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Preface

Preface to the Second Edition

The first edition of this book published thirty years ago by Teubner had the
title Dynamics of Systems of Rigid Bodies [97]. Soon after publication the
term multibody system became the name of this new and rapidly developing
branch of engineering mechanics. For this reason, the second edition pub-
lished by Springer appears under the title Dynamics of Multibody Systems.
Because of the success of the first edition (translations into Russian (1980),
Chinese (1986) and Vietnamese (2000); use as textbook in advanced courses
in Germany and abroad) little material has been added in the new edition.
In Chaps. 1–4 nothing has changed except for the incorporation of short sec-
tions on quaternions and on raccording axodes. Chapters 5 and 6 have been
rewritten in a new form. Both chapters are still devoted to multibody systems
composed of rigid bodies with frictionless joints. Many years of teaching have
led to simpler mathematical formulations in various places. Also, the order of
topics has changed. Multibody systems with spherical joints and with equa-
tions of motion allowing purely analytical investigations are no longer treated
first but last. The emphasis is placed on a general formalism for multibody
systems with arbitrary joints and with arbitrary system structure. This for-
malism has found important engineering applications in many branches of
industry. The first software tool based on the formalism was a FORTRAN
program written by the author in 1975 for Daimler-Benz AG for simulating
the dynamics of a human dummy in car accidents (passenger inside the car
or pedestrian outside). Wolz [106] created the software tool MESA VERDE
(MEchanism, SAtellite, VEhicle, Robot Dynamics Equations). Its charac-
teristic feature is the generation of kinematics and dynamics equations in
symbolic form. Using the same formalism Salecker [71], Wei [91], Weber [89],
Bührle [11] and Reif [62] developed equations of motion as well as software
tools for multibody systems composed of flexible bodies and for systems with
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electrical and hydraulic components. As a result of collaboration with IPG
Automotive, Karlsruhe MESA VERDE-generated kinematics and dynamics
equations for vehicles became the backbone of IPG’s CarMaker� product
range, which has become a powerful tool for vehicle dynamics analysis and
for Hardware-in-the-Loop testing of vehicle electronic control systems. Car-
Maker is the basis of AVL InMotion� which is used for Hardware-in-the Loop
development and testing of engines and entire powertrains. MESA VERDE-
generated equations are used in the software tool FADYNA developed by IPG
for Daimler-Chrysler. MESA VERDE is also used by Renault, PSA Peugeot
Citroen and Opel.

It is a pleasure to thank Prof. Lothar Gaul for encouraging Springer as
well as the author to publish this second edition. The author is indebted
to Günther Stelzner and to Christian Simonides for their frequent advice in
using TEX and to Marc Hiller for producing the data of all figures. Finally,
I would like to thank the publisher for their technical advice and for their
patience in waiting for the completion of the manuscript.

Karlsruhe,
June 2007 Jens Wittenburg

Preface to the First Edition

A system of rigid bodies in the sense of this book may be any finite num-
ber of rigid bodies interconnected in some arbitrary fashion by joints with
ideal holonomic, nonholonomic, scleronomic and/or rheonomic constraints.
Typical examples are the solar system, mechanisms in machines and living
mechanisms such as the human body provided its individual members can
be considered as rigid. Investigations into the dynamics of any such system
require the formulation of nonlinear equations of motion, of energy expres-
sions, kinematic relationships and other quantities. It is common practice to
develop these for each system separately and to consider the labor necessary
for deriving, for example, equations of motion from Lagrange’s equation, as
inevitable. It is the main purpose of this book to describe in detail a formal-
ism which substantially simplifies this task. The formalism is general in that
it provides mathematical expressions and equations which are valid for any
system of rigid bodies. It is flexible in that it leaves the choice of generalized
coordinates to the user. At the same time it is so explicit that its application
to any particular system requires only little more than a specification of the
system geometry. The book is addressed to advanced graduate students and
to research workers. It tries to attract the interest of the theoretician as well
as of the practitioner.

