have been rejected at the 12% level or higher.
To see this, consider conducting a series of tests with size 0.1%, 0.2%,
0.3%,0.4%, ...1%, ..., 5%, ...10%, ... Eventually, the critical value and test
statistic will meet and this will be the p-value. p-values are almost always
provided automatically by software packages. Note how useful they are!
They provide all of the information required to conduct a hypothesis test
without requiring of the researcher the need to calculate a test statistic or
to find a critical value from a table — both of these steps have already been
taken by the package in producing the p-value. The p-value is also useful
since it avoids the requirement of specifying an arbitrary significance
level («). Sensitivity analysis of the effect of the significance level on the
conclusion occurs automatically.

Informally, the p-value is also often referred to as the probability of
being wrong when the null hypothesis is rejected. Thus, for example, if a
p-value of 0.05 or less leads the researcher to reject the null (equivalent to
a 5% significance level), this is equivalent to saying that if the probability
of incorrectly rejecting the null is more than 5%, do not reject it. The
p-value has also been termed the ‘plausibility’ of the null hypothesis; so,
the smaller is the p-value, the less plausible is the null hypothesis.

Hypothesis testing in EViews — example 1: hedging revisited

Reload the ‘hedge.wfl’ EViews work file that was created above. If we
re-examine the results table from the returns regression (screenshot 2.3
on p. 43), it can be seen that as well as the parameter estimates, EViews
automatically calculates the standard errors, the t-ratios, and the p-values
associated with a two-sided test of the null hypothesis that the true value
of a parameter is zero. Part of the results table is replicated again here
(table 2.8) for ease of interpretation.

The third column presents the t-ratios, which are the test statistics for
testing the null hypothesis that the true values of these parameters are
zero against a two sided alternative - i.e. these statistics test Hy : « = 0 ver-
sus Hj : « # 0 in the first row of numbers and Ho : § =0 versus H; : g # 0
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in the second. The fact that these test statistics are both very small is in-
dicative that neither of these null hypotheses is likely to be rejected. This
conclusion is confirmed by the p-values given in the final column. Both p-
values are considerably larger than 0.1, indicating that the corresponding
test statistics are not even significant at the 10% level.

Suppose now that we wanted to test the null hypothesis that Hy : g =1
rather than Hp : 8 = 0. We could test this, or any other hypothesis about
the coefficients, by hand, using the information we already have. But it
is easier to let EViews do the work by typing View and then Coefficient
Tests/Wald - Coefficient Restrictions .. .. EViews defines all of the param-
eters in a vector C, so that C(1) will be the intercept and C(2) will be the
slope. Type C(2)=1 and click OK. Note that using this software, it is possi-
ble to test multiple hypotheses, which will be discussed in chapter 3, and
also non-linear restrictions, which cannot be tested using the standard
procedure for inference described above.

Wald Test:

Equation: LEVELREG

Test Statistic Value df Probability
F-statistic 0.565298 (1, 64) 0.4549
Chi-square 0.565298 1 0.4521

Null Hypothesis Summary:

Normalised Restriction (= 0) Value Std. Err.

-1+ C(2) —0.017777 0.023644

Restrictions are linear in coefficients.

The test is performed in two different ways, but results suggest that
the null hypothesis should clearly be rejected as the p-value for the test
is zero to four decimal places. Since we are testing a hypothesis about
only one parameter, the two test statistics (‘F-statistic’ and ‘x-square’) will
always be identical. These are equivalent to conducting a t-test, and these
alternative formulations will be discussed in detail in chapter 4. EViews
also reports the ‘normalised restriction’, although this can be ignored for
the time being since it merely reports the regression slope parameter (in
a different form) and its standard error.

Now go back to the regression in levels (i.e. with the raw prices rather
than the returns) and test the null hypothesis that 8 = 1 in this regression.
You should find in this case that the null hypothesis is not rejected (table
below).
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Wald Test:

Equation: RETURNREG

Test Statistic Value df Probability
F-statistic 42.88455 (1, 63) 0.0000
Chi-square 42.88455 1 0.0000

Null Hypothesis Summary:

Normalised Restriction (= 0) Value Std. Err.

—-1+C(2) —0.876140 0.133790

Restrictions are linear in coefficients.

Estimation and hypothesis testing in EViews — example 2:
the CAPM

This exercise will estimate and test some hypotheses about the CAPM beta
for several US stocks. First, Open a new workfile to accommodate monthly
data commencing in January 2002 and ending in April 2007. Then import
the Excel file ‘capm.xls’. The file is organised by observation and contains
six columns of numbers plus the dates in the first column, so in the
‘Names for series or Number if named in file’ box, type 6. As before, do
not import the dates so the data start in cell B2. The monthly stock prices
of four companies (Ford, General Motors, Microsoft and Sun) will appear as
objects, along with index values for the S&P500 (‘sandp’) and three-month
US-Treasury bills (‘ustb3m’). Save the EViews workfile as ‘capm.wk1’.

In order to estimate a CAPM equation for the Ford stock, for example,
we need to first transform the price series into returns and then the
excess returns over the risk free rate. To transform the series, click on the
Generate button (Genr) in the workfile window. In the new window, type

RSANDP=100*LOG(SANDP/SANDP(—1))

This will create a new series named RSANDP that will contain the returns
of the S&P500. The operator (—1) is used to instruct EViews to use the one-
period lagged observation of the series. To estimate percentage returns on
the Ford stock, press the Genr button again and type

RFORD=100*LOG(FORD/FORD(—1))

This will yield a new series named RFORD that will contain the returns
of the Ford stock. EViews allows various kinds of transformations to the
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series. For example

X2=X|2 creates a new variable called X2 that is half
of X
XSQ=X"2 creates a new variable XSQ that is X squared
LX=LOG(X) creates a new variable LX that is the
log of X

LAGX=X(—1) creates a new variable LAGX containing X
lagged by one period

LAGX2=X(-2) creates a new variable LAGX2 containing X
lagged by two periods

Other functions include:

d(X) first difference of X

d(X,n) nth order difference of X

dlog(X) first difference of the logarithm of X
dlog(X,n) nth order difference of the logarithm of X
abs(X) absolute value of X

If, in the transformation, the new series is given the same name as the
old series, then the old series will be overwritten. Note that the returns
for the S&P index could have been constructed using a simpler command
in the ‘Genr’ window such as

RSANDP=100*DLOG(SANDP)

as we used in chapter 1. Before we can transform the returns into ex-
cess returns, we need to be slightly careful because the stock returns
are monthly, but the Treasury bill yields are annualised. We could run
the whole analysis using monthly data or using annualised data and it
should not matter which we use, but the two series must be measured
consistently. So, to turn the T-bill yields into monthly figures and to write
over the original series, press the Genr button again and type

USTB3M=USTB3M/12
Now, to compute the excess returns, click Genr again and type
ERSANDP=RSANDP-USTB3M

where ‘ERSANDP’ will be used to denote the excess returns, so that the
original raw returns series will remain in the workfile. The Ford returns
can similarly be transformed into a set of excess returns.

Now that the excess returns have been obtained for the two series,
before running the regression, plot the data to examine visually whether
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the series appear to move together. To do this, create a new object by
clicking on the Object/New Object menu on the menu bar. Select Graph,
provide a name (call the graph Graphl) and then in the new window
provide the names of the series to plot. In this new window, type

ERSANDP ERFORD

Then press OK and screenshot 2.4 will appear.

B Graph: GRAPH1 Workfile: CAPM::Untitled\ l:l@lg]
[View][Proc|object] [Print|[Name [AddText][Line/Shade [Remove ] [Template [Options|zoom
80
60
40
20
04
-20 -
40
60
-80 LA ALTLILILE FLFL FLALR RO MBI ELPLSLELE AU (£ R R ELE BB AL ARG (LR AR RFLILA ALY L
2002 2003 2004 2005 2006
| — ERSANDP —— ERFORD |

This is a time-series plot of the two variables, but a scatter plot may be
more informative. To examine a scatter plot, Click Options, choose the
Type tab, then select Scatter from the list and click OK. There appears to
be a weak association between ERFTAS and ERFORD. Close the window of
the graph and return to the workfile window.

To estimate the CAPM equation, click on Object/New Objects. In the
new window, select Equation and name the object CAPM. Click on OK.
In the window, specify the regression equation. The regression equation
takes the form

(Rrord = Fi)t = o + B(Rm — It + Uy
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Since the data have already been transformed to obtain the excess returns,
in order to specify this regression equation, type in the equation window

ERFORD C ERSANDP

To use all the observations in the sample and to estimate the regression
using LS - Least Squares (NLS and ARMA), click on OK. The results screen
appears as in the following table. Make sure that you save the Workfile
again to include the transformed series and regression results!

Dependent Variable: ERFORD

Method: Least Squares

Date: 08/21/07 Time: 15:02

Sample (adjusted): 2002M02 2007M04
Included observations: 63 after adjustments

Coefficient Std. Error t-Statistic Prob.

C 2.020219 2.801382 0.721151 0.4736
ERSANDP 0.359726 0.794443 0.452803 0.6523
R-squared 0.003350 Mean dependent var 2.097445
Adjusted R-squared —0.012989 S.D. dependent var 22.05129
S.E. of regression 22.19404 Akaike info criterion 9.068756
Sum squared resid 30047.09 Schwarz criterion 9.136792
Log likelihood —283.6658 Hannan-Quinn criter. 9.095514
F-statistic 0.205031 Durbin-Watson stat 1.785699
Prob(F-statistic) 0.652297

Take a couple of minutes to examine the results of the regression. What
is the slope coefficient estimate and what does it signify? Is this coefficient
statistically significant? The beta coefficient (the slope coefficient) estimate
is 0.3597. The p-value of the t-ratio is 0.6523, signifying that the excess
return on the market proxy has no significant explanatory power for the
variability of the excess returns of Ford stock. What is the interpretation
of the intercept estimate? Is it statistically significant?

In fact, there is a considerably quicker method for using transformed
variables in regression equations, and that is to write the transformation
directly into the equation window. In the CAPM example above, this could
be done by typing

DLOG(FORD)-USTB3M C DLOG(SANDP)-USTB3M

into the equation window. As well as being quicker, an advantage of this
approach is that the output will show more clearly the regression that has
actually been conducted, so that any errors in making the transformations
can be seen more clearly.
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How could the hypothesis that the value of the population coefficient is
equal to 1 be tested? The answer is to click on View/Coefficient Tests/Wald
- Coefficient Restrictions... and then in the box that appears, Type C(2)=1.
The conclusion here is that the null hypothesis that the CAPM beta of Ford
stock is 1 cannot be rejected and hence the estimated beta of 0.359 is not
significantly different from 1.°

Key concepts
The key terms to be able to define and explain from this chapter are

® regression model ® disturbance term

® population ® sample

® linear model ® consistency

® unbiasedness ® efficiency

® standard error © statistical inference
® null hypothesis ® alternative hypothesis
® t-distribution ® confidence interval
© test statistic ® rejection region

© type I error © type II error

® size of a test ® power of a test

® p-value ® data mining

® asymptotic

Appendix: Mathematical derivations of CLRM results

2A.1 Derivation of the OLS coefficient estimator in the bivariate case

T T
L= =92 => (i —&— Bx)? (2A.1)
t=1 t=1

It is necessary to minimise L w.rt. @ and §, to find the values of & and
B that give the line that is closest to the data. So L is differentiated w.r.t.
& and B, and the first derivatives are set to zero. The first derivatives are

given by
o _ 2> (Y —a@—px)=0 (2A.2)
e t Y — o t) = .
oL . s
Y = —ZZXt(Yt —&—pxt) =0 (2A.3)
t

5 Although the value 0.359 may seem a long way from 1, considered purely from an
econometric perspective, the sample size is quite small and this has led to a large
parameter standard error, which explains the failure to reject both Hyp : § = 0 and
Ho:B8=1.
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The next step is to rearrange (2A.2) and (2A.3) in order to obtain expres-
sions for @ and B. From (2A.2)

Z (i —@ — Bx) =0 (2A.4)
t

Expanding the parentheses and recalling that the sum runs from 1 to T
so that there will be T terms in &

D y—Ta—-p> x=0 (2A.5)

But Y yi =Ty and > x; = TX, so it is possible to write (2A.5) as

Ty—Ta—TBX =0 (2A.6)
or

y—a&—px=0 (2A.7)
From (2A.3)

Z Xi(yt =@ — px;) = 0 (2A.8)
From (2A.7)

a=y— px (2A.9)

Substituting into (2A.8) for & from (2A.9)

D Xy — Y+ BX — Bxi) =0 (2A.10)
t
thyt—yzxt+/§>_<zxt—,3zxt2=0 (2A.11)
t
D Xy —TXy+BTX2—BY x2=0 (2A.12)
t

Rearranging for §,

B(T -3 xf) —Txy - %y (2A.13)

Dividing both sides of (2A.13) by (TXx? — " x?) gives

- th)’t - TXy

B Do -Tx

and &=y — BX (2A.14)

<l
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2A.2 Derivation of the OLS standard error estimators for the intercept and
slope in the bivariate case

Recall that the variance of the random variable & can be written as
var(@) = E(a@ — E(@))? (2A.15)
and since the OLS estimator is unbiased
var(@) = E(@ — a)? (2A.16)

By similar arguments, the variance of the slope estimator can be written
as

var(B) = E(B — B)° (2A.17)

Working first with (2A.17), replacing B with the formula for it given by
the OLS estimator

3 (e — O~ 9) iy ’
X:O(t—)_()2

Replacing y; with o + BX; + U, and replacing y with o + X in (2A.18)

_ - 2
var(f) — E(Z (% = X)(e + B+ U —e = BX) ﬂ) A1)

Z (Xt — >_()2

var(B) = E( (2A.18)

Cancelling « and multiplying the last 8 term in (2A.19) by %gz—:gz
p— Y — Y p— p— Y 2 2
var() = E<Z b =00 g Z ﬁ)i))z p2, 0= %) ) (2A.20)
Xt — X
Rearranging
var(B) = E (Z (Xt = X)B(X — X) + Zut(xt -X)—B Z(Xt - >_<)2>2
Z (X — X)?
(2A.21)
VY, i 32\ 2
RO XIELES TS SO L e
Xt — X

Now the g terms in (2A.22) will cancel to give

—\\ 2
D uilx __X)> (2A.23)
Z (% — X)?

var(B) = E<
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Now let x;* denote the mean-adjusted observation for x;, i.e. (x; — x ). Equa-
tion (2A.23) can be written

2
var(B) = E (%) (2A.24)

The denominator of (2A.24) can be taken through the expectations oper-
ator under the assumption that x is fixed or non-stochastic

~ 1 . 2
var(B) = WE (Z utxt> (2A.25)

Writing the terms out in the last summation of (2A.25)

~ 1
var(f) = ————E(Uix} + UX; + - - + urxg)’ (2A.26)
(22x7)
Now expanding the brackets of the squared term in the expectations
operator of (2A.26)

A 1
var(B) = ———— E(uix{® + ujx3® + - - + ufxj> + cross-products)

> x?)

where ‘crossproducts” in (2A.27) denotes all of the terms uixju;xj (i # j).
These cross-products can be written as ujujxXj (i # j) and their expecta-
tion will be zero under the assumption that the error terms are uncorre-
lated with one another. Thus, the ‘cross-products’ term in (2A.27) will drop
out. Recall also from the chapter text that E(utz) is the error variance,

which is estimated using s?

(2A.27)

~ 1
var(p) = ? (22 + 5232 + - - - + 5x22) (2A.28)
X; )

which can also be written

R 52 SZ X*2
var(B) = ——— (X +x32+ - +x§7) = Ltz (2A.29)
(Xx) (Xx)
A term in Y X2 can be cancelled from the numerator and denominator
of (2A.29), and recalling that x;" = (x; — X ), this gives the variance of the
slope coefficient as
2

S
Z (X — X)?

var(8) = (2A.30)
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so that the standard error can be obtained by taking the square root of
(2A.30)

. / 1
SE(B) = W (2A.31)

Turning now to the derivation of the intercept standard error, this is in
fact much more difficult than that of the slope standard error. In fact,
both are very much easier using matrix algebra as shown below. Therefore,
this derivation will be offered in summary form. It is possible to express
a as a function of the true o and of the disturbances, u;

Zut[fo—thxt]
[T XK= ()]

Denoting all of the elements in square brackets as g, (2A.32) can be written

G—o=) Ul (2A.33)

From (2A.15), the intercept variance would be written
var@) = E(Yua) = Y ?EW) = Yo (2A34)
Writing (2A.34) out in full for g? and expanding the brackets
1(28) -2 0 (6) Eon+ (X) (X4) ]
[T (Xx)T

a=oa+ (2A.32)

var(a) =

(2A.35)

This looks rather complex, but fortunately, if we take Y x2 outside the
square brackets in the numerator, the remaining numerator cancels with
a term in the denominator to leave the required result

SE(@) =s (2A.36)

Review questions

1. (a) Why does OLS estimation involve taking vertical deviations of the
points to the line rather than horizontal distances?
(b) Why are the vertical distances squared before being added
together?
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(c) Why are the squares of the vertical distances taken rather than the
absolute values?

. Explain, with the use of equations, the difference between the sample

regression function and the population regression function.

. What is an estimator? Is the OLS estimator superior to all other

estimators? Why or why not?

. What five assumptions are usually made about the unobservable error

terms in the classical linear regression model (CLRM)? Briefly explain
the meaning of each. Why are these assumptions made?

. Which of the following models can be estimated (following a suitable

rearrangement if necessary) using ordinary least squares (OLS), where
X, Yy, Z are variables and «, 8, y are parameters to be estimated?
(Hint: the models need to be linear in the parameters.)

Yt = o + BXt + Ut (2.57)
yr = e*x/ el (2.58)
Yt = o + By Xt + Ut (2.59)
In(yy) = a + B In(x¢) + uy (2.60)
Vi = @ + BXtZt + Ut (2.61)
. The capital asset pricing model (CAPM) can be written as
E(Ri) = Rt + Bi[E(Rm) — R¢] (2.62)

using the standard notation.
The first step in using the CAPM is to estimate the stock’s beta using
the market model. The market model can be written as

Rit = ai + Bi Rmt + Uit (2.63)

where Rj; is the excess return for security i at time t, Ry is the excess
return on a proxy for the market portfolio at time t, and u; is an iid
random disturbance term. The cofficient beta in this case is also the
CAPM beta for security i.

Suppose that you had estimated (2.63) and found that the estimated
value of beta for a stock, B was 1.147. The standard error associated
with this coefficient SE(B) is estimated to be 0.0548.

A city analyst has told you that this security closely follows the
market, but that it is no more risky, on average, than the market. This
can be tested by the null hypotheses that the value of beta is one. The
model is estimated over 62 daily observations. Test this hypothesis
against a one-sided alternative that the security is more risky than the
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10.

market, at the 5% level. Write down the null and alternative hypothesis.
What do you conclude? Are the analyst’s claims empirically verified?
The analyst also tells you that shares in Chris Mining PLC have no
systematic risk, in other words that the returns on its shares are
completely unrelated to movements in the market. The value of beta
and its standard error are calculated to be 0.214 and 0.186,
respectively. The model is estimated over 38 quarterly observations.
Write down the null and alternative hypotheses. Test this null
hypothesis against a two-sided alternative.

Form and interpret a 95% and a 99% confidence interval for beta using
the figures given in question 7.

Are hypotheses tested concerning the actual values of the coefficients
(i.e. B) or their estimated values (i.e. ) and why?

Using EViews, select one of the other stock series from the ‘capm.wk1’
file and estimate a CAPM beta for that stock. Test the null hypothesis
that the true beta is one and also test the null hypothesis that the true
alpha (intercept) is zero. What are your conclusions?
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Learning Outcomes

In this chapter, you will learn how to

® Construct models with more than one explanatory variable
® Test multiple hypotheses using an F-test

® Determine how well a model fits the data

® Form a restricted regression
°

Derive the OLS parameter and standard error estimators using
matrix algebra

® Estimate multiple regression models and test multiple
hypotheses in EViews

3.1 Generalising the simple model to multiple linear regression

Previously, a model of the following form has been used:
yt=()t+/3xt+ut t=1,2,...,T (31)

Equation (3.1) is a simple bivariate regression model. That is, changes
in the dependent variable are explained by reference to changes in one
single explanatory variable x. But what if the financial theory or idea that
is sought to be tested suggests that the dependent variable is influenced
by more than one independent variable? For example, simple estimation
and tests of the CAPM can be conducted using an equation of the form of
(3.1), but arbitrage pricing theory does not pre-suppose that there is only
a single factor affecting stock returns. So, to give one illustration, stock
returns might be purported to depend on their sensitivity to unexpected
changes in:

88
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1
2
3
4

inflation

the differences in returns on short- and long-dated bonds
industrial production

default risks.

(
(
(
(

_ — — —

Having just one independent variable would be no good in this case. It
would of course be possible to use each of the four proposed explanatory
factors in separate regressions. But it is of greater interest and it is more
valid to have more than one explanatory variable in the regression equa-
tion at the same time, and therefore to examine the effect of all of the
explanatory variables together on the explained variable.

It is very easy to generalise the simple model to one with k regressors
(independent variables). Equation (3.1) becomes

Vi = B1+ BaXat + BaXat + -+ BrXke + U, t=1,2,...,T (3.2)

So the variables Xp, X3,..., Xkt are a set of k — 1 explanatory variables
which are thought to influence y, and the coefficient estimates S,
B2, ..., Bc are the parameters which quantify the effect of each of these
explanatory variables on y. The coefficient interpretations are slightly al-
tered in the multiple regression context. Each coefficient is now known
as a partial regression coefficient, interpreted as representing the partial
effect of the given explanatory variable on the explained variable, after
holding constant, or eliminating the effect of, all other explanatory vari-
ables. For example, 8, measures the effect of x, on y after eliminating
the effects of X3, Xs,..., Xk. Stating this in other words, each coefficient
measures the average change in the dependent variable per unit change
in a given independent variable, holding all other independent variables
constant at their average values.

The constant term

In (3.2) above, astute readers will have noticed that the explanatory vari-
ables are numbered X;, X3, ... i.e. the list starts with X, and not X;. So,
where is x;? In fact, it is the constant term, usually represented by a
column of ones of length T:
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Thus there is a variable implicitly hiding next to 1, which is a column
vector of ones, the length of which is the number of observations in
the sample. The X; in the regression equation is not usually written, in
the same way that one unit of p and 2 units of g would be written as
‘P + 29° and not ‘1p + 2q’. B; is the coefficient attached to the constant
term (which was called « in the previous chapter). This coefficient can still
be referred to as the intercept, which can be interpreted as the average value
which y would take if all of the explanatory variables took a value of zero.

A tighter definition of k, the number of explanatory variables, is prob-
ably now necessary. Throughout this book, k is defined as the number of
‘explanatory variables’ or ‘regressors’ including the constant term. This
is equivalent to the number of parameters that are estimated in the re-
gression equation. Strictly speaking, it is not sensible to call the constant
an explanatory variable, since it does not explain anything and it always
takes the same values. However, this definition of k will be employed for
notational convenience.

Equation (3.2) can be expressed even more compactly by writing it in
matrix form

y=XB+u (3.4)

where: y is of dimension T x 1
X is of dimension T x k
B is of dimension k x 1
u is of dimension T x 1

The difference between (3.2) and (3.4) is that all of the time observations
have been stacked up in a vector, and also that all of the different ex-
planatory variables have been squashed together so that there is a col-
umn for each in the X matrix. Such a notation may seem unnecessarily
complex, but in fact, the matrix notation is usually more compact and
convenient. So, for example, if k is 2, i.e. there are two regressors, one of
which is the constant term (equivalent to a simple bivariate regression
Yt = o + BX¢ + Ui), it is possible to write

Y1 1 xa Up

Y2 1 X uz
N [m}+ ) (3-5)
. . : B2 :

yr 1 Xor ur

Tx1 Tx2 2x1 Tx1

so that the Xx;; element of the matrix X represents the jth time observa-
tion on the ith variable. Notice that the matrices written in this way are
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conformable - in other words, there is a valid matrix multiplication and
addition on the RHS.

The above presentation is the standard way to express matrices in the
time series econometrics literature, although the ordering of the indices is
different to that used in the mathematics of matrix algebra (as presented
in the mathematical appendix at the end of this book). In the latter case,
Xij would represent the element in row i and column j, although in the
notation used in the body of this book it is the other way around.

How are the parameters (the elements of the 3 vector)
calculated in the generalised case?

Previously, the residual sum of squares, ) (i? was minimised with respect
to « and B. In the multiple regression context, in order to obtain estimates
of the parameters, 1, B2,. .., Bk, the RSS would be minimised with respect
to all the elements of 8. Now, the residuals can be stacked in a vector:

1
2

O

o
Il

(3.6)
lr
The RSS is still the relevant loss function, and would be given in a matrix
notation by

OO
N

L=00=[00z--0r]| . |=0]+05+ - +0F =) 07

[ R
—

(3.7)

Using a similar procedure to that employed in the bivariate regression
case, i.e. substituting into (3.7), and denoting the vector of estimated pa-
rameters as 3, it can be shown (see the appendix to this chapter) that the
coefficient estimates will be given by the elements of the expression

= (X'X)"'X’y (3.8)

If one were to check the dimensions of the RHS of (3.8), it would be
observed to be k x 1. This is as required since there are k parameters to
be estimated by the formula for S.
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But how are the standard errors of the coefficient estimates calculated?
Previously, to estimate the variance of the errors, o2, an estimator denoted
by s? was used

,_ 2.0
2

S =

(3.9)
The denominator of (3.9) is given by T — 2, which is the number of de-
grees of freedom for the bivariate regression model (i.e. the number of
observations minus two). This essentially applies since two observations
are effectively ‘lost’ in estimating the two model parameters (i.e. in de-
riving estimates for « and g). In the case where there is more than one
explanatory variable plus a constant, and using the matrix notation, (3.9)
would be modified to

ClES (3.10)

where k = number of regressors including a constant. In this case, k
observations are ‘lost’ as k parameters are estimated, leaving T — k degrees
of freedom. It can also be shown (see the appendix to this chapter) that
the parameter variance-covariance matrix is given by

var(B) = s?(X'X)~* (3.11)

The leading diagonal terms give the coefficient variances while the off-
diagonal terms give the covariances between the parameter estimates, so
that the variance of Bl is the first diagonal element, the variance of 32
is the second element on the leading diagonal, and the variance of By is
the kth diagonal element. The coefficient standard errors are thus simply
given by taking the square roots of each of the terms on the leading
diagonal.

___________________________________________________________________________________|
The following model with 3 regressors (including the constant) is esti-
mated over 15 observations

y = P1+ BXo + BaXs + U (3.12)
and the following data have been calculated from the original Xs

20 35 —-10 -3.0
(X'X)t=| 35 10 65|, Xy)=| 22|, 0'0=10.96
-1.0 65 43 0.6
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Calculate the coefficient estimates and their standard errors.

B

) 5, 20 35 -1.0
B=|" " |=XX)"'Xy=| 35 10 65
; -1.0 65 43
Bx
-3.0 1.10
x| 22 |=]-4.40 (3.13)
0.6 19.88

To calculate the standard errors, an estimate of o2 is required

RSS  10.96
f=——— =_—""—=091 3.14
T—-k 15-3 (3.14

The variance-covariance matrix of g is given by

1.82 319 —0.091
S(X'X) 1 =091(X'X)t=| 319 091 592 (3.15)
—0.91 592 391

The coefficient variances are on the diagonals, and the standard errors
are found by taking the square roots of each of the coefficient variances

var(B1) = 1.82  SE(B1) = 1.35 (3.16)
var(B,) = 0.91 < SE(B,) = 0.95 (3.17)
var(Bs) = 3.91  SE(B3) = 1.98 (3.18)

The estimated equation would be written

§ = 1.10 — 4.40x, + 19.88x3

(1.35) (0.95)  (1.98) (3.19)

Fortunately, in practice all econometrics software packages will estimate
the cofficient values and their standard errors. Clearly, though, it is still
useful to understand where these estimates came from.

Testing multiple hypotheses: the F-test

The t-test was used to test single hypotheses, i.e. hypotheses involving
only one coefficient. But what if it is of interest to test more than one
coefficient simultaneously? For example, what if a researcher wanted to
determine whether a restriction that the coefficient values for 8, and B3
are both unity could be imposed, so that an increase in either one of the
two variables X, or X3 would cause y to rise by one unit? The t-testing
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framework is not sufficiently general to cope with this sort of hypothesis
test. Instead, a more general framework is employed, centring on an F-test.
Under the F-test framework, two regressions are required, known as the
unrestricted and the restricted regressions. The unrestricted regression is
the one in which the coefficients are freely determined by the data, as
has been constructed previously. The restricted regression is the one in
which the coefficients are restricted, i.e. the restrictions are imposed on
some fs. Thus the F-test approach to hypothesis testing is also termed
restricted least squares, for obvious reasons.

The residual sums of squares from each regression are determined, and
the two residual sums of squares are ‘compared’ in the test statistic. The
F-test statistic for testing multiple hypotheses about the coefficient esti-
mates is given by

RRSS—URSS T —k

test statistic = 3.20
URSS m (3.20)

where the following notation applies:

URSS = residual sum of squares from unrestricted regression
RRSS = residual sum of squares from restricted regression

m = number of restrictions

T = number of observations

k = number of regressors in unrestricted regression

The most important part of the test statistic to understand is the nu-
merator expression RRSS — URSS. To see why the test centres around a
comparison of the residual sums of squares from the restricted and un-
restricted regressions, recall that OLS estimation involved choosing the
model that minimised the residual sum of squares, with no constraints
imposed. Now if, after imposing constraints on the model, a residual sum
of squares results that is not much higher than the unconstrained model’s
residual sum of squares, it would be concluded that the restrictions were
supported by the data. On the other hand, if the residual sum of squares
increased considerably after the restrictions were imposed, it would be
concluded that the restrictions were not supported by the data and there-
fore that the hypothesis should be rejected.

It can be further stated that RRSS > URSS. Only under a particular set
of very extreme circumstances will the residual sums of squares for the
restricted and unrestricted models be exactly equal. This would be the case
when the restriction was already present in the data, so that it is not really
a restriction at all (it would be said that the restriction is ‘not binding’, i.e.
it does not make any difference to the parameter estimates). So, for exam-
ple, if the null hypothesis is Hy: 8 = 1 and 83 = 1, then RRSS = URSS only
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in the case where the coefficient estimates for the unrestricted regression
had been B, =1 and B3 = 1. Of course, such an event is extremely unlikely
to occur in practice.

|
Dropping the time subscripts for simplicity, suppose that the general re-
gression is

Y = P1+ BaXo + B3Xs + BaXa + U (3.21)

and that the restriction f3 + B4 =1 is under test (there exists some hy-
pothesis from theory which suggests that this would be an interesting
hypothesis to study). The unrestricted regression is (3.21) above, but what
is the restricted regression? It could be expressed as

Y = B1 + B2Xa + BaXz + BaXs + U S.t. (Subjectto) B3+ B4 =1 (3.22)

The restriction (83 + B4 = 1) is substituted into the regression so that it is
automatically imposed on the data. The way that this would be achieved
would be to make either g3 or 84 the subject of (3.22), e.g.

BstBa=1= Pa=1-f3 (3.23)

and then substitute into (3.21) for 4
Yy = B1+ BoXo + BaXs + (1 — B3)Xa + U (3.24)

Equation (3.24) is already a restricted form of the regression, but it is not
yet in the form that is required to estimate it using a computer package. In
order to be able to estimate a model using OLS, software packages usually
require each RHS variable to be multiplied by one coefficient only. There-
fore, a little more algebraic manipulation is required. First, expanding the
brackets around (1 — f33)

Y = PB1+ BaXo + P3Xs + Xa — BsXa + U (3.25)
Then, gathering all of the terms in each f; together and rearranging
(Y — Xa) = B1 + Ba2Xz + Ba(Xs — Xq) + U (3.26)

Note that any variables without coefficients attached (e.g. X4 in (3.25)) are
taken over to the LHS and are then combined with y. Equation (3.26)
is the restricted regression. It is actually estimated by creating two new
variables - call them, say, P and Q, where P =y — X4 and Q = X3 — X4 —
so the regression that is actually estimated is

P =14 BXx2+ B3Q +u (3.27)
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What would have happened if instead f3 had been made the subject of
(3.23) and B3 had therefore been removed from the equation? Although
the equation that would have been estimated would have been different
from (3.27), the value of the residual sum of squares for these two models
(both of which have imposed upon them the same restriction) would be
the same.

The test statistic follows the F-distribution under the null hypothesis.
The F-distribution has 2 degrees of freedom parameters (recall that the
t-distribution had only 1 degree of freedom parameter, equal to T — k).
The value of the degrees of freedom parameters for the F-test are m, the
number of restrictions imposed on the model, and (T — k), the number of
observations less the number of regressors for the unrestricted regression,
respectively. Note that the order of the degree of freedom parameters is
important. The appropriate critical value will be in column m, row (T — k)
of the F-distribution tables.

The relationship between the t- and the F-distributions

Any hypothesis that could be tested with a t-test could also have been
tested using an F-test, but not the other way around. So, single hypotheses
involving one coefficient can be tested using a t- or an F-test, but multiple
hypotheses can be tested only using an F-test. For example, consider the
hypothesis

HO:,BZ =05
Hliﬁz #05

This hypothesis could have been tested using the usual t-test

B,—05
SE(B2)

or it could be tested in the framework above for the F-test. Note that the
two tests always give the same conclusion since the t-distribution is just
a special case of the F-distribution. For example, consider any random
variable Z that follows a t-distribution with T —k degrees of freedom,
and square it. The square of the t is equivalent to a particular form of the
F-distribution

test stat = (3.28)

Z%? ~t2 (T —k)thenalso Z2 ~ F(1, T —k)

Thus the square of a t-distributed random variable with T —k degrees
of freedom also follows an F-distribution with 1 and T —k degrees of
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freedom. This relationship between the t and the F-distributions will al-
ways hold - take some examples from the statistical tables and try it!
The F-distribution has only positive values and is not symmetrical.
Therefore, the null is rejected only if the test statistic exceeds the critical
F-value, although the test is a two-sided one in the sense that rejection
will occur if B, is significantly bigger or significantly smaller than 0.5.

Determining the number of restrictions, m

How is the appropriate value of m decided in each case? Informally, the
number of restrictions can be seen as ‘the number of equality signs under
the null hypothesis’. To give some examples

Ho : hypothesis No. of restrictions, m
B+ B2=2 1
ﬂz:landﬂ3=—l 2
Bo=0,83=0and B, =0 3

At first glance, you may have thought that in the first of these cases, the
number of restrictions was two. In fact, there is only one restriction that
involves two coefficients. The number of restrictions in the second two
examples is obvious, as they involve two and three separate component
restrictions, respectively.

The last of these three examples is particularly important. If the
model is

Yy = f1+ BaXo + BaXs + PaXa + U (3.29)
then the null hypothesis of
Ho:B,=0 and B3=0 and B4 =0

is tested by ‘THE’ regression F-statistic. It tests the null hypothesis that
all of the coefficients except the intercept coefficient are zero. This test is
sometimes called a test for ‘junk regressions’, since if this null hypothesis
cannot be rejected, it would imply that none of the independent variables
in the model was able to explain variations in Y.

Note the form of the alternative hypothesis for all tests when more than
one restriction is involved

HitBo#0 or Bs#0 or Ba#0

In other words, ‘and’ occurs under the null hypothesis and ‘or’ under the
alternative, so that it takes only one part of a joint null hypothesis to be
wrong for the null hypothesis as a whole to be rejected.
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Hypotheses that cannot be tested with either an F- or a t-test

It is not possible to test hypotheses that are not linear or that are multi-
plicative using this framework - for example, Hy : 8283 = 2, or Hp : 522 =1
cannot be tested.

___________________________________________________________________________________|
Suppose that a researcher wants to test whether the returns on a com-
pany stock (y) show unit sensitivity to two factors (factor x, and factor
X3) among three considered. The regression is carried out on 144 monthly
observations. The regression is

Y = B1+ B2Xo + BaXs + BaXa + U (3.30)

(1) What are the restricted and unrestricted regressions?
(2) If the two RSS are 436.1 and 397.2, respectively, perform the test.

Unit sensitivity to factors x, and x3 implies the restriction that the coef-
ficients on these two variables should be unity, so Hy: f2 = 1 and 3 = 1.
The unrestricted regression will be the one given by (3.30) above. To derive
the restricted regression, first impose the restriction:

Yy =PB1+B2Xo+ BaXa+ PaXa+Uu st fo=1 and Bz=1 (3.31)

Replacing f, and B3 by their values under the null hypothesis

Y = B1+Xo + X3+ BaXq + U (3.32)
Rearranging
Y =Xz —Xz=p1+ BaXg +U (3.33)

Defining z = y — X, — X3, the restricted regression is one of z on a constant
and X4

Z =1+ BaXg+ U (3.34)

The formula for the F-test statistic is given in (3.20) above. For this appli-
cation, the following inputs to the formula are available: T = 144, k = 4,
m = 2, RRSS = 436.1, URSS = 397.2. Plugging these into the formula gives
an F-test statistic value of 6.86. This statistic should be compared with an
F(m, T — k), which in this case is an F(2, 140). The critical values are 3.07
at the 5% level and 4.79 at the 1% level. The test statistic clearly exceeds
the critical values at both the 5% and 1% levels, and hence the null hy-
pothesis is rejected. It would thus be concluded that the restriction is not
supported by the data.

The following sections will now re-examine the CAPM model as an il-
lustration of how to conduct multiple hypothesis tests using EViews.
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Sample EViews output for multiple hypothesis tests

Reload the ‘capm.wk1’ workfile constructed in the previous chapter. As
a reminder, the results are included again below.

Dependent Variable: ERFORD

Method: Least Squares

Date: 08/21/07 Time: 15:02

Sample (adjusted): 2002M02 2007M04
Included observations: 63 after adjustments

Coefficient Std. Error t-Statistic Prob.
C 2.020219 2.801382 0.721151 0.4736
ERSANDP 0.359726 0.794443 0.452803 0.6523
R-squared 0.003350 Mean dependent var 2.097445
Adjusted R-squared —0.012989 S.D. dependent var 22.05129
S.E. of regression 22.19404 Akaike info criterion 9.068756
Sum squared resid 30047.09 Schwarz criterion 9.136792
Log likelihood —283.6658 Hannan-Quinn criter. 9.095514
F-statistic 0.205031 Durbin-Watson stat 1.785699
Prob(F-statistic) 0.652297

If we examine the regression F-test, this also shows that the regression
slope coefficient is not significantly different from zero, which in this case
is exactly the same result as the t-test for the beta coefficient (since there
is only one slope coefficient). Thus, in this instance, the F-test statistic is
equal to the square of the slope t-ratio.

Now suppose that we wish to conduct a joint test that both the intercept
and slope parameters are 1. We would perform this test exactly as for a
test involving only one coefficient. Select View/Coefficient Tests/Wald -
Coefficient Restrictions. .. and then in the box that appears, type C(1)=1,
C(2)=1. There are two versions of the test given: an F-version and a y?-
version. The F-version is adjusted for small sample bias and should be
used when the regression is estimated using a small sample (see chapter 4).
Both statistics asymptotically yield the same result, and in this case the
p-values are very similar. The conclusion is that the joint null hypothesis,
Ho : 1 =1 and B, = 1, is not rejected.

Multiple regression in EViews using an APT-style model

In the spirit of arbitrage pricing theory (APT), the following example will
examine regressions that seek to determine whether the monthly returns
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on Microsoft stock can be explained by reference to unexpected changes
in a set of macroeconomic and financial variables. Open a new EViews
workfile to store the data. There are 254 monthly observations in the file
‘macro.xls’, starting in March 1986 and ending in April 2007. There are 13
series plus a column of dates. The series in the Excel file are the Microsoft
stock price, the S&P500 index value, the consumer price index, an indus-
trial production index, Treasury bill yields for the following maturities:
three months, six months, one year, three years, five years and ten years, a
measure of ‘narrow’ money supply, a consumer credit series, and a ‘credit
spread’ series. The latter is defined as the difference in annualised average
yields between a portfolio of bonds rated AAA and a portfolio of bonds
rated BAA.

Import the data from the Excel file and save the resulting workfile as
‘macro.wf1’.

The first stage is to generate a set of changes or differences for each of the
variables, since the APT posits that the stock returns can be explained by
reference to the unexpected changes in the macroeconomic variables rather
than their levels. The unexpected value of a variable can be defined as the
difference between the actual (realised) value of the variable and its ex-
pected value. The question then arises about how we believe that investors
might have formed their expectations, and while there are many ways to
construct measures of expectations, the easiest is to assume that investors
have naive expectations that the next period value of the variable is equal
to the current value. This being the case, the entire change in the variable
from one period to the next is the unexpected change (because investors
are assumed to expect no change).!

Transforming the variables can be done as described above. Press Genr
and then enter the following in the ‘Enter equation’ box:

dspread = baa_aaa_spread - baa_aaa_spread(-1)

Repeat these steps to conduct all of the following transformations:

dcredit = consumer_credit - consumer_credit(-1)

dprod = industrial production - industrial production(-1)
rmsoft = 100*dlog(microsoft)

rsandp = 100*dlog(sandp)

dmoney = m1money_supply - m1money_supply(-1)

1 1t is an interesting question as to whether the differences should be taken on the levels
of the variables or their logarithms. If the former, we have absolute changes in the
variables, whereas the latter would lead to proportionate changes. The choice between
the two is essentially an empirical one, and this example assumes that the former is
chosen, apart from for the stock price series themselves and the consumer price series.
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inflation = 100*dlog(cpi)
term = ustb10y - ustb3m

and then click OK. Next, we need to apply further transformations to some
of the transformed series, so repeat the above steps to generate

dinflation = inflation - inflation(-1)
mustb3m = ustb3m/12

rterm = term - term(-1)

ermsoft = rmsoft - mustb3m
ersandp = rsandp - mustb3m

The final two of these calculate excess returns for the stock and for the
index.

We can now run the regression. So click Object/New Object/Equation
and name the object ‘msofireg’. Type the following variables in the Equa-
tion specification window

ERMSOFT C ERSANDP DPROD DCREDIT DINFLATION DMONEY DSPREAD
RTERM

and use Least Squares over the whole sample period. The table of results
will appear as follows.

Dependent Variable: ERMSOFT

Method: Least Squares

Date: 08/21/07 Time: 21:45

Sample (adjusted): 1986M05 2007M04
Included observations: 252 after adjustments

Coefficient  Std. Error t-Statistic Prob.

C —0.587603 1.457898 —0.403048 0.6873
ERSANDP 1.489434 0.203276 7.327137 0.0000
DPROD 0.289322 0.500919 0.577583 0.5641
DCREDIT —5.58E-05 0.000160 —0.347925 0.7282
DINFLATION 4.247809 2.977342 1.426712 0.1549
DMONEY —1.161526 0.713974 —1.626847 0.1051
DSPREAD 12.15775 13.55097 0.897187 0.3705
RTERM 6.067609 3.321363 1.826843 0.0689
R-squared 0.203545 Mean dependent var —0.420803
Adjusted R-squared 0.180696 S.D. dependent var 15.41135
S.E. of regression 13.94965  Akaike info criterion 8.140017
Sum squared resid 47480.62 Schwarz criterion 8.252062
Log likelihood —1017.642 Hannan-Quinn criter. 8.185102
F-statistic 8.908218 Durbin-Watson stat 2.156221

Prob(F-statistic) 0.000000
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Take a few minutes to examine the main regression results. Which of
the variables has a statistically significant impact on the Microsoft excess
returns? Using your knowledge of the effects of the financial and macro-
economic environment on stock returns, examine whether the coefficients
have their expected signs and whether the sizes of the parameters are
plausible.

The regression Fstatistic takes a value 8.908. Remember that this tests
the null hypothesis that all of the slope parameters are jointly zero. The
p-value of zero attached to the test statistic shows that this null hy-
pothesis should be rejected. However, there are a number of parame-
ter estimates that are not significantly different from zero - specifically
those on the DPROD, DCREDIT and DSPREAD variables. Let us test the
null hypothesis that the parameters on these three variables are jointly
zero using an F-test. To test this, Click on View/Coefficient Tests/Wald -
Coefficient Restrictions. .. and in the box that appears type C(3)=0, C(4)=0,
C(7)=0 and click OK. The resulting F-test statistic follows an F(3, 244) dis-
tribution as there are three restrictions, 252 usable observations and eight
parameters to estimate in the unrestricted regression. The F-statistic value
is 0.402 with p-value 0.752, suggesting that the null hypothesis cannot be
rejected. The parameters on DINLATION and DMONEY are almost signifi-
cant at the 10% level and so the associated parameters are not included
in this F-test and the variables are retained.

There is a procedure known as a stepwise regression that is now avail-
able in EViews 6. Stepwise regression is an automatic variable selection
procedure which chooses the jointly most ‘important’ (variously defined)
explanatory variables from a set of candidate variables. There are a num-
ber of different stepwise regression procedures, but the simplest is the
uni-directional forwards method. This starts with no variables in the re-
gression (or only those variables that are always required by the researcher
to be in the regression) and then it selects first the variable with the low-
est p-value (largest t-ratio) if it were included, then the variable with the
second lowest p-value conditional upon the first variable already being in-
cluded, and so on. The procedure continues until the next lowest p-value
relative to those already included variables is larger than some specified
threshold value, then the selection stops, with no more variables being
incorporated into the model.

To conduct a stepwise regression which will automatically select from
among these variables the most important ones for explaining the vari-
ations in Microsoft stock returns, click Proc and then Equation. Name
the equation Msoftstepwise and then in the ‘Estimation settings/Method’
box, change LS - Least Squares (NLS and ARMA) to STEPLS - Stepwise Least
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Squares and then in the top box that appears, ‘Dependent variable fol-
lowed by list of always included regressors’, enter

ERMSOFT C

This shows that the dependent variable will be the excess returns on
Microsoft stock and that an intercept will always be included in the re-
gression. If the researcher had a strong prior view that a particular ex-
planatory variable must always be included in the regression, it should be
listed in this first box. In the second box, ‘List of search regressors’, type
the list of all of the explanatory variables used above: ERSANDP DPROD
DCREDIT DINFLATION DMONEY DSPREAD RTERM. The window will ap-
pear as in screenshot 3.1.

Equation Estimation

Specification | Options

Equation specification
Dependent variable followed by list of always included regressors

ERMSOFT C

List of search regressors
ERSANDP DPROD DCREDIT DINFLATION DMONEY DSPREAD RTERM

Estimation settings

P e e T e e e e a1
Method:; STEPLS - Stepwise Least Squares VJ

Sample:| 1986m03 2007m04 J

oK H Cancel ]

Clicking on the ‘Options’ tab gives a number of ways to conduct the
regression. For example, ‘Forwards’ will start with the list of required
regressors (the intercept only in this case) and will sequentially add to
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them, while ‘Backwards’ will start by including all of the variables and
will sequentially delete variables from the regression. The default criterion
is to include variables if the p-value is less than 0.5, but this seems high
and could potentially result in the inclusion of some very insignificant
variables, so modify this to 0.2 and then click OK to see the results.

As can be seen, the excess market return, the term structure, money
supply and unexpected inflation variables have all been included, while
the default spread and credit variables have been omitted.

Dependent Variable: ERMSOFT
Method: Stepwise Regression
Date: 08/27/07 Time: 10:21

Sample (adjusted): 1986M05 2007M04

Included observations: 252 after adjustments
Number of always included regressors: 1
Number of search regressors: 7

Selection method: Stepwise forwards

Stopping criterion: p-value forwards/backwards = 0.2/0.2

Coefficient  Std. Error t-Statistic Prob.*
C —0.947198 0.8787  —1.077954 0.2821
ERSANDP 1.471400 0.201459 7.303725 0.0000
RTERM 6.121657 3.292863 1.859068 0.0642
DMONEY —1.171273 0.702523 —1.667238 0.0967
DINFLATION 4.013512 2.876986 1.395040 0.1643
R-squared 0.199612  Mean dependent var —0.420803
Adjusted R-squared 0.186650  S.D. dependent var 15.41135
S.E. of regression 13.89887  Akaike info criterion 8.121133
Sum squared resid 47715.09  Schwarz criterion 8.191162
Log likelihood —1018.263  Hannan-Quinn criter. 8.149311
F-statistic 15.40008  Durbin-Watson stat 2.150604
Prob(F-statistic) 0.000000

Selection Summary

Added ERSANDP
Added RTERM
Added DMONEY
Added DINFLATION

*Note: p-values and subsequent tests do not account for stepwise selection.

Stepwise procedures have been strongly criticised by statistical purists.
At the most basic level, they are sometimes argued to be no better than
automated procedures for data mining, in particular if the list of potential
candidate variables is long and results from a ‘fishing trip’ rather than
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a strong prior financial theory. More subtly, the iterative nature of the
variable selection process implies that the size of the tests on parameters
attached to variables in the final model will not be the nominal values (e.g.
5%) that would have applied had this model been the only one estimated.
Thus the p-values for tests involving parameters in the final regression
should really be modified to take into account that the model results
from a sequential procedure, although they are usually not in statistical
packages such as EViews.

A note on sample sizes and asymptotic theory

A question that is often asked by those new to econometrics is ‘what is an
appropriate sample size for model estimation?’ While there is no definitive
answer to this question, it should be noted that most testing procedures
in econometrics rely on asymptotic theory. That is, the results in theory
hold only if there are an infinite number of observations. In practice, an in-
finite number of observations will never be available and fortunately, an
infinite number of observations are not usually required to invoke the
asymptotic theory! An approximation to the asymptotic behaviour of the
test statistics can be obtained using finite samples, provided that they are
large enough. In general, as many observations as possible should be used
(although there are important caveats to this statement relating to ‘struc-
tural stability’, discussed in chapter 4). The reason is that all the researcher
has at his disposal is a sample of data from which to estimate parameter
values and to infer their likely population counterparts. A sample may fail
to deliver something close to the exact population values owing to sam-
pling error. Even if the sample is randomly drawn from the population,
some samples will be more representative of the behaviour of the popu-
lation than others, purely owing to ‘luck of the draw’. Sampling error is
minimised by increasing the size of the sample, since the larger the sam-
ple, the less likely it is that all of the data drawn will be unrepresentative
of the population.

Data mining and the true size of the test

Recall that the probability of rejecting a correct null hypothesis is equal
to the size of the test, denoted «. The possibility of rejecting a correct null
hypothesis arises from the fact that test statistics are assumed to follow
a random distribution and hence they will take on extreme values that
fall in the rejection region some of the time by chance alone. A conse-
quence of this is that it will almost always be possible to find significant
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relationships between variables if enough variables are examined. For ex-
ample, suppose that a dependent variable y; and 20 explanatory variables
Xots ..., Xo1t (excluding a constant term) are generated separately as in-
dependent normally distributed random variables. Then y is regressed
separately on each of the 20 explanatory variables plus a constant, and
the significance of each explanatory variable in the regressions is exam-
ined. If this experiment is repeated many times, on average one of the 20
regressions will have a slope coefficient that is significant at the 5% level
for each experiment. The implication is that for any regression, if enough
explanatory variables are employed in a regression, often one or more will
be significant by chance alone. More concretely, it could be stated that if
an a% size of test is used, on average one in every (100/«) regressions will
have a significant slope coefficient by chance alone.

Trying many variables in a regression without basing the selection of
the candidate variables on a financial or economic theory is known as
‘data mining’ or ‘data snooping’. The result in such cases is that the true
significance level will be considerably greater than the nominal signifi-
cance level assumed. For example, suppose that 20 separate regressions
are conducted, of which three contain a significant regressor, and a 5%
nominal significance level is assumed, then the true significance level
would be much higher (e.g. 25%). Therefore, if the researcher then shows
only the results for the regression containing the final three equations
and states that they are significant at the 5% level, inappropriate conclu-
sions concerning the significance of the variables would result.

As well as ensuring that the selection of candidate regressors for in-
clusion in a model is made on the basis of financial or economic theory,
another way to avoid data mining is by examining the forecast perfor-
mance of the model in an ‘out-of-sample’ data set (see chapter 5). The
idea is essentially that a proportion of the data is not used in model esti-
mation, but is retained for model testing. A relationship observed in the
estimation period that is purely the result of data mining, and is there-
fore spurious, is very unlikely to be repeated for the out-of-sample period.
Therefore, models that are the product of data mining are likely to fit very
poorly and to give very inaccurate forecasts for the out-of-sample period.

Goodness of fit statistics

RZ

It is desirable to have some measure of how well the regression model
actually fits the data. In other words, it is desirable to have an answer
to the question, ‘how well does the model containing the explanatory
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variables that was proposed actually explain variations in the dependent
variable?’ Quantities known as goodness of fit statistics are available to test
how well the sample regression function (SRF) fits the data - that is, how
‘close’ the fitted regression line is to all of the data points taken together.
Note that it is not possible to say how well the sample regression function
fits the population regression function - i.e. how the estimated model
compares with the true relationship between the variables, since the latter
is never known.

But what measures might make plausible candidates to be goodness
of fit statistics? A first response to this might be to look at the residual
sum of squares (RSS). Recall that OLS selected the coefficient estimates that
minimised this quantity, so the lower was the minimised value of the RSS,
the better the model fitted the data. Consideration of the RSS is certainly
one possibility, but RSS is unbounded from above (strictly, RSS is bounded
from above by the total sum of squares - see below) - i.e. it can take any
(non-negative) value. So, for example, if the value of the RSS under OLS
estimation was 136.4, what does this actually mean? It would therefore be
very difficult, by looking at this number alone, to tell whether the regres-
sion line fitted the data closely or not. The value of RSS depends to a great
extent on the scale of the dependent variable. Thus, one way to pointlessly
reduce the RSS would be to divide all of the observations on y by 10!

In fact, a scaled version of the residual sum of squares is usually employed.
The most common goodness of fit statistic is known as R?. One way to
define R? is to say that it is the square of the correlation coefficient
between y and § - that is, the square of the correlation between the values
of the dependent variable and the corresponding fitted values from the
model. A correlation coefficient must lie between —1 and +1 by definition.
Since R? defined in this way is the square of a correlation coefficient, it
must lie between 0 and 1. If this correlation is high, the model fits the
data well, while if the correlation is low (close to zero), the model is not
providing a good fit to the data.

Another definition of R? requires a consideration of what the model
is attempting to explain. What the model is trying to do in effect is to
explain variability of y about its mean value, y. This quantity, y, which
is more specifically known as the unconditional mean of y, acts like a
benchmark since, if the researcher had no model for y, he could do no
worse than to regress y on a constant only. In fact, the coefficient estimate
for this regression would be the mean of y. So, from the regression

Yt = B1+ Ut (3.35)

the coefficient estimate 81, will be the mean of y, i.e. y. The total variation
across all observations of the dependent variable about its mean value is
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known as the total sum of squares, TSS, which is given by:
TSS = (i — ¥’ (3.36)
t

The TSS can be split into two parts: the part that has been explained by the
model (known as the explained sum of squares, ESS) and the part that the
model was not able to explain (the RSS). That is

TSS = ESS + RSS (3.37)
D=2 => G-y + ) a2 (3.38)
t t t
Recall also that the residual sum of squares can also be expressed as
Z (ye — %)?
t

since a residual for observation t is defined as the difference between the
actual and fitted values for that observation. The goodness of fit statistic
is given by the ratio of the explained sum of squares to the total sum of
squares:

, ESS

= —= 3.39
TSS (3.39)
but since TSS = ESS + RSS, it is also possible to write
ESS  TSS —RSS RSS
R? = =1 (3.40)

T Tss T TSS T TSS

R? must always lie between zero and one (provided that there is a constant
term in the regression). This is intuitive from the correlation interpreta-
tion of R? given above, but for another explanation, consider two extreme
cases

RSS=TSS ie. ESS=0 so R?=ESS/TSS=0
ESS=TSS ie. RSS=0 so R?=ESS/TSS=1

In the first case, the model has not succeeded in explaining any of the
variability of y about its mean value, and hence the residual and total
sums of squares are equal. This would happen only where the estimated
values of all of the coefficients were exactly zero. In the second case, the
model has explained all of the variability of y about its mean value, which
implies that the residual sum of squares will be zero. This would happen
only in the case where all of the observation points lie exactly on the
fitted line. Neither of these two extremes is likely in practice, of course,
but they do show that R? is bounded to lie between zero and one, with a
higher R? implying, everything else being equal, that the model fits the
data better.
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To sum up, a simple way (but crude, as explained next) to tell whether
the regression line fits the data well is to look at the value of R?. A value of
R? close to 1 indicates that the model explains nearly all of the variability
of the dependent variable about its mean value, while a value close to zero
indicates that the model fits the data poorly. The two extreme cases, where
R? =0 and R? =1, are indicated in figures 3.1 and 3.2 in the context of
a simple bivariate regression.

3.8.2 Problems with R? as a goodness of fit measure

R? is simple to calculate, intuitive to understand, and provides a broad
indication of the fit of the model to the data. However, there are a number
of problems with R? as a goodness of fit measure:
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(1) R? is defined in terms of variation about the mean of y so that if
a model is reparameterised (rearranged) and the dependent variable
changes, R? will change, even if the second model was a simple re-
arrangement of the first, with identical RSS. Thus it is not sensible
to compare the value of R? across models with different dependent
variables.

R? never falls if more regressors are added to the regression. For ex-
ample, consider the following two models:

(2

~_—

Regression 1: y = B1 + B2X2 + B3Xs + U (3.41)
Regression 2: y = B1 + BaX2 + B3Xz + BaXs + U (3.42)

R? will always be at least as high for regression 2 relative to regression
1. The R? from regression 2 would be exactly the same as that for
regression 1 only if the estimated value of the coefficient on the new
variable were exactly zero, i.e. 84 = 0. In practice, B4 will always be non-
zero, even if not significantly so, and thus in practice R? always rises
as more variables are added to a model. This feature of R? essentially
makes it impossible to use as a determinant of whether a given variable
should be present in the model or not.

(3) R? can take values of 0.9 or higher for time series regressions, and
hence it is not good at discriminating between models, since a wide
array of models will frequently have broadly similar (and high) values
of R2.

Adjusted R?

In order to get around the second of these three problems, a modifica-
tion to R? is often made which takes into account the loss of degrees of
freedom associated with adding extra variables. This is known as R2, or
adjusted R?, which is defined as
RZ=1- [?(1 - RZ)} (3.43)
So if an extra regressor (variable) is added to the model, k increases and
unless R? increases by a more than off-setting amount, R2 will actually
fall. Hence R? can be used as a decision-making tool for determining
whether a given variable should be included in a regression model or not,
with the rule being: include the variable if R? rises and do not include it
if R? falls.
However, there are still problems with the maximisation of R2 as crite-
rion for model selection, and principal among these is that it is a ‘soft’
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rule, implying that by following it, the researcher will typically end up
with a large model, containing a lot of marginally significant or insignif-
icant variables. Also, while R? must be at least zero if an intercept is
included in the regression, its adjusted counterpart may take negative
values, even with an intercept in the regression, if the model fits the data
very poorly.

Now reconsider the results from the previous exercises using EViews in
the previous chapter and earlier in this chapter. If we first consider the
hedging model from chapter 2, the R? value for the returns regression
was only 0.01, indicating that a mere 1% of the variation in spot returns
is explained by the futures returns - a very poor model fit indeed.

The fit is no better for the Ford stock CAPM regression described in
chapter 2, where the R? is less than 1% and the adjusted R? is actually
negative. The conclusion here would be that for this stock and this sample
period, almost none of the monthly movement in the excess returns can
be attributed to movements in the market as a whole, as measured by the
S&P500.

Finally, if we look at the results from the recent regressions for Mi-
crosoft, we find a considerably better fit. It is of interest to compare the
model fit for the original regression that included all of the variables
with the results of the stepwise procedure. We can see that the raw R?
is slightly higher for the original regression (0.204 versus 0.200 for the
stepwise regression, to three decimal places), exactly as we would expect.
Since the original regression contains more variables, the R%value must
be at least as high. But comparing the R2s, the stepwise regression value
(0.187) is slightly higher than for the full regression (0.181), indicating
that the additional regressors in the full regression do not justify their
presence, at least according to this criterion.

Box 3.1 The relationship between the regression F-statistic and R?

There is a particular relationship between a regression’s R? value and the regression
F-statistic. Recall that the regression F-statistic tests the null hypothesis that all of
the regression slope parameters are simultaneously zero. Let us call the residual sum
of squares for the unrestricted regression including all of the explanatory variables
RSS, while the restricted regression will simply be one of y; on a constant

Yo = P+ Ut (3.44)

Since there are no slope parameters in this model, none of the variability of y; about
its mean value would have been explained. Thus the residual sum of squares for
equation (3.44) will actually be the total sum of squares of y;, TSS. We could write the
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usual F-statistic formula for testing this null that all of the slope parameters are jointly
zero as

TSS—RSS T —k

F — stat = 3.45
RSS k-1 (3.45)
In this case, the number of restrictions (‘m’) is equal to the number of slope
parameters, k — 1. Recall that TSS — RSS = ESS and dividing the numerator and
denominator of equation (3.45) by TSS, we obtain
ESS/TSS T —k
F — stat = / —_— (3.46)

~ RSS/TSS k-1
Now the numerator of equation (3.46) is R?, while the denominator is 1 — R?, so that
the F-statistic can be written
R3(T —k)

Fostat= —
1— Rk —1)

(3.47)

This relationship between the F-statistic and R? holds only for a test of this null
hypothesis and not for any others.

There now follows another case study of the application of the OLS
method of regression estimation, including interpretation of t-ratios
and R?.

Hedonic pricing models

One application of econometric techniques where the coefficients have
a particularly intuitively appealing interpretation is in the area of hedo-
nic pricing models. Hedonic models are used to value real assets, especially
housing, and view the asset as representing a bundle of characteristics,
each of which gives either utility or disutility to its consumer. Hedonic
models are often used to produce appraisals or valuations of properties,
given their characteristics (e.g. size of dwelling, number of bedrooms,
location, number of bathrooms, etc). In these models, the coefficient esti-
mates represent ‘prices of the characteristics’.

One such application of a hedonic pricing model is given by Des Rosiers
and Thérialt (1996), who consider the effect of various amenities on rental
values for buildings and apartments in five sub-markets in the Quebec area
of Canada. After accounting for the effect of ‘contract-specific’ features
which will affect rental values (such as whether furnishings, lighting, or
hot water are included in the rental price), they arrive at a model where
the rental value in Canadian dollars per month (the dependent variable) is



Further development and analysis of the CLRM 113

a function of 9-14 variables (depending on the area under consideration).
The paper employs 1990 data for the Quebec City region, and there are
13,378 observations. The 12 explanatory variables are:

LnAGE log of the apparent age of the property

NBROOMS number of bedrooms

AREABYRM area per room (in square metres)

ELEVATOR a dummy variable = 1 if the building has an
elevator; 0 otherwise

BASEMENT a dummy variable = 1 if the unit is located in a
basement; 0 otherwise

OUTPARK number of outdoor parking spaces

INDPARK number of indoor parking spaces

NOLEASE a dummy variable = 1 if the unit has no lease
attached to it; 0 otherwise

LnDISTCBD  log of the distance in kilometres to the central
business district (CBD)

SINGLPAR percentage of single parent families in the area
where the building stands

DSHOPCNTR distance in kilometres to the nearest shopping
centre

VACDIFF1 vacancy difference between the building and the
census figure

This list includes several variables that are dummy variables. Dummy vari-
ables are also known as qualitative variables because they are often used to
numerically represent a qualitative entity. Dummy variables are usually
specified to take on one of a narrow range of integer values, and in most
instances only zero and one are used.

Dummy variables can be used in the context of cross-sectional or time
series regressions. The latter case will be discussed extensively below. Ex-
amples of the use of dummy variables as cross-sectional regressors would
be for sex in the context of starting salaries for new traders (e.g. male = 0,
female = 1) or in the context of sovereign credit ratings (e.g. developing
country = 0, developed country = 1), and so on. In each case, the dummy
variables are used in the same way as other explanatory variables and the
coefficients on the dummy variables can be interpreted as the average dif-
ferences in the values of the dependent variable for each category, given
all of the other factors in the model.

Des Rosiers and Thérialt (1996) report several specifications for five dif-
ferent regions, and they present results for the model with variables as
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Hedonic model of rental values in Quebec City, 1990.
Dependent variable: Canadian dollars per month

A priori
Variable Coefficient t-ratio sign expected
Intercept 282.21 56.09 +
LnAGE —53.10 —59.71 —
NBROOMS 48.47 104.81 +
AREABYRM 3.97 29.99 +
ELEVATOR 88.51 45.04 +
BASEMENT —15.90 —11.32 —
OUTPARK 7.17 7.07 +
INDPARK 73.76 31.25 +
NOLEASE —16.99 —7.62 —
LnDISTCBD 5.84 4.60 —
SINGLPAR —4.27 —38.88 —
DSHOPCNTR —10.04 —5.97 —
VACDIFF1 0.29 5.98 —

Notes: Adjusted R? = 0.651; regression F-statistic = 2082.27.
Source: Des Rosiers and Thérialt (1996). Reprinted with permission
of American Real Estate Society.

discussed here in their exhibit 4, which is adapted and reported here as
table 3.1.

The adjusted R? value indicates that 65% of the total variability of rental
prices about their mean value is explained by the model. For a cross-
sectional regression, this is quite high. Also, all variables are significant at
the 0.01% level or lower and consequently, the regression F-statistic rejects
very strongly the null hypothesis that all coefficient values on explanatory
variables are zero.

As stated above, one way to evaluate an econometric model is to de-
termine whether it is consistent with theory. In this instance, no real
theory is available, but instead there is a notion that each variable will af-
fect rental values in a given direction. The actual signs of the coefficients
can be compared with their expected values, given in the last column of
table 3.1 (as determined by this author). It can be seen that all coefficients
except two (the log of the distance to the CBD and the vacancy differential)
have their predicted signs. It is argued by Des Rosiers and Thérialt that the
‘distance to the CBD’ coefficient may be expected to have a positive sign
since, while it is usually viewed as desirable to live close to a town centre,
everything else being equal, in this instance most of the least desirable
neighbourhoods are located towards the centre.
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The coefficient estimates themselves show the Canadian dol-
lar rental price per month of each feature of the dwelling. To offer a
few illustrations, the NBROOMS value of 48 (rounded) shows that, every-
thing else being equal, one additional bedroom will lead to an average
increase in the rental price of the property by $48 per month at 1990
prices. A basement coefficient of —16 suggests that an apartment located
in a basement commands a rental $16 less than an identical apartment
above ground. Finally the coefficients for parking suggest that on average
each outdoor parking space adds $7 to the rent while each indoor parking
space adds $74, and so on. The intercept shows, in theory, the rental that
would be required of a property that had zero values on all the attributes.
This case demonstrates, as stated previously, that the coefficient on the
constant term often has little useful interpretation, as it would refer to a
dwelling that has just been built, has no bedrooms each of zero size, no
parking spaces, no lease, right in the CBD and shopping centre, etc.

One limitation of such studies that is worth mentioning at this stage is
their assumption that the implicit price of each characteristic is identical
across types of property, and that these characteristics do not become
saturated. In other words, it is implicitly assumed that if more and more
bedrooms or allocated parking spaces are added to a dwelling indefinitely,
the monthly rental price will rise each time by $48 and $7, respectively.
This assumption is very unlikely to be upheld in practice, and will result in
the estimated model being appropriate for only an ‘average’ dwelling. For
example, an additional indoor parking space is likely to add far more value
to a luxury apartment than a basic one. Similarly, the marginal value of
an additional bedroom is likely to be bigger if the dwelling currently has
one bedroom than if it already has ten. One potential remedy for this
would be to use dummy variables with fixed effects in the regressions;
see, for example, chapter 10 for an explanation of these.

Tests of non-nested hypotheses

All of the hypothesis tests conducted thus far in this book have been in
the context of ‘nested’ models. This means that, in each case, the test in-
volved imposing restrictions on the original model to arrive at a restricted
formulation that would be a sub-set of, or nested within, the original spec-
ification.

However, it is sometimes of interest to compare between non-nested
models. For example, suppose that there are two researchers working
independently, each with a separate financial theory for explaining the
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variation in some variable, y;. The models selected by the researchers re-
spectively could be

Yt = o1 + opXor + Ut (3.48)
Yt = B1 + BoXat + vt (3.49)

where U; and v; are iid error terms. Model (3.48) includes variable X, but
not X3, while model (3.49) includes x3 but not x,. In this case, neither
model can be viewed as a restriction of the other, so how then can the
two models be compared as to which better represents the data, y;? Given
the discussion in section 3.8, an obvious answer would be to compare the
values of R? or adjusted R? between the models. Either would be equally
applicable in this case since the two specifications have the same num-
ber of RHS variables. Adjusted R? could be used even in cases where the
number of variables was different across the two models, since it employs
a penalty term that makes an allowance for the number of explanatory
variables. However, adjusted R? is based upon a particular penalty func-
tion (that is, T — k appears in a specific way in the formula). This form of
penalty term may not necessarily be optimal. Also, given the statement
above that adjusted R? is a soft rule, it is likely on balance that use of
it to choose between models will imply that models with more explana-
tory variables are favoured. Several other similar rules are available, each
having more or less strict penalty terms; these are collectively known as
‘information criteria’. These are explained in some detail in chapter 5, but
suffice to say for now that a different strictness of the penalty term will
in many cases lead to a different preferred model.

An alternative approach to comparing between non-nested models
would be to estimate an encompassing or hybrid model. In the case of
(3.48) and (3.49), the relevant encompassing model would be

Yt = Y1+ V2Xor + Y3Xat + wr (3.50)

where w; is an error term. Formulation (3.50) contains both (3.48) and
(3.49) as special cases when y3 and y, are zero, respectively. Therefore, a
test for the best model would be conducted via an examination of the
significances of y, and y; in model (3.50). There will be four possible
outcomes (box 3.2).

However, there are several limitations to the use of encompassing re-
gressions to select between non-nested models. Most importantly, even if
models (3.48) and (3.49) have a strong theoretical basis for including the
RHS variables that they do, the hybrid model may be meaningless. For
example, it could be the case that financial theory suggests that y could
either follow model (3.48) or model (3.49), but model (3.50) is implausible.
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Box 3.2 Selecting between models

(1) y» is statistically significant but y3 is not. In this case, (3.50) collapses to (3.48),
and the latter is the preferred model.

(2) ys is statistically significant but y, is not. In this case, (3.50) collapses to (3.49),
and the latter is the preferred model.

(3) 2 and y; are both statistically significant. This would imply that both X, and x3 have
incremental explanatory power for y, in which case both variables should be retained.
Models (3.48) and (3.49) are both ditched and (3.50) is the preferred model.

(4) Neither y, nor y; are statistically significant. In this case, none of the models can be
dropped, and some other method for choosing between them must be employed.

Also, if the competing explanatory variables X, and xs; are highly re-
lated (i.e. they are near collinear), it could be the case that if they are
both included, neither y, nor y;3 are statistically significant, while each is
significant in their separate regressions (3.48) and (3.49); see the section
on multicollinearity in chapter 4.

An alternative approach is via the J-encompassing test due to Davidson
and MacKinnon (1981). Interested readers are referred to their work or to
Gujarati (2003, pp. 533-6) for further details.

Key concepts
The key terms to be able to define and explain from this chapter are

multiple regression model variance-covariance matrix
restricted regression F-distribution

R? R?

hedonic model encompassing regression

data mining

Appendix 3.1 Mathematical derivations of CLRM results

Derivation of the OLS coefficient estimator in the
multiple regression context

In the multiple regression context, in order to obtain the parameter esti-
mates, B1, f2, ..., Bk, the RSS would be minimised with respect to all the
elements of . Now the residuals are expressed in a vector:

1
2
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[
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(3A.1)
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The RSS is still the relevant loss function, and would be given in a matrix
notation by expression (3A.2)

o O
-

L=00=[00,...0¢] | . |=0f+03+ - +0F =) @7 (3A.2)
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Denoting the vector of estimated parameters as f§, it is also possible to
write
L=00=( XAy -Xp) =Yy -BXy-yXp+BXXp (3A3)

It turns out that ﬁ”X’y is (1 xk)x (kx T)x (T x1)=1x 1, and also that
y'XBis (L x T) x (T x k) x (k x 1) =1 x 1, so in fact g'X'y = y’XA. Thus
(3A.3) can be written

L=00=(y—XB)(y—XB)=yy—28Xy+pXXp (3A4)

Differentiating this expression with respect to g and setting it to zero
in order to find the parameter values that minimise the residual sum of

squares would yield
aL / AV
8_,3:_2x y+2X'Xg=0 (3A.5)

This expression arises since the derivative of y’y is zero with respect to
B, and B/X’X B acts like a square of X 8, which is differentiated to 2X’'X .
Rearranging (3A.5)

2X'y = 2X'XB (3A.6)
X'y = X'XB (3A.7)

Pre-multiplying both sides of (3A.7) by the inverse of X’'X
B =(X'X)"Xy (3A.8)

Thus, the vector of OLS coefficient estimates for a set of k parameters is
given by

= (X'X)"IX’y (3A.9)

=
I
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Derivation of the OLS standard error estimator in the
multiple regression context

The variance of a vector of random variables § is given by the formula
E[(B — B)(B — B)]. Since y = XB +u, it can also be stated, given (3A.9),
that

B = (X' X)X (XB +u) (3A.10)
Expanding the parentheses

B =(X'X)IX'XB + (X' X)X 'u (3A.11)
B =B+ (X'X)Xu (3A.12)

Thus, it is possible to express the variance of 8 as

E[(B — B)(B — B)]1=EI(B + (X'X)™X'u — B)(B + (X'X) " X'u — B)]
(3A.13)

Cancelling the 8 terms in each set of parentheses

E[(B — B)(B — B)] = EL((X'X) " X'u)((X'X) ' X'u)] (3A.14)
Expanding the parentheses on the RHS of (3A.14) gives

E[(B — B)(B — B)] = E[(X'X) "X 'uu'X(X'X)™"] (3A.15)

E[(B - B)(B - B)]=(X'X) ' X'E[UUTX(X'X)™* (3A.16)
Now E[uu’] is estimated by s?I, so that

E[(B — BB — B)] = (X'X) I X'SIX(X'X) (3A.17)
where | is a k x k identity matrix. Rearranging further,

E[(B — B)(B — B)]=s*(X'X) T X'X(X'X)™* (3A.18)
The X’'X and the last (X'X)™! term cancel out to leave

var(8) = s3(X'X) ™! (3A.19)

as the expression for the parameter variance-covariance matrix. This quan-
tity, s?(X’X)7%, is known as the estimated variance-covariance matrix of
the coefficients. The leading diagonal terms give the estimated coefficient
variances while the off-diagonal terms give the estimated covariances be-
tween the parameter estimates. The variance of B is the first diagonal
element, the variance of /§2 is the second element on the leading di-
agonal,..., and the variance of By is the kth diagonal element, etc. as
discussed in the body of the chapter.
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A brief introduction to factor models and principal
components analysis

Factor models are employed primarily as dimensionality reduction tech-
niques in situations where we have a large number of closely related
variables and where we wish to allow for the most important influences
from all of these variables at the same time. Factor models decompose
the structure of a set of series into factors that are common to all
series and a proportion that is specific to each series (idiosyncratic varia-
tion). There are broadly two types of such models, which can be loosely
characterised as either macroeconomic or mathematical factor models.
The key distinction between the two is that the factors are observable
for the former but are latent (unobservable) for the latter. Observable
factor models include the APT model of Ross (1976). The most common
mathematical factor model is principal components analysis (PCA). PCA
is a technique that may be useful where explanatory variables are closely
related - for example, in the context of near multicollinearity. Specifi-
cally, if there are k explanatory variables in the regression model, PCA
will transform them into k uncorrelated new variables. To elucidate,
suppose that the original explanatory variables are denoted Xj, X,...,
Xk, and denote the principal components by pi, p2,..., pk. These prin-
cipal components are independent linear combinations of the original
data

P1 = a11X1 + @12Xo + - - - + Xk
P2 = a21X1 + ag2Xo + - - - + ok Xk (3A.20)

Pk = okiX1 + kX2 + - - - + ok Xk
where «;j are coefficients to be calculated, representing the coefficient
on the jth explanatory variable in the ith principal component. These
coefficients are also known as factor loadings. Note that there will be T
observations on each principal component if there were T observations
on each explanatory variable.