The first four out of six chapters are concerned with basic principles and
with classical material. In Chap. 1 the reader is made familiar with symbolic
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vector and tensor notation which is used throughout this book for its compact
form. In order to facilitate the transition from symbolically written equations
to scalar coordinate equations matrices of vector and tensor coordinates are
introduced. Transformation rules for such matrices are discussed, and meth-
ods are developed for translating compound vector-tensor expressions from
symbolic into scalar coordinate form. For the purpose of compact formula-
tions of systems of symbolically written equations matrices are introduced
whose elements are vectors or tensors. Generalized multiplication rules for
such matrices are defined.

In Chap. 2 on rigid body kinematics direction cosines, Euler angles, Bryan
angles and Euler parameters are discussed. The notion of angular velocity
is introduced, and kinematic differential equations are developed which re-
late the angular velocity to the rate of change of generalized coordinates. In
Chap. 3 basic principles of rigid body dynamics are discussed. The definitions
of both kinetic energy and angular momentum leads to the introduction of the
inertia tensor. Formulations of the law of angular momentum for a rigid body
are derived from Euler’s axiom and also from d’Alembert’s principle. Because
of severe limitations on the length of the manuscript only those subjects are
covered which are necessary for the later chapters. Other important topics
such as cyclic variables or quasicoordinates, for example, had to be left out.
In Chap. 4 some classical problems of rigid body mechanics are treated for
which closed-form solutions exist. Chapter 5 which makes up one half of the
book is devoted to the presentation of a general formalism for the dynamics of
systems of rigid bodies. Kinematic relationships, nonlinear equations of mo-
tion, energy expressions and other quantities are developed which are suitable
for both numerical and nonnumerical investigations. The unform description
valid for any system of rigid bodies rests primarily on the application of con-
cepts of graph theory (the first application to mechanics at the time of [66]).
This mathematical tool in combination with matrix and symbolic vector and
tensor notation leads to expressions which can easily be interpreted in physi-
cal terms. The usefulness of the formalism is demonstrated by means of some
illustrative examples of nontrivial nature. Chapter 6 deals with phenomena
which occur when a multibody system is subject to a collision either with
another system or between two of its own bodies. Instantaneous changes of
velocities and internal impulses in joints between bodies caused by such colli-
sions are determined. The investigation reveals an interesting analogy to the
law of Maxwell and Betti in elastostatics.

The material presented in subsections 1, 2, 4, 6, 8 and 9 of Sect. 5.2 was
developed in close cooperation with Prof. R.E. Roberson (Univ. of Calif. at
San Diego) with whom the author has a continuous exchange of ideas and
results since 1965. Numerous mathematical relationships resulted from long
discussions so that authorship is not claimed by any one person. It is a pleas-
ant opportunity to express my gratitude for this fruitful cooperation. I also
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thank Dr. L. Lilov (Bulgarian Academy of Sciences) with whom I enjoyed
close cooperation on the subject. He had a leading role in applying methods
of analytical mechanics (subject of Sect. 5.2.8) and he contributed important
ideas to Sect. 5.2.5. Finally, I thank the publishers for their kind patience in
waiting for the completion of the manuscript.

Hannover,
February 1977 Jens Wittenburg
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1

Mathematical Notation

In rigid body mechanics, vectors, tensors and matrices play an important
role. Vectors are characterized by bold letters. In a right-handed cartesian
reference base with unit base vectors e1, e2 and e3 a vector v is decomposed
in the form

v = v1e1 + v2e2 + v3e3 . (1.1)

The scalar quantities v1, v2 and v3 are the coordinates of v. Note that the
term vector is used only for the quantity v and not as an abbreviation for
the coordinate triple [v1, v2, v3] as is usually done in tensor calculus1. The
unit base vectors satisfy the orthonormality conditions

ei · ej = δij (i, j = 1, 2, 3) (1.2)

and the right-handedness condition

e1 · e2 × e3 = +1 . (1.3)

In rigid body mechanics it is necessary to work with more than one vector
base. Throughout this book only right-handed cartesian bases are used. Let
e1

i (i = 1, 2, 3) be the base vectors of one base and let e2
i (i = 1, 2, 3) be

the base vectors of another base2. The bases themselves will be referred to as
base e1 and base e2. The base vector e2

i (i = 1, 2, 3) of e2 can be decomposed

1 For different interpretations of the term vector see [41]. In some books on vector
algebra the coordinates v1, v2 and v3 are referred to as components. In the
present book a component is understood to be itself a vector. Thus, v1e1 in
(1.1) is a component of v.