It is also required that the sum of the squares of the coefficients for
each component is one, i.e.

afy +afy + o =1
Do (3A.21)

ak ot 4 Fad =1
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This requirement could also be expressed using sigma notation

k
daf=1V i=1..k (3A.22)
=1
Constructing the components is a purely mathematical exercise in con-
strained optimisation, and thus no assumption is made concerning the
structure, distribution, or other properties of the variables.

The principal components are derived in such a way that they are in
descending order of importance. Although there are k principal compo-
nents, the same as the number of explanatory variables, if there is some
collinearity between these original explanatory variables, it is likely that
some of the (last few) principal components will account for so little of
the variation that they can be discarded. However, if all of the original
explanatory variables were already essentially uncorrelated, all of the com-
ponents would be required, although in such a case there would have been
little motivation for using PCA in the first place.

The principal components can also be understood as the eigenvalues
of (X’X), where X is the matrix of observations on the original variables.
Thus the number of eigenvalues will be equal to the number of variables,

k. If the ordered eigenvalues are denoted A; (i =1,..., k), the ratio
Aj
b = —

i=1

gives the proportion of the total variation in the original data explained
by the principal component i. Suppose that only the first r (0 <r < k)
principal components are deemed sufficiently useful in explaining the
variation of (X'X), and that they are to be retained, with the remaining
k —r components being discarded. The regression finally estimated, after
the principal components have been formed, would be one of y on the r
principal components

Yt =0+ yiPat + -+ + ¥ Pre + Ut (3A.23)

In this way, the principal components are argued to keep most of the
important information contained in the original explanatory variables,
but are orthogonal. This may be particularly useful for independent vari-
ables that are very closely related. The principal component estimates
(7i,i=1,...,r) will be biased estimates, although they will be more ef-
ficient than the OLS estimators since redundant information has been
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removed. In fact, if the OLS estimator for the original regression of y on
X is denoted g, it can be shown that

7 =P/B (3A.24)

where j;, are the coefficient estimates for the principal components, and
Pr is a matrix of the first r principal components. The principal component
coefficient estimates are thus simply linear combinations of the original
OLS estimates.

An application of principal components to interest rates

Many economic and financial models make use of interest rates in some
form or another as independent variables. Researchers may wish to in-
clude interest rates on a large number of different assets in order to re-
flect the variety of investment opportunities open to investors. However,
market interest rates could be argued to be not sufficiently independent
of one another to make the inclusion of several interest rate series in an
econometric model statistically sensible. One approach to examining this
issue would be to use PCA on several related interest rate series to de-
termine whether they did move independently of one another over some
historical time period or not.

Fase (1973) conducted such a study in the context of monthly Dutch mar-
ket interest rates from January 1962 until December 1970 (108 months).
Fase examined both ‘money market’ and ‘capital market’ rates, although
only the money market results will be discussed here in the interests of
brevity. The money market instruments investigated were:

Call money

Three-month Treasury paper

One-year Treasury paper

Two-year Treasury paper

Three-year Treasury paper

Five-year Treasury paper

Loans to local authorities: three-month
Loans to local authorities: one-year
Eurodollar deposits

Netherlands Bank official discount rate.

Prior to analysis, each series was standardised to have zero mean and
unit variance by subtracting the mean and dividing by the standard de-
viation in each case. The three largest of the ten eigenvalues are given in
table 3A.1.
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Table 3A.1 Principal component ordered eigenvalues for Dutch interest rates,

1962-1970
Monthly data Quarterly data
Jan 62-Dec 70 Jan 62-Jun 66 Jul 66-Dec 70  Jan 62-Dec 70
A1 9.57 9.31 9.32 9.67
A2 0.20 0.31 0.40 0.16
A3 0.09 0.20 0.17 0.07
¢ 95.7% 93.1% 93.2% 96.7%

Source: Fase (1973). Reprinted with the permission of Elsevier Science.

Table 3A.2 Factor loadings of the first and second principal components for
Dutch interest rates, 1962-1970

i Debt instrument oj1 aj2
1 Call money 0.95 —0.22
2 3-month Treasury paper 0.98 0.12
3 1-year Treasury paper 0.99 0.15
4 2-year Treasury paper 0.99 0.13
5 3-year Treasury paper 0.99 0.11
6 5-year Treasury paper 0.99 0.09
7 Loans to local authorities: 3-month 0.99 —0.08
8 Loans to local authorities: 1-year 0.99 —0.04
9 Eurodollar deposits 0.96 —0.26
10 Netherlands Bank official discount rate 0.96 —0.03
Eigenvalue, 2; 9.57 0.20
Proportion of variability explained by 95.7 2.0

eigenvalue i, ¢;i(%)

Source: Fase (1973). Reprinted with the permission of Elsevier Science.

The results in table 3A.1 are presented for the whole period using the
monthly data, for two monthly sub-samples, and for the whole period
using data sampled quarterly instead of monthly. The results show clearly
that the first principal component is sufficient to describe the common
variation in these Dutch interest rate series. The first component is able to
explain over 90% of the variation in all four cases, as given in the last row
of table 3A.1. Clearly, the estimated eigenvalues are fairly stable across the
sample periods and are relatively invariant to the frequency of sampling
of the data. The factor loadings (coefficient estimates) for the first two
ordered components are given in table 3A.2.

As table 3A.2 shows, the loadings on each factor making up the
first principal component are all positive. Since each series has been
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standardised to have zero mean and unit variance, the coefficients oj;
and «j, can be interpreted as the correlations between the interest rate
j and the first and second principal components, respectively. The fac-
tor loadings for each interest rate series on the first component are all
very close to one. Fase (1973) therefore argues that the first component
can be interpreted simply as an equally weighted combination of all of
the market interest rates. The second component, which explains much
less of the variability of the rates, shows a factor loading pattern of posi-
tive coefficients for the Treasury paper series and negative or almost zero
values for the other series. Fase (1973) argues that this is owing to the
characteristics of the Dutch Treasury instruments that they rarely change
hands and have low transactions costs, and therefore have less sensitivity
to general interest rate movements. Also, they are not subject to default
risks in the same way as, for example Eurodollar deposits. Therefore, the
second principal component is broadly interpreted as relating to default
risk and transactions costs.

Principal components can be useful in some circumstances, although
the technique has limited applicability for the following reasons:

® A change in the units of measurement of x will change the principal
components. It is thus usual to transform all of the variables to have
zero mean and unit variance prior to applying PCA.

¢ The principal components usually have no theoretical motivation or
interpretation whatsoever.

® The r principal components retained from the original k are the ones
that explain most of the variation in X, but these components might
not be the most useful as explanations for y.

Calculating principal components in EViews

In order to calculate the principal components of a set of series with
EViews, the first stage is to compile the series concerned into a group.
Re-open the ‘macro.wfl’ file which contains US Treasury bill and bond
series of various maturities. Select New Object/Group but do not name the
object. When EViews prompts you to give a ‘List of series, groups and/or
series expressions’, enter

USTB3M USTB6M USTB1Y USTB3Y USTB5Y USTB10Y

and click OK, then name the group Interest by clicking the Name tab. The
group will now appear as a set of series in a spreadsheet format. From
within this window, click View/Principal Components. Screenshot 3.2 will
appear.
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There are many features of principal components that can be examined,
but for now keep the defaults and click OK. The results will appear as in
the following table.

Principal Components Analysis
Date: 08/31/07 Time: 14:45
Sample: 1986M03 2007M04
Included observations: 254
Computed using: Ordinary correlations
Extracting 6 of 6 possible components

Eigenvalues: (Sum = 6, Average = 1)

Cumulative  Cumulative
Number Value Difference  Proportion Value Proportion
1 5.645020 5.307297 0.9408 5.645020 0.9408
2 0.337724 0.323663 0.0563 5.982744 0.9971
3 0.014061 0.011660 0.0023 5.996805 0.9995
4 0.002400 0.001928 0.0004 5.999205 0.9999
5 0.000473 0.000150 0.0001 5.999678 0.9999
6 0.000322 - 0.0001 6.000000 1.0000
Eigenvectors (loadings):
Variable PC1 PC2 PC3 PC 4 PC5 PC6
USTB3M 0405126  —0.450928 0.556508 —0.407061 0.393026 —0.051647
USTB6M 0.409611 —0.393843 0.084066 0.204579 —0.746089 0.267466
USTB1Y 0.415240 —0.265576  —0.370498 0.577827 0.335650 —0.416211
USTB3Y 0.418939 0.118972 —0.540272 —0.295318 0.243919 0.609699
USTB5Y 0.410743 0.371439 —0.159996 —0.461981 —0.326636 —0.589582
USTB10Y  0.389162 0.647225 0.477986 0.3973990 0.100167 0.182274
Ordinary correlations:
USTB3M USTB6M USTB1Y USTB3Y USTB5Y USTB10Y
USTB3M  1.000000
USTB6M 0.997052 1.000000
USTB1Y 0.986682 0.995161 1.000000
USTB3Y 0.936070 0.952056 0.973701 1.000000
USTB5Y  0.881930  0.899989 0.929703 0.987689 1.000000
USTB10Y 0.794794 0.814497 0.852213 0.942477 0.981955 1.000000

It is evident that there is a great deal of common variation in the series,
since the first principal component captures 94% of the variation in the
series and the first two components capture 99.7%. Consequently, if we
wished, we could reduce the dimensionality of the system by using two
components rather than the entire six interest rate series. Interestingly,
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Screenshot 3.2
Conducting PCA in
EViews

Principal Components

Compenents | Calculation

Display Component selection
" Retain minimum number statisfying one of:

Eigenvalues plots

Variable loadings plots
Component scores plots
Biplots (scores & loadings)

Maximum number: 6
Minimum eigenvalue: 0

Cumulative proportion: | 1.0
Table summary of '
eigenvalues and eigenvectors
(compenent loadings).

Output

Eigenvalues |
vector: -

Eigenvectors |
matrix: :

I OK ] [ Cancel

the first component comprises almost exactly equal weights in all six

series.
Then Minimise this group and you will see that the ‘Interest’ group

has been added to the list of objects.

Review questions

1. By using examples from the relevant statistical tables, explain the
relationship between the t- and the F-distributions.
For questions 2-5, assume that the econometric model is of the form

Yt = B1+ BaXat + B3Xat + BaXar + BsXst + Ut (3.51)

2. Which of the following hypotheses about the coefficients can be tested
using a t-test? Which of them can be tested using an F-test? In each
case, state the number of restrictions.

(@) Ho:Bs=2
(o) Ho:Bs+Ba=1
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() Ho:Bs+pa=1landps =1
(d) Ho: Bo=0and B3 =0and B4, = 0and s =0
(€) Ho: B2z =1

3. Which of the above null hypotheses constitutes ‘THE’ regression
F-statistic in the context of (3.51)? Why is this null hypothesis
always of interest whatever the regression relationship under study?
What exactly would constitute the alternative hypothesis in this
case?

4. Which would you expect to be bigger — the unrestricted residual sum of
squares or the restricted residual sum of squares, and why?

5. You decide to investigate the relationship given in the null hypothesis of
question 2, part (c). What would constitute the restricted regression?
The regressions are carried out on a sample of 96 quarterly
observations, and the residual sums of squares for the restricted and
unrestricted regressions are 102.87 and 91.41, respectively. Perform
the test. What is your conclusion?

6. You estimate a regression of the form given by (3.52) below in order to
evaluate the effect of various firm-specific factors on the returns of a
sample of firms. You run a cross-sectional regression with 200
firms

ri = Bo+ B1Si + foMBi + B3PE; + B4BETA; + u; (3.52)

where: r; is the percentage annual return for the stock
S; is the size of firm i measured in terms of sales revenue
MB; is the market to book ratio of the firm
PE;j is the price/earnings (P/E) ratio of the firm
BETA; is the stock’s CAPM beta coefficient

You obtain the following results (with standard errors in parentheses)

fi = 0.080 + 0.801S; + 0.321MB; + 0.164PE; — 0.084BETA;
(0.064) (0.147) (0.136)  (0.420)  (0.120) (3.53)

Calculate the t-ratios. What do you conclude about the effect of each
variable on the returns of the security? On the basis of your results,
what variables would you consider deleting from the regression? If a
stock’s beta increased from 1 to 1.2, what would be the expected
effect on the stock’s return? Is the sign on beta as you would have
expected? Explain your answers in each case.
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7.

10.

11.

A researcher estimates the following econometric models including a
lagged dependent variable

Yt = B1 + BaXat + B3Xst + BaYi—1 + Ut (3.54)
Ay = y1 + yoXot + ¥3Xat + vaYi-1 + vt (3.55)

where u; and v; are iid disturbances.

Will these models have the same value of (a) The residual sum of
squares (RSS), (b) R?, (c) Adjusted R2? Explain your answers in each
case.

A researcher estimates the following two econometric models

Yt = B1 + BaXat + PaXat + Ut (3.56)
Yt = B1 + BaXar + BaXar + PaXar + v (3.57)

where u; and v; are iid disturbances and xs is an irrelevant variable
which does not enter into the data generating process for y;. Will the
value of (a) R?, (b) Adjusted R?, be higher for the second model than
the first? Explain your answers.

. Re-open the CAPM Eviews file and estimate CAPM betas for each of the

other stocks in the file.

(a) Which of the stocks, on the basis of the parameter estimates you
obtain, would you class as defensive stocks and which as
aggressive stocks? Explain your answer.

(b) Is the CAPM able to provide any reasonable explanation of the
overall variability of the returns to each of the stocks over the
sample period? Why or why not?

Re-open the Macro file and apply the same APT-type model to some of

the other time-series of stock returns contained in the CAPM-file.

(a) Run the stepwise procedure in each case. Is the same sub-set of
variables selected for each stock? Can you rationalise the
differences between the series chosen?

(b) Examine the sizes and signs of the parameters in the regressions
in each case — do these make sense?

What are the units of R2?



'assical linear regression model assumptions
nd diagnostic tests

Learning Outcomes
In this chapter, you will learn how to

® Describe the steps involved in testing regression residuals for
heteroscedasticity and autocorrelation

® Explain the impact of heteroscedasticity or autocorrelation on
the optimality of OLS parameter and standard error estimation

® Distinguish between the Durbin-Watson and Breusch-Godfrey
tests for autocorrelation

® Highlight the advantages and disadvantages of dynamic models

® Test for whether the functional form of the model employed is
appropriate

® Determine whether the residual distribution from a regression
differs significantly from normality

® Investigate whether the model parameters are stable

® Appraise different philosophies of how to build an econometric
model

® Conduct diagnostic tests in EViews

4.1 Introduction

Recall that five assumptions were made relating to the classical linear re-
gression model (CLRM). These were required to show that the estimation
technique, ordinary least squares (OLS), had a number of desirable proper-
ties, and also so that hypothesis tests regarding the coefficient estimates
could validly be conducted. Specifically, it was assumed that:

(1) E(u) =0
(2) var(u;) = 0% < o0
(3) cov(uj,uj) =0

129
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(4) cov(u,x) =0
(5) ug ~ N(0, o)

These assumptions will now be studied further, in particular looking at
the following:

© How can violations of the assumptions be detected?

© What are the most likely causes of the violations in practice?

® What are the consequences for the model if an assumption is violated
but this fact is ignored and the researcher proceeds regardless?

The answer to the last of these questions is that, in general, the model
could encounter any combination of three problems:

e the coefficient estimates (8s) are wrong

® the associated standard errors are wrong

o the distributions that were assumed for the test statistics are inappro-
priate.

A pragmatic approach to ‘solving’ problems associated with the use of
models where one or more of the assumptions is not supported by the
data will then be adopted. Such solutions usually operate such that:

e the assumptions are no longer violated, or
® the problems are side-stepped, so that alternative techniques are used
which are still valid.

Statistical distributions for diagnostic tests

The text below discusses various regression diagnostic (misspecification)
tests that are based on the calculation of a test statistic. These tests can
be constructed in several ways, and the precise approach to constructing
the test statistic will determine the distribution that the test statistic is
assumed to follow. Two particular approaches are in common usage and
their results are given by the statistical packages: the LM test and the Wald
test. Further details concerning these procedures are given in chapter 8.
For now, all that readers require to know is that LM test statistics in the
context of the diagnostic tests presented here follow a x? distribution
with degrees of freedom equal to the number of restrictions placed
on the model, and denoted m. The Wald version of the test follows an
F-distribution with (m, T — k) degrees of freedom. Asymptotically, these
two tests are equivalent, although their results will differ somewhat
in small samples. They are equivalent as the sample size increases
towards infinity since there is a direct relationship between the x2- and
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F-distributions. Taking a x? variate and dividing by its degrees of freedom
asymptotically gives an F-variate

x2(m)

- FmM,T—-k) as T —> o

Computer packages typically present results using both approaches, al-
though only one of the two will be illustrated for each test below. They will
usually give the same conclusion, although if they do not, the F-version
is usually considered preferable for finite samples, since it is sensitive to
sample size (one of its degrees of freedom parameters depends on sample
size) in a way that the y2-version is not.

Assumption 1: E(u;)) =0

The first assumption required is that the average value of the errors is
zero. In fact, if a constant term is included in the regression equation, this
assumption will never be violated. But what if financial theory suggests
that, for a particular application, there should be no intercept so that
the regression line is forced through the origin? If the regression did
not include an intercept, and the average value of the errors was non-
zero, several undesirable consequences could arise. First, R?, defined as
ESS/TSS can be negative, implying that the sample average, y, ‘explains’
more of the variation in y than the explanatory variables. Second, and
more fundamentally, a regression with no intercept parameter could lead
to potentially severe biases in the slope coefficient estimates. To see this,
consider figure 4.1.

v
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The solid line shows the regression estimated including a constant term,
while the dotted line shows the effect of suppressing (i.e. setting to zero)
the constant term. The effect is that the estimated line in this case is
forced through the origin, so that the estimate of the slope coefficient
(B) is biased. Additionally, R? and R2 are usually meaningless in such a
context. This arises since the mean value of the dependent variable, Y,
will not be equal to the mean of the fitted values from the model, i.e. the
mean of ¥ if there is no constant in the regression.

Assumption 2: var(u;) = o2 < oo

It has been assumed thus far that the variance of the errors is con-
stant, o2 - this is known as the assumption of homoscedasticity. If the er-
rors do not have a constant variance, they are said to be heteroscedastic.
To consider one illustration of heteroscedasticity, suppose that a regres-
sion had been estimated and the residuals, {;, have been calculated and
then plotted against one of the explanatory variables, X, as shown in
figure 4.2.

It is clearly evident that the errors in figure 4.2 are heteroscedastic -
that is, although their mean value is roughly constant, their variance is
increasing systematically with Xy.

u, A
@
[ X J
% °
[}
[ )
[ I ]
[}
o
| -
L
P X0t
e o o
o o
Q..
@
o o




4.4.1

Classical linear regression model assumptions and diagnostic tests 133

Detection of heteroscedasticity

How can one tell whether the errors are heteroscedastic or not? It is pos-
sible to use a graphical method as above, but unfortunately one rarely
knows the cause or the form of the heteroscedasticity, so that a plot is
likely to reveal nothing. For example, if the variance of the errors was
an increasing function of X3, and the researcher had plotted the residu-
als against Xy, he would be unlikely to see any pattern and would thus
wrongly conclude that the errors had constant variance. It is also possible
that the variance of the errors changes over time rather than systemati-
cally with one of the explanatory variables; this phenomenon is known
as ‘ARCH’ and is described in chapter 8.

Fortunately, there are a number of formal statistical tests for het-
eroscedasticity, and one of the simplest such methods is the Goldfeld-
Quandt (1965) test. Their approach is based on splitting the total sample
of length T into two sub-samples of length T; and T,. The regression model
is estimated on each sub-sample and the two residual variances are cal-
culated as s? = 0,0,/(T1 — k) and s3 = G,0,/(T, — k) respectively. The null
hypothesis is that the variances of the disturbances are equal, which can
be written Hy : 02 = 07, against a two-sided alternative. The test statistic,
denoted GQ, is simply the ratio of the two residual variances where the
larger of the two variances must be placed in the numerator (i.e. s? is the
higher sample variance for the sample with length T;, even if it comes
from the second sub-sample):

2
Sy

GQ= (4.1)
)

The test statistic is distributed as an F(T; — k, T, — k) under the null hy-
pothesis, and the null of a constant variance is rejected if the test statistic
exceeds the critical value.

The GQ test is simple to construct but its conclusions may be contin-
gent upon a particular, and probably arbitrary, choice of where to split
the sample. Clearly, the test is likely to be more powerful when this choice
is made on theoretical grounds - for example, before and after a major
structural event. Suppose that it is thought that the variance of the dis-
turbances is related to some observable variable z; (which may or may not
be one of the regressors). A better way to perform the test would be to
order the sample according to values of z; (rather than through time) and
then to split the re-ordered sample into T; and T,.

An alternative method that is sometimes used to sharpen the inferences
from the test and to increase its power is to omit some of the observations
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from the centre of the sample so as to introduce a degree of separation
between the two sub-samples.

A further popular test is White’s (1980) general test for heteroscedas-
ticity. The test is particularly useful because it makes few assumptions
about the likely form of the heteroscedasticity. The test is carried out as
in box 4.1.

Box 4.1 Conducting White's test

(1) Assume that the regression model estimated is of the standard linear form, e.g.
Yt = B1 + BaXar + BaXa + Ut (4.2)

To test var(u;) = o2, estimate the model above, obtaining the residuals, 0
Then run the auxiliary regression

S

02 =y + opXor + a3Xar + aXg + asXg + ceXaXar + vt (4.3)

where v; is a normally distributed disturbance term independent of u;. This
regression is of the squared residuals on a constant, the original explanatory
variables, the squares of the explanatory variables and their cross-products. To see
why the squared residuals are the quantity of interest, recall that for a random
variable u, the variance can be written

var(uy) = E[(u; — E(uy))’] (4.4)

Under the assumption that E(u;) = 0, the second part of the RHS of this
expression disappears:

var(u;) = E[uf] (4.5)

Once again, it is not possible to know the squares of the population disturbances,
uf, so their sample counterparts, the squared residuals, are used instead.

The reason that the auxiliary regression takes this form is that it is desirable to
investigate whether the variance of the residuals (embodied in Of) varies
systematically with any known variables relevant to the model. Relevant variables
will include the original explanatory variables, their squared values and their
cross-products. Note also that this regression should include a constant term,
even if the original regression did not. This is as a result of the fact that G2 will
always have a non-zero mean, even if G; has a zero mean.

(3) Given the auxiliary regression, as stated above, the test can be conducted using
two different approaches. First, it is possible to use the F-test framework described
in chapter 3. This would involve estimating (4.3) as the unrestricted regression and
then running a restricted regression of (2 on a constant only. The RSS from each
specification would then be used as inputs to the standard F-test formula.

With many diagnostic tests, an alternative approach can be adopted that does
not require the estimation of a second (restricted) regression. This approach is
known as a Lagrange Multiplier (LM) test, which centres around the value of R? for
the auxiliary regression. If one or more coefficients in (4.3) is statistically
significant, the value of R? for that equation will be relatively high, while if none of
the variables is significant, R? will be relatively low. The LM test would thus operate
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by obtaining R? from the auxiliary regression and multiplying it by the number of
observations, T. It can be shown that

TR? ~ x*(m)

where m is the number of regressors in the auxiliary regression (excluding the
constant term), equivalent to the number of restrictions that would have to be
placed under the F-test approach.

(4) The test is one of the joint null hypothesis that o, = O, and a3 = 0, and a4 = O,
and a5 = 0, and o = 0. For the LM test, if the y>test statistic from step 3 is
greater than the corresponding value from the statistical table then reject the null
hypothesis that the errors are homoscedastic.

|
Suppose that the model (4.2) above has been estimated using 120 obser-
vations, and the R? from the auxiliary regression (4.3) is 0.234. The test
statistic will be given by TR? = 120 x 0.234 = 28.8, which will follow a
x2(5) under the null hypothesis. The 5% critical value from the x? table is
11.07. The test statistic is therefore more than the critical value and hence
the null hypothesis is rejected. It would be concluded that there is signif-
icant evidence of heteroscedasticity, so that it would not be plausible to
assume that the variance of the errors is constant in this case.

Consequences of using OLS in the presence of heteroscedasticity

What happens if the errors are heteroscedastic, but this fact is ignored
and the researcher proceeds with estimation and inference? In this case,
OLS estimators will still give unbiased (and also consistent) coefficient
estimates, but they are no longer BLUE - that is, they no longer have the
minimum variance among the class of unbiased estimators. The reason
is that the error variance, o2, plays no part in the proof that the OLS
estimator is consistent and unbiased, but ¢ does appear in the formulae
for the coefficient variances. If the errors are heteroscedastic, the formulae
presented for the coefficient standard errors no longer hold. For a very
accessible algebraic treatment of the consequences of heteroscedasticity,
see Hill, Griffiths and Judge (1997, pp. 217-18).

So, the upshot is that if OLS is still used in the presence of heteroscedas-
ticity, the standard errors could be wrong and hence any inferences made
could be misleading. In general, the OLS standard errors will be too
large for the intercept when the errors are heteroscedastic. The effect of
heteroscedasticity on the slope standard errors will depend on its form.
For example, if the variance of the errors is positively related to the
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square of an explanatory variable (which is often the case in practice), the
OLS standard error for the slope will be too low. On the other hand, the
OLS slope standard errors will be too big when the variance of the errors
is inversely related to an explanatory variable.

Dealing with heteroscedasticity

If the form (i.e. the cause) of the heteroscedasticity is known, then an alter-
native estimation method which takes this into account can be used. One
possibility is called generalised least squares (GLS). For example, suppose
that the error variance was related to z; by the expression

var(u;) = o227 (4.6)

All that would be required to remove the heteroscedasticity would be to
divide the regression equation through by z;

Vi 1 Xat X3t
a1 47
. B1 7 + B2 7 + B3 . + vt (4.7)

Ut .
where vy = — is an error term.

Zt
2,52
Zy 2

u var(uy) o

Now, if var(uy)=o0?z2, Var(vt)zvar<—)_ — = —

known z.

Therefore, the disturbances from (4.7) will be homoscedastic. Note that
this latter regression does not include a constant since g; is multiplied by
(1/z¢). GLS can be viewed as OLS applied to transformed data that satisfy
the OLS assumptions. GLS is also known as weighted least squares (WLS),
since under GLS a weighted sum of the squared residuals is minimised,
whereas under OLS it is an unweighted sum.

However, researchers are typically unsure of the exact cause of the het-
eroscedasticity, and hence this technique is usually infeasible in practice.
Two other possible ‘solutions’ for heteroscedasticity are shown in box 4.2.

Examples of tests for heteroscedasticity in the context of the single in-
dex market model are given in Fabozzi and Francis (1980). Their results are
strongly suggestive of the presence of heteroscedasticity, and they examine
various factors that may constitute the form of the heteroscedasticity.

Testing for heteroscedasticity using EViews

Re-open the Microsoft Workfile that was examined in the previous chap-
ter and the regression that included all the macroeconomic explanatory
variables. First, plot the residuals by selecting View[Actual, Fitted, Residu-
als/Residual Graph. If the residuals of the regression have systematically
changing variability over the sample, that is a sign of heteroscedasticity.
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In this case, it is hard to see any clear pattern, so we need to run the
formal statistical test. To test for heteroscedasticity using White’s test,
click on the View button in the regression window and select Residual
Tests/Heteroscedasticity Tests. You will see a large number of different
tests available, including the ARCH test that will be discussed in chapter
8. For now, select the White specification. You can also select whether
to include the cross-product terms or not (i.e. each variable multiplied by
each other variable) or include only the squares of the variables in the
auxiliary regression. Uncheck the ‘Include White cross terms’ given the
relatively large number of variables in this regression and then click OK.
The results of the test will appear as follows.

Heteroskedasticity Test: White

F-statistic 0.626761 Prob. F(7,244) 0.7336
Obs#R-squared 4451138 Prob. Chi-Square(7) 0.7266
Scaled explained SS 21.98760 Prob. Chi-Square(7) 0.0026

Test Equation:

Dependent Variable: RESID"2
Method: Least Squares

Date: 08/27/07 Time: 11:49
Sample: 1986M05 2007M04
Included observations: 252

Coefficient Std. Error t-Statistic Prob.
C 259.9542 65.85955 3.947099 0.0001
ERSANDP"2 —0.130762 0.826291 —0.158252 0.8744
DPROD"2 —7.465850 7461475 —1.000586 0.3180
DCREDIT"2 —1.65E-07 3.72E-07 —0.443367 0.6579
DINFLATION"2 —137.6317 227.2283 —0.605698 0.5453
DMONEY"2 12.79797 13.66363 0.936645 0.3499
DSPREAD"2 —650.6570 3144.176 —0.20694 0.8362
RTERM"2 —491.0652 418.2860 —1.173994 0.2415
R-squared 0.017663 Mean dependent var 188.4152
Adjusted R-squared —0.010519 S.D. dependent var 612.8558
S.E. of regression 616.0706 Akaike info criterion 15.71583
Sum squared resid 92608485 Schwarz criterion 15.82788
Log likelihood —1972.195 Hannan-Quinn criter. 15.76092
F-statistic 0.626761 Durbin-Watson stat 2.068099
Prob(F-statistic) 0.733596

EViews presents three different types of tests for heteroscedasticity and
then the auxiliary regression in the first results table displayed. The test
statistics give us the information we need to determine whether the
assumption of homoscedasticity is valid or not, but seeing the actual
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Box 4.2 ‘Solutions’ for heteroscedasticity

(1) Transforming the variables into logs or reducing by some other measure of ‘size’. This
has the effect of re-scaling the data to ‘pull in’ extreme observations. The regression
would then be conducted upon the natural logarithms or the transformed data. Taking
logarithms also has the effect of making a previously multiplicative model, such as
the exponential regression model discussed previously (with a multiplicative error
term), into an additive one. However, logarithms of a variable cannot be taken in
situations where the variable can take on zero or negative values, for the log will not
be defined in such cases.

Using heteroscedasticity-consistent standard error estimates. Most standard econo-
metrics software packages have an option (usually called something like ‘robust’)
that allows the user to employ standard error estimates that have been modified to
account for the heteroscedasticity following White (1980). The effect of using the
correction is that, if the variance of the errors is positively related to the square of
an explanatory variable, the standard errors for the slope coefficients are increased
relative to the usual OLS standard errors, which would make hypothesis testing more
‘conservative’, so that more evidence would be required against the null hypothesis
before it would be rejected.

S

auxiliary regression in the second table can provide useful additional in-
formation on the source of the heteroscedasticity if any is found. In this
case, both the F- and x? (‘LM) versions of the test statistic give the same
conclusion that there is no evidence for the presence of heteroscedasticity,
since the p-values are considerably in excess of 0.05. The third version of
the test statistic, ‘Scaled explained SS’, which as the name suggests is based
on a normalised version of the explained sum of squares from the auxil-
iary regression, suggests in this case that there is evidence of heteroscedas-
ticity. Thus the conclusion of the test is somewhat ambiguous here.

4.4.5 Using White’s modified standard error estimates in EViews

In order to estimate the regression with heteroscedasticity-robust standard
errors in EViews, select this from the option button in the regression entry
window. In other words, close the heteroscedasticity test window and click
on the original ‘Msoftreg’ regression results, then click on the Estimate
button and in the Equation Estimation window, choose the Options tab
and screenshot 4.1 will appear.

Check the ‘Heteroskedasticity consistent coefficient variance’ box and
click OK. Comparing the results of the regression using heteroscedasticity-
robust standard errors with those using the ordinary standard er-
rors, the changes in the significances of the parameters are only
marginal. Of course, only the standard errors have changed and the
parameter estimates have remained identical to those from before. The
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heteroscedasticity-consistent standard errors are smaller for all variables
except for money supply, resulting in the p-values being smaller. The main
changes in the conclusions reached are that the term structure variable,
which was previously significant only at the 10% level, is now significant
at 5%, and the unexpected inflation variable is now significant at the 10%
level.

Assumption 3: cov(uj,u;) =0 fori # j

Assumption 3 that is made of the CLRM’s disturbance terms is that the
covariance between the error terms over time (or cross-sectionally, for
that type of data) is zero. In other words, it is assumed that the errors are
uncorrelated with one another. If the errors are not uncorrelated with
one another, it would be stated that they are ‘autocorrelated’ or that they
are ‘serially correlated’. A test of this assumption is therefore required.

Again, the population disturbances cannot be observed, so tests for
autocorrelation are conducted on the residuals, (. Before one can proceed
to see how formal tests for autocorrelation are formulated, the concept
of the lagged value of a variable needs to be defined.
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Table 4.1 Constructing a series of lagged values and first differences

4.5.1

4.5.2

t Yt Vi1 Ayt

2006 M09 0.8 -

2006 M 10 1.3 0.8 (1 3—-0.8)=0.5
2006 M 11 —-0.9 1.3 (=09 — 1.3) = —2.2
2006M 12 0.2 —-09 (02 ——-09) =11
2007M01 —1.7 0.2 (-1.7 —0.2) = —1.9
2007M02 23 17 (23 — —1.7) = 4.0
2007M03 0.1 2.3 (0.1 — 23) = —2.2
2007M04 0.0 0.1 (o 0-0.1)=-01

The concept of a lagged value

The lagged value of a variable (which may be y;, X;, or u;) is simply the
value that the variable took during a previous period. So for example, the
value of y; lagged one period, written Y;_1, can be constructed by shifting
all of the observations forward one period in a spreadsheet, as illustrated
in table 4.1.

So, the value in the 2006M 10 row and the y;_; column shows the value
that y; took in the previous period, 2006M09, which was 0.8. The last
column in table 4.1 shows another quantity relating to y, namely the
‘first difference’. The first difference of y, also known as the change in vy,
and denoted Ay, is calculated as the difference between the values of y
in this period and in the previous period. This is calculated as

Ayt = Yt — Y11 (4.8)

Note that when one-period lags or first differences of a variable are con-
structed, the first observation is lost. Thus a regression of Ay; using the
above data would begin with the October 2006 data point. It is also possi-
ble to produce two-period lags, three-period lags, and so on. These would
be accomplished in the obvious way.

Graphical tests for autocorrelation

In order to test for autocorrelation, it is necessary to investigate whether
any relationships exist between the current value of U, (;, and any of
its previous values, (;_;, U;_2,...The first step is to consider possible
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relationships between the current residual and the immediately previ-
ous one, (;_3, via a graphical exploration. Thus {; is plotted against (;_g,
and (; is plotted over time. Some stereotypical patterns that may be found
in the residuals are discussed below.

Figures 4.3 and 4.4 show positive autocorrelation in the residuals, which
is indicated by a cyclical residual plot over time. This case is known as pos-
itive autocorrelation since on average if the residual at time t — 1 is positive,
the residual at time t is likely to be also positive; similarly, if the residual
att — 11is negative, the residual at t is also likely to be negative. Figure 4.3
shows that most of the dots representing observations are in the first and
third quadrants, while figure 4.4 shows that a positively autocorrelated
series of residuals will not cross the time-axis very frequently.

Figures 4.5 and 4.6 show negative autocorrelation, indicated by an
alternating pattern in the residuals. This case is known as negative
autocorrelation since on average if the residual at time t — 1 is positive,
the residual at time t is likely to be negative; similarly, if the residual
at t — 1 is negative, the residual at t is likely to be positive. Figure 4.5
shows that most of the dots are in the second and fourth quadrants,
while figure 4.6 shows that a negatively autocorrelated series of residu-
als will cross the time-axis more frequently than if they were distributed
randomly.



142

Figure 4.4

Plot of G; over time,
showing positive
autocorrelation

Plot of (; against
U¢_1, showing
negative
autocorrelation
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Finally, figures 4.7 and 4.8 show no pattern in residuals at all: this is
what is desirable to see. In the plot of ; against (;_; (figure 4.7), the points
are randomly spread across all four quadrants, and the time series plot of
the residuals (figure 4.8) does not cross the x-axis either too frequently or
too little.



Plot of G; over time,
showing negative
autocorrelation

Plot of ; against
G;_1, showing no
autocorrelation

4.5.3 Detecting autocorrelation: the Durbin-Watson test
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Of course, a first step in testing whether the residual series from an esti-
mated model are autocorrelated would be to plot the residuals as above,
looking for any patterns. Graphical methods may be difficult to interpret
in practice, however, and hence a formal statistical test should also be
applied. The simplest test is due to Durbin and Watson (1951).
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Plot of G; over time,
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Durbin-Watson (DW) is a test for first order autocorrelation - i.e. it tests
only for a relationship between an error and its immediately previous
value. One way to motivate the test and to interpret the test statistic
would be in the context of a regression of the time t error on its previous
value

Ut = pUt—1 + vt (4.9)

where v ~ N(0, 02). The DW test statistic has as its null and alternative
hypotheses

Ho:p=0 and H;:p#0

Thus, under the null hypothesis, the errors at time t — 1 and t are indepen-
dent of one another, and if this null were rejected, it would be concluded
that there was evidence of a relationship between successive residuals. In
fact, it is not necessary to run the regression given by (4.9) since the test
statistic can be calculated using quantities that are already available after
the first regression has been run

.
> (0 - 0’
DW="2 (4.10)
>0
t=2

The denominator of the test statistic is simply (the number of observations
—1) x the variance of the residuals. This arises since if the average of the
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residuals is zero

R R 1 G
var(liy) = E(07) = T1 Z af
Tt t=2

so that
T
> 62 = var(ly) x (T — 1)
t=2

The numerator ‘compares’ the values of the error at times t — 1 and t.
If there is positive autocorrelation in the errors, this difference in the
numerator will be relatively small, while if there is negative autocorrela-
tion, with the sign of the error changing very frequently, the numerator
will be relatively large. No autocorrelation would result in a value for the
numerator between small and large.

It is also possible to express the DW statistic as an approximate function
of the estimated value of p

DW ~ 2(1 — p) (4.11)

where p is the estimated correlation coefficient that would have been
obtained from an estimation of (4.9). To see why this is the case, consider
that the numerator of (4.10) can be written as the parts of a quadratic

T T T T
D (@ -0 g)’ =) G+ 07 —2) Gl (4.12)

t=2 t=2 t=2 t=2
Consider now the composition of the first two summations on the RHS of
(4.12). The first of these is

P=054+05+05+- 4+ 0%

[~
)

-
I
N

while the second is

T
- =0f+ 05+ 05+ +0F_,

-
N

Thus, the only difference between them is that they differ in the first and
last terms in the summation
T
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contains (% but not (2, while
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contains (2 but not 0. As the sample size, T, increases towards infin-
ity, the difference between these two will become negligible. Hence, the
expression in (4.12), the numerator of (4.10), is approximately

(4.13)

The covariance between u; and U;_; can be written as E[(u; — E(ut))(Ut—1 —
E(u¢_1))]. Under the assumption that E(u;) = 0 (and therefore that E(u;_1) =
0), the covariance will be E[u; U;_;]. For the sample residuals, this covari-
ance will be evaluated as

LY
—— ) Ul
T-1&

Thus, the sum in the numerator of the expression on the right of (4.13)
can be seen as T — 1 times the covariance between (; and U;_;, while the
sum in the denominator of the expression on the right of (4.13) can be
seen from the previous exposition as T — 1 times the variance of {;. Thus,
it is possible to write

T — 1cov(Uy, Ot—l)) ) (1 cov(Ut, LAlt—l))

T — 1var((y) var((iy)

DW ~ 2 (1 —
= 2(1 — corr({y, G¢_1)) (4.14)

so that the DW test statistic is approximately equal to 2(1 — p). Since p
is a correlation, it implies that —1 < p < 1. That is, p is bounded to lie
between —1 and +1. Substituting in these limits for p to calculate DW
from (4.11) would give the corresponding limits for DW as 0 < DW < 4.
Consider now the implication of DW taking one of three important values
(0, 2, and 4):

® o =0,DW =2 This is the case where there is no autocorrelation in
the residuals. So roughly speaking, the null hypothesis would not be
rejected if DW is near 2 — 1i.e. there is little evidence of autocorrelation.

© o =1, DW =0 This corresponds to the case where there is perfect pos-
itive autocorrelation in the residuals.
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Example 4.2

4.5.4

I I I
dy 2 d-dy 4-dy 4

Rejection and non-rejection regions for DW test

® p=-1 DW =4 This corresponds to the case where there is perfect
negative autocorrelation in the residuals.

The DW test does not follow a standard statistical distribution such as a
t, F, or x2. DW has 2 critical values: an upper critical value (dy) and a
lower critical value (d_), and there is also an intermediate region where
the null hypothesis of no autocorrelation can neither be rejected nor not
rejected! The rejection, non-rejection, and inconclusive regions are shown
on the number line in figure 4.9.

So, to reiterate, the null hypothesis is rejected and the existence of pos-
itive autocorrelation presumed if DW is less than the lower critical value;
the null hypothesis is rejected and the existence of negative autocorrela-
tion presumed if DW is greater than 4 minus the lower critical value; the
null hypothesis is not rejected and no significant residual autocorrelation
is presumed if DW is between the upper and 4 minus the upper limits.

|
A researcher wishes to test for first order serial correlation in the residuals
from a linear regression. The DW test statistic value is 0.86. There are 80
quarterly observations in the regression, and the regression is of the form

Yo = B1+ BaXor + BaXar + BaXar + Ut (4.15)

The relevant critical values for the test (see table A2.6 in the appendix of
statistical distributions at the end of this book), are d. = 1.42,dy = 1.57, so
4 —dy =243 and 4 — d. = 2.58. The test statistic is clearly lower than the
lower critical value and hence the null hypothesis of no autocorrelation
is rejected and it would be concluded that the residuals from the model
appear to be positively autocorrelated.

Conditions which must be fulfilled for DW to be a valid test

In order for the DW test to be valid for application, three conditions must
be fulfilled (box 4.3).



148 Introductory Econometrics for Finance

Box 4.3 Conditions for DW to be a valid test

(1) There must be a constant term in the regression

(2) The regressors must be non-stochastic — as assumption 4 of the CLRM (see p. 160
and chapter 6)

(3) There must be no lags of dependent variable (see section 4.5.8) in the regression.

If the test were used in the presence of lags of the dependent vari-
able or otherwise stochastic regressors, the test statistic would be biased
towards 2, suggesting that in some instances the null hypothesis of no
autocorrelation would not be rejected when it should be.

4.5.5 Another test for autocorrelation: the Breusch-Godfrey test

Recall that DW is a test only of whether consecutive errors are related to
one another. So, not only can the DW test not be applied if a certain set of
circumstances are not fulfilled, there will also be many forms of residual
autocorrelation that DW cannot detect. For example, if corr((¢, U;_1) =0,
but corr({s, (;_2) # 0, DW as defined above will not find any autocorre-
lation. One possible solution would be to replace (;_; in (4.10) with G;_,.
However, pairwise examinations of the correlations ((¢, U;_1), (O¢, Gi_2), (0t
U¢_3),...will be tedious in practice and is not coded in econometrics soft-
ware packages, which have been programmed to construct DW using only
a one-period lag. In addition, the approximation in (4.11) will deteriorate
as the difference between the two time indices increases. Consequently,
the critical values should also be modified somewhat in these cases.

Therefore, it is desirable to examine a joint test for autocorrelation that
will allow examination of the relationship between (; and several of its
lagged values at the same time. The Breusch-Godfrey test is a more general
test for autocorrelation up to the rth order. The model for the errors under
this test is

Ut = prUt—1 + poUt—2 + p3Ut—3+ -+ + prUer + v, v~ N (0, 01,2)
(4.16)

The null and alternative hypotheses are:

Hp:p1=0 and p,=0 and...and p =0
Hy:p1#0 or ppo£0 or...or pr #0

So, under the null hypothesis, the current error is not related to any of
its r previous values. The test is carried out as in box 4.4.

Note that (T — r) pre-multiplies R? in the test for autocorrelation rather
than T (as was the case for the heteroscedasticity test). This arises because
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Box 4.4 Conducting a Breusch-Godfrey test

(1) Estimate the linear regression using OLS and obtain the residuals, G
(2) Regress (; on all of the regressors from stage 1 (the xs) plus G;_1, Uy_o,..., G¢_r;
the regression will thus be

Oy = y1 + yoXor + vaXat + vaXar + p1li—1 + p20i—5 + p3li—3
+ -+ 4 prle—r + v, v ~ N (0,07) (4.17)

Obtain R? from this auxiliary regression
(3) Letting T denote the number of observations, the test statistic is given by

(T —r)RZ ~ x?

the first r observations will effectively have been lost from the sample
in order to obtain the r lags used in the test regression, leaving (T —r)
observations from which to estimate the auxiliary regression. If the test
statistic exceeds the critical value from the Chi-squared statistical tables,
reject the null hypothesis of no autocorrelation. As with any joint test,
only one part of the null hypothesis has to be rejected to lead to rejection
of the hypothesis as a whole. So the error at time t has to be significantly
related only to one of its previous r values in the sample for the null of
no autocorrelation to be rejected. The test is more general than the DW
test, and can be applied in a wider variety of circumstances since it does
not impose the DW restrictions on the format of the first stage regression.

One potential difficulty with Breusch-Godfrey, however, is in determin-
ing an appropriate value of r, the number of lags of the residuals, to use
in computing the test. There is no obvious answer to this, so it is typical
to experiment with a range of values, and also to use the frequency of the
data to decide. So, for example, if the data is monthly or quarterly, set r
equal to 12 or 4, respectively. The argument would then be that errors at
any given time would be expected to be related only to those errors in the
previous year. Obviously, if the model is statistically adequate, no evidence
of autocorrelation should be found in the residuals whatever value of r is
chosen.

4.5.6 Consequences of ignoring autocorrelation if it is present

In fact, the consequences of ignoring autocorrelation when it is present
are similar to those of ignoring heteroscedasticity. The coefficient esti-
mates derived using OLS are still unbiased, but they are inefficient, i.e.
they are not BLUE, even at large sample sizes, so that the standard er-
ror estimates could be wrong. There thus exists the possibility that the
wrong inferences could be made about whether a variable is or is not
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an important determinant of variations in y. In the case of positive
serial correlation in the residuals, the OLS standard error estimates will
be biased downwards relative to the true standard errors. That is, OLS
will understate their true variability. This would lead to an increase in
the probability of type I error - that is, a tendency to reject the null hy-
pothesis sometimes when it is correct. Furthermore, R? is likely to be
inflated relative to its ‘correct’ value if autocorrelation is present but ig-
nored, since residual autocorrelation will lead to an underestimate of the
true error variance (for positive autocorrelation).

Dealing with autocorrelation

If the form of the autocorrelation is known, it would be possible to use
a GLS procedure. One approach, which was once fairly popular, is known
as the Cochrane-Orcutt procedure (see box 4.5). Such methods work by as-
suming a particular form for the structure of the autocorrelation (usually
a first order autoregressive process — see chapter 5 for a general description
of these models). The model would thus be specified as follows:

Yt = B1 + BaXat + PaXat + Ut, Ut = pUi—1 + vt (4.18)

Note that a constant is not required in the specification for the errors
since E(u;) = 0. If this model holds at time t, it is assumed to also hold
for time t — 1, so that the model in (4.18) is lagged one period

Yi-1 = B1 + B2Xat—1 + BsXat—1 + U1 (4.19)
Multiplying (4.19) by p

PYi—1 = pP1 + pPaXot—1 + pP3Xat—1 + pUi_1 (4.20)
Subtracting (4.20) from (4.18) would give

Vi — pYi—1 = P1 — pP1 + BoXor — pPaXot—1 + BaXar — pP3Xa—1 + Ut — pUi_1
(4.21)

Factorising, and noting that v = Uy — pU;_1

(Yt = pYi-1) = (1 = p)B1 + Ba(Xor — pXot—1) + B3(Xat — pXar—1) + vt
(4.22)

Setting Y = Yt — pYt-1, By = (L — p)B1. X5y = (Xat — pX2t—1), and X3 = (X3 —
PX3t—1), the model in (4.22) can be written

Vi = B1 + BaXo 4 Baxa + vt (4.23)
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Box 4.5 The Cochrane—Orcutt procedure

(1) Assume that the general model is of the form (4.18) above. Estimate the equation
in (4.18) using OLS, ignoring the residual autocorrelation.
(2) Obtain the residuals, and run the regression

U = pl_1 + v (4.24)

(3) Obtain p and construct y; etc. using this estimate of p.
(4) Run the GLS regression (4.23).

Since the final specification (4.23) contains an error term that is free
from autocorrelation, OLS can be directly applied to it. This procedure is
effectively an application of GLS. Of course, the construction of y; etc.
requires p to be known. In practice, this will never be the case so that p
has to be estimated before (4.23) can be used.

A simple method would be to use the p obtained from rearranging
the equation for the DW statistic given in (4.11). However, this is only an
approximation as the related algebra showed. This approximation may be
poor in the context of small samples.

The Cochrane-Orcutt procedure is an alternative, which operates as in
box 4.5.

This could be the end of the process. However, Cochrane and Orcutt
(1949) argue that better estimates can be obtained by going through steps
2-4 again. That is, given the new coefficient estimates, 8}, B, B3, etc. con-
struct again the residual and regress it on its previous value to obtain
a new estimate for p. This would then be used to construct new values
of the variables Y/, x5, X3, and a new (4.23) is estimated. This procedure
would be repeated until the change in p between one iteration and the
next is less than some fixed amount (e.g. 0.01). In practice, a small number
of iterations (no more than 5) will usually suffice.

However, the Cochrane-Orcutt procedure and similar approaches re-
quire a specific assumption to be made concerning the form of the model
for the autocorrelation. Consider again (4.22). This can be rewritten taking
pYi—1 over to the RHS

Vi = (1 — p)B1 + Bo(Xat — pXat-1) + Bs(Xat — pXst-1) + pYi-1 + vt (4.25)
Expanding the brackets around the explanatory variable terms would give

Yt = (1 — p)B1 + BoXot — pPoXot—1 + BaXat — pPaXa—1 + pYi—1 + vt (4.26)
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Now, suppose that an equation containing the same variables as (4.26)
were estimated using OLS

Yt = y1 + V2Xat + VsXat—1 + VaXat + VsXat—1 + YeYi-1 + vt (4.27)

It can be seen that (4.26) is a restricted version of (4.27), with the re-
strictions imposed that the coefficient on X in (4.26) multiplied by the
negative of the coefficient on y;_; gives the coefficient on Xy;_1, and that
the coefficient on x3; multiplied by the negative of the coefficient on y;_;
gives the coefficient on Xz_;. Thus, the restrictions implied for (4.27) to
get (4.26) are

Y2¥e = —yzand yays = —¥s

These are known as the common factor restrictions, and they should be tested
before the Cochrane-Orcutt or similar procedure is implemented. If the
restrictions hold, Cochrane-Orcutt can be validly applied. If not, however,
Cochrane-Orcutt and similar techniques would be inappropriate, and the
appropriate step would be to estimate an equation such as (4.27) directly
using OLS. Note that in general there will be a common factor restriction
for every explanatory variable (excluding a constant) Xy, Xat, . . ., Xk in the
regression. Hendry and Mizon (1978) argued that the restrictions are likely
to be invalid in practice and therefore a dynamic model that allows for
the structure of y should be used rather than a residual correction on a
static model - see also Hendry (1980).

The White variance-covariance matrix of the coefficients (that is, calcu-
lation of the standard errors using the White correction for heteroscedas-
ticity) is appropriate when the residuals of the estimated equation are
heteroscedastic but serially uncorrelated. Newey and West (1987) develop
a variance-covariance estimator that is consistent in the presence of both
heteroscedasticity and autocorrelation. So an alternative approach to deal-
ing with residual autocorrelation would be to use appropriately modified
standard error estimates.

While White’s correction to standard errors for heteroscedasticity as dis-
cussed above does not require any user input, the Newey-West procedure
requires the specification of a truncation lag length to determine the num-
ber of lagged residuals used to evaluate the autocorrelation. EViews uses
INTEGER[4(T /100)?/°]. In EViews, the Newey-West procedure for estimat-
ing the standard errors is employed by invoking it from the same place
as the White heteroscedasticity correction. That is, click the Estimate but-
ton and in the Equation Estimation window, choose the Options tab and
then instead of checking the ‘White’ box, check Newey-West. While this
option is listed under ‘Heteroskedasticity consistent coefficient variance’,
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the Newey-West procedure in fact produces ‘HAC’ (Heteroscedasticity and
Autocorrelation Consistent) standard errors that correct for both autocor-
relation and heteroscedasticity that may be present.

A more ‘modern’ view concerning autocorrelation is that it presents
an opportunity rather than a problem! This view, associated with Sargan,
Hendry and Mizon, suggests that serial correlation in the errors arises as
a consequence of ‘misspecified dynamics’. For another explanation of the
reason why this stance is taken, recall that it is possible to express the
dependent variable as the sum of the parts that can be explained using
the model, and a part which cannot (the residuals)

Yo = Yt + G (4.28)

where §; are the fitted values from the model (= Bl + nga + B3x3t + o+
,3k Xkt)- Autocorrelation in the residuals is often caused by a dynamic struc-
ture in y that has not been modelled and so has not been captured in
the fitted values. In other words, there exists a richer structure in the
dependent variable y and more information in the sample about that
structure than has been captured by the models previously estimated.
What is required is a dynamic model that allows for this extra structure
in y.

Dynamic models

All of the models considered so far have been static in nature, e.g.

Yt = B1 + BaXot + BaXat + BaXar + BsXst + Ut (4.29)

In other words, these models have allowed for only a contemporaneous re-
lationship between the variables, so that a change in one or more of the
explanatory variables at time t causes an instant change in the depen-
dent variable at time t. But this analysis can easily be extended to the
case where the current value of y; depends on previous values of y or on
previous values of one or more of the variables, e.g.

Yt = B+ B2 Xot + BaXat + Ba Xar + Bs Xst + y1Yi—1 + y2Xor—1
T+ WiXke—1 Ut (4.30)

It is of course possible to extend the model even more by adding further
lags, e.g. Xot—2, Yi—3. Models containing lags of the explanatory variables
(but no lags of the explained variable) are known as distributed lag models.
Specifications with lags of both explanatory and explained variables are
known as autoregressive distributed lag (ADL) models.

How many lags and of which variables should be included in a dy-
namic regression model? This is a tricky question to answer, but hopefully
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recourse to financial theory will help to provide an answer; for another
response (see section 4.13).

Another potential ‘remedy’ for autocorrelated residuals would be to
switch to a model in first differences rather than in levels. As explained
previously, the first difference of y;, i.e. y; — Yy;_1 is denoted Ay;; similarly,
one can construct a series of first differences for each of the explanatory
variables, e.g. AXy = Xpt — Xpt—1, etc. Such a model has a number of other
useful features (see chapter 7 for more details) and could be expressed as

Ayt = 1+ B2AXat + B3AXar + Ut (4.31)

Sometimes the change in y is purported to depend on previous values

of the level of y or X;(i = 2,...,k) as well as changes in the explanatory
variables
Ayt = B1 + B2AXar + P3AXat + BaXor—1 + BsYi-1 + Ut (4.32)

Why might lags be required in a regression?

Lagged values of the explanatory variables or of the dependent variable (or
both) may capture important dynamic structure in the dependent variable
that might be caused by a number of factors. Two possibilities that are
relevant in finance are as follows:

¢ Inertia of the dependent variable Often a change in the value of one
of the explanatory variables will not affect the dependent variable im-
mediately during one time period, but rather with a lag over several
time periods. For example, the effect of a change in market microstruc-
ture or government policy may take a few months or longer to work
through since agents may be initially unsure of what the implications
for asset pricing are, and so on. More generally, many variables in eco-
nomics and finance will change only slowly. This phenomenon arises
partly as a result of pure psychological factors - for example, in finan-
cial markets, agents may not fully comprehend the effects of a particu-
lar news announcement immediately, or they may not even believe the
news. The speed and extent of reaction will also depend on whether the
change in the variable is expected to be permanent or transitory. Delays
in response may also arise as a result of technological or institutional
factors. For example, the speed of technology will limit how quickly
investors’ buy or sell orders can be executed. Similarly, many investors
have savings plans or other financial products where they are ‘locked in’
and therefore unable to act for a fixed period. It is also worth noting that
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dynamic structure is likely to be stronger and more prevalent the higher
is the frequency of observation of the data.

® Overreactions It is sometimes argued that financial markets overre-
act to good and to bad news. So, for example, if a firm makes a profit
warning, implying that its profits are likely to be down when formally
reported later in the year, the markets might be anticipated to perceive
this as implying that the value of the firm is less than was previously
thought, and hence that the price of its shares will fall. If there is
an overreaction, the price will initially fall below that which is appro-
priate for the firm given this bad news, before subsequently bouncing
back up to a new level (albeit lower than the initial level before the
announcement).

Moving from a purely static model to one which allows for lagged ef-
fects is likely to reduce, and possibly remove, serial correlation which was
present in the static model’s residuals. However, other problems with the
regression could cause the null hypothesis of no autocorrelation to be
rejected, and these would not be remedied by adding lagged variables to
the model:

® Omission of relevant variables, which are themselves autocorrelated
In other words, if there is a variable that is an important determinant
of movements in y, but which has not been included in the model, and
which itself is autocorrelated, this will induce the residuals from the
estimated model to be serially correlated. To give a financial context in
which this may arise, it is often assumed that investors assess one-step-
ahead expected returns on a stock using a linear relationship

N = ao + o181 + Ut (4.33)

where ;_; is a set of lagged information variables (i.e. Q;_1 is a vector of
observations on a set of variables at time t — 1). However, (4.33) cannot
be estimated since the actual information set used by investors to form
their expectations of returns is not known. €;_; is therefore proxied
with an assumed sub-set of that information, Z;_;. For example, in many
popular arbitrage pricing specifications, the information set used in the
estimated model includes unexpected changes in industrial production,
the term structure of interest rates, inflation and default risk premia.
Such a model is bound to omit some informational variables used by
actual investors in forming expectations of returns, and if these are
autocorrelated, it will induce the residuals of the estimated model to
be also autocorrelated.
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© Autocorrelation owing to unparameterised seasonality Suppose that
the dependent variable contains a seasonal or cyclical pattern, where
certain features periodically occur. This may arise, for example, in the
context of sales of gloves, where sales will be higher in the autumn
and winter than in the spring or summer. Such phenomena are likely
to lead to a positively autocorrelated residual structure that is cyclical
in shape, such as that of figure 4.4, unless the seasonal patterns are
captured by the model. See chapter 9 for a discussion of seasonality
and how to deal with it.

o If ‘misspecification’ error has been committed by using an inappro-
priate functional form For example, if the relationship between y and
the explanatory variables was a non-linear one, but the researcher had
specified a linear regression model, this may again induce the residuals
from the estimated model to be serially correlated.

The long-run static equilibrium solution

Once a general model of the form given in (4.32) has been found, it may
contain many differenced and lagged terms that make it difficult to in-
terpret from a theoretical perspective. For example, if the value of X;
were to increase in period t, what would be the effect on y in periods,
t,t+1,t+ 2, and so on? One interesting property of a dynamic model
that can be calculated is its long-run or static equilibrium solution.

The relevant definition of ‘equilibrium’ in this context is that a system
has reached equilibrium if the variables have attained some steady state
values and are no longer changing, i.e. if y and x are in equilibrium, it is
possible to write

Vi =VYia1 = ... =Y and Xyt = Xpt41 = ... = Xp, and so on.

Consequently, Ayr=Yyi—Vi1=Y -y =0,AXp =Xpt —Xpt-1 =X2 — Xz =
0, etc. since the values of the variables are no longer changing. So the
way to obtain a long-run static solution from a given empirical model
such as (4.32) is:

(1) Remove all time subscripts from the variables

(2) Set error terms equal to their expected values of zero, i.e E(u;) = 0

(3) Remove differenced terms (e.g. Ay;) altogether

(4) Gather terms in x together and gather terms in y together

(5) Rearrange the resulting equation if necessary so that the dependent
variable y is on the left-hand side (LHS) and is expressed as a function
of the independent variables.
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|
Calculate the long-run equilibrium solution for the following model

Ayr = B1+ B2 AXar + B3 AXar + BaXat—1 + BsYi-1 + Ut (4.34)
Applying first steps 1-3 above, the static solution would be given by

0 = B1+ Baxa + Bsy (4.35)

Rearranging (4.35) to bring y to the LHS

Bsy = —P1 — BaXe (4.36)
and finally, dividing through by S5
y= A éXz (4.37)
Bs  Bs

Equation (4.37) is the long-run static solution to (4.34). Note that this
equation does not feature Xz, since the only term which contained X3
was in first differenced form, so that X3 does not influence the long-run
equilibrium value of y.

Problems with adding lagged regressors to ‘cure’ autocorrelation

In many instances, a move from a static model to a dynamic one will result
in a removal of residual autocorrelation. The use of lagged variables in a
regression model does, however, bring with it additional problems:

¢ Inclusion of lagged values of the dependent variable violates the as-
sumption that the explanatory variables are non-stochastic (assump-
tion 4 of the CLRM), since by definition the value of y is determined
partly by a random error term, and so its lagged values cannot be non-
stochastic. In small samples, inclusion of lags of the dependent variable
can lead to biased coefficient estimates, although they are still consis-
tent, implying that the bias will disappear asymptotically (that is, as
the sample size increases towards infinity).

© What does an equation with a large number of lags actually mean?
A model with many lags may have solved a statistical problem
(autocorrelated residuals) at the expense of creating an interpretational
one (the empirical model containing many lags or differenced terms is
difficult to interpret and may not test the original financial theory that
motivated the use of regression analysis in the first place).

Note that if there is still autocorrelation in the residuals of a model
including lags, then the OLS estimators will not even be consistent. To see
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why this occurs, consider the following regression model

Yt = B1+ BoXat + BaXat + BaYi—1 + Ut (4.38)
where the errors, U, follow a first order autoregressive process

Ug = pUi_1 + vt (4.39)
Substituting into (4.38) for u; from (4.39)

Yt = B1+ BaXat + BaXat + BaYi-1 + pUi—1 + vt (4.40)

Now, clearly y; depends upon y;_;. Taking (4.38) and lagging it one period
(i.e. subtracting one from each time index)

Yi—1 = B1+ BaXot—1 + BaXsr—1 + BaYr—2 + Ut—1 (4.41)

It is clear from (4.41) that y;_; is related to u;_; since they both appear
in that equation. Thus, the assumption that E(X'u) =0 is not satisfied
for (4.41) and therefore for (4.38). Thus the OLS estimator will not be
consistent, so that even with an infinite quantity of data, the coefficient
estimates would be biased.

Autocorrelation and dynamic models in EViews

In EViews, the lagged values of variables can be used as regressors or for
other purposes by using the notation x(—1) for a one-period lag, x(—5)
for a five-period lag, and so on, where X is the variable name. EViews
will automatically adjust the sample period used for estimation to take
into account the observations that are lost in constructing the lags. For
example, if the regression contains five lags of the dependent variable, five
observations will be lost and estimation will commence with observation
six.

In EViews, the DW statistic is calculated automatically, and was given in
the general estimation output screens that result from estimating any re-
gression model. To view the results screen again, click on the View button
in the regression window and select Estimation output. For the Microsoft
macroeconomic regression that included all of the explanatory variables,
the value of the DW statistic was 2.156. What is the appropriate conclu-
sion regarding the presence or otherwise of first order autocorrelation in
this case?

The Breusch-Godfrey test can be conducted by selecting View; Residual
Tests; Serial Correlation LM Test... In the new window, type again the
number of lagged residuals you want to include in the test and click on
OK. Assuming that you selected to employ ten lags in the test, the results
would be as given in the following table.
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Breusch-Godfrey Serial Correlation LM Test:
F-statistic 1.497460 Prob. F(10,234) 0.1410
Obs*R-squared 15.15657 Prob. Chi-Square(10) 0.1265
Test Equation:
Dependent Variable: RESID
Method: Least Squares
Date: 08/27/07 Time: 13:26
Sample: 1986M05 2007M04
Included observations: 252
Presample missing value lagged residuals set to zero.
Coefficient Std. Error t-Statistic Prob.
C 0.087053 1.461517 0.059563 0.9526
ERSANDP —0.021725 0.204588 —0.106187 0.9155
DPROD —0.036054 0.510873 —0.070573 0.9438
DCREDIT —9.64E-06 0.000162 —0.059419 0.9527
DINFLATION —0.364149 3.010661 —0.120953 0.9038
DMONEY 0.225441 0.718175 0.313909 0.7539
DSPREAD 0.202672 13.70006 0.014794 0.9882
RTERM —0.19964 3.363238 —0.059360 0.9527
RESID(—1) —0.12678 0.065774 —1.927509 0.0551
RESID(—2) —0.063949 0.066995 —0.954537 0.3408
RESID(—-3) —0.038450 0.065536 —0.586694 0.5580
RESID(—4) —0.120761 0.065906 —1.832335 0.0682
RESID(-5) —0.126731 0.065253 —1.942152 0.0533
RESID(—6) —0.090371 0.066169 —1.365755 0.1733
RESID(—7) —0.071404 0.065761 —1.085803 0.2787
RESID(—8) —0.119176 0.065926 —1.807717 0.0719
RESID(—9) —0.138430 0.066121 —2.093571 0.0374
RESID(—10) —0.060578 0.065682 —0.922301 0.3573
R-squared 0.060145 Mean dependent var 8.11E-17
Adjusted R-squared —0.008135 S.D. dependent var 13.75376
S.E. of regression 13.80959 Akaike info criterion 8.157352
Sum squared resid 44624.90 Schwarz criterion 8.409454
Log likelihood —1009.826 Hannan-Quinn criter. 8.258793
F-statistic 0.880859 Durbin-Watson stat 2.013727
Prob(F-statistic) 0.597301

In the first table of output, EViews offers two versions of the test — an
F-version and a yx? version, while the second table presents the estimates
from the auxiliary regression. The conclusion from both versions of the
test in this case is that the null hypothesis of no autocorrelation should

not be rejected. Does this agree with the DW test result?
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Autocorrelation in cross-sectional data

The possibility that autocorrelation may occur in the context of a time
series regression is quite intuitive. However, it is also plausible that auto-
correlation could be present in certain types of cross-sectional data. For
example, if the cross-sectional data comprise the profitability of banks in
different regions of the US, autocorrelation may arise in a spatial sense,
if there is a regional dimension to bank profitability that is not captured
by the model. Thus the residuals from banks of the same region or in
neighbouring regions may be correlated. Testing for autocorrelation in
this case would be rather more complex than in the time series context,
and would involve the construction of a square, symmetric ‘spatial con-
tiguity matrix’ or a ‘distance matrix’. Both of these matrices would be
N x N, where N is the sample size. The former would be a matrix of ze-
ros and ones, with one for element i, j when observation i occurred for
a bank in the same region to, or sufficiently close to, region j and zero
otherwise (i, j =1, ..., N). The distance matrix would comprise elements
that measured the distance (or the inverse of the distance) between bank
i and bank j. A potential solution to a finding of autocorrelated residuals
in such a model would be again to use a model containing a lag struc-
ture, in this case known as a ‘spatial lag’. Further details are contained in
Anselin (1988).

Assumption 4: the x; are non-stochastic

Fortunately, it turns out that the OLS estimator is consistent and unbiased
in the presence of stochastic regressors, provided that the regressors are
not correlated with the error term of the estimated equation. To see this,
recall that

B=(X'X)"*X'y and y=XB+u (4.42)
Thus

B = (X'X)"IX'(XB + u) (4.43)

B = (X'X)IX'XB + (X'X)1X'u (4.44)

B =B+ (X'X)X'u (4.45)

Taking expectations, and provided that X and u are independent,!

E(B) = E(B) + E((X'X)"'X'u) (4.46)
E(B) = B+ E[(X'X)'X']E(u) (4.47)

1 A situation where X and u are not independent is discussed at length in chapter 6.
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Since E(u) = 0, this expression will be zero and therefore the estimator is
still unbiased, even if the regressors are stochastic.

However, if one or more of the explanatory variables is contemporane-
ously correlated with the disturbance term, the OLS estimator will not
even be consistent. This results from the estimator assigning explanatory
power to the variables where in reality it is arising from the correlation
between the error term and Yy;. Suppose for illustration that Xy and uy
are positively correlated. When the disturbance term happens to take a
high value, y; will also be high (because y; = 81 + BoXot + - - - + Ug). But if
Xot is positively correlated with uy, then Xy is also likely to be high. Thus
the OLS estimator will incorrectly attribute the high value of y; to a high
value of X, where in reality y; is high simply because u; is high, which
will result in biased and inconsistent parameter estimates and a fitted
line that appears to capture the features of the data much better than it
does in reality.

Assumption 5: the disturbances are normally distributed

Recall that the normality assumption (u; ~ N(0, ¢?)) is required in order
to conduct single or joint hypothesis tests about the model parameters.

Testing for departures from normality

One of the most commonly applied tests for normality is the Bera-Jarque
(hereafter B]) test. B] uses the property of a normally distributed random
variable that the entire distribution is characterised by the first two mo-
ments — the mean and the variance. The standardised third and fourth
moments of a distribution are known as its skewness and kurtosis. Skewness
measures the extent to which a distribution is not symmetric about its
mean value and kurtosis measures how fat the tails of the distribution are.
A normal distribution is not skewed and is defined to have a coefficient
of kurtosis of 3. It is possible to define a coefficient of excess kurtosis,
equal to the coefficient of kurtosis minus 3; a normal distribution will
thus have a coefficient of excess kurtosis of zero. A normal distribution is
symmetric and said to be mesokurtic. To give some illustrations of what a
series having specific departures from normality may look like, consider
figures 4.10 and 4.11.

A normal distribution is symmetric about its mean, while a skewed
distribution will not be, but will have one tail longer than the other, such
as in the right hand part of figure 4.10.
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A leptokurtic distribution is one which has fatter tails and is more
peaked at the mean than a normally distributed random variable with
the same mean and variance, while a platykurtic distribution will be less
peaked in the mean, will have thinner tails, and more of the distribution
in the shoulders than a normal. In practice, a leptokurtic distribution
is far more likely to characterise financial (and economic) time series,
and to characterise the residuals from a financial time series model. In
figure 4.11, the leptokurtic distribution is shown by the bold line, with
the normal by the faint line.
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Bera and Jarque (1981) formalise these ideas by testing whether the co-
efficient of skewness and the coefficient of excess kurtosis are jointly zero.
Denoting the errors by u and their variance by o2, it can be proved that
the coefficients of skewness and kurtosis can be expressed respectively as

Efud E[u?
[73/]2 and by = [ 2]
(o?) (o)
The kurtosis of the normal distribution is 3 so its excess kurtosis (b, — 3)

is zero.
The Bera-Jarque test statistic is given by

b? (b, —3)?
W=T]|24 =
[6+ 24 }

by = (4.48)

(4.49)

where T is the sample size. The test statistic asymptotically follows a x?(2)
under the null hypothesis that the distribution of the series is symmetric
and mesokurtic.

b; and b, can be estimated using the residuals from the OLS regression,
U. The null hypothesis is of normality, and this would be rejected if the
residuals from the model were either significantly skewed or leptokurtic/
platykurtic (or both).

Testing for non-normality using EViews

The Bera-Jarque normality tests results can be viewed by selecting
View|Residual Tests/Histogram - Normality Test. The statistic has a y?
distribution with 2 degrees of freedom under the null hypothesis of nor-
mally distributed errors. If the residuals are normally distributed, the
histogram should be bell-shaped and the Bera-Jarque statistic would not
be significant. This means that the p-value given at the bottom of the
normality test screen should be bigger than 0.05 to not reject the null of
normality at the 5% level. In the example of the Microsoft regression, the
screen would appear as in screenshot 4.2.

In this case, the residuals are very negatively skewed and are leptokurtic.
Hence the null hypothesis for residual normality is rejected very strongly
(the p-value for the BJ test is zero to six decimal places), implying that
the inferences we make about the coefficient estimates could be wrong,
although the sample is probably just about large enough that we need be
less concerned than we would be with a small sample. The non-normality
in this case appears to have been caused by a small number of very
large negative residuals representing monthly stock price falls of more
than —25%.
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4.7.3 What should be done if evidence of non-normality is found?