2 In equations such as (1.4) the superscript 2 will not be misunderstood as ex-
ponent 2. In the entire book there are only very few places where the super-
script 2 and the exponent 2 occur together in a mathematical expression. In
such places the superscript is placed in parentheses. Example: The moment of
inertia J

(2)
11 = mr2 in base e2.
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in base e1:

e2
i =

3∑

j=1

a21
ij e1

j (i = 1, 2, 3) . (1.4)

The altogether nine scalars a21
ij (i, j = 1, 2, 3) are the coordinates of the three

base vectors. Each coordinate is the cosine of the angle between two base
vectors:

a21
ij = e2

i · e1
j = cos∢

(
e2

i , e
1
j

)
(i, j = 1, 2, 3) . (1.5)

For this reason the coordinates are called direction cosines. The three equa-
tions (1.4) are combined in the single matrix equation

e2 = A21e1 . (1.6)

Here and throughout this book matrices are characterized by underlined
letters. The (3 × 3)-matrix A21 is called direction cosine matrix. Note the
mnemonic position of the superscripts 2 and 1. The symbol e2, until now
simply the name of the base, denotes the column matrix of the unit base
vectors: e2 = [ e2

1 e2
2 e2

3 ]T . The exponent T denotes transposition. The use
of bold letters indicates that the elements of e2 are vectors. Equation (1.4)
shows that the matrix product A21e1 is evaluated following the rule of or-
dinary matrix algebra, although one of the matrices has vectors as elements
and the other scalars. With two matrices each having vectors as elements one
can form the inner product (dot product) as well as the outer product (cross

product). Example: e1 ·e1T
= I (unit matrix). Scalar multiplication of (1.6)

from the right by e1T
produces for the direction cosine matrix the explicit

expression

A21 = e2 · e1T
. (1.7)

This equation represents the matrix form of the nine Eqs. (1.5). In what
follows properties of the direction cosine matrix are discussed. Each row con-
tains the coordinates of one of the unit base vectors of e2. From this it follows
that the determinant of the matrix is the mixed product e2

1 ·e2
2×e2

3. According
to (1.3) this equals +1. Hence,

detA21 = +1 . (1.8)

From the orthonormality conditions (1.2) it follows that the scalar product
of any two rows i and j of A21 equals the Kronecker delta:

3∑

k=1

a21
ika21

jk = δij (i, j = 1, 2, 3) . (1.9)

A matrix having these properties is called orthogonal matrix. Because of the

orthogonality the product A21A21T
equals the unit matrix. Thus, the matrix
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has the important property that its inverse equals its transpose:

(A21)
−1

= A21T
. (1.10)

From this it follows that the inverse of (1.6) reads

e1 = A12e2 = A21T
e2 . (1.11)

The identity (1.10) can also be explained as follows. In (1.4) the unit base
vectors e2

i (i = 1, 2, 3) are decomposed in base e1. If, instead, the unit base
vectors e1

i (i = 1, 2, 3) are decomposed in base e2 then the coordinates are the
same direction cosines (1.5), but with indices interchanged. Equation (1.6) is

replaced by the equation e1 = A12e2 with A12 = A21T
. But the same original

Eq. (1.6) yields also A12 = (A21)
−1

. From this follows again the identity of
the inverse matrix with its transpose. Furthermore, since each column of A21

contains the three coordinates of a unit base vector of e1, the scalar product
of any two columns i and j of A21 equals the Kronecker delta (cf. (1.9)):

3∑

k=1

a21
kia

21
kj = δij (i, j = 1, 2, 3) . (1.12)

Consider, again, the vector v in (1.1). The right-hand side is given the
form of a matrix product. For this purpose the column matrix v = [v1 v2 v3]

T

of the coordinates of v is introduced (a shorter name for v is coordinate matrix
of v in base e). Then, (1.1) can be written in the two alternative forms

v = eT v , v = vTe . (1.13)

In two different bases e2 and e1 the vector v has different coordinate matrices.
They are denoted v2 and v1, respectively. Thus,

v = e2T
v2 = e1T

v1 . (1.14)

On the right-hand side (1.11) is substituted for e1. This yields e2T
v2 =

e2T
A21v1 and, consequently,

v2 = A21v1 . (1.15)

This equation represents the transformation rule for vector coordinates. It
states that the direction cosine matrix is also the coordinate transformation
matrix. Note the mnemonic position of the superscripts 2 and 1.

The scalar product of two vectors a and b can be written as a matrix
product. Let a1 and b1 be the coordinate matrices of a and b, respectively,

in some vector base e1. Then, a · b = a1T
b1 = b1T

a1. Often the coordinate
matrices of two vectors a and b are known in two different bases, say a1 in

e1 and b2 in e2. Then, a · b = a1T
A12b2.



4 1 Mathematical Notation

Besides vectors second-order tensors play an important role in rigid body
dynamics. Tensors are characterized by sans-serif upright letters. In its most
general form a tensor D is a sum of so-called dyadic products of two vectors
each:

D = a1b1 + a2b2 + a3b3 + . . . . (1.16)

A tensor is an operator. Its scalar product from the right with a vector v is
defined as the vector

D · v = (a1b1 + a2b2 + a3b3 + . . .) · v
= a1b1 · v + a2b2 · v + a3b3 · v + . . . . (1.17)

No parentheses around the scalar products b1 ·v etc. are necessary. Similarly,
the scalar product of D from the left with v is defined as

v · D = v · a1b1 + v · a2b2 + v · a3b3 + . . . . (1.18)

If in all dyadic products of D the order of the factors is reversed a new tensor
is obtained. It is called the conjugate of D and it is denoted by the symbol D̄:

D = a1b1 + a2b2 + a3b3 + . . . ,
D̄ = b1a1 + b2a2 + b3a3 + . . . .

}
(1.19)

In vector algebra the distributive law is valid:

ab1 ·v+ab2 ·v = a(b1+b2)·v , a1b ·v+a2b ·v = (a1+a2)b ·v . (1.20)

Hence, the dyadic products of a tensor are also distributive:

ab1 + ab2 = a(b1 + b2) , a1b + a2b = (a1 + a2)b . (1.21)

It is, therefore, possible to resolve all vectors on the right-hand side of (1.16)
in some vector base e and to regroup the resulting expression in the form

D =

3∑

i=1

3∑

j=1

Dijeiej . (1.22)

The nine scalars Dij are the coordinates of D in base e (note that not this
set of coordinates but only the quantity D is referred to as a tensor). They
are combined in the (3×3) coordinate matrix D. With this matrix the tensor
becomes

D = eT D e . (1.23)

It is a straightforward procedure to construct the matrix D from the coordi-
nate matrices of the vectors a1, b1, a2, b2 etc. Let these latter matrices be
a1, a2, b1, b2 etc. With the notation of (1.13) (1.16) becomes

D = eT a1 bT
1 e + eT a2 bT

2 e + eT a3 bT
3 e + · · ·

= eT
(
a1 bT

1 + a2 bT
2 + a3 bT

3 + · · ·
)

e . (1.24)
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Comparison with (1.23) shows that

D = a1 bT
1 + a2 bT

2 + a3 bT
3 + · · · . (1.25)

From this and from (1.22) it follows that the coordinate matrix of the con-
jugate of D is the transpose of the coordinate matrix of D. With (1.22) and
(1.1) the vector D · v is

D · v =

3∑

i=1

3∑

j=1

Dijeiej · v =

3∑

i=1

3∑

j=1

Dijvjei . (1.26)