It is not obvious what should be done! It is, of course, possible to em-
ploy an estimation method that does not assume normality, but such a
method may be difficult to implement, and one can be less sure of its
properties. It is thus desirable to stick with OLS if possible, since its be-
haviour in a variety of circumstances has been well researched. For sample
sizes that are sufficiently large, violation of the normality assumption is
virtually inconsequential. Appealing to a central limit theorem, the test
statistics will asymptotically follow the appropriate distributions even in
the absence of error normality.

In economic or financial modelling, it is quite often the case that one
or two very extreme residuals cause a rejection of the normality assump-
tion. Such observations would appear in the tails of the distribution, and
would therefore lead u*, which enters into the definition of kurtosis, to
be very large. Such observations that do not fit in with the pattern of the
remainder of the data are known as outliers. If this is the case, one way

2 The law of large numbers states that the average of a sample (which is a random
variable) will converge to the population mean (which is fixed), and the central limit
theorem states that the sample mean converges to a normal distribution.
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to improve the chances of error normality is to use dummy variables or
some other method to effectively remove those observations.

In the time series context, suppose that a monthly model of asset re-
turns from 1980-90 had been estimated, and the residuals plotted, and
that a particularly large outlier has been observed for October 1987, shown
in figure 4.12.

A new variable called D87M10; could be defined as

D87M10; = 1 during October 1987 and zero otherwise

The observations for the dummy variable would appear as in box 4.6.
The dummy variable would then be used just like any other variable in
the regression model, e.g.

= B1 + BaoXat + BaXat + B4 DB7TM1L0; + Uy (4.50)

Box 4.6 Observations for the dummy variable

Time Value of dummy variable D87 M 10,

1986M12 0
1987MO01 0
1987M09 0
1987M10 1

1987M11 0
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This type of dummy variable that takes the value one for only a single
observation has an effect exactly equivalent to knocking out that obser-
vation from the sample altogether, by forcing the residual for that obser-
vation to zero. The estimated coefficient on the dummy variable will be
equal to the residual that the dummied observation would have taken if
the dummy variable had not been included.

However, many econometricians would argue that dummy variables to
remove outlying residuals can be used to artificially improve the charac-
teristics of the model - in essence fudging the results. Removing outlying
observations will reduce standard errors, reduce the RSS, and therefore
increase R?, thus improving the apparent fit of the model to the data.
The removal of observations is also hard to reconcile with the notion in
statistics that each data point represents a useful piece of information.

The other side of this argument is that observations that are ‘a long
way away’ from the rest, and seem not to fit in with the general pattern
of the rest of the data are known as outliers. Outliers can have a serious
effect on coefficient estimates, since by definition, OLS will receive a big
penalty, in the form of an increased RSS, for points that are a long way
from the fitted line. Consequently, OLS will try extra hard to minimise
the distances of points that would have otherwise been a long way from
the line. A graphical depiction of the possible effect of an outlier on OLS
estimation, is given in figure 4.13.

In figure 4.13, one point is a long way away from the rest. If this point
is included in the estimation sample, the fitted line will be the dotted
one, which has a slight positive slope. If this observation were removed,
the full line would be the one fitted. Clearly, the slope is now large and
negative. OLS would not select this line if the outlier is included since the
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observation is a long way from the others and hence when the residual
(the distance from the point to the fitted line) is squared, it would lead to
a big increase in the RSS. Note that outliers could be detected by plotting
y against X only in the context of a bivariate regression. In the case where
there are more explanatory variables, outliers are easiest identified by
plotting the residuals over time, as in figure 4.12, etc.

So, it can be seen that a trade-off potentially exists between the need
to remove outlying observations that could have an undue impact on the
OLS estimates and cause residual non-normality on the one hand, and the
notion that each data point represents a useful piece of information on
the other. The latter is coupled with the fact that removing observations
at will could artificially improve the fit of the model. A sensible way to
proceed is by introducing dummy variables to the model only if there is
both a statistical need to do so and a theoretical justification for their
inclusion. This justification would normally come from the researcher’s
knowledge of the historical events that relate to the dependent variable
and the model over the relevant sample period. Dummy variables may
be justifiably used to remove observations corresponding to ‘one-off’ or
extreme events that are considered highly unlikely to be repeated, and
the information content of which is deemed of no relevance for the data
as a whole. Examples may include stock market crashes, financial panics,
government crises, and so on.

Non-normality in financial data could also arise from certain types of
heteroscedasticity, known as ARCH - see chapter 8. In this case, the non-
normality is intrinsic to all of the data and therefore outlier removal
would not make the residuals of such a model normal.

Another important use of dummy variables is in the modelling of sea-
sonality in financial data, and accounting for so-called ‘calendar anoma-
lies’, such as day-of-the-week effects and weekend effects. These are dis-
cussed in chapter 9.

Dummy variable construction and use in EViews

As we saw from the plot of the distribution above, the non-normality in
the residuals from the Microsoft regression appears to have been caused
by a small number of outliers in the regression residuals. Such events
can be identified if it is present by plotting the actual values, the fitted
values and the residuals of the regression. This can be achieved in EViews
by selecting View/Actual, Fitted, Residual/Actual, Fitted, Residual Graph.
The plot should look as in screenshot 4.3.

From the graph, it can be seen that there are several large (negative)
outliers, but the largest of all occur in early 1998 and early 2003. All of the
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large outliers correspond to months where the actual return was much
smaller (i.e. more negative) than the model would have predicted. Inter-
estingly, the residual in October 1987 is not quite so prominent because
even though the stock price fell, the market index value fell as well, so
that the stock price fall was at least in part predicted (this can be seen by
comparing the actual and fitted values during that month).

In order to identify the exact dates that the biggest outliers were re-
alised, we could use the shading option by right clicking on the graph
and selecting the ‘add lines & shading’ option. But it is probably easier to
just examine a table of values for the residuals, which can be achieved by
selecting View/Actual, Fitted, Residual/Actual, Fitted, Residual Table. If we
do this, it is evident that the two most extreme residuals (with values to
the nearest integer) were in February 1998 (—68) and February 2003 (—67).

As stated above, one way to remove big outliers in the data is by using
dummy variables. It would be tempting, but incorrect, to construct one
dummy variable that takes the value 1 for both Feb 98 and Feb 03, but
this would not have the desired effect of setting both residuals to zero. In-
stead, to remove two outliers requires us to construct two separate dummy
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variables. In order to create the Feb 98 dummy first, we generate a series
called ‘FEB98DUM’ that will initially contain only zeros. Generate this se-
ries (hint: you can use ‘Quick/Generate Series’ and then type in the box
‘FEB98DUM = 0’). Double click on the new object to open the spreadsheet
and turn on the editing mode by clicking ‘Edit +/—’ and input a single 1
in the cell that corresponds to February 1998. Leave all other cell entries
as zeros.

Once this dummy variable has been created, repeat the process above to
create another dummy variable called ‘FEBO3DUM’ that takes the value
1 in February 2003 and zero elsewhere and then rerun the regression
including all the previous variables plus these two dummy variables. This
can most easily be achieved by clicking on the ‘Msoftreg’ results object,
then the Estimate button and adding the dummy variables to the end of
the variable list. The full list of variables is

ermsoft ¢ ersandp dprod dcredit dinflation dmoney dspread rterm
feb98dum feb03dum

and the results of this regression are as in the following table.

Dependent Variable: ERMSOFT

Method: Least Squares

Date: 08/29/07 Time: 09:11

Sample (adjusted): 1986M05 2007M04
Included observations: 252 after adjustments

Coefficient  Std. Error t-Statistic Prob.

C —0.086606 1.315194 —0.065850 0.9476
ERSANDP 1.547971 0.183945 8.415420 0.0000
DPROD 0.455015 0.451875 1.006948 0.315
DCREDIT —5.92E-05 0.000145 —0.409065 0.6829
DINFLATION 4.913297 2.685659 1.829457 0.0686
DMONEY —1.430608 0.644601 —2.219369 0.0274
DSPREAD 8.624895 12.22705 0.705395 0.4812
RTERM 6.893754 2.993982 2.302537 0.0222
FEB98DUM —69.14177 12.68402 —5.451093 0.0000
FEBO3DUM —68.24391 12.65390 —5.393113 0.0000
R-squared 0.358962  Mean dependent var —0.420803
Adjusted R-squared 0.335122  S.D. dependent var 15.41135
S.E. of regression 12.56643  Akaike info criterion 7.938808
Sum squared resid 3821545  Schwarz criterion 8.078865
Log likelihood —990.2898  Hannan-Quinn criter. 7.995164
F-statistic 15.05697  Durbin-Watson stat 2.142031

Prob(F-statistic) 0.000000
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Note that the dummy variable parameters are both highly significant and
take approximately the values that the corresponding residuals would
have taken if the dummy variables had not been included in the model.?
By comparing the results with those of the regression above that excluded
the dummy variables, it can be seen that the coefficient estimates on the
remaining variables change quite a bit in this instance and the signifi-
cances improve considerably. The term structure and money supply pa-
rameters are now both significant at the 5% level, and the unexpected
inflation parameter is now significant at the 10% level. The R? value has
risen from 0.20 to 0.36 because of the perfect fit of the dummy variables
to those two extreme outlying observations.

Finally, if we re-examine the normality test results by clicking
View/Residual Tests/Histogram - Normality Test, we will see that while
the skewness and kurtosis are both slightly closer to the values that they
would take under normality, the Bera-Jarque test statistic still takes a
value of 829 (compared with over 1000 previously). We would thus con-
clude that the residuals are still a long way from following a normal
distribution. While it would be possible to continue to generate dummy
variables, there is a limit to the extent to which it would be desirable to do
so. With this particular regression, we are unlikely to be able to achieve a
residual distribution that is close to normality without using an excessive
number of dummy variables. As a rule of thumb, in a monthly sample
with 252 observations, it is reasonable to include, perhaps, two or three
dummy variables, but more would probably be excessive.

Multicollinearity

An implicit assumption that is made when using the OLS estimation
method is that the explanatory variables are not correlated with one an-
other. If there is no relationship between the explanatory variables, they
would be said to be orthogonal to one another. If the explanatory variables
were orthogonal to one another, adding or removing a variable from a
regression equation would not cause the values of the coefficients on the
other variables to change.

In any practical context, the correlation between explanatory variables
will be non-zero, although this will generally be relatively benign in the

3 Note the inexact correspondence between the values of the residuals and the values of
the dummy variable parameters because two dummies are being used together; had we
included only one dummy, the value of the dummy variable coefficient and that which
the residual would have taken would be identical.
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sense that a small degree of association between explanatory variables
will almost always occur but will not cause too much loss of precision.
However, a problem occurs when the explanatory variables are very highly
correlated with each other, and this problem is known as multicollinearity.
It is possible to distinguish between two classes of multicollinearity: per-
fect multicollinearity and near multicollinearity.

Perfect multicollinearity occurs when there is an exact relationship be-
tween two or more variables. In this case, it is not possible to estimate all
of the coefficients in the model. Perfect multicollinearity will usually be
observed only when the same explanatory variable is inadvertently used
twice in a regression. For illustration, suppose that two variables were
employed in a regression function such that the value of one variable was
always twice that of the other (e.g. suppose X3 = 2X7). If both x3 and x;
were used as explanatory variables in the same regression, then the model
parameters cannot be estimated. Since the two variables are perfectly re-
lated to one another, together they contain only enough information to
estimate one parameter, not two. Technically, the difficulty would occur
in trying to invert the (X’X) matrix since it would not be of full rank
(two of the columns would be linearly dependent on one another), so
that the inverse of (X’X) would not exist and hence the OLS estimates
B = (X'X)"1Xy could not be calculated.

Near multicollinearity is much more likely to occur in practice, and would
arise when there was a non-negligible, but not perfect, relationship be-
tween two or more of the explanatory variables. Note that a high correla-
tion between the dependent variable and one of the independent variables
is not multicollinearity.

Visually, we could think of the difference between near and perfect
multicollinearity as follows. Suppose that the variables x,; and X3 were
highly correlated. If we produced a scatter plot of Xy against Xz, then
perfect multicollinearity would correspond to all of the points lying ex-
actly on a straight line, while near multicollinearity would correspond to
the points lying close to the line, and the closer they were to the line
(taken altogether), the stronger would be the relationship between the
two variables.

Measuring near multicollinearity

Testing for multicollinearity is surprisingly difficult, and hence all that
is presented here is a simple method to investigate the presence or
otherwise of the most easily detected forms of near multicollinear-
ity. This method simply involves looking at the matrix of correlations
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between the individual variables. Suppose that a regression equation has
three explanatory variables (plus a constant term), and that the pair-wise
correlations between these explanatory variables are.

corr ] X, X3 Xq
Xz ~ 02 08
X3 0.2 - 0.3

Xq 0.8 0.3 -

Clearly, if multicollinearity was suspected, the most likely culprit would
be a high correlation between x, and X4. Of course, if the relationship
involves three or more variables that are collinear - e.g. X, + X3 & X4 —
then multicollinearity would be very difficult to detect.

Problems if near multicollinearity is present but ignored

First, R? will be high but the individual coefficients will have high stan-
dard errors, so that the regression ‘looks good’ as a whole?, but the in-
dividual variables are not significant. This arises in the context of very
closely related explanatory variables as a consequence of the difficulty in
observing the individual contribution of each variable to the overall fit
of the regression. Second, the regression becomes very sensitive to small
changes in the specification, so that adding or removing an explanatory
variable leads to large changes in the coefficient values or significances of
the other variables. Finally, near multicollinearity will thus make confi-
dence intervals for the parameters very wide, and significance tests might
therefore give inappropriate conclusions, and so make it difficult to draw
sharp inferences.

Solutions to the problem of multicollinearity

A number of alternative estimation techniques have been proposed that
are valid in the presence of multicollinearity - for example, ridge re-
gression, or principal components. Principal components analysis was dis-
cussed briefly in an appendix to the previous chapter. Many researchers
do not use these techniques, however, as they can be complex, their prop-
erties are less well understood than those of the OLS estimator and, above
all, many econometricians would argue that multicollinearity is more a
problem with the data than with the model or estimation method.

4 Note that multicollinearity does not affect the value of R? in a regression.
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Other, more ad hoc methods for dealing with the possible existence of
near multicollinearity include:

o Ignore it, if the model is otherwise adequate, i.e. statistically and in
terms of each coefficient being of a plausible magnitude and having an
appropriate sign. Sometimes, the existence of multicollinearity does not
reduce the t-ratios on variables that would have been significant without
the multicollinearity sufficiently to make them insignificant. It is worth
stating that the presence of near multicollinearity does not affect the
BLUE properties of the OLS estimator - i.e. it will still be consistent,
unbiased and efficient since the presence of near multicollinearity does
not violate any of the CLRM assumptions 1-4. However, in the presence
of near multicollinearity, it will be hard to obtain small standard errors.
This will not matter if the aim of the model-building exercise is to
produce forecasts from the estimated model, since the forecasts will
be unaffected by the presence of near multicollinearity so long as this
relationship between the explanatory variables continues to hold over
the forecasted sample.

© Drop one of the collinear variables, so that the problem disappears.
However, this may be unacceptable to the researcher if there were strong
a priori theoretical reasons for including both variables in the model.
Also, if the removed variable was relevant in the data generating process
for y, an omitted variable bias would result (see section 4.10).

® Transform the highly correlated variables into a ratio and include
only the ratio and not the individual variables in the regression.
Again, this may be unacceptable if financial theory suggests that
changes in the dependent variable should occur following changes in
the individual explanatory variables, and not a ratio of them.

© Finally, as stated above, it is also often said that near multicollinear-
ity is more a problem with the data than with the model, so that there
is insufficient information in the sample to obtain estimates for all
of the coefficients. This is why near multicollinearity leads coefficient
estimates to have wide standard errors, which is exactly what would
happen if the sample size were small. An increase in the sample size
will usually lead to an increase in the accuracy of coefficient estimation
and consequently a reduction in the coefficient standard errors, thus
enabling the model to better dissect the effects of the various explana-
tory variables on the explained variable. A further possibility, therefore,
is for the researcher to go out and collect more data - for example,
by taking a longer run of data, or switching to a higher frequency of
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sampling. Of course, it may be infeasible to increase the sample size
if all available data is being utilised already. A further method of in-
creasing the available quantity of data as a potential remedy for near
multicollinearity would be to use a pooled sample. This would involve
the use of data with both cross-sectional and time series dimensions (see
chapter 10).

Multicollinearity in EViews

For the Microsoft stock return example given above previously, a correla-
tion matrix for the independent variables can be constructed in EViews
by clicking Quick/Group Statistics/Correlations and then entering the
list of regressors (not including the regressand) in the dialog box that
appears:

ersandp dprod dcredit dinflation dmoney dspread rterm

A new window will be displayed that contains the correlation matrix of
the series in a spreadsheet format:

ERSANDP DPROD DCREDIT DINFLATION DMONEY  DSPREAD RTERM
1.000000 —0.096173 —0.012885 —0.013025 —0.033632 —0.038034 0.013764
—0.096173 1.000000 —0.002741 0.168037 0.121698 —0.073796 —0.042486
—0.012885 —0.002741 1.000000 0.071330 0.035290 0.025261 —0.062432
—0.013025 0.168037 0.071330 1.000000 0.006702 —0.169399 —0.006518
—0.033632 0.121698 0.035290 0.006702 1.000000 —0.075082 0.170437
—0.038034 —0.073796 0.025261 —0.169399 —0.075082 1.000000 0.018458
0.013764 —0.042486 —0.062432 —0.006518 0.170437 0.018458 1.000000

4.9

Do the results indicate any significant correlations between the inde-
pendent variables? In this particular case, the largest observed correlation
is 0.17 between the money supply and term structure variables and this
is sufficiently small that it can reasonably be ignored.

Adopting the wrong functional form

A further implicit assumption of the classical linear regression model is
that the appropriate ‘functional form’ is linear. This means that the ap-
propriate model is assumed to be linear in the parameters, and that in
the bivariate case, the relationship between y and X can be represented
by a straight line. However, this assumption may not always be upheld.
Whether the model should be linear can be formally tested using Ramsey’s
(1969) RESET test, which is a general test for misspecification of functional
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form. Essentially, the method works by using higher order terms of the
fitted values (e.g. J2, §3, etc.) in an auxiliary regression. The auxiliary re-
gression is thus one where y;, the dependent variable from the original
regression, is regressed on powers of the fitted values together with the
original explanatory variables

Yo = o+ @f +asfe + -+ ap¥d + D BiXie + vt (4.51)

Higher order powers of the fitted values of y can capture a variety
of non-linear relationships, since they embody higher order powers and
cross-products of the original explanatory variables, e.g.

92 = (B1 + Boxa + Baxa + - - + Buxe)? (4.52)

The value of R? is obtained from the regression (4.51), and the test statis-
tic, given by TR?, is distributed asymptotically as a x2(p — 1). Note that
the degrees of freedom for this test will be (p — 1) and not p. This arises
because p is the highest order term in the fitted values used in the aux-
iliary regression and thus the test will involve p — 1 terms, one for the
square of the fitted value, one for the cube,..., one for the pth power. If
the value of the test statistic is greater than the x? critical value, reject
the null hypothesis that the functional form was correct.

What if the functional form is found to be inappropriate?

One possibility would be to switch to a non-linear model, but the RESET
test presents the user with no guide as to what a better specification might
be! Also, non-linear models in the parameters typically preclude the use
of OLS, and require the use of a non-linear estimation technique. Some
non-linear models can still be estimated using OLS, provided that they are
linear in the parameters. For example, if the true model is of the form

Yo = B1 + BoXar + BaXa + PaX3, + U (4.53)

- that is, a third order polynomial in X — and the researcher assumes that
the relationship between y; and X; is linear (i.e. X3 and X3 are missing
from the specification), this is simply a special case of omitted variables,
with the usual problems (see section 4.10) and obvious remedy.

However, the model may be multiplicatively non-linear. A second possi-
bility that is sensible in this case would be to transform the data into
logarithms. This will linearise many previously multiplicative models
into additive ones. For example, consider again the exponential growth
model

ye = Bxue (4.54)
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Taking logs, this becomes

In(y:) = In(B1) + B2 In(xt) + In(uy) (4.55)

or
Yi = o+ B X¢ + v (4.56)

where Y = In(y;), « = In(B1), Xt = In(X¢), vt = In(u;). Thus a simple loga-
rithmic transformation makes this model a standard linear bivariate re-
gression equation that can be estimated using OLS.

Loosely following the treatment given in Stock and Watson (2006), the
following list shows four different functional forms for models that are
either linear or can be made linear following a logarithmic transformation
to one or more of the dependent or independent variables, examining only
a bivariate specification for simplicity. Care is needed when interpreting
the coefficient values in each case.

(1) Linear model: y; = 1 + B2X2t + Ug; @ 1-unit increase in Xp; causes a fo-
unit increase in Y.

Vi

A

—> X

(2) Log-linear: In(y;) = B1 + B2Xat + Ur; a 1-unit increase in Xy causes a
100 x B2% increase in Y;.

Iny, Yt
A

> Xy, » Xt
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(3) Linear-log: y; = B1 + B2In(Xat) 4+ U; a 1% increase in Xy causes a 0.01 x
Bo-unit increase in ;.

> In(x,,) > X
(4) Double log: In(y;) = B1 + B2In(Xat) + Ui a 1% increase in Xp; causes a 2%

increase in y;. Note that to plot y against X, would be more complex
since the shape would depend on the size of j;.

In(y,)
A

> In(x,)

Note also that we cannot use R? or adjusted R? to determine which
of these four types of model is most appropriate since the dependent
variables are different across some of the models.

4.9.2 RESET tests using EViews

Using EViews, the Ramsey RESET test is found in the View menu of the
regression window (for ‘Msoftreg’) under Stability tests/Ramsey RESET
test. ... EViews will prompt you for the ‘number of fitted terms’, equivalent
to the number of powers of the fitted value to be used in the regression;
leave the default of 1 to consider only the square of the fitted values. The
Ramsey RESET test for this regression is in effect testing whether the rela-
tionship between the Microsoft stock excess returns and the explanatory
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variables is linear or not. The results of this test for one fitted term are
shown in the following table.

Ramsey RESET Test:

F-statistic 1.603573  Prob. F(1,241) 0.2066
Log likelihood ratio 1.671212  Prob. Chi-Square(1) 0.1961

Test Equation:

Dependent Variable: ERMSOFT
Method: Least Squares

Date: 08/29/07 Time: 09:54
Sample: 1986M05 2007M04
Included observations: 252

Coefficient  Std. Error t-Statistic Prob.
C —0.531288 1.359686 —0.390743 0.6963
ERSANDP 1.639661 0.197469 8.303368 0.0000
DPROD 0.487139 0.452025 1.077681 0.2823
DCREDIT —5.99E-05 0.000144 —0.414772 0.6787
DINFLATION 5.030282 2.683906 1.874239 0.0621
DMONEY —1.413747 0.643937 —2.195475 0.0291
DSPREAD 8.488655 12.21231 0.695090 0.4877
RTERM 6.692483 2.994476 2.234943 0.0263
FEB8SDUM —94.39106 23.62309 —3.995712 0.0001
FEBO3DUM —105.0831 31.71804 —3.313037 0.0011
FITTED"2 0.007732 0.006106 1.266323 0.2066
R-squared 0.363199  Mean dependent var —0.420803
Adjusted R-squared 0.336776  S.D. dependent var 15.41135
S.E. of regression 12.55078  Akaike info criterion 7.940113
Sum squared resid 37962.85  Schwarz criterion 8.094175
Log likelihood —989.4542  Hannan-Quinn criter. 8.002104
F-statistic 13.74543  Durbin-Watson stat 2.090304
Prob(F-statistic) 0.000000

Both F— and x? versions of the test are presented, and it can be seen
that there is no apparent non-linearity in the regression equation and so
it would be concluded that the linear model for the Microsoft returns is
appropriate.

Omission of an important variable

What would be the effects of excluding from the estimated regression a
variable that is a determinant of the dependent variable? For example,
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suppose that the true, but unknown, data generating process is repre-
sented by

Yt = B1 + B2 Xat + B3 X3t + Ba Xar + Bs Xst + Ut (4.57)

but the researcher estimated a model of the form

Yt = B1 + B2 Xat + B3 Xat + Ba Xar + Ut (4.58)

so that the variable Xs; is omitted from the model. The consequence would
be that the estimated coefficients on all the other variables will be biased
and inconsistent unless the excluded variable is uncorrelated with all
the included variables. Even if this condition is satisfied, the estimate of
the coefficient on the constant term will be biased, which would imply
that any forecasts made from the model would be biased. The standard
errors will also be biased (upwards), and hence hypothesis tests could yield
inappropriate inferences. Further intuition is offered in Dougherty (1992,
pp- 168-73).

Inclusion of an irrelevant variable

Suppose now that the researcher makes the opposite error to section 4.10,
i.e. that the true DGP was represented by

Yt = B1 + B2 Xat + B3 Xat + Ba Xar + Ut (4.59)

but the researcher estimates a model of the form

Yt = B1 + B2 Xat + B3 Xat + Ba Xat + Bs Xst + Ut (4.60)

thus incorporating the superfluous or irrelevant variable Xs;. As Xs; is
irrelevant, the expected value of S5 is zero, although in any practical
application, its estimated value is very unlikely to be exactly zero. The
consequence of including an irrelevant variable would be that the coeffi-
cient estimators would still be consistent and unbiased, but the estima-
tors would be inefficient. This would imply that the standard errors for
the coefficients are likely to be inflated relative to the values which they
would have taken if the irrelevant variable had not been included. Vari-
ables which would otherwise have been marginally significant may no
longer be so in the presence of irrelevant variables. In general, it can also
be stated that the extent of the loss of efficiency will depend positively
on the absolute value of the correlation between the included irrelevant
variable and the other explanatory variables.
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Summarising the last two sections it is evident that when trying to
determine whether to err on the side of including too many or too few
variables in a regression model, there is an implicit trade-off between in-
consistency and efficiency; many researchers would argue that while in an
ideal world, the model will incorporate precisely the correct variables - no
more and no less - the former problem is more serious than the latter and
therefore in the real world, one should err on the side of incorporating
marginally significant variables.

4.12 Parameter stability tests

So far, regressions of a form such as

Yt = B1+ BaXat + BaXat + Ut (4.61)

have been estimated. These regressions embody the implicit assumption
that the parameters (81, 82 and j3) are constant for the entire sample, both
for the data period used to estimate the model, and for any subsequent
period used in the construction of forecasts.

This implicit assumption can be tested using parameter stability tests.
The idea is essentially to split the data into sub-periods and then to esti-
mate up to three models, for each of the sub-parts and for all the data
and then to ‘compare’ the RSS of each of the models. There are two types
of test that will be considered, namely the Chow (analysis of variance) test
and predictive failure tests.

4.,12.1 The Chow test

The steps involved are shown in box 4.7.

Box 4.7 Conducting a Chow test

(1) Split the data into two sub-periods. Estimate the regression over the whole period
and then for the two sub-periods separately (3 regressions). Obtain the RSS for
each regression.

(2) The restricted regression is now the regression for the whole period while the
‘unrestricted regression’ comes in two parts: one for each of the sub-samples. It is
thus possible to form an F-test, which is based on the difference between the
RSSs. The statistic is

RSS — (RSS; 4+ RSS;) T —2k
X
RSS; + RSS, k

where RSS = residual sum of squares for whole sample

test statistic =

(4.62)
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RSS; = residual sum of squares for sub-sample 1

RSS, = residual sum of squares for sub-sample 2

T = number of observations

2k = number of regressors in the ‘unrestricted’ regression (since it comes in two
parts)

k = number of regressors in (each) ‘unrestricted’ regression

The unrestricted regression is the one where the restriction has not been imposed
on the model. Since the restriction is that the coefficients are equal across the
sub-samples, the restricted regression will be the single regression for the whole
sample. Thus, the test is one of how much the residual sum of squares for

the whole sample (RSS) is bigger than the sum of the residual sums of squares for
the two sub-samples (RSS; + RSS,). If the coefficients do not change much
between the samples, the residual sum of squares will not rise much upon
imposing the restriction. Thus the test statistic in (4.62) can be considered a
straightforward application of the standard F-test formula discussed in chapter 3.
The restricted residual sum of squares in (4.62) is RSS, while the unrestricted
residual sum of squares is (RSS; + RSS,). The number of restrictions is equal to the
number of coefficients that are estimated for each of the regressions, i.e. k. The
number of regressors in the unrestricted regression (including the constants) is 2Kk,
since the unrestricted regression comes in two parts, each with k regressors.
Perform the test. If the value of the test statistic is greater than the critical value
from the F-distribution, which is an F(k, T —2k), then reject the null hypothesis that
the parameters are stable over time.

(3

=

Note that it is also possible to use a dummy variables approach to calcu-
lating both Chow and predictive failure tests. In the case of the Chow test,
the unrestricted regression would contain dummy variables for the inter-
cept and for all of the slope coefficients (see also chapter 9). For example,
suppose that the regression is of the form

Yt = B1+ BaXat + BaXat + Ut (4.63)

If the split of the total of T observations is made so that the sub-samples
contain T; and T, observations (where T; + T, = T), the unrestricted re-
gression would be given by

Yt = B1 + BaXat + BaXat + BaDr 4 BsDiXor + BeDiXar + vt (4.64)

where Dy =1 fort € T; and zero otherwise. In other words, D; takes the
value one for observations in the first sub-sample and zero for observations
in the second sub-sample. The Chow test viewed in this way would then be
a standard F-test of the joint restriction Hy: 84 = 0 and 5 = 0 and 8s = 0,
with (4.64) and (4.63) being the unrestricted and restricted regressions,
respectively.
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___________________________________________________________________________________|
Suppose that it is now January 1993. Consider the following regression
for the standard CAPM g for the returns on a stock

gt =« + ﬂth =+ Ut (465)

where rg and ry; are excess returns on Glaxo shares and on a market
portfolio, respectively. Suppose that you are interested in estimating beta
using monthly data from 1981 to 1992, to aid a stock selection decision.
Another researcher expresses concern that the October 1987 stock market
crash fundamentally altered the risk-return relationship. Test this conjec-
ture using a Chow test. The model for each sub-period is

1981M1-1987M 10

fgt =0.2441.2ryy T =82 RSS; =0.03555 (4.66)
1987M11-1992M 12

fgt =0.684+153ry; T =62 RSS, =0.00336 (4.67)
1981M1-1992M12

fgt =0.394+1.37ryy T =144 RSS =0.0434 (4.68)

The null hypothesis is
Ho: a1 =ap and B1 = B

where the subscripts 1 and 2 denote the parameters for the first and
second sub-samples, respectively. The test statistic will be given by
0.0434 — (0.0355 + 0.00336) 144 —14
X
0.0355 + 0.00336 2

test statistic = (4.69)

= 7.698

The test statistic should be compared with a 5%, F(2,140) = 3.06. Hp is
rejected at the 5% level and hence it is concluded that the restriction
that the coefficients are the same in the two periods cannot be employed.
The appropriate modelling response would probably be to employ only
the second part of the data in estimating the CAPM beta relevant for
investment decisions made in early 1993.

The predictive failure test

A problem with the Chow test is that it is necessary to have enough data
to do the regression on both sub-samples, i.e. T; > k, T, > k. This may not
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hold in the situation where the total number of observations available is
small. Even more likely is the situation where the researcher would like
to examine the effect of splitting the sample at some point very close to
the start or very close to the end of the sample. An alternative formula-
tion of a test for the stability of the model is the predictive failure test,
which requires estimation for the full sample and one of the sub-samples
only. The predictive failure test works by estimating the regression over a
‘long’ sub-period (i.e. most of the data) and then using those coefficient
estimates for predicting values of y for the other period. These predic-
tions for y are then implicitly compared with the actual values. Although
it can be expressed in several different ways, the null hypothesis for this
test is that the prediction errors for all of the forecasted observations are
Zero.

To calculate the test:

© Run the regression for the whole period (the restricted regression) and
obtain the RSS.

© Run the regression for the ‘large’ sub-period and obtain the RSS (called
RSS;). Note that in this book, the number of observations for the long
estimation sub-period will be denoted by T; (even though it may come
second). The test statistic is given by

RSS— RSS; Ti—k
X
RSS; T,

test statistic = (4.70)
where T, = number of observations that the model is attempting to
‘predict’. The test statistic will follow an F(T,, Ty — k).

For an intuitive interpretation of the predictive failure test statistic for-
mulation, consider an alternative way to test for predictive failure using a
regression containing dummy variables. A separate dummy variable would
be used for each observation that was in the prediction sample. The un-
restricted regression would then be the one that includes the dummy
variables, which will be estimated using all T observations, and will have
(k + T,) regressors (the k original explanatory variables, and a dummy
variable for each prediction observation, i.e. a total of T, dummy vari-
ables). Thus the numerator of the last part of (4.70) would be the total
number of observations (T) minus the number of regressors in the unre-
stricted regression (k + T,). Noting also that T — (k + T,) = (T1 — k), since
T1+ T, =T, this gives the numerator of the last term in (4.70). The re-
stricted regression would then be the original regression containing the
explanatory variables but none of the dummy variables. Thus the number
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of restrictions would be the number of observations in the prediction
period, which would be equivalent to the number of dummy variables
included in the unrestricted regression, T,.

To offer an illustration, suppose that the regression is again of the form
of (4.63), and that the last three observations in the sample are used for
a predictive failure test. The unrestricted regression would include three
dummy variables, one for each of the observations in T;

rg¢ = o+ Brve + y1 D1y + 2 D2y + 3 D3¢ + Uy (4.71)

where D1; = 1 for observation T—2 and zero otherwise, D2; = 1 for
observation T — 1 and zero otherwise, D3; = 1 for observation T and zero
otherwise. In this case, k = 2, and T, = 3. The null hypothesis for the
predictive failure test in this regression is that the coefficients on all of
the dummy variables are zero (i.e. Hp : 4 = 0 and y, = 0 and y3 = 0). Both
approaches to conducting the predictive failure test described above are
equivalent, although the dummy variable regression is likely to take more
time to set up.

However, for both the Chow and the predictive failure tests, the dummy
variables approach has the one major advantage that it provides the
user with more information. This additional information comes from
the fact that one can examine the significances of the coefficients on
the individual dummy variables to see which part of the joint null hy-
pothesis is causing a rejection. For example, in the context of the Chow
regression, is it the intercept or the slope coefficients that are signifi-
cantly different across the two sub-samples? In the context of the pre-
dictive failure test, use of the dummy variables approach would show
for which period(s) the prediction errors are significantly different from
Zero.

Backward versus forward predictive failure tests

There are two types of predictive failure tests — forward tests and back-
wards tests. Forward predictive failure tests are where the last few obser-
vations are kept back for forecast testing. For example, suppose that obser-
vations for 1980Q1-2004Q4 are available. A forward predictive failure test
could involve estimating the model over 1980Q1-2003Q4 and forecasting
2004Q1-2004Q4. Backward predictive failure tests attempt to ‘back-cast’
the first few observations, e.g. if data for 1980Q1-2004Q4 are available,
and the model is estimated over 1971Q1-2004Q4 and back-cast 1980Q1-
1980Q4. Both types of test offer further evidence on the stability of the
regression relationship over the whole sample period.
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|
Suppose that the researcher decided to determine the stability of the
estimated model for stock returns over the whole sample in example 4.4
by using a predictive failure test of the last two years of observations. The
following models would be estimated:

1981M1-1992M12 (whole sample)

Fgt = 0.39 4 1.37r T =144 RSS = 0.0434 (4.72)
1981M1-1990M12 (‘long sub-sample’)
Fgt = 0.32 4 1.31ry T =120 RSS; = 0.0420 (4.73)

Can this regression adequately ‘forecast’ the values for the last two years?
The test statistic would be given by

ot statistic 0434 00420 120 -2 )
= X .
0.0420 24

= 0.164

Compare the test statistic with an F(24,118) = 1.66 at the 5% level. So
the null hypothesis that the model can adequately predict the last few
observations would not be rejected. It would thus be concluded that the
model did not suffer from predictive failure during the 1991M1-1992M 12
period.

How can the appropriate sub-parts to use be decided?

As a rule of thumb, some or all of the following methods for selecting
where the overall sample split occurs could be used:

® Plot the dependent variable over time and split the data accordingly to
any obvious structural changes in the series, as illustrated in figure 4.14.
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It is clear that y in figure 4.14 underwent a large fall in its value
around observation 175, and it is possible that this may have caused
a change in its behaviour. A Chow test could be conducted with the
sample split at this observation.

e Split the data according to any known important historical events (e.g. a
stock market crash, change in market microstructure, new government
elected). The argument is that a major change in the underlying envi-
ronment in which y is measured is more likely to cause a structural
change in the model’s parameters than a relatively trivial change.

® Use all but the last few observations and do a forwards predictive failure
test on those.

® Use all but the first few observations and do a backwards predictive failure
test on those.

If a model is good, it will survive a Chow or predictive failure test with
any break date. If the Chow or predictive failure tests are failed, two ap-
proaches could be adopted. Either the model is respecified, for example,
by including additional variables, or separate estimations are conducted
for each of the sub-samples. On the other hand, if the Chow and predictive
failure tests show no rejections, it is empirically valid to pool all of the
data together in a single regression. This will increase the sample size and
therefore the number of degrees of freedom relative to the case where the
sub-samples are used in isolation.

The QLR test

The Chow and predictive failure tests will work satisfactorily if the date
of a structural break in a financial time series can be specified. But more
often, a researcher will not know the break date in advance, or may know
only that it lies within a given range (sub-set) of the sample period. In
such circumstances, a modified version of the Chow test, known as the
Quandt likelihood ratio (QLR) test, named after Quandt (1960), can be used
instead. The test works by automatically computing the usual Chow F-
test statistic repeatedly with different break dates, then the break date
giving the largest F-statistic value is chosen. While the test statistic is
of the F-variety, it will follow a non-standard distribution rather than
an F-distribution since we are selecting the largest from a number of
F-statistics rather than examining a single one.

The test is well behaved only when the range of possible break dates is
sufficiently far from the end points of the whole sample, so it is usual
to ““trim” the sample by (typically) 5% at each end. To illustrate, suppose
that the full sample comprises 200 observations; then we would test for
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a structural break between observations 31 and 170 inclusive. The criti-
cal values will depend on how much of the sample is trimmed away, the
number of restrictions under the null hypothesis (the number of regres-
sors in the original regression as this is effectively a Chow test) and the
significance level.

Stability tests based on recursive estimation

An alternative to the QLR test for use in the situation where a researcher
believes that a series may contain a structural break but is unsure of
the date is to perform a recursive estimation. This is sometimes known
as recursive least squares (RLS). The procedure is appropriate only for time-
series data or cross-sectional data that have been ordered in some sensible
way (for example, a sample of annual stock returns, ordered by market
capitalisation). Recursive estimation simply involves starting with a sub-
sample of the data, estimating the regression, then sequentially adding
one observation at a time and re-running the regression until the end of
the sample is reached. It is common to begin the initial estimation with
the very minimum number of observations possible, which will be k + 1.
So at the first step, the model is estimated using observations 1 to k + 1;
at the second step, observations 1 to k + 2 are used and so on; at the final
step, observations 1 to T are used. The final result will be the production
of T — k separate estimates of every parameter in the regression model.

It is to be expected that the parameter estimates produced near the
start of the recursive procedure will appear rather unstable since these
estimates are being produced using so few observations, but the key ques-
tion is whether they then gradually settle down or whether the volatility
continues through the whole sample. Seeing the latter would be an indi-
cation of parameter instability.

It should be evident that RLS in itself is not a statistical test for parame-
ter stability as such, but rather it provides qualitative information which
can be plotted and thus gives a very visual impression of how stable the
parameters appear to be. But two important stability tests, known as the
CUSUM and CUSUMSQ tests, are derived from the residuals of the recur-
sive estimation (known as the recursive residuals).”> The CUSUM statistic
is based on a normalised (i.e. scaled) version of the cumulative sums of
the residuals. Under the null hypothesis of perfect parameter stability, the
CUSUM statistic is zero however many residuals are included in the sum

5 Strictly, the CUSUM and CUSUMSAQ statistics are based on the one-step ahead prediction
errors - i.e. the differences between y; and its predicted value based on the parameters
estimated at time t — 1. See Greene (2002, chapter 7) for full technical details.
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(because the expected value of a disturbance is always zero). A set of £2
standard error bands is usually plotted around zero and any statistic lying
outside the bands is taken as evidence of parameter instability.

The CUSUMSAQ test is based on a normalised version of the cumulative
sums of squared residuals. The scaling is such that under the null hy-
pothesis of parameter stability, the CUSUMSQ statistic will start at zero
and end the sample with a value of 1. Again, a set of +2 standard error
bands is usually plotted around zero and any statistic lying outside these
is taken as evidence of parameter instability.

Stability tests in EViews

In EViews, to access the Chow test, click on the View/Stability Tests/Chow
Breakpoint Test... in the ‘Msoftreg’ regression window. In the new win-
dow that appears, enter the date at which it is believed that a breakpoint
occurred. Input 1996:01 in the dialog box in screenshot 4.4 to split the
sample roughly in half. Note that it is not possible to conduct a Chow
test or a parameter stability test when there are outlier dummy variables

Chow Tests

One or more dates for the breakpoint test

1996:01]

Regressors to vary across breakoints

| c ersandp dprod dcredit dinflation dmoney dspread |
rterm
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in the regression. This occurs because when the sample is split into two
parts, the dummy variable for one of the parts will have values of zero for
all observations, which would thus cause perfect multicollinearity with
the column of ones that is used for the constant term. So ensure that the
Chow test is performed using the regression containing all of the explana-
tory variables except the dummies. By default, EViews allows the values of
all the parameters to vary across the two sub-samples in the unrestricted
regressions, although if we wanted, we could force some of the parameters
to be fixed across the two sub-samples.

EViews gives three versions of the test statistics, as shown in the follow-
ing table.

Chow Breakpoint Test: 1996M01

Null Hypothesis: No breaks at specified breakpoints
Varying regressors: All equation variables

Equation Sample: 1986M05 2007M04

F-statistic 0.581302 Prob. F(8,236) 0.7929
Log likelihood ratio 4.917407 Prob. Chi-Square(8) 0.7664
Wald Statistic 4.650416 Prob. Chi-Square(8) 0.7942

The first version of the test is the familiar F-test, which computes a
restricted version and an unrestricted version of the auxiliary regression
and ‘compares’ the residual sums of squares, while the second and third
versions are based on x? formulations. In this case, all three test statistics
are smaller than their critical values and so the null hypothesis that
the parameters are constant across the two sub-samples is not rejected.
Note that the Chow forecast (i.e. the predictive failure) test could also be
employed by clicking on the View/Stability Tests/Chow Forecast Test. ..
in the regression window. Determine whether the model can predict the
last four observations by entering 2007:01 in the dialog box. The results
of this test are given in the following table.

Chow Forecast Test: Forecast from 2007M01 to 2007M04

F-statistic 0.056576 Prob. F(4,240) 0.9940
Log likelihood ratio 0.237522 Prob. Chi-Square(4) 0.9935

The table indicates that the model can indeed adequately predict the
2007 observations. Thus the conclusions from both forms of the test are
that there is no evidence of parameter instability. However, the conclusion
should really be that the parameters are stable with respect to these partic-
ular break dates. It is important to note that for the model to be deemed
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adequate, it needs to be stable with respect to any break dates that we
may choose. A good way to test this is to use one of the tests based on
recursive estimation.

Click on View/Stability Tests/Recursive Estimates (OLS Only). ... You will
be presented with a menu as shown in screenshot 4.5 containing a number
of options including the CUSUM and CUSUMSQ tests described above and
also the opportunity to plot the recursively estimated coefficients.

Recursive Estimation

Output Coefficient display list

(®) Recursive Residuals (1) ¢(2) c(3) c(4) <(5) (6)
() CUSUM Test a7)4s8)

(O) CUSUM of Squares Test

(O) One-Step Forecast Test
() N-Step Forecast Test
(O Recursive Coefficients

[ ] save Results as Series

First, check the box next to Recursive coefficients and then recur-
sive estimates will be given for all those parameters listed in the ‘Co-
efficient display list’ box, which by default is all of them. Click OK and
you will be presented with eight small figures, one for each parameter,
showing the recursive estimates and 42 standard error bands around
them. As discussed above, it is bound to take some time for the co-
efficients to stabilise since the first few sets are estimated using such
small samples. Given this, the parameter estimates in all cases are re-
markably stable over time. Now go back to View/Stability Tests/Recursive
Estimates (OLS Only). ... and choose CUSUM Test. The resulting graph is in
screenshot 4.6.

Since the line is well within the confidence bands, the conclusion would
be again that the null hypothesis of stability is not rejected. Now repeat
the above but using the CUSUMSAQ test rather than CUSUM. Do we retain
the same conclusion? (No) Why?
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A strategy for constructing econometric models and a
discussion of model-building philosophies

The objective of many econometric model-building exercises is to build a
statistically adequate empirical model which satisfies the assumptions of
the CLRM, is parsimonious, has the appropriate theoretical interpretation,
and has the right ‘shape’ (i.e. all signs on coefficients are ‘correct’ and all
sizes of coefficients are ‘correct’).

But how might a researcher go about achieving this objective? A com-
mon approach to model building is the ‘LSE’ or general-to-specific method-
ology associated with Sargan and Hendry. This approach essentially in-
volves starting with a large model which is statistically adequate and re-
stricting and rearranging the model to arrive at a parsimonious final for-
mulation. Hendry’s approach (see Gilbert, 1986) argues that a good model
is consistent with the data and with theory. A good model will also encom-
pass rival models, which means that it can explain all that rival models
can and more. The Hendry methodology suggests the extensive use of
diagnostic tests to ensure the statistical adequacy of the model.

An alternative philosophy of econometric model-building, which pre-
dates Hendry’s research, is that of starting with the simplest model and
adding to it sequentially so that it gradually becomes more complex
and a better description of reality. This approach, associated principally
with Koopmans (1937), is sometimes known as a ‘specific-to-general’ or
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‘bottoms-up’ modelling approach. Gilbert (1986) termed this the ‘Average
Economic Regression’ since most applied econometric work had been tack-
led in that way. This term was also having a joke at the expense of a top
economics journal that published many papers using such a methodology.

Hendry and his co-workers have severely criticised this approach, mainly
on the grounds that diagnostic testing is undertaken, if at all, almost as
an after-thought and in a very limited fashion. However, if diagnostic tests
are not performed, or are performed only at the end of the model-building
process, all earlier inferences are potentially invalidated. Moreover, if the
specific initial model is generally misspecified, the diagnostic tests them-
selves are not necessarily reliable in indicating the source of the prob-
lem. For example, if the initially specified model omits relevant variables
which are themselves autocorrelated, introducing lags of the included
variables would not be an appropriate remedy for a significant DW test
statistic. Thus the eventually selected model under a specific-to-general
approach could be sub-optimal in the sense that the model selected using
a general-to-specific approach might represent the data better. Under the
Hendry approach, diagnostic tests of the statistical adequacy of the model
come first, with an examination of inferences for financial theory drawn
from the model left until after a statistically adequate model has been
found.

According to Hendry and Richard (1982), a final acceptable model should
satisfy several criteria (adapted slightly here). The model should:

® be logically plausible

® be consistent with underlying financial theory, including satisfying any
relevant parameter restrictions

have regressors that are uncorrelated with the error term

have parameter estimates that are stable over the entire sample

have residuals that are white noise (i.e. completely random and exhibit-
ing no patterns)

be capable of explaining the results of all competing models and more.

The last of these is known as the encompassing principle. A model that
nests within it a smaller model always trivially encompasses it. But a small
model is particularly favoured if it can explain all of the results of a larger
model; this is known as parsimonious encompassing.

The advantages of the general-to-specific approach are that it is statis-
tically sensible and also that the theory on which the models are based
usually has nothing to say about the lag structure of a model. Therefore,
the lag structure incorporated in the final model is largely determined
by the data themselves. Furthermore, the statistical consequences from
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excluding relevant variables are usually considered more serious than
those from including irrelevant variables.

The general-to-specific methodology is conducted as follows. The first
step is to form a ‘large’ model with lots of variables on the RHS. This is
known as a generalised unrestricted model (GUM), which should originate
from financial theory, and which should contain all variables thought to
influence the dependent variable. At this stage, the researcher is required
to ensure that the model satisfies all of the assumptions of the CLRM.
If the assumptions are violated, appropriate actions should be taken to
address or allow for this, e.g. taking logs, adding lags, adding dummy
variables.

It is important that the steps above are conducted prior to any hypoth-
esis testing. It should also be noted that the diagnostic tests presented
above should be cautiously interpreted as general rather than specific
tests. In other words, rejection of a particular diagnostic test null hypoth-
esis should be interpreted as showing that there is something wrong with
the model. So, for example, if the RESET test or White’s test show a rejec-
tion of the null, such results should not be immediately interpreted as
implying that the appropriate response is to find a solution for inappro-
priate functional form or heteroscedastic residuals, respectively. It is quite
often the case that one problem with the model could cause several as-
sumptions to be violated simultaneously. For example, an omitted variable
could cause failures of the RESET, heteroscedasticity and autocorrelation
tests. Equally, a small number of large outliers could cause non-normality
and residual autocorrelation (if they occur close together in the sample)
and heteroscedasticity (if the outliers occur for a narrow range of the
explanatory variables). Moreover, the diagnostic tests themselves do not
operate optimally in the presence of other types of misspecification since
they essentially assume that the model is correctly specified in all other
respects. For example, it is not clear that tests for heteroscedasticity will
behave well if the residuals are autocorrelated.

Once a model that satisfies the assumptions of the CLRM has been ob-
tained, it could be very big, with large numbers of lags and indepen-
dent variables. The next stage is therefore to reparameterise the model by
knocking out very insignificant regressors. Also, some coefficients may be
insignificantly different from each other, so that they can be combined.
At each stage, it should be checked whether the assumptions of the CLRM
are still upheld. If this is the case, the researcher should have arrived
at a statistically adequate empirical model that can be used for testing
underlying financial theories, forecasting future values of the dependent
variable, or for formulating policies.
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However, needless to say, the general-to-specific approach also has its
critics. For small or moderate sample sizes, it may be impractical. In such
instances, the large number of explanatory variables will imply a small
number of degrees of freedom. This could mean that none of the variables
is significant, especially if they are highly correlated. This being the case, it
would not be clear which of the original long list of candidate regressors
should subsequently be dropped. Moreover, in any case the decision on
which variables to drop may have profound implications for the final
specification of the model. A variable whose coefficient was not significant
might have become significant at a later stage if other variables had been
dropped instead.

In theory, sensitivity of the final specification to the various possible
paths of variable deletion should be carefully checked. However, this could
imply checking many (perhaps even hundreds) of possible specifications. It
could also lead to several final models, none of which appears noticeably
better than the others.

The general-to-specific approach, if followed faithfully to the end, will
hopefully lead to a statistically valid model that passes all of the usual
model diagnostic tests and contains only statistically significant regres-
sors. However, the final model could also be a bizarre creature that is
devoid of any theoretical interpretation. There would also be more than
just a passing chance that such a model could be the product of a statisti-
cally vindicated data mining exercise. Such a model would closely fit the
sample of data at hand, but could fail miserably when applied to other
samples if it is not based soundly on theory.

There now follows another example of the use of the classical linear
regression model in finance, based on an examination of the determinants
of sovereign credit ratings by Cantor and Packer (1996).

Determinants of sovereign credit ratings

Background

Sovereign credit ratings are an assessment of the riskiness of debt issued
by governments. They embody an estimate of the probability that the bor-
rower will default on her obligation. Two famous US ratings agencies,
Moody’s and Standard and Poor’s, provide ratings for many governments.
Although the two agencies use different symbols to denote the given risk-
iness of a particular borrower, the ratings of the two agencies are com-
parable. Gradings are split into two broad categories: investment grade
and speculative grade. Investment grade issuers have good or adequate
payment capacity, while speculative grade issuers either have a high
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degree of uncertainty about whether they will make their payments, or
are already in default. The highest grade offered by the agencies, for the
highest quality of payment capacity, is ‘triple A’, which Moody’s denotes
‘Aaa’ and Standard and Poor’s denotes ‘AAA’. The lowest grade issued to a
sovereign in the Cantor and Packer sample was B3 (Moody’s) or B— (Stan-
dard and Poor’s). Thus the number of grades of debt quality from the
highest to the lowest given to governments in their sample is 16.

The central aim of Cantor and Packer’s paper is an attempt to explain
and model how the agencies arrived at their ratings. Although the ratings
themselves are publicly available, the models or methods used to arrive
at them are shrouded in secrecy. The agencies also provide virtually no
explanation as to what the relative weights of the factors that make up the
rating are. Thus, a model of the determinants of sovereign credit ratings
could be useful in assessing whether the ratings agencies appear to have
acted rationally. Such a model could also be employed to try to predict
the rating that would be awarded to a sovereign that has not previously
been rated and when a re-rating is likely to occur. The paper continues,
among other things, to consider whether ratings add to publicly available
information, and whether it is possible to determine what factors affect
how the sovereign yields react to ratings announcements.

Data

Cantor and Packer (1996) obtain a sample of government debt ratings for
49 countries as of September 1995 that range between the above grad-
ings. The ratings variable is quantified, so that the highest credit quality
(Aaa/AAA) in the sample is given a score of 16, while the lowest rated
sovereign in the sample is given a score of 1 (B3/B—). This score forms the
dependent variable. The factors that are used to explain the variability
in the ratings scores are macroeconomic variables. All of these variables
embody factors that are likely to influence a government’s ability and
willingness to service its debt costs. Ideally, the model would also include
proxies for socio-political factors, but these are difficult to measure ob-
jectively and so are not included. It is not clear in the paper from where
the list of factors was drawn. The included variables (with their units of
measurement) are:

® Per capita income (in 1994 thousand US dollars). Cantor and Packer ar-
gue that per capita income determines the tax base, which in turn in-
fluences the government’s ability to raise revenue.

® GDP growth (annual 1991-4 average, %). The growth rate of increase in
GDP is argued to measure how much easier it will become to service
debt costs in the future.
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® Inflation (annual 1992-4 average, %). Cantor and Packer argue that high
inflation suggests that inflationary money financing will be used to
service debt when the government is unwilling or unable to raise the
required revenue through the tax system.

® Fiscal balance (average annual government budget surplus as a propor-
tion of GDP 1992-4, %). Again, a large fiscal deficit shows that the
government has a relatively weak capacity to raise additional revenue
and to service debt costs.

® External balance (average annual current account surplus as a proportion
of GDP 19924, %). Cantor and Packer argue that a persistent current
account deficit leads to increasing foreign indebtedness, which may be
unsustainable in the long run.

® External debt (foreign currency debt as a proportion of exports in 1994,
%). Reasoning as for external balance (which is the change in external
debt over time).

© Dummy for economic development (=1 for a country classified by the IMF as
developed, 0 otherwise). Cantor and Packer argue that credit ratings
agencies perceive developing countries as relatively more risky beyond
that suggested by the values of the other factors listed above.

® Dummy for default history (=1 if a country has defaulted, 0 otherwise).
It is argued that countries that have previously defaulted experience a
large fall in their credit rating.

The income and inflation variables are transformed to their logarithms.
The model is linear and estimated using OLS. Some readers of this book
who have a background in econometrics will note that strictly, OLS is not
an appropriate technique when the dependent variable can take on only
one of a certain limited set of values (in this case, 1, 2, 3,...16). In such
applications, a technique such as ordered probit (not covered in this text)
would usually be more appropriate. Cantor and Packer argue that any
approach other than OLS is infeasible given the relatively small sample
size (49), and the large number (16) of ratings categories.

The results from regressing the rating value on the variables listed above
are presented in their exhibit 5, adapted and presented here as table 4.2.
Four regressions are conducted, each with identical independent vari-
ables but a different dependent variable. Regressions are conducted for
the rating score given by each agency separately, with results presented
in columns (4) and (5) of table 4.2. Occasionally, the ratings agencies give
different scores to a country - for example, in the case of Italy, Moody’s
gives a rating of ‘A1’, which would generate a score of 12 on a 16-scale.
Standard and Poor’s (S and P), on the other hand, gives a rating of ‘AA’,
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Table 4.2 Determinants and impacts of sovereign credit ratings
Dependent variable
Explanatory Expected Average Moody’s S&P Difference
variable sign rating rating rating Moody’s/S&P
(1) (2) (3) (4) (5) (6)
Intercept ? 1.442 3.408 —0.524 3.932**
(0.663) (1.379) (—0.223) (2.521)
Per capita income + 1.242% 1.027%* 1.458* —0.431**
(5.302) (4.041) (6.048) (—2.688)
GDP growth + 0.151 0.130 0.171** —0.040
(1.935) (1.545) (2.132) (0.756)
Inflation — —0.611*** —0.630** —0.591** —0.039
(—2.839) (—2.701) (—2.671) (—0.265)
Fiscal balance + 0.073 0.049 0.097* —0.048
(1.324) (0.818) (1.71) (—1.274)
External balance + 0.003 0.006 0.001 0.006
(0.314) (0.535) (0.046) (0.779)
External debt - —0.013"** —0.015"** —0.011*** —0.004***
(—5.088) (—5.365) (—4.236) (—2.133)
Development dummy + 2.776** 2.957%* 2.595%* 0.362
(4.25) (4.175) (3.861) (0.81)
Default dummy — —2.042%* —1.63** —2.622% 1.159%*
(—3.175) (—2.097) (—3.962) (2.632)
Adjusted R? 0.924 0.905 0.926 0.836

Notes: t-ratios in parentheses; *, ** and *** indicate significance at the 10%, 5% and
1% levels, respectively.
Source: Cantor and Packer (1996). Reprinted with permission from Institutional

4.14.3

Investor.

which would score 14 on the 16-scale, two gradings higher. Thus a regres-
sion with the average score across the two agencies, and with the differ-
ence between the two scores as dependent variables, is also conducted,
and presented in columns (3) and (6), respectively of table 4.2.

Interpreting the models

The models are difficult to interpret in terms of their statistical adequacy,
since virtually no diagnostic tests have been undertaken. The values of
the adjusted R?, at over 90% for each of the three ratings regressions,
are high for cross-sectional regressions, indicating that the model seems
able to capture almost all of the variability of the ratings about their
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mean values across the sample. There does not appear to be any attempt
at reparameterisation presented in the paper, so it is assumed that the
authors reached this set of models after some searching.

In this particular application, the residuals have an interesting interpre-
tation as the difference between the actual and fitted ratings. The actual
ratings will be integers from 1 to 16, although the fitted values from the
regression and therefore the residuals can take on any real value. Cantor
and Packer argue that the model is working well as no residual is bigger
than 3, so that no fitted rating is more than three categories out from the
actual rating, and only four countries have residuals bigger than two cat-
egories. Furthermore, 70% of the countries have ratings predicted exactly
(i.e. the residuals are less than 0.5 in absolute value).

Now, turning to interpret the models from a financial perspective, it is
of interest to investigate whether the coefficients have their expected signs
and sizes. The expected signs for the regression results of columns (3)—(5)
are displayed in column (2) of table 4.2 (as determined by this author).
As can be seen, all of the coefficients have their expected signs, although
the fiscal balance and external balance variables are not significant or are
only very marginally significant in all three cases. The coefficients can be
interpreted as the average change in the rating score that would result
from a unit change in the variable. So, for example, a rise in per capita
income of $1,000 will on average increase the rating by 1.0 units according
to Moody’s and 1.5 units according to Standard & Poor’s. The development
dummy suggests that, on average, a developed country will have a rating
three notches higher than an otherwise identical developing country. And
everything else equal, a country that has defaulted in the past will have
a rating two notches lower than one that has always kept its obligation.

By and large, the ratings agencies appear to place similar weights on
each of the variables, as evidenced by the similar coefficients and signif-
icances across columns (4) and (5) of table 4.2. This is formally tested in
column (6) of the table, where the dependent variable is the difference be-
tween Moody’s and Standard and Poor’s ratings. Only three variables are
statistically significantly differently weighted by the two agencies. Stan-
dard & Poor’s places higher weights on income and default history, while
Moody’s places more emphasis on external debt.

The relationship between ratings and yields

In this section of the paper, Cantor and Packer try to determine whether
ratings have any additional information useful for modelling the cross-
sectional variability of sovereign yield spreads over and above that con-
tained in publicly available macroeconomic data. The dependent variable
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Do ratings add to public information?

Dependent variable: In (yield spread)

Variable Expected sign (1) (2) (3)
Intercept ? 2.105% 0.466 0.074
(16.148) (0.345) (0.071)
Average rating — —0.221%* —0.218™**
(—19.175) (—4.276)
Per capita — —0.144 0.226
income (—0.927) (1.523)
GDP growth — —0.004 0.029
(—0.142) (1.227)
Inflation + 0.108 —0.004
(1.393) (—0.068)
Fiscal balance — —0.037 —0.02
(—1.557) (—1.045)
External balance — —0.038 —0.023
(—1.29) (—1.008)
External debt + 0.003*** 0.000
(2.651) (0.095)
Development — —0.723"** —0.38
dummy (—2.059) (—1.341)
Default dummy + 0.612%** 0.085
(2.577) (0.385)
Adjusted R? 0.919 0.857 0.914

Notes: t-ratios in parentheses; *, **and *** indicate significance at the 10%, 5% and 1%
levels, respectively.
Source: Cantor and Packer (1996). Reprinted with permission from Institutional Investor.

is now the log of the yield spread, i.e.
In(Yield on the sovereign bond - Yield on a US Treasury Bond)

One may argue that such a measure of the spread is imprecise, for the
true credit spread should be defined by the entire credit quality curve
rather than by just two points on it. However, leaving this issue aside, the
results are presented in table 4.3.

Three regressions are presented in table 4.3, denoted specifications (1),
(2) and (3). The first of these is a regression of the In(spread) on only a
constant and the average rating (column (1)), and this shows that ratings
have a highly significant inverse impact on the spread. Specification (2)
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is a regression of the In(spread) on the macroeconomic variables used in
the previous analysis. The expected signs are given (as determined by this
author) in column (2). As can be seen, all coefficients have their expected
signs, although now only the coefficients belonging to the external debt
and the two dummy variables are statistically significant. Specification
(3) is a regression on both the average rating and the macroeconomic
variables. When the rating is included with the macroeconomic factors,
none of the latter is any longer significant - only the rating coefficient
is statistically significantly different from zero. This message is also por-
trayed by the adjusted R? values, which are highest for the regression
containing only the rating, and slightly lower for the regression contain-
ing the macroeconomic variables and the rating. One may also observe
that, under specification (3), the coefficients on the per capita income,
GDP growth and inflation variables now have the wrong sign. This is, in
fact, never really an issue, for if a coefficient is not statistically significant,
it is indistinguishable from zero in the context of hypothesis testing, and
therefore it does not matter whether it is actually insignificant and pos-
itive or insignificant and negative. Only coefficients that are both of the
wrong sign and statistically significant imply that there is a problem with
the regression.

It would thus be concluded from this part of the paper that there is no
more incremental information in the publicly available macroeconomic
variables that is useful for predicting the yield spread than that embodied
in the rating. The information contained in the ratings encompasses that
contained in the macroeconomic variables.

What determines how the market reacts to ratings announcements?

Cantor and Packer also consider whether it is possible to build a model
to predict how the market will react to ratings announcements, in terms
of the resulting change in the yield spread. The dependent variable for
this set of regressions is now the change in the log of the relative spread,
i.e. log|(yield - treasury yield)/treasury yield], over a two-day period at the
time of the announcement. The sample employed for estimation comprises
every announcement of a ratings change that occurred between 1987 and
1994; 79 such announcements were made, spread over 18 countries. Of
these, 39 were actual ratings changes by one or more of the agencies,
and 40 were listed as likely in the near future to experience a regrad-
ing. Moody’s calls this a ‘watchlist’, while Standard and Poor’s term it
their ‘outlook’ list. The explanatory variables are mainly dummy variables
for:
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© whether the announcement was positive - i.e. an upgrade

® whether there was an actual ratings change or just listing for probable
regrading

® whether the bond was speculative grade or investment grade

® whether there had been another ratings announcement in the previous
60 days

® the ratings gap between the announcing and the other agency.

The following cardinal variable was also employed:
o the change in the spread over the previous 60 days.

The results are presented in table 4.4, but in this text, only the final
specification (numbered 5 in Cantor and Packer’s exhibit 11) containing
all of the variables described above is included.

As can be seen from table 4.4, the models appear to do a relatively poor
job of explaining how the market will react to ratings announcements.
The adjusted R? value is only 12%, and this is the highest of the five

Table 4.4 What determines reactions to ratings announcements?

Dependent variable: log relative spread

Independent variable Coefficient (t-ratio)
Intercept —0.02
(—1.4)
Positive announcements 0.01
(0.34)
Ratings changes —0.01
(—0.37)
Moody’s announcements 0.02
(1.51)
Speculative grade 0.03**
(2.33)
Change in relative spreads from day —60 to day —1 —0.06
(—1.1)
Rating gap 0.03*
(1.7)
Other rating announcements from day —60 to day —1 0.05**
(2.15)
Adjusted R? 0.12

Note: * and ** denote significance at the 10% and 5% levels, respectively.
Source: Cantor and Packer (1996). Reprinted with permission from Institutional Investor.
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specifications tested by the authors. Further, only two variables are signif-
icant and one marginally significant of the seven employed in the model.
It can therefore be stated that yield changes are significantly higher fol-
lowing a ratings announcement for speculative than investment grade
bonds, and that ratings changes have a bigger impact on yield spreads if
there is an agreement between the ratings agencies at the time the an-
nouncement is made. Further, yields change significantly more if there
has been a previous announcement in the past 60 days than if not. On
the other hand, neither whether the announcement is an upgrade or
downgrade, nor whether it is an actual ratings change or a name on the
watchlist, nor whether the announcement is made by Moody’s or Stan-
dard & Poor’s, nor the amount by which the relative spread has already
changed over the past 60 days, has any significant impact on how the
market reacts to ratings announcements.

Conclusions

e To summarise, six factors appear to play a big role in determining
sovereign credit ratings - incomes, GDP growth, inflation, external debt,
industrialised or not and default history

® The ratings provide more information on yields than all of the macro-
economic factors put together

® One cannot determine with any degree of confidence what factors de-
termine how the markets will react to ratings announcements.

Key concepts
The key terms to be able to define and explain from this chapter are

® homoscedasticity ® heteroscedasticity

® autocorrelation ® dynamic model

® equilibrium solution ® robust standard errors
® skewness ® kurtosis

® outlier ® functional form

® multicollinearity ® omitted variable

® irrelevant variable ® parameter stability

® recursive least squares ® general-to-specific approach

Review questions

1. Are assumptions made concerning the unobservable error terms (u;) or
about their sample counterparts, the estimated residuals (0;)? Explain
your answer.
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2. What pattern(s) would one like to see in a residual plot and why?

3. A researcher estimates the following model for stock market returns,
but thinks that there may be a problem with it. By calculating the
t-ratios, and considering their significance and by examining the value
of R? or otherwise, suggest what the problem might be.

§i = 0.638 + 0.402x5 — 0.891xy R?=0.96, R?=0.89
(0.436) (0.291)  (0.763) (4.75)

How might you go about solving the perceived problem?

4. (a) State in algebraic notation and explain the assumption about the
CLRM’s disturbances that is referred to by the term
‘homoscedasticity’.

(b) What would the consequence be for a regression model if the
errors were not homoscedastic?

(c) How might you proceed if you found that (b) were actually the case?

5. (a) What do you understand by the term ‘autocorrelation’?

(b) An econometrician suspects that the residuals of her model might
be autocorrelated. Explain the steps involved in testing this theory
using the Durbin—-Watson (DW) test.

(c) The econometrician follows your guidance (!!!) in part (b) and
calculates a value for the Durbin—Watson statistic of 0.95. The
regression has 60 quarterly observations and three explanatory
variables (plus a constant term). Perform the test. What is your
conclusion?

(d) In order to allow for autocorrelation, the econometrician decides to
use a model in first differences with a constant

Ayt = B1 + BoAXot + BaAXat + BaAXar + Ut (4.76)

By attempting to calculate the long-run solution to this model,
explain what might be a problem with estimating models entirely in
first differences.

(e) The econometrician finally settles on a model with both first
differences and lagged levels terms of the variables

Ayt = B1 + B2 AXor + BaAXat + BaAXar + BsXor—1
+ BeXat—1 + BrXat—1 + vt (4.77)

Can the Durbin—-Watson test still validly be used in this case?
6. Calculate the long-run static equilibrium solution to the following
dynamic econometric model

Ayt = B1 + B2 AXot + Bz AXat + BaYi—1 + BsXot—1
+ BeXat—1 + BrXst—a + Ut (4.78)
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7. What might Ramsey’s RESET test be used for? What could be done if it

were found that the RESET test has been failed?

8. (a) Why is it necessary to assume that the disturbances of a

regression model are normally distributed?

(b) In a practical econometric modelling situation, how might the
problem that the residuals are not normally distributed be
addressed?

9. (a) Explain the term ‘parameter structural stability’?

10.

(b) A financial econometrician thinks that the stock market crash of
October 1987 fundamentally changed the risk—return relationship
given by the CAPM equation. He decides to test this hypothesis
using a Chow test. The model is estimated using monthly data from
January 1980-December 1995, and then two separate regressions
are run for the sub-periods corresponding to data before and after
the crash. The model is

N =o+ lngt + Ut (479)

so that the excess return on a security at time t is regressed upon
the excess return on a proxy for the market portfolio at time t. The
results for the three models estimated for shares in British Airways
(BA) are as follows:
1981 M1-1995M12

re = 0.0215 4 1.491 ryy RSS =0.189 T =180 (4.80)
1981M1-1987M10

re = 0.0163 + 1.308 Iyt RSS=0.079 T = 82 (4.81)
1987M11-1995M12

r. = 0.0360 + 1.613 ryy, RSS=0.082 T =98 (4.82)

(c) What are the null and alternative hypotheses that are being tested
here, in terms of « and 8?

(d) Perform the test. What is your conclusion?

For the same model as above, and given the following results, do a

forward and backward predictive failure test:

1981 M1-1995M12

r = 0.0215 + 1.491 ryy RSS =0.189 T =180 (4.83)
1981M1-1994M12

re = 0.0212 4 1.478 ryy RSS=0.148 T = 168 (4.84)
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1982M1-1995M12
re = 0.0217 + 1.523 RSS =0.182 T = 168 (4.85)

What is your conclusion?

11. Why is it desirable to remove insignificant variables from a regression?

12. Explain why it is not possible to include an outlier dummy variable in a
regression model when you are conducting a Chow test for parameter
stability. Will the same problem arise if you were to conduct a predictive
failure test? Why or why not?

13. Re-open the ‘macro.wfl’ and apply the stepwise procedure including all
of the explanatory variables as listed above, i.e. ersandp dprod dcredit
dinflation dmoney dspread rterm with a strict 5% threshold criterion for
inclusion in the model. Then examine the resulting model both
financially and statistically by investigating the signs, sizes and
significances of the parameter estimates and by conducting all of the
diagnostic tests for model adequacy.
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Learning Outcomes
In this chapter, you will learn how to

® Explain the defining characteristics of various types of
stochastic processes

® Identify the appropriate time series model for a given data
series

® Produce forecasts for ARMA and exponential smoothing models
® Evaluate the accuracy of predictions using various metrics

® Estimate time series models and produce forecasts from them
in EViews

5.1 Introduction

Univariate time series models are a class of specifications where one attempts
to model and to predict financial variables using only information con-
tained in their own past values and possibly current and past values of an
error term. This practice can be contrasted with structural models, which
are multivariate in nature, and attempt to explain changes in a variable
by reference to the movements in the current or past values of other (ex-
planatory) variables. Time series models are usually a-theoretical, implying
that their construction and use is not based upon any underlying theo-
retical model of the behaviour of a variable. Instead, time series models
are an attempt to capture empirically relevant features of the observed
data that may have arisen from a variety of different (but unspecified)
structural models. An important class of time series models is the fam-
ily of AutoRegressive Integrated Moving Average (ARIMA) models, usually
associated with Box and Jenkins (1976). Time series models may be useful
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when a structural model is inappropriate. For example, suppose that there
is some variable y; whose movements a researcher wishes to explain. It
may be that the variables thought to drive movements of y; are not ob-
servable or not measurable, or that these forcing variables are measured
at a lower frequency of observation than y;. For example, y; might be a
series of daily stock returns, where possible explanatory variables could
be macroeconomic indicators that are available monthly. Additionally, as
will be examined later in this chapter, structural models are often not
useful for out-of-sample forecasting. These observations motivate the con-
sideration of pure time series models, which are the focus of this chapter.

The approach adopted for this topic is as follows. In order to define,
estimate and use ARIMA models, one first needs to specify the notation
and to define several important concepts. The chapter will then consider
the properties and characteristics of a number of specific models from the
ARIMA family. The book endeavours to answer the following question: ‘For
a specified time series model with given parameter values, what will be its
defining characteristics?’ Following this, the problem will be reversed, so
that the reverse question is asked: ‘Given a set of data, with characteristics
that have been determined, what is a plausible model to describe that
data?

Some notation and concepts

The following sub-sections define and describe several important concepts
in time series analysis. Each will be elucidated and drawn upon later in
the chapter. The first of these concepts is the notion of whether a series is
stationary or not. Determining whether a series is stationary or not is very
important, for the stationarity or otherwise of a series can strongly influ-
ence its behaviour and properties. Further detailed discussion of station-
arity, testing for it, and implications of it not being present, are covered
in chapter 7.

A strictly stationary process

A strictly stationary process is one where, for any t;, t,..., tt € Z, any
keZand T =1,2,...

Fyh’ Yigo oo o5 Yty (Y1, ceey yT) = Fytﬁ-k’ Y4ks -+ -5 YtT+k(Y1, sy yT) (51)

where F denotes the joint distribution function of the set of random vari-
ables (Tong, 1990, p.3). It can also be stated that the probability measure
for the sequence {y;} is the same as that for {y;,x}Vk (where ‘Vk’ means
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‘for all values of k’). In other words, a series is strictly stationary if the
distribution of its values remains the same as time progresses, implying
that the probability that y falls within a particular interval is the same
now as at any time in the past or the future.

A weakly stationary process

If a series satisfies (5.2)-(5.4) fort =1, 2, ..., oo, it is said to be weakly or
covariance stationary

(1) E(y) =n (5.2)
(@) E(yi — )yt — p) = 0% < 00 (5.3)
(3) E(yy, — )Y, — ) = vty Y, o (5.4)

These three equations state that a stationary process should have a con-
stant mean, a constant variance and a constant autocovariance structure,
respectively. Definitions of the mean and variance of a random variable
are probably well known to readers, but the autocovariances may not be.

The autocovariances determine how Yy is related to its previous values,
and for a stationary series they depend only on the difference between
t; and t, so that the covariance between y; and y;_; is the same as the
covariance between Y;_19 and Y;_1;, etc. The moment

E(Yt - E(Yt))()/t—s - E(yt,s)) =V¥,S= O’ 1» 2a v (55)

is known as the autocovariance function. When s = 0, the autocovariance at
lag zero is obtained, which is the autocovariance of y; with Vy;, i.e. the vari-
ance of y. These covariances, ys, are also known as autocovariances since
they are the covariances of y with its own previous values. The autocovari-
ances are not a particularly useful measure of the relationship between y
and its previous values, however, since the values of the autocovariances
depend on the units of measurement of y;, and hence the values that they
take have no immediate interpretation.

It is thus more convenient to use the autocorrelations, which are the
autocovariances normalised by dividing by the variance

=2 s=o012... (5.6)

Yo
The series 7 now has the standard property of correlation coefficients
that the values are bounded to lie between +1. In the case that s = 0, the
autocorrelation at lag zero is obtained, i.e. the correlation of y; with vy,
which is of course 1. If 75 is plotted against s =0, 1, 2,..., a graph known
as the autocorrelation function (acf) or correlogram is obtained.
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A white noise process

Roughly speaking, a white noise process is one with no discernible struc-
ture. A definition of a white noise process is

E(y) = 1 (5.7)
var(y) = o’

o? if t=r
Vor = {0 otherwise (59)

Thus a white noise process has constant mean and variance, and zero
autocovariances, except at lag zero. Another way to state this last condi-
tion would be to say that each observation is uncorrelated with all other
values in the sequence. Hence the autocorrelation function for a white
noise process will be zero apart from a single peak of 1 ats = 0.If u = 0,
and the three conditions hold, the process is known as zero mean white
noise.

If it is further assumed that y; is distributed normally, then the sample
autocorrelation coefficients are also approximately normally distributed

73 ~ approx. N(0,1/T)

where T is the sample size, and 7; denotes the autocorrelation coefficient
at lag s estimated from a sample. This result can be used to conduct
significance tests for the autocorrelation coefficients by constructing a
non-rejection region (like a confidence interval) for an estimated autocor-
relation coefficient to determine whether it is significantly different from
zero. For example, a 95% non-rejection region would be given by

1
+1.96 x i

for s # 0. If the sample autocorrelation coefficient, 7s, falls outside this
region for a given value of s, then the null hypothesis that the true value
of the coefficient at that lag s is zero is rejected.

It is also possible to test the joint hypothesis that all m of the ty corre-
lation coefficients are simultaneously equal to zero using the Q-statistic
developed by Box and Pierce (1970)

Q=T)Y # (5.10)
k=1

where T = sample size, m = maximum lag length.

The correlation coefficients are squared so that the positive and nega-
tive coefficients do not cancel each other out. Since the sum of squares of
independent standard normal variates is itself a x? variate with degrees
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of freedom equal to the number of squares in the sum, it can be stated
that the Q-statistic is asymptotically distributed as a x2 under the null
hypothesis that all m autocorrelation coefficients are zero. As for any joint
hypothesis test, only one autocorrelation coefficient needs to be statisti-
cally significant for the test to result in a rejection.

However, the Box-Pierce test has poor small sample properties, implying
that it leads to the wrong decision too frequently for small samples. A
variant of the Box-Pierce test, having better small sample properties, has
been developed. The modified statistic is known as the Ljung-Box (1978)
statistic

m %2
Q' =T(T+2)) = ~x (5.11)
k=1

It should be clear from the form of the statistic that asymptotically (that
is, as the sample size increases towards infinity), the (T 4+ 2) and (T —k)
terms in the Ljung-Box formulation will cancel out, so that the statis-
tic is equivalent to the Box-Pierce test. This statistic is very useful as a
portmanteau (general) test of linear dependence in time series.

Suppose that a researcher had estimated the first five autocorrelation co-
efficients using a series of length 100 observations, and found them to be

Lag 1 2 3 4 5
Autocorrelation coefficient 0.207 —-0.013 0.086 0.005 —0.022

Test each of the individual correlation coefficients for significance, and
test all five jointly using the Box-Pierce and Ljung-Box tests.

A 95% confidence interval can be constructed for each coefficient using

1
+1.96 x —
VT

where T = 100 in this case. The decision rule is thus to reject the null
hypothesis that a given coefficient is zero in the cases where the coeffi-
cient lies outside the range (—0.196, +0.196). For this example, it would
be concluded that only the first autocorrelation coefficient is significantly
different from zero at the 5% level.

Now, turning to the joint tests, the null hypothesis is that all of the
first five autocorrelation coefficients are jointly zero, i.e.

Ho:‘171:0,‘[2:0,‘53:0,‘[4:0,‘[5:0



5.3

Univariate time series modelling and forecasting 211

The test statistics for the Box-Pierce and Ljung-Box tests are given respec-
tively as

Q =100 x (0.207% + —0.013? + 0.086% + 0.005° + —0.022?)
=5.09 (5.12)
0.2072 N —0.0132 N 0.0862
100—1  100—2 ' 100—3
0.0052  —0.0222
):5%

Q*:lOOxlOZx(

+ 100 — 4 * 100 -5 (5.13)
The relevant critical values are from a x? distribution with 5 degrees of
freedom, which are 11.1 at the 5% level, and 15.1 at the 1% level. Clearly,
in both cases, the joint null hypothesis that all of the first five autocorre-
lation coefficients are zero cannot be rejected. Note that, in this instance,
the individual test caused a rejection while the joint test did not. This is an
unexpected result that may have arisen as a result of the low power of the
joint test when four of the five individual autocorrelation coefficients are
insignificant. Thus the effect of the significant autocorrelation coefficient
is diluted in the joint test by the insignificant coefficients. The sample size
used in this example is also modest relative to those commonly available
in finance.

Moving average processes

The simplest class of time series model that one could entertain is that
of the moving average process. Let u; (t = 1, 2, 3,...) be a white noise
process with E(u;) = 0 and var(u;) = 0. Then

Yt = i+ Ut +O1U—1 + OUg_o + - - + OqUi_q (5.14)
is a qth order moving average mode, denoted MA(q). This can be expressed
using sigma notation as

iur—i + Ut (5.15)

q
Vi =1+

i=1
A moving average model is simply a linear combination of white noise
processes, so that y; depends on the current and previous values of a white
noise disturbance term. Equation (5.15) will later have to be manipulated,
and such a process is most easily achieved by introducing the lag operator
notation. This would be written Ly; = y;_; to denote that y; is lagged once.

In order to show that the ith lag of y; is being taken (that is, the value
that y; took i periods ago), the notation would be L'y, = y;_;. Note that in
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some books and studies, the lag operator is referred to as the ‘backshift
operator’, denoted by B. Using the lag operator notation, (5.15) would be
written as

q -
Vi =+ 6 L'uy + uy (5.16)
i=1
or as
Yo = p+6(L)ut (5.17)

where: O(L) =1+ 6;1L + 6,12 + -+ - + 6, LI

In much of what follows, the constant (u) is dropped from the equations.
Removing u considerably eases the complexity of algebra involved, and is
inconsequential for it can be achieved without loss of generality. To see
this, consider a sample of observations on a series, z; that has a mean z. A
zero-mean series, y; can be constructed by simply subtracting z from each
observation z;.

The distinguishing properties of the moving average process of order (
given above are

(1) E(y) =1 (5.18)
(2) var(yr) = yo = (L+6{ + 65 + -+ 65)0? (5.19)
(3) covariances ys

(65 + o161 + O5262 + - -+ + 6q6qs) o? for s=1,2,...,q

) for s>q (5-20)

So, a moving average process has constant mean, constant variance, and

autocovariances which may be non-zero to lag g and will always be zero
thereafter. Each of these results will be derived below.

___________________________________________________________________________________|
Consider the following MA(2) process

Yt = Ut + 61U + OaUi—2 (5.21)

where U; is a zero mean white noise process with variance o2,

(1) Calculate the mean and variance of Y;

(2) Derive the autocorrelation function for this process (i.e. express the
autocorrelations, 11, 7, ... as functions of the parameters 6; and 6,)

(3) If 61 = —0.5 and 6, = 0.25, sketch the acf of y;.
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Solution

(1) If E(u¢) =0, then E(ut_j) =0 Vi (5.22)

So the expected value of the error term is zero for all time periods.
Taking expectations of both sides of (5.21) gives

E(yt) = E(ut + 61Ut_1 + O2U¢_2)
= E(up) + 61E(ui—1) + 62E(Ur2) =0 (5.23)
var(yy) = E[yr — E(y)I[y: — E(y)] (5.24)

but E(y;) = 0, so that the last component in each set of square brackets
in (5.24) is zero and this reduces to

var(y:) = E[(y:)(y1)] (5.25)
Replacing y; in (5.25) with the RHS of (5.21)

var(yi) = E[(ut + 61Ui—1 + 62Ur—2) (Ut + O1Ui—1 + 62U—2)] (5.26)
var(yy) = E [u? + 67u?_; + 6Zu?_, + cross-products] (5.27)

But E|cross-products] = 0 since cov(u¢, Ut_s) = 0 for s # 0. ‘Cross-products’
is thus a catchall expression for all of the terms in u which have
different time subscripts, such as U;_1U;_» Or U;_sU;_29, etc. Again, one
does not need to worry about these cross-product terms, since these
are effectively the autocovariances of u;, which will all be zero by
definition since u; is a random error process, which will have zero
autocovariances (except at lag zero). So

var(yy) = yo = E [u? + 67u?_; + 6Zu?,] (5.28)
var(y) = yo = 0° + 670 + 030° (5.29)
var(y)) = yo = (1467 +65) o® (5.30)

1 can also be interpreted as the autocovariance at lag zero.

(2) Calculating now the acf of y;, first determine the autocovariances
and then the autocorrelations by dividing the autocovariances by the
variance.

The autocovariance at lag 1 is given by

y1 = E[yt — E(y))Ilyt-1 — E(yt-1)] (5.31)
v = ElVil[yi-1] (5.32)
Y1 = E[(Ut + O1Ut—1 + 62U _2)(Ur—1 + O1Ut— + GoUr_3)] (5.33)
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Again, ignoring the cross-products, (5.33) can be written as
y1=E[(O1u s + 616207 ,)]
Y1 = 010° + 016,02
y = (61 + 016)0°
The autocovariance at lag 2 is given by
v2 = E[yt — E(y)l[yi—2 — E(Yt-2)]
v2 = E[yil[yi-2]
2 = E[(Ut + 01Ut—1 + O2Ur—2)(Ut—2 + O1Ut—3 + 62Ut_4)]

ve = E[(62u7 ;)]
Y2 = 620

The autocovariance at lag 3 is given by
vs = Elyt — E(y)l[Yi-3 — E(yi-3)]
vs = Elyillyi-a]
ys = E[(Ut + O1Ut—1 + OpUt—2)(Ut—3 + O1U—g + O2Ur5)]

y3=0

5.42
543

(5.42)
(5.43)
(5.44)
(5.45)

545

So ys = 0 for s 2. All autocovariances for the MA(2) process will be zero

for any lag length, s, greater than 2.
The autocorrelation at lag 0 is given by

T0 = @ =1
Yo
The autocorrelation at lag 1 is given by
LN (61 + 6162)0° (61 + 6162)
1=—= =

vo  (L+62+63)02  (L+62+63)
The autocorrelation at lag 2 is given by

) (62)0 02
T2 = — =

vo  (L+62+63)02  (L+62+63)

The autocorrelation at lag 3 is given by

3 = ﬁ =0
Yo
The autocorrelation at lag s is given by
‘L’S = ﬁ = O V S > 2

Y0

(5.46)

(5.47)

(5.48)

(5.49)

(5.50)
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Figure 5.1

54

lag, s

Autocorrelation function for sample MA(2) process

(3) For 6, = —0.5 and 6, = 0.25, substituting these into the formulae
above gives the first two autocorrelation coefficients as 7; = —0.476,
72 = 0.190. Autocorrelation coefficients for lags greater than 2 will
all be zero for an MA(2) model. Thus the acf plot will appear as in
figure 5.1.

Autoregressive processes

An autoregressive model is one where the current value of a variable, Y,
depends upon only the values that the variable took in previous periods
plus an error term. An autoregressive model of order p, denoted as AR(p),
can be expressed as

Yt =+ P1Yi-1+ P2Yi—2 + -+ dpYip + Ut (5.51)

where U; is a white noise disturbance term. A manipulation of expression
(5.51) will be required to demonstrate the properties of an autoregres-
sive model. This expression can be written more compactly using sigma
notation

p
Yo =pn+ Z¢i Yi—i + Ut (5.52)
i—1
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or using the lag operator, as

%=WL+_i¢ﬂjw+ﬂh (5.53)
or

(L)yr = i+ U (5.54)
where ¢(L) = (1 — 1L — ¢oL2 — ... — ¢ LP).

5.4.1 The stationarity condition

Stationarity is a desirable property of an estimated AR model, for several
reasons. One important reason is that a model whose coefficients are non-
stationary will exhibit the unfortunate property that previous values of
the error term will have a non-declining effect on the current value of
Yt as time progresses. This is arguably counter-intuitive and empirically
implausible in many cases. More discussion on this issue will be presented
in chapter 7. Box 5.1 defines the stationarity condition algebraically.

The stationarity condition for an AR(p) model

Setting u to zero in (5.54), for a zero mean AR (p) process, Vi, given by

(L)Y = uy (5.55)
it would be stated that the process is stationary if it is possible to write

ye = ¢(L)Mu, (5.56)

with ¢(L)~* converging to zero. This means that the autocorrelations will decline
eventually as the lag length is increased. When the expansion ¢(L)~! is calculated, it
will contain an infinite number of terms, and can be written as an MA(c0), e.g.
aiU¢_1 + axU;_p + agUg_3 + - - - + U;. If the process given by (5.54) is stationary, the
coefficients in the MA(c0) representation will decline eventually with lag length. On
the other hand, if the process is non-stationary, the coefficients in the MA(co)
representation would not converge to zero as the lag length increases.

The condition for testing for the stationarity of a general AR(p) model is that the
roots of the ‘characteristic equation’

1= 12— $22 =+ — 2" =0 (5.57)

all lie outside the unit circle. The notion of a characteristic equation is so-called
because its roots determine the characteristics of the process y; — for example, the
acf for an AR process will depend on the roots of this characteristic equation, which is
a polynomial in z.



Example 5.3

5.4.2

Univariate time series modelling and forecasting 217

|
Is the following model stationary?

Yt = Yi—1 + Ut (5.58)

In order to test this, first write y;_; in lag operator notation (i.e. as Ly;),
and take this term over to the LHS of (5.58), and factorise

Yt = Lyt + Ut (5.59)
Yt — Lyt = Ut (5.60)
yi(1 —L) = u (5.61)

Then the characteristic equation is
1-z=0, (5.62)

having the root z = 1, which lies on, not outside, the unit circle. In fact,
the particular AR(p) model given by (5.58) is a non-stationary process
known as a random walk (see chapter 7).

This procedure can also be adopted for autoregressive models with
longer lag lengths and where the stationarity or otherwise of the process
is less obvious. For example, is the following process for y; stationary?

Vi = 3Yi_1 — 2.75y; 2 4+ 0.75y;_3 + Uy (5.63)

Again, the first stage is to express this equation using the lag operator
notation, and then taking all the terms in y over to the LHS

yi = 3Ly, — 2.75L%y, + 0.75L3%y, + uq (5.64)
(1 —3L +2.75L% — 0.75L%)y; = uq (5.65)

The characteristic equation is

1—32+427522-0.7522 =0 (5.66)
which fortunately factorises to

(1-2)(1—-152)(1-052)=0 (5.67)

so that the roots are z=1, z = 2/3, and z = 2. Only one of these lies
outside the unit circle and hence the process for y; described by (5.63) is
not stationary.

Wold’s decomposition theorem

Wold’s decomposition theorem states that any stationary series can be de-
composed into the sum of two unrelated processes, a purely deterministic
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part and a purely stochastic part, which will be an MA(co). A simpler
way of stating this in the context of AR modelling is that any stationary
autoregressive process of order p with no constant and no other terms
can be expressed as an infinite order moving average model. This result is
important for deriving the autocorrelation function for an autoregressive
process.

For the AR(p) model, given in, for example, (5.51) (with u set to zero for
simplicity) and expressed using the lag polynomial notation, ¢(L)y; = ug,
the Wold decomposition is

ye = ¥ (L)u (5.68)
where (L) = ¢(L) ™ = (1 — 1L — ¢pL2 — - — ¢ppLP)7 2

The characteristics of an autoregressive process are as follows. The (un-
conditional) mean of y is given by

N W
E(yt)_1—¢1—¢2—"'—¢p

The autocovariances and autocorrelation functions can be obtained by
solving a set of simultaneous equations known as the Yule-Walker equa-
tions. The Yule-Walker equations express the correlogram (the ts) as a
function of the autoregressive coefficients (the ¢s)

(5.69)

L =¢1+ T2+ -+ Tp_1p
T =nd1+¢2+ -+ Tp_20p
I (5.70)
Tp = Tp—1¢l + Tp—2¢2 +-+ ¢p

For any AR model that is stationary, the autocorrelation function will
decay geometrically to zero.! These characteristics of an autoregressive
process will be derived from first principles below using an illustrative
example.

___________________________________________________________________________________|
Consider the following simple AR(1) model

Yo = 1+ PrYi—1 + Ut (5.71)

(i) Calculate the (unconditional) mean ;.
For the remainder of the question, set the constant to zero (u = 0)
for simplicity.

1 Note that the 75 will not follow an exact geometric sequence, but rather the absolute
value of the 75 is bounded by a geometric series. This means that the autocorrelation
function does not have to be monotonically decreasing and may change sign.
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(ii) Calculate the (unconditional) variance of ;.
(iii) Derive the autocorrelation function for this process.

Solution

(i) The unconditional mean will be given by the expected value of ex-
pression (5.71)

E(y:) = E(u + ¢1Yi-1) (5.72)

E(yt) = 1+ ¢1E(Yi-1) (5.73)
But also

Yi-1 = b+ P1Yi—2 + Ut-1 (5.74)

So, replacing y;_1 in (5.73) with the RHS of (5.74)

E(y) = 1+ ¢1(1 + p1E(Vi—2)) (5.75)
E(yt) = i+ drt + H?E(yi_2) (5.76)

Lagging (5.74) by a further one period
Yi—2 = 1+ P1Y1-3 + Ut (5.77)

Repeating the steps given above one more time

E(yt) = 1+ dre + (1 + p1E(yr_3)) (5.78)
E(yt) = 1+ ¢t + @2 + ¢SE(Ve_3) (5.79)

Hopefully, readers will by now be able to see a pattern emerging.
Making n such substitutions would give

E(v) = (1 +¢1+ @7+ -+ o1 1) + ¢IE(Vin) (5.80)

So long as the model is stationary, i.e. |¢1] < 1, then ¢{° = 0. Therefore,
taking limits as n — oo, then Iimn_mo(piE(yt_n) =0, and so

E(y) =n(l+¢1+of+--) (5.81)

Recall the rule of algebra that the finite sum of an infinite number
of geometrically declining terms in a series is given by ‘first term in
series divided by (1 minus common difference)’, where the common
difference is the quantity that each term in the series is multiplied
by to arrive at the next term. It can thus be stated from (5.81) that

I

E(y) = 1— 4,

(5.82)
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Thus the expected or mean value of an autoregressive process of order
one is given by the intercept parameter divided by one minus the
autoregressive coefficient.

(ii) Calculating now the variance of y;, with u set to zero

—

Yo = ¢1Yi-1 + U (5.83)

This can be written equivalently as

Yi(1 — ¢1L) = uy (5.84)
From Wold’s decomposition theorem, the AR(p) can be expressed as
an MA(c0)

yo = (1 —¢1l) uy (5.85)

i = (1_|_¢1|_ +¢5L2+"‘)Ut (5.86)
or

Yo = Ut + 11 + diUio + Pz + - - (5.87)

So long as |¢1| < 1, i.e. so long as the process for y; is stationary, this
sum will converge.

From the definition of the variance of any random variable vy, it is
possible to write

var(y) = E[yr — E(y)lly: — E(yo)] (5.88)
but E(y;) = 0, since u is set to zero to obtain (5.83) above. Thus

var(y:) = E[(y:)(y1)] (5.89)

var(y;) = E[ (Ut + ¢rUi—1 + PiUr_2 + - ) (Ut + paui—1 + Piu_2 + - ]

(5.90)

var(y;) = E [u? + ¢ZuZ_; + ¢fu’_, + - - - + cross-products] (5.91)

As discussed above, the ‘cross-products’ can be set to zero.

var(yy) = yo = E[u? + ¢ui , + ¢iui_, + -] (5.92)
var(y) = 0% + o’ + ¢lo’ + - (5.93)
var(yy) = o2 (1 + ¢2 + ¢ +--) (5.94)

Provided that |¢;1| < 1, the infinite sum in (5.94) can be written as

o2

var(yy) = — (5.95)
(1-¢9)

(iii) Turning now to the calculation of the autocorrelation function, the

autocovariances must first be calculated. This is achieved by following
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similar algebraic manipulations as for the variance above, starting
with the definition of the autocovariances for a random variable. The
autocovariances for lags 1, 2, 3,..., s, will be denoted by y1, y2, v3, . . .,
¥s, as previously.

y1 = CoV (Y1, Yt-1) = E[yt — E(Yo)l[Yi-1 — E(Yt-1)] (5.96)
Since u has been set to zero, E(y;) = 0 and E(y;_1) =0, so

y1 = ElYyiyi-1] (5.97)
under the result above that E(y;) = E(y;—1) = 0. Thus

y1 = E[(ut + rti—1 + ¢Zuio + -+ ) (U1 + Palii—2
+¢fut_3 + .- )] (598)
v = E[¢1u? ; + ¢3u, + - - + cross — products] (5.99)

Again, the cross-products can be ignored so that

=g’ + @30 + pjo’ + - - (5.100)
$10°
V= (5.102)
LT (19D
For the second autocovariance,
Y2 = cov(Yt, Yi—2) = E[yt — E(Y)l[Yi—2 — E(yt-2)] (5.103)

Using the same rules as applied above for the lag 1 covariance

v2 = E[ytyt—2] (5.104)
o = E[(Ug + dali—1 + pfui—2 + -+ ) (U—2 + P13

+ PP+ )] (5.105)
o = E[¢2uZ_, + ¢1u? 5 + - - - + crossproducts] (5.106)
y2 = pio’ + pio + - (5.107)
vo =50’ (1+ 7 +¢1+ ) (5.108)

fo?

2= g (5.109)

By now it should be possible to see a pattern emerging. If these steps
were repeated for ys, the following expression would be obtained
3.2
1o
Y3 = 7 (5.110)
(1-¢%)
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and for any lag s, the autocovariance would be given by

5.2
Vs = L‘z (5.111)
(1-¢9)
The acf can now be obtained by dividing the covariances by the vari-
ance, so that

w=22-1 (5.112)
Yo
( $10?
1— 2
n="= Sl 1 (5.113)
Y0 02
((1 — ¢1)
(6”5
1— 2
== =909 _ 2 (5.114)
Yo 0‘2
((l - ¢%)>
3= ¢} (5.115)

The autocorrelation at lag s is given by
s = ¢ (5.116)

which means that corr(y;, yi—s) = ¢;. Note that use of the Yule-Walker
equations would have given the same answer.

5.5 The partial autocorrelation function

The partial autocorrelation function, or pacf (denoted 7y), measures the
correlation between an observation k periods ago and the current ob-
servation, after controlling for observations at intermediate lags (i.e. all
lags <Kk) - i.e. the correlation between y; and Y;_, after removing the ef-
fects of Vi—k+1, Yi—k+2, - - - » Yi—1. For example, the pacf for lag 3 would mea-
sure the correlation between y; and y;_3 after controlling for the effects
of yt—1 and y; ».

At lag 1, the autocorrelation and partial autocorrelation coefficients
are equal, since there are no intermediate lag effects to eliminate. Thus,
711 = 11, where 7 is the autocorrelation coefficient at lag 1.

At lag 2

Top = (tz — 1:12)/(1 — 1:12) (5.117)
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where t; and 1, are the autocorrelation coefficients at lags 1 and 2, re-
spectively. For lags greater than two, the formulae are more complex and
hence a presentation of these is beyond the scope of this book. There now
proceeds, however, an intuitive explanation of the characteristic shape of
the pacf for a moving average and for an autoregressive process.

In the case of an autoregressive process of order p, there will be direct
connections between y; and Yy;_s for s < p, but no direct connections for
s > p. For example, consider the following AR(3) model

Yt = o + P1Yi—1 + P2Yi—2 + P3Yi—3 + Up (5.118)

There is a direct connection through the model between y; and y;_1, and
between y; and y;_», and between Y; and Y;_3, but not between y; and Y;_s,
for s > 3. Hence the pacfwill usually have non-zero partial autocorrelation
coefficients for lags up to the order of the model, but will have zero partial
autocorrelation coefficients thereafter. In the case of the AR(3), only the
first three partial autocorrelation coefficients will be non-zero.

What shape would the partial autocorrelation function take for a mov-
ing average process? One would need to think about the MA model as
being transformed into an AR in order to consider whether y; and V;_g,
k=1, 2,..., are directly connected. In fact, so long as the MA(q) pro-
cess is invertible, it can be expressed as an AR(co). Thus a definition of
invertibility is now required.

The invertibility condition

An MA(q) model is typically required to have roots of the characteristic
equation 6(z) = 0 greater than one in absolute value. The invertibility
condition is mathematically the same as the stationarity condition, but
is different in the sense that the former refers to MA rather than AR
processes. This condition prevents the model from exploding under an
AR(00) representation, so that §71(L) converges to zero. Box 5.2 shows the
invertibility condition for an MA(2) model.

ARMA processes

By combining the AR(p) and MA(q) models, an ARMA(p, q) model is
obtained. Such a model states that the current value of some series y
depends linearly on its own previous values plus a combination of cur-
rent and previous values of a white noise error term. The model could be
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Box 5.2 The invertibility condition for an MA(2) model

In order to examine the shape of the pacf for moving average processes, consider the
following MA(2) process for y;

Yo = Ut + O1Ur1 + Ol = O(L)Uy (5.119)

Provided that this process is invertible, this MA(2) can be expressed as an AR(oco)

o0

Yo=Y GL'yii+u (5.120)
i=1

Yt = C1Yt-1 + CoY1—2 + CaYi—3 + - - - + Ut (5.121)

It is now evident when expressed in this way that for a moving average model, there are
direct connections between the current value of y and all of its previous values. Thus,
the partial autocorrelation function for an MA(q) model will decline geometrically, rather
than dropping off to zero after q lags, as is the case for its autocorrelation function. It
could thus be stated that the acf for an AR has the same basic shape as the pacf for
an MA, and the acf for an MA has the same shape as the pacf for an AR.

written

(L)yr = e+ 0(L)u (5.122)
where

p(L)y=1— 1L —ppL? — --- —p,LP and

O(L) =14 6L +6,L2 + - 46, LE
or

Vi =+ P1Yi-1+ P2Yt—2 + -+ GpYrp + 01Ut
+ 60Ut + - - - + OqUi—q + Uy (5.123)
with
E(ui) = 0;E(uf) = 0% E(uiUs) = 0, t #S

The characteristics of an ARMA process will be a combination of those
from the autoregressive (AR) and moving average (MA) parts. Note that
the pacf is particularly useful in this context. The acf alone can distin-
guish between a pure autoregressive and a pure moving average process.
However, an ARMA process will have a geometrically declining acf, as will
a pure AR process. So, the pacf is useful for distinguishing between an
AR(p) process and an ARMA(p, q) process - the former will have a geomet-
rically declining autocorrelation function, but a partial autocorrelation
function which cuts off to zero after p lags, while the latter will have
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both autocorrelation and partial autocorrelation functions which decline
geometrically.

We can now summarise the defining characteristics of AR, MA and
ARMA processes.

An autoregressive process has:

® a geometrically decaying acf
® a number of non-zero points of pacf = AR order.

A moving average process has:

® number of non-zero points of acf = MA order
® a geometrically decaying pacf.

A combination autoregressive moving average process has:

® a geometrically decaying acf
® a geometrically decaying pacf.

In fact, the mean of an ARMA series is given by

7

SR R s
The autocorrelation function will display combinations of behaviour de-
rived from the AR and MA parts, but for lags beyond g, the acf will simply
be identical to the individual AR(p) model, so that the AR part will dom-
inate in the long term. Deriving the acf and pacf for an ARMA process
requires no new algebra, but is tedious and hence is left as an exercise
for interested readers.

(5.124)

Sample acf and pacf plots for standard processes

Figures 5.2-5.8 give some examples of typical processes from the ARMA
family with their characteristic autocorrelation and partial autocorrela-
tion functions. The acf and pacf are not produced analytically from the
relevant formulae for a model of that type, but rather are estimated using
100,000 simulated observations with disturbances drawn from a normal
distribution. Each figure also has 5% (two-sided) rejection bands repre-
sented by dotted lines. These are based on (+1.96/,/100000) = +0.0062,
calculated in the same way as given above. Notice how, in each case, the
acf and pacf are identical for the first lag.

In figure 5.2, the MA(1) has an acf that is significant for only lag 1,
while the pacf declines geometrically, and is significant until lag 7. The
acf at lag 1 and all of the pacfs are negative as a result of the negative
coefficient in the MA generating process.
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Figure 5.8 Sample autocorrelation and partial autocorrelation functions for an ARMA(1, 1) model:

Yt = 0.5y;-1 + 0.5u1 + Uy

Again, the structures of the acf and pacfin figure 5.3 are as anticipated.
The first two autocorrelation coefficients only are significant, while the
partial autocorrelation coefficients are geometrically declining. Note also
that, since the second coefficient on the lagged error term in the MA
is negative, the acf and pacf alternate between positive and negative. In
the case of the pacf, we term this alternating and declining function a
‘damped sine wave’ or ‘damped sinusoid’.

For the autoregressive model of order 1 with a fairly high coefficient -
i.e. relatively close to 1 - the autocorrelation function would be expected
to die away relatively slowly, and this is exactly what is observed here in
figure 5.4. Again, as expected for an AR(1), only the first pacf coefficient
is significant, while all others are virtually zero and are not significant.

Figure 5.5 plots an AR(1), which was generated using identical error
terms, but a much smaller autoregressive coefficient. In this case, the
autocorrelation function dies away much more quickly than in the previ-
ous example, and in fact becomes insignificant after around 5 lags.

Figure 5.6 shows the acf and pacf for an identical AR(1) process to that
used for figure 5.5, except that the autoregressive coefficient is now nega-
tive. This results in a damped sinusoidal pattern for the acf, which again
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becomes insignificant after around lag 5. Recalling that the autocorre-
lation coefficient for this AR(1) at lag s is equal to (—0.5)%, this will be
positive for even s, and negative for odd s. Only the first pacf coefficient
is significant (and negative).

Figure 5.7 plots the acf and pacf for a non-stationary series (see
chapter 7 for an extensive discussion) that has a unit coefficient on the
lagged dependent variable. The result is that shocks to y never die away,
and persist indefinitely in the system. Consequently, the acf function re-
mains relatively flat at unity, even up to lag 10. In fact, even by lag 10,
the autocorrelation coefficient has fallen only to 0.9989. Note also that on
some occasions, the acf does die away, rather than looking like figure 5.7,
even for such a non-stationary process, owing to its inherent instability
combined with finite computer precision. The pacf, however, is significant
only for lag 1, correctly suggesting that an autoregressive model with no
moving average term is most appropriate.

Finally, figure 5.8 plots the acf and pacf for a mixed ARMA process.
As one would expect of such a process, both the acf and the pacf decline
geometrically - the acf as a result of the AR part and the pacf as a result of
the MA part. The coefficients on the AR and MA are, however, sufficiently
small that both acf and pacf coefficients have become insignificant by
lag 6.

Building ARMA models: the Box-Jenkins approach

Although the existence of ARMA models predates them, Box and Jenkins
(1976) were the first to approach the task of estimating an ARMA model in
a systematic manner. Their approach was a practical and pragmatic one,
involving three steps:

(1) Identification
(2) Estimation
(3) Diagnostic checking.

These steps are now explained in greater detail.

Step 1

This involves determining the order of the model required to capture the dy-
namic features of the data. Graphical procedures are used (plotting the
data over time and plotting the acf and pacf) to determine the most ap-
propriate specification.
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Step 2

This involves estimation of the parameters of the model specified in step 1. This
can be done using least squares or another technique, known as maximum
likelihood, depending on the model.

Step 3

This involves model checking — i.e. determining whether the model spec-
ified and estimated is adequate. Box and Jenkins suggest two methods:
overfitting and residual diagnostics. Overfitting involves deliberately fitting
a larger model than that required to capture the dynamics of the data
as identified in stage 1. If the model specified at step 1 is adequate, any
extra terms added to the ARMA model would be insignificant. Residual di-
agnostics imply checking the residuals for evidence of linear dependence
which, if present, would suggest that the model originally specified was
inadequate to capture the features of the data. The acf, pacf or Ljung-Box
tests could be used.

It is worth noting that ‘diagnostic testing’ in the Box-Jenkins world es-
sentially involves only autocorrelation tests rather than the whole barrage
of tests outlined in chapter 4. Also, such approaches to determining the ad-
equacy of the model could only reveal a model that is underparameterised
(‘too small’) and would not reveal a model that is overparameterised (‘too
big)).

Examining whether the residuals are free from autocorrelation is much
more commonly used than overfitting, and this may partly have arisen
since for ARMA models, it can give rise to common factors in the overfit-
ted model that make estimation of this model difficult and the statistical
tests ill behaved. For example, if the true model is an ARMA(1,1) and we de-
liberately then fit an ARMA(2,2) there will be a common factor so that not
all of the parameters in the latter model can be identified. This problem
does not arise with pure AR or MA models, only with mixed processes.

It is usually the objective to form a parsimonious model, which is one that
describes all of the features of data of interest using as few parameters
(i.e. as simple a model) as possible. A parsimonious model is desirable
because:

® The residual sum of squares is inversely proportional to the number of
degrees of freedom. A model which contains irrelevant lags of the
variable or of the error term (and therefore unnecessary parameters)
will usually lead to increased coefficient standard errors, implying that
it will be more difficult to find significant relationships in the data.
Whether an increase in the number of variables (i.e. a reduction in
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the number of degrees of freedom) will actually cause the estimated
parameter standard errors to rise or fall will obviously depend on how
much the RSS falls, and on the relative sizes of T and k. If T is very
large relative to k, then the decrease in RSS is likely to outweigh the
reduction in T — k so that the standard errors fall. Hence ‘large’ models
with many parameters are more often chosen when the sample size is
large.

® Models that are profligate might be inclined to fit to data specific fea-
tures, which would not be replicated out-of-sample. This means that the
models may appear to fit the data very well, with perhaps a high value
of R?, but would give very inaccurate forecasts. Another interpretation
of this concept, borrowed from physics, is that of the distinction be-
tween ‘signal’ and ‘noise’. The idea is to fit a model which captures the
signal (the important features of the data, or the underlying trends or
patterns), but which does not try to fit a spurious model to the noise
(the completely random aspect of the series).

5.7.1 Information criteria for ARMA model selection

The identification stage would now typically not be done using graphi-
cal plots of the acf and pacf. The reason is that when ‘messy’ real data is
used, it unfortunately rarely exhibits the simple patterns of figures 5.2-5.8.
This makes the acf and pacf very hard to interpret, and thus it is diffi-
cult to specify a model for the data. Another technique, which removes
some of the subjectivity involved in interpreting the acf and pacf, is to
use what are known as information criteria. Information criteria embody
two factors: a term which is a function of the residual sum of squares
(RSS), and some penalty for the loss of degrees of freedom from adding
extra parameters. So, adding a new variable or an additional lag to a
model will have two competing effects on the information criteria: the
residual sum of squares will fall but the value of the penalty term will
increase.

The object is to choose the number of parameters which minimises the
value of the information criteria. So, adding an extra term will reduce
the value of the criteria only if the fall in the residual sum of squares
is sufficient to more than outweigh the increased value of the penalty
term. There are several different criteria, which vary according to how
stiff the penalty term is. The three most popular information criteria
are Akaike’s (1974) information criterion (AIC), Schwarz’s (1978) Bayesian
information criterion (SBIC), and the Hannan-Quinn criterion (HQIC).
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Algebraically, these are expressed, respectively, as

AIC = In(6?) +2T—k (5.125)
SBIC = In(6?) + ; InT (5.126)
HQIC = In(6?%) + 2T—k In(In(T)) (5.127)

where 62 is the residual variance (also equivalent to the residual sum
of squares divided by the number of observations, T), k=p+q+1 is
the total number of parameters estimated and T is the sample size. The
information criteria are actually minimised subject to p < p,q <q, i.e.
an upper limit is specified on the number of moving average (q) and/or
autoregressive (p) terms that will be considered.

It is worth noting that SBIC embodies a much stiffer penalty term than
AIC, while HQIC is somewhere in between. The adjusted R? measure can
also be viewed as an information criterion, although it is a very soft one,
which would typically select the largest models of all.

5.7.2 Which criterion should be preferred if they suggest different model orders?

SBIC is strongly consistent (but inefficient) and AIC is not consistent, but is
generally more efficient. In other words, SBIC will asymptotically deliver
the correct model order, while AIC will deliver on average too large a
model, even with an infinite amount of data. On the other hand, the
average variation in selected model orders from different samples within
a given population will be greater in the context of SBIC than AIC. Overall,
then, no criterion is definitely superior to others.

5.7.3 ARIMA modelling

ARIMA modelling, as distinct from ARMA modelling, has the additional
letter ‘T’ in the acronym, standing for ‘integrated’. An integrated au-
toregressive process is one whose characteristic equation has a root on
the unit circle. Typically researchers difference the variable as neces-
sary and then build an ARMA model on those differenced variables. An
ARMA(p, q) model in the variable differenced d times is equivalent to an
ARIMA(p, d, g) model on the original data - see chapter 7 for further de-
tails. For the remainder of this chapter, it is assumed that the data used in
model construction are stationary, or have been suitably transformed to
make them stationary. Thus only ARMA models will be considered further.
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Constructing ARMA models in EViews

Getting started

This example uses the monthly UK house price series which was already
incorporated in an EViews workfile in chapter 1. There were a total of
196 monthly observations running from February 1991 (recall that the
January observation was ‘lost’ in constructing the lagged value) to May
2007 for the percentage change in house price series.

The objective of this exercise is to build an ARMA model for the house
price changes. Recall that there are three stages involved: identification, es-
timation and diagnostic checking. The first stage is carried out by looking
at the autocorrelation and partial autocorrelation coefficients to identify
any structure in the data.

Estimating the autocorrelation coefficients for up to 12 lags

Double click on the DHP series and then click View and choose Correlo-
gram . ... In the ‘Correlogram Specification’ window, choose Level (since
the series we are investigating has already been transformed into percent-
age returns or percentage changes) and in the ‘Lags to include’ box, type
12. Click on OK. The output, including relevant test statistics, is given in
screenshot 5.1.

It is clearly evident from the first columns that the series is quite persis-
tent given that it is already in percentage change form. The autocorrela-
tion function dies away quite slowly. Only the first partial autocorrelation
coefficient appears strongly significant. The numerical values of the auto-
correlation and partial autocorrelation coefficients at lags 1-12 are given
in the fourth and fifth columns of the output, with the lag length given
in the third column.

The penultimate column of output gives the statistic resulting from a
Ljung-Box test with number of lags in the sum equal to the row number
(i.e. the number in the third column). The test statistics will follow a x?(1)
for the first row, a x2(2) for the second row, and so on. p-values associated
with these test statistics are given in the last column.

Remember that as a rule of thumb, a given autocorrelation coefficient
is classed as significant if it is outside a +1.96 x 1/(T)2 band, where T
is the number of observations. In this case, it would imply that a cor-
relation coefficient is classed as significant if it is bigger than approx-
imately 0.14 or smaller than —0.14. The band is of course wider when
the sampling frequency is monthly, as it is here, rather than daily where
there would be more observations. It can be deduced that the first three
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B8 Series: DHP Workfile: UKHP::Untitled\ g‘@g‘

View|Froc] obyect|Froperties (Sample Genr|sheet]Graph[Stats]ide
| Correlogram of DHP

Date: 08/31/07 Time: 15:40
Sample: 1991M01 2007M05
Included observations: 196

Autocorrelation  Partial Correlation AC PAC Q-Stat Prob

0254 0254 12854 0.000
0370 0327 40284 0.000
0.170 0028 46.092 0.000
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0.084 0.038 52609 0.000
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0.137 0028 68332 0.000
0.288 0.159 85.767 0.000
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autocorrelation coefficients and the first two partial autocorrelation co-
efficients are significant under this rule. Since the first acf coefficient is
highly significant, the Ljung-Box joint test statistic rejects the null hy-
pothesis of no autocorrelation at the 1% level for all numbers of lags
considered. It could be concluded that a mixed ARMA process could be
appropriate, although it is hard to precisely determine the appropriate
order given these results. In order to investigate this issue further, the
information criteria are now employed.

Using information criteria to decide on model orders

As demonstrated above, deciding on the appropriate model orders from
autocorrelation functions could be very difficult in practice. An easier way
is to choose the model order that minimises the value of an information
criterion.

An important point to note is that books and statistical packages often
differ in their construction of the test statistic. For example, the formu-
lae given earlier in this chapter for Akaike’s and Schwarz’s Information
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Criteria were

AIC = |n(&2)+2?k (5.128)
SBIC = In(6%) + $(In T) (5.129)

where 62 is the estimator of the variance of regressions disturbances uy, k
is the number of parameters and T is the sample size. When using the
criterion based on the estimated standard errors, the model with the
lowest value of AIC and SBIC should be chosen. However, EViews uses a
formulation of the test statistic derived from the log-likelihood function
value based on a maximum likelihood estimation (see chapter 8). The
corresponding EViews formulae are

2k
AIC, = —20/T + = (5.130)
k
SBIC, = —2¢/T + =(In T) (5.131)
T N
where | = _E(l +In(27) + In(@'G/T))

Unfortunately, this modification is not benign, since it affects the rela-
tive strength of the penalty term compared with the error variance, some-
times leading different packages to select different model orders for the
same data and criterion!

Suppose that it is thought that ARMA models from order (0,0) to (5,5)
are plausible for the house price changes. This would entail considering
36 models (ARMA(0,0), ARMA(1,0), ARMA(2,0), ... ARMA(5,5)), i.e. up to five
lags in both the autoregressive and moving average terms.

In EViews, this can be done by separately estimating each of the models
and noting down the value of the information criteria in each case.” This
would be done in the following way. On the EViews main menu, click
on Quick and choose Estimate Equation .... EViews will open an Equa-
tion Specification window. In the Equation Specification editor, type, for
example

dhp c ar(1) ma(1)

For the estimation settings, select LS — Least Squares (NLS and ARMA),
select the whole sample, and click OK - this will specify an ARMA(1,1).
The output is given in the table below.

2 Alternatively, any reader who knows how to write programs in EViews could set up a
structure to loop over the model orders and calculate all the values of the information
criteria together - see chapter 12.
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Dependent Variable: DHP

Method: Least Squares

Date: 08/31/07 Time: 16:09

Sample (adjusted): 1991M03 2007MO05
Included observations: 195 after adjustments
Convergence achieved after 19 iterations

MA Backcast: 1991M02

Coefficient Std. Error t-Statistic Prob.

C 0.868177 0.334573 2.594884 0.0102

AR(1) 0.975461 0.019471 50.09854 0.0000

MA(1) —0.909851 0.039596 —22.9784 0.0000

R-squared 0.144695 Mean dependent var 0.635212

Adjusted R-squared 0.135786 S.D. dependent var 1.149146

S.E. of regression 1.068282 Akaike info criterion 2.985245

Sum squared resid 219.1154 Schwarz criterion 3.035599

Log likelihood —288.0614 Hannan-Quinn criter. 3.005633

F-statistic 16.24067 Durbin-Watson stat 1.842823
Prob(F-statistic) 0.000000
Inverted AR Roots .98
Inverted MA Roots 91

In theory, the output would then be interpreted in a similar way to
that discussed in chapter 3. However, in reality it is very difficult to in-
terpret the parameter estimates in the sense of, for example, saying, ‘a
1 unit increase in x leads to a § unit increase in y’. In part because the
construction of ARMA models is not based on any economic or financial
theory, it is often best not to even try to interpret the individual param-
eter estimates, but rather to examine the plausibility of the model as a
whole and to determine whether it describes the data well and produces
accurate forecasts (if this is the objective of the exercise, which it often is).

The inverses of the AR and MA roots of the characteristic equation are
also shown. These can be used to check whether the process implied by the
model is stationary and invertible. For the AR and MA parts of the process
to be stationary and invertible, respectively, the inverted roots in each case
must be smaller than 1 in absolute value, which they are in this case,
although only just. Note also that the header for the EViews output for
ARMA models states the number of iterations that have been used in the
model estimation process. This shows that, in fact, an iterative numerical
optimisation procedure has been employed to estimate the coefficients
(see chapter 8 for further details).
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Repeating these steps for the other ARMA models would give all of
the required values for the information criteria. To give just one more
example, in the case of an ARMA(5,5), the following would be typed in the
Equation Specification editor box:

dhp c ar(1) ar(2) ar(3) ar(4) ar(5) ma(1) ma(2) ma(3) ma(4) ma(5)

Note that, in order to estimate an ARMA(5,5) model, it is necessary to
write out the whole list of terms as above rather than to simply write, for
example, ‘dhp c ar(5) ma(5)’, which would give a model with a fifth lag
of the dependent variable and a fifth lag of the error term but no other
variables. The values of all of the information criteria, calculated using
EViews, are as follows:

Information criteria for ARMA models of the
percentage changes in UK house prices

AIC
pla 0 1 2 3 4 5
0 3.116 3.086 2.973 2.973 2.977 2.977
1 3.065 2.985 2.965 2.935 2.931 2.938
2 2.951 2.961 2.968 2.924 2.941 2.957
3 2.960 2.968 2.970 2.980 2.937 2.914
4 2.969 2.979 2.931 2.940 2.862 2.924
5 2.984 2.932 2.955 2.986 2.937 2.936
SBIC
plq 0 1 2 3 4 5
0 3.133 3.120 3.023 3.040 3.061 3.078
1 3.098 3.036 3.032 3.019 3.032 3.056
2 3.002 3.029 3.053 3.025 3.059 3.091
3 3.028 3.053 3.072 3.098 3.072 3.066
4 3.054 3.081 3.049 3.076 3.015 3.094
5 3.086 3.052 3.092 3.049 3.108 3.123

So which model actually minimises the two information criteria? In this
case, the criteria choose different models: AIC selects an ARMA(4,4), while
SBIC selects the smaller ARMA(2,0) model - i.e. an AR(2). These chosen
models are highlighted in bold in the table. It will always be the case
that SBIC selects a model that is at least as small (i.e. with fewer or the
same number of parameters) as AIC, because the former criterion has a
stricter penalty term. This means that SBIC penalises the incorporation
of additional terms more heavily. Many different models provide almost
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identical values of the information criteria, suggesting that the chosen
models do not provide particularly sharp characterisations of the data and
that a number of other specifications would fit the data almost as well.

Examples of time series modelling in finance

Covered and uncovered interest parity

The determination of the price of one currency in terms of another (i.e. the
exchange rate) has received a great deal of empirical examination in the
international finance literature. Of these, three hypotheses in particular
are studied - covered interest parity (CIP), uncovered interest parity (UIP)
and purchasing power parity (PPP). The first two of these will be consid-
ered as illustrative examples in this chapter, while PPP will be discussed in
chapter 7. All three relations are relevant for students of finance, for vio-
lation of one or more of the parities may offer the potential for arbitrage,
or at least will offer further insights into how financial markets operate.
All are discussed briefly here; for a more comprehensive treatment, see
Cuthbertson and Nitsche (2004) or the many references therein.

Covered interest parity

Stated in its simplest terms, CIP implies that, if financial markets are
efficient, it should not be possible to make a riskless profit by borrowing
at a risk-free rate of interest in a domestic currency, switching the funds
borrowed into another (foreign) currency, investing them there at a risk-
free rate and locking in a forward sale to guarantee the rate of exchange
back to the domestic currency. Thus, if CIP holds, it is possible to write

fp —se = (r —r*) (5.132)

where f; and s; are the log of the forward and spot prices of the domestic
in terms of the foreign currency at time t, r is the domestic interest rate
and r* is the foreign interest rate. This is an equilibrium condition which
must hold otherwise there would exist riskless arbitrage opportunities,
and the existence of such arbitrage would ensure that any deviation from
the condition cannot hold indefinitely. It is worth noting that, underlying
CIP are the assumptions that the risk-free rates are truly risk-free - that
is, there is no possibility for default risk. It is also assumed that there are
no transactions costs, such as broker’s fees, bid-ask spreads, stamp duty,
etc., and that there are no capital controls, so that funds can be moved
without restriction from one currency to another.
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Uncovered interest parity

UIP takes CIP and adds to it a further condition known as ‘forward rate
unbiasedness’ (FRU). Forward rate unbiasedness states that the forward
rate of foreign exchange should be an unbiased predictor of the future
value of the spot rate. If this condition does not hold, again in theory
riskless arbitrage opportunities could exist. UIP, in essence, states that
the expected change in the exchange rate should be equal to the interest
rate differential between that available risk-free in each of the currencies.
Algebraically, this may be stated as

Stpr — St =(r — ") (5.133)

where the notation is as above and s{,, is the expectation, made at time
t of the spot exchange rate that will prevail at time t 4 1.

The literature testing CIP and UIP is huge with literally hundreds of
published papers. Tests of CIP unsurprisingly (for it is a pure arbitrage con-
dition) tend not to reject the hypothesis that the condition holds. Taylor
(1987, 1989) has conducted extensive examinations of CIP, and concluded
that there were historical periods when arbitrage was profitable, particu-
larly during periods where the exchange rates were under management.

Relatively simple tests of UIP and FRU take equations of the form (5.133)
and add intuitively relevant additional terms. If UIP holds, these addi-
tional terms should be insignificant. Ito (1988) tests UIP for the yen/dollar
exchange rate with the three-month forward rate for January 1973 until
February 1985. The sample period is split into three as a consequence
of perceived structural breaks in the series. Strict controls on capital
movements were in force in Japan until 1977, when some were relaxed
and finally removed in 1980. A Chow test confirms Ito’s intuition and
suggests that the three sample periods should be analysed separately.
Two separate regressions are estimated for each of the three sample
sub-periods

St43 — fra =a+ba(st — fi—33) + ba(St—1 — fi—a3) + Ut (5.134)

where S5 is the spot interest rate prevailing at time t + 3, f; 3 is the for-
ward rate for three periods ahead available at time t, and so on, and U
is an error term. A natural joint hypothesis to test is Hy: @ = 0 and b; =0
and b, = 0. This hypothesis represents the restriction that the deviation
of the forward rate from the realised rate should have a mean value in-
significantly different from zero (a = 0) and it should be independent of
any information available at time t (b; = 0 and b, = 0). All three of these
conditions must be fulfilled for UIP to hold. The second equation that Ito
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Uncovered interest parity test results

Sample period 1973M1-1977M3 1977M4-1980M12 1981M1-1985M2
Panel A: Estimates and hypothesis tests for
St13 — fiz =a +ba(st — fi—g3) + Da(St-1 — fi—a3) + Ut

Estimate of a 0.0099 0.0031 0.027
Estimate of by 0.020 0.24 0.077
Estimate of by —-0.37 0.16 —-0.21

Joint test x?(3) 23.388 5.248 6.022
P-value for joint test ~ 0.000 0.155 0.111

Panel B: Estimates and hypothesis tests for
Strs — fia=a+b(st — fi3) + v

Estimate of a 0.00 —0.052 —-0.89
Estimate of b 0.095 4.18 2.93
Joint test x%(2) 31.923 22.06 5.39
p-value for joint test ~ 0.000 0.000 0.07

Source: Ito (1988). Reprinted with permission from MIT Press Journals.

tests is
Sty3 — fra =a+b(st — fi3) + vt (5.135)

where v; is an error term and the hypothesis of interest in this case is Hy:
a=0andb=0.

Equation (5.134) tests whether past forecast errors have information use-
ful for predicting the difference between the actual exchange rate at time
t 4+ 3, and the value of it that was predicted by the forward rate. Equation
(5.135) tests whether the forward premium has any predictive power for
the difference between the actual exchange rate at time t+ 3, and the
value of it that was predicted by the forward rate. The results for the
three sample periods are presented in Ito’s table 3, and are adapted and
reported here in table 5.1.

The main conclusion is that UIP clearly failed to hold throughout the
period of strictest controls, but there is less and less evidence against UIP
as controls were relaxed.

Exponential smoothing

Exponential smoothing is another modelling technique (not based on the
ARIMA approach) that uses only a linear combination of the previous
values of a series for modelling it and for generating forecasts of its future
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values. Given that only previous values of the series of interest are used,
the only question remaining is how much weight should be attached to
each of the previous observations. Recent observations would be expected
to have the most power in helping to forecast future values of a series. If
this is accepted, a model that places more weight on recent observations
than those further in the past would be desirable. On the other hand,
observations a long way in the past may still contain some information
useful for forecasting future values of a series, which would not be the
case under a centred moving average. An exponential smoothing model
will achieve this, by imposing a geometrically declining weighting scheme
on the lagged values of a series. The equation for the model is

St = ay; + (1 — oz)St_l (5.136)

where « is the smoothing constant, with 0 < o < 1, y; is the current re-
alised value, S; is the current smoothed value.

Since @ + (1 — o) =1, S; is modelled as a weighted average of the current
observation y; and the previous smoothed value. The model above can be
rewritten to express the exponential weighting scheme more clearly. By
lagging (5.136) by one period, the following expression is obtained

Str=ayi 1+ (1 —a)Si—2 (5.137)
and lagging again

St =ayr2+ (1 —a)S_3 (5.138)
Substituting into (5.136) for S;_; from (5.137)

St=ayt+ (1 —a)(ayr1+ (1 —a)S—2) (5.139)

St =ay + (1 — a)ayr_1 + (1 — @)?St_» (5.140)
Substituting into (5.140) for S;_, from (5.138)

St = ay; + (1 — a)ayi_1 + (1 — @) (ayi—2 + (1 — @)Si_3) (5.141)
St=ay + (1 —a)ayi1+ (1 — a)ayi2+ (1 —)*Ss (5.142)

T successive substitutions of this kind would lead to

]
St = (Z a(l —a) yti) +(1—a) Sy (5.143)

i=0

Since o 0, the effect of each observation declines geometrically as the
variable moves another observation forward in time. In the limit as T —
00, (1—a)" Sy — 0, so that the current smoothed value is a geometrically
weighted infinite sum of the previous realisations.
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The forecasts from an exponential smoothing model are simply set to
the current smoothed value, for any number of steps ahead, s

fis=S,s=1,23,... (5.144)

The exponential smoothing model can be seen as a special case of a Box-
Jenkins model, an ARIMA(0,1,1), with MA coefficient (1 — «) - see Granger
and Newbold (1986, p. 174).

The technique above is known as single or simple exponential smooth-
ing, and it can be modified to allow for trends (Holt’s method) or to allow
for seasonality (Winter’s method) in the underlying variable. These aug-
mented models are not pursued further in this text since there is a much
better way to model the trends (using a unit root process - see chapter 7)
and the seasonalities (see chapters 1 and 9) of the form that are typically
present in financial data.

Exponential smoothing has several advantages over the slightly more
complex ARMA class of models discussed above. First, exponential smooth-
ing is obviously very simple to use. There is no decision to be made on how
many parameters to estimate (assuming only single exponential smooth-
ing is considered). Thus it is easy to update the model if a new realisation
becomes available.

Among the disadvantages of exponential smoothing is the fact that it
is overly simplistic and inflexible. Exponential smoothing models can be
viewed as but one model from the ARIMA family, which may not necessar-
ily be optimal for capturing any linear dependence in the data. Also, the
forecasts from an exponential smoothing model do not converge on the
long-term mean of the variable as the horizon increases. The upshot is
that long-term forecasts are overly affected by recent events in the history
of the series under investigation and will therefore be sub-optimal.

A discussion of how exponential smoothing models can be estimated
using EViews will be given after the following section on forecasting in
econometrics.

Forecasting in econometrics

Although the words ‘forecasting’ and ‘prediction’ are sometimes given
different meanings in some studies, in this text the words will be used
synonymously. In this context, prediction or forecasting simply means an
attempt to determine the values that a series is likely to take. Of course, forecasts
might also usefully be made in a cross-sectional environment. Although
the discussion below refers to time series data, some of the arguments
will carry over to the cross-sectional context.
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Determining the forecasting accuracy of a model is an important test of
its adequacy. Some econometricians would go as far as to suggest that the
statistical adequacy of a model in terms of whether it violates the CLRM
assumptions or whether it contains insignificant parameters, is largely
irrelevant if the model produces accurate forecasts. The following sub-
sections of the book discuss why forecasts are made, how they are made
from several important classes of models, how to evaluate the forecasts,
and so on.

Why forecast?

Forecasts are made essentially because they are useful! Financial decisions
often involve a long-term commitment of resources, the returns to which
will depend upon what happens in the future. In this context, the deci-
sions made today will reflect forecasts of the future state of the world,
and the more accurate those forecasts are, the more utility (or money!) is
likely to be gained from acting on them.

Some examples in finance of where forecasts from econometric models
might be useful include:

Forecasting tomorrow’s return on a particular share

Forecasting the price of a house given its characteristics

Forecasting the riskiness of a portfolio over the next year

Forecasting the volatility of bond returns

Forecasting the correlation between US and UK stock market movements
tomorrow

® Forecasting the likely number of defaults on a portfolio of home loans.

Again, it is evident that forecasting can apply either in a cross-sectional or
a time series context. It is useful to distinguish between two approaches
to forecasting:

® Econometric (structural) forecasting — relates a dependent variable to one or
more independent variables. Such models often work well in the long
run, since a long-run relationship between variables often arises from
no-arbitrage or market efficiency conditions. Examples of such forecasts
would include return predictions derived from arbitrage pricing mod-
els, or long-term exchange rate prediction based on purchasing power
parity or uncovered interest parity theory.

© Time series forecasting — involves trying to forecast the future values of a
series given its previous values and/or previous values of an error term.

The distinction between the two types is somewhat blurred - for example,
it is not clear where vector autoregressive models (see chapter 6 for an
extensive overview) fit into this classification.
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Out-of-sample forecast

In-sample estimation period evaluation period
| L |
[ [l /'I
Jan 1990 Dec 1998 Jan 1999 Dec 1999
Figure 5.9 Use of an in-sample and an out-of-sample period for analysis

5.11.2

5.11.3

It is also worth distinguishing between point and interval forecasts.
Point forecasts predict a single value for the variable of interest, while
interval forecasts provide a range of values in which the future value of
the variable is expected to lie with a given level of confidence.

The difference between in-sample and out-of-sample forecasts

In-sample forecasts are those generated for the same set of data that was
used to estimate the model’s parameters. One would expect the ‘forecasts’
of a model to be relatively good in-sample, for this reason. Therefore, a
sensible approach to model evaluation through an examination of forecast
accuracy is not to use all of the observations in estimating the model
parameters, but rather to hold some observations back. The latter sample,
sometimes known as a holdout sample, would be used to construct out-of-
sample forecasts.

To give an illustration of this distinction, suppose that some monthly
FTSE returns for 120 months (January 1990-December 1999) are available.
It would be possible to use all of them to build the model (and generate
only in-sample forecasts), or some observations could be kept back, as
shown in figure 5.9.

What would be done in this case would be to use data from 1990M1 until
1998M12 to estimate the model parameters, and then the observations for
1999 would be forecasted from the estimated parameters. Of course, where
each of the in-sample and out-of-sample periods should start and finish
is somewhat arbitrary and at the discretion of the researcher. One could
then compare how close the forecasts for the 1999 months were relative to
their actual values that are in the holdout sample. This procedure would
represent a better test of the model than an examination of the in-sample
fit of the model since the information from 1999M1 onwards has not been
used when estimating the model parameters.

Some more terminology: one-step-ahead versus multi-step-ahead
forecasts and rolling versus recursive samples

A one-step-ahead forecast is a forecast generated for the next observation only,
whereas multi-step-ahead forecasts are those generated for 1, 2, 3,..., s steps
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ahead, so that the forecasting horizon is for the next s periods. Whether
one-step- or multi-step-ahead forecasts are of interest will be determined
by the forecasting horizon of interest to the researcher.

Suppose that the monthly FTSE data are used as described in the ex-
ample above. If the in-sample estimation period stops in December 1998,
then up to 12-step-ahead forecasts could be produced, giving 12 predictions
that can be compared with the actual values of the series. Comparing the
actual and forecast values in this way is not ideal, for the forecasting hori-
zon is varying from 1 to 12 steps ahead. It might be the case, for example,
that the model produces very good forecasts for short horizons (say, one
or two steps), but that it produces inaccurate forecasts further ahead. It
would not be possible to evaluate whether this was in fact the case or not
since only a single one-step-ahead forecast, a single 2-step-ahead forecast,
and so on, are available. An evaluation of the forecasts would require a
considerably larger holdout sample.

A useful way around this problem is to use a recursive or rolling window,
which generates a series of forecasts for a given number of steps ahead.
A recursive forecasting model would be one where the initial estimation
date is fixed, but additional observations are added one at a time to the
estimation period. A rolling window, on the other hand, is one where the
length of the in-sample period used to estimate the model is fixed, so
that the start date and end date successively increase by one observation.
Suppose now that only one-, two-, and three-step-ahead forecasts are of
interest. They could be produced using the following recursive and rolling
window approaches:

Objective: to produce Data used to estimate model parameters

1-, 2, 3-step-ahead forecasts for:  Rolling window Recursive window

1999M1, M2, M3 1990M1-1998M12 1990M1-1998M12

1999M2, M3, M4
1999M3, M4, M5
1999M4, M5, M6
1999M5, M6, M7
1999M6, M7, M8
1999M7, M8, M9
1999M8, M9, M10

1999M9, M10, M11
1999M10, M11, M12

1990M2-1999M1
1990M3-1999M2
1990M4-1999M3
1990M5-1999M4
1990M6-1999M5
1990M7-1999M6
1990M8-1999M7
1990M9-1999M8
1990M10-1999M9

1990M1-1999M1
1990M1-1999M2
1990M1-1999M3
1990M1-1999M4
1990M1-1999M5
1990M1-1999M6
1990M1-1999M7
1990M1-1999M8
1990M1-1999M9

The sample length for the rolling windows above is always set at 108
observations, while the number of observations used to estimate the
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parameters in the recursive case increases as we move down the table
and through the sample.

5.11.4 Forecasting with time series versus structural models

To understand how to construct forecasts, the idea of conditional expecta-
tions is required. A conditional expectation would be expressed as

E(Yise | 2t)

This expression states that the expected value of y is taken for time t + 1,
conditional upon, or given, (|) all information available up to and includ-
ing time t (). Contrast this with the unconditional expectation of vy,
which is the expected value of y without any reference to time, i.e. the
unconditional mean of y. The conditional expectations operator is used
to generate forecasts of the series.

How this conditional expectation is evaluated will of course depend on
the model under consideration. Several families of models for forecasting
will be developed in this and subsequent chapters.

A first point to note is that by definition the optimal forecast for a zero
mean white noise process is zero

E(Ut+5|§2t) =0Vs >0 (5145)

The two simplest forecasting ‘methods’ that can be employed in almost
every situation are shown in box 5.3.

Box 5.3 Naive forecasting methods

(1) Assume no change so that the forecast, f, of the value of y, s steps into the future
is the current value of y

E(Yits|R2) = Wt (5.146)

Such a forecast would be optimal if y; followed a random walk process.

(2) In the absence of a full model, forecasts can be generated using the long-term
average of the series. Forecasts using the unconditional mean would be more useful
than ‘no change’ forecasts for any series that is ‘mean-reverting’ (i.e. stationary).

Time series models are generally better suited to the production of time
series forecasts than structural models. For an illustration of this, consider
the following linear regression model

Yt = B1 + BoXot + PaXat + - - + Bkt + Ut (5.147)
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To forecast y, the conditional expectation of its future value is required.
Taking expectations of both sides of (5.147) yields

E(yt [Qt-1) = E(B1 + BoXat + PaXat + - -+ + BXkt + Ut) (5.148)

The parameters can be taken through the expectations operator, since
this is a population regression function and therefore they are assumed
known. The following expression would be obtained

E(yt [€2t—1) = B1 + B2E(X2t) + B3E(Xat) + - - - + BE(Xkt) (5.149)

But there is a problem: what are E(x3), etc.? Remembering that informa-
tion is available only until time t — 1, the values of these variables are
unknown. It may be possible to forecast them, but this would require
another set of forecasting models for every explanatory variable. To the
extent that forecasting the explanatory variables may be as difficult, or
even more difficult, than forecasting the explained variable, this equation
has achieved nothing! In the absence of a set of forecasts for the explana-
tory variables, one might think of using X, etc., i.e. the mean values of
the explanatory variables, giving

E(Y1) = B1 + BoXa + BaXs + -+ + Xk = Y ! (5.150)

Thus, if the mean values of the explanatory variables are used as inputs
to the model, all that will be obtained as a forecast is the average value of
y. Forecasting using pure time series models is relatively common, since
it avoids this problem.

Forecasting with ARMA models

Forecasting using ARMA models is a fairly simple exercise in calculating
conditional expectations. Although any consistent and logical notation
could be used, the following conventions will be adopted in this book. Let
fi s denote a forecast made using an ARMA(p,q) model at time t for s steps
into the future for some series y. The forecasts are generated by what is
known as a forecast function, typically of the form

p q
fis = Zai frsi + Z DjUtis_j (5.151)
i—1 i—1

where fis = VY15, 5 <0; Uys=0,5>0
= ut+Sv S S 0

and a; and b; are the autoregressive and moving average coefficients,
respectively.
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A demonstration of how one generates forecasts for separate AR and
MA processes, leading to the general equation (5.151) above, will now be
given.

Forecasting the future value of an MA(q) process

A moving average process has a memory only of length ¢, and this lim-
its the sensible forecasting horizon. For example, suppose that an MA(3)
model has been estimated

Yt = i+ O1Ug_1 + O2Ur_p + O3Up_3 + Uy (5.152)

Since parameter constancy over time is assumed, if this relationship holds
for the series y at time t, it is also assumed to hold for y at time t + 1,t +
2,..., 50 1 can be added to each of the time subscripts in (5.152), and 2
added to each of the time subscripts, and then 3, and so on, to arrive at
the following

Yis1 = M+ 61U + OoUp_1 + O3Ur 2 + Upys (5.153)
Yit2 = 1+ O1Ut1 + OoUy + O3Ug g + Uggo (5.154)
Vi3 = U+ O1Urqo 4+ GoUr 1 + G3Uy + Uy (5.155)

Suppose that all information up to and including that at time t is available
and that forecasts for 1, 2, ..., s steps ahead - i.e. forecasts for y at times
t+1,t+2,...,t +s are wanted. Vi, Yi_1,..., and U, U;_1, are known, so
producing the forecasts is just a matter of taking the conditional expec-
tation of (5.153)

fi.1 = E(Yta1t) = E( + 61Uy 4 O2Up—1 + O3Up_2 + Upy1|2t) (5.156)
where E(Yi41;t) is a short-hand notation for E(Yiy1]€2t)
fi1 = E(Yir1t) =m0 + 61Up + GoUr_1 + O3Ui_» (5.157)

Thus the forecast for y, 1 step ahead, made at time t, is given by this
linear combination of the disturbance terms. Note that it would not be
appropriate to set the values of these disturbance terms to their uncon-
ditional mean of zero. This arises because it is the conditional expectation
of their values that is of interest. Given that all information is known up
to and including that at time t is available, the values of the error terms
up to time t are known. But Uy is not known at time t and therefore
E(Ut41;t) = 0, and so on.
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The forecast for 2 steps ahead is formed by taking the conditional ex-
pectation of (5.154)

fio = E(Yir21t) = E(u + O1Upy1 + OoUg + O3Ui—1 + Uy | ) (5.158)
ft2 = E(Yta2t) = 1 + 62Ut + 03Uy (5.159)

In the case above, Ui, is not known since information is available only to
time t, so E(Ui,2) is set to zero. Continuing and applying the same rules
to generate 3-, 4-, ..., S-step-ahead forecasts

fi.3 = E(Yiat) = E(u + 61Ut42 + O2Uri1 + O3Ut + Urys | Q) (
fi.3 = E(Yiqait) = 1 + 63Uy (5.161
fia = E(Yiaa) = 1 (
frs =E(Yust) =n Vs >4 (

As the MA(3) process has a memory of only three periods, all forecasts four
or more steps ahead collapse to the intercept. Obviously, if there had been
no constant term in the model, the forecasts four or more steps ahead for
an MA(3) would be zero.

Forecasting the future value of an AR(p) process

Unlike a moving average process, an autoregressive process has infinite
memory. To illustrate, suppose that an AR(2) model has been estimated

Vi = i+ P1Yi-1 + P2Yi—2 + Ut (5.164)

Again, by appealing to the assumption of parameter stability, this equation
will hold for times t +1, t + 2, and so on

Y41 = 1+ P1Yr + P2Yi-1 + Ui (5.165)
Y2 = 1+ P1Yi1 + @2Vt + Ug2 (5.166)
Y43 = 1+ P1Yi42 + P2Yit1 + Uty (5.167)

Producing the one-step-ahead forecast is easy, since all of the information
required is known at time t. Applying the expectations operator to (5.165),
and setting E(u¢,1) to zero would lead to

ft1 = E(Vera) = E( + @1yt + PaYe—1 + Uty | S2) (5.168)
fr1 = E(Yat) =+ 1E(Ye [ 1) + $2E(Yi—1 | 1) (5.169)
fra = E(Yirr) = 4+ o1Vt + 2y (5.170)
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Applying the same procedure in order to generate a two-step-ahead fore-
cast
fio = E(Vit2n) = E(1 + @1Yis1 + d2Yi + Uty | S2) (5.171)
fro = E(Yii2n) = 1+ d1E(Yera [ 1) + d2E(Yr [ 1) (5.172)

The case above is now slightly more tricky, since E(y;;1) is not known,
although this in fact is the one-step-ahead forecast, so that (5.172)
becomes

fro = E(Yyor) =+ o1 fe1 + dayi (5.173)

Similarly, for three, four,...and s steps ahead, the forecasts will be, re-
spectively, given by

fi3 = E(Ytr3t) = E(u + @12 + d2Yiy1 + Uiz | ) (5.174)

fis = E(Yttat) = s + p1E(Yii2 [ 1) + 2B (Y41 [ 1) (5.175)

fra = E(Yirap) =+ ¢ fro+ 2 fis (5.176)

fra=pu+¢1fiz+gafi2 (5.177)
etc. so

fis=n+or1fis 1 +dafiso (5.178)

Thus the s-step-ahead forecast for an AR(2) process is given by the inter-
cept + the coefficient on the one-period lag multiplied by the time s — 1
forecast + the coefficient on the two-period lag multiplied by the s — 2
forecast.

ARMA(p,q) forecasts can easily be generated in the same way by applying
the rules for their component parts, and using the general formula given
by (5.151).

Determining whether a forecast is accurate or not

For example, suppose that tomorrow’s return on the FTSE is predicted to
be 0.2, and that the outcome is actually —0.4. Is this an accurate forecast?
Clearly, one cannot determine whether a forecasting model is good or
not based upon only one forecast and one realisation. Thus in practice,
forecasts would usually be produced for the whole of the out-of-sample
period, which would then be compared with the actual values, and the
difference between them aggregated in some way. The forecast error for
observation i is defined as the difference between the actual value for
observation i and the forecast made for it. The forecast error, defined
in this way, will be positive (negative) if the forecast was too low (high).
Therefore, it is not possible simply to sum the forecast errors, since the
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Forecast error aggregation

Steps ahead Forecast Actual Squared error Absolute error

1 0.20 —0.40 (0.20 — —0.40)> = 0.360 |0.20 — —0.40| = 0.600
2 0.15 0.20 (0.15—0.20)2 = 0.002  |0.15—0.20| = 0.050

3 0.10 0.10 (0.10—0.10)2 = 0.000 10.10—0.10] = 0.000

4 0.06 —0.10 (0.06 — —0.10)2 = 0.026 |0.06 — —0.10| = 0.160
5 0.04 —0.05 (0.04— —0.05)2 =0.008 |0.04 — —0.05| = 0.090

positive and negative errors will cancel one another out. Thus, before the
forecast errors are aggregated, they are usually squared or the absolute
value taken, which renders them all positive. To see how the aggregation
works, consider the example in table 5.2, where forecasts are made for
a series up to 5 steps ahead, and are then compared with the actual
realisations (with all calculations rounded to 3 decimal places).

The mean squared error, MSE, and mean absolute error, MAE, are now
calculated by taking the average of the fourth and fifth columns, respec-
tively

MSE = (0.360 -+ 0.002 + 0.000 + 0.026 + 0.008)/5 = 0.079 (5.179)
MAE = (0.600 + 0.050 + 0.000 + 0.160 + 0.090)/5 = 0.180 (5.180)

Taken individually, little can be gleaned from considering the size of the
MSE or MAE, for the statistic is unbounded from above (like the residual
sum of squares or RSS). Instead, the MSE or MAE from one model would
be compared with those of other models for the same data and forecast
period, and the model(s) with the lowest value of the error measure would
be argued to be the most accurate.

MSE provides a quadratic loss function, and so may be particularly use-
ful in situations where large forecast errors are disproportionately more
serious than smaller errors. This may, however, also be viewed as a disad-
vantage if large errors are not dispropo