Its coordinate matrix in base e is, therefore, the product D v of the coordinate
matrices of D and v in e. The same result is obtained in a more formal way
when (1.23) and the first Eq. (1.13) are substituted for D and v, respectively:

D · v = eT D e · eT v = eT D v . (1.27)

Of particular interest is the tensor

I = e1e1 + e2e2 + e3e3 = eTe (1.28)

whose coordinate matrix is the unit matrix. When this tensor is scalar mul-
tiplied with an arbitrary vector v the result is v itself: I ·v ≡ v and v · I ≡ v.
For this reason I is called unit tensor.

With the help of (1.11) it is a simple matter to establish the law by which
the coordinate matrix of a tensor is transformed when instead of a base e1

another base e2 is used for decomposition. Let D1 and D2 be the coordinate
matrices of D in the two bases, respectively, so that by (1.23) the identity

e2T
D2 e2 = e1T

D1 e1 (1.29)

holds. On the right-hand side (1.11) is substituted for e1. This yields

e2T
D2 e2 = e2T

A21D1 A12e2 (1.30)

whence follows
D2 = A21D1 A12 . (1.31)

Note, here too, the mnemonic position of the superscripts. This transforma-
tion is referred to as similarity transformation.

In rigid body mechanics, tensors with symmetric and with skew-symmetric
coordinate matrices are met. The inertia tensor which will be defined in
Sect. 3.1 and the unit tensor I have symmetric coordinate matrices. Tensors
with skew-symmetric coordinate matrices are found in connection with vec-
tor cross products. Consider, first, the double cross product (a × b) × v. It
can be written in the form

(a × b) × v = ba · v − ab · v = (ba − ab) · v (1.32)
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as scalar product of the tensor (ba−ab) with v. If a and b are the coordinate
matrices of a and b, respectively, in some vector base then the coordinate
matrix of the tensor in this base is the skew-symmetric matrix

b aT − a bT =

⎡
⎣

0 b1a2 − b2a1 b1a3 − a3b1

0 b2a3 − a3b2

skew − symm. 0

⎤
⎦ . (1.33)

Also the single vector cross product c×v can be expressed as a scalar product
of a tensor with v. For this purpose two vectors a and b are constructed which
satisfy the equation a×b = c. The tensor is then (ba−ab) as before and its
coordinate matrix is given by (1.33). This matrix is seen to be identical with

c̃ =

⎡
⎣

0 −c3 c2

c3 0 −c1

−c2 c1 0

⎤
⎦ (1.34)

where c1, c2 and c3 are the coordinates of c in the same base in which a and
b are measured. With the newly defined symbol c̃ (pronounced c tilde) for
this matrix the vector c × v has the coordinate matrix c̃ v. This notation
simplifies the transition from symbolic vector equations to scalar coordinate
equations3. For making this transition also the following rules are needed. If
k is a scalar then

(k̃ a) = kã . (1.35)

Furthermore,

(ã + b) = ã + b̃ , (1.36)

if ã = b̃ then a = b . (1.37)

The identity a × b = −b× a yields

ã b = −b̃ a (1.38)

and for the special case a = b

ã a = 0 . (1.39)

With the help of the unit tensor I the double vector cross product a× (b×v)
can be written in the form

a × (b × v) = ba · v − a · bv = (ba − a · b I) · v . (1.40)

The corresponding coordinate equation reads ã b̃ v = (b aT −aT b I)v with the
unit matrix I. Since this equation holds for every v the identity

ã b̃ = b aT − aT b I (1.41)

3 The notation c̃ v for the coordinates of c×v is equivalent to the notation ǫijkcjvk

(i = 1, 2, 3) which is commonly used in tensor algebra.
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is valid. According to (1.32) the coordinate matrix of (a× b)× v is (b aT −
a bT )v. It can also be written in the form (̃ã b)v. Since both forms are identical
for every v the identity

(̃ã b) = b aT − a bT (1.42)

holds. Finally, the transformation rule (1.31) for tensor coordinates states
that

ã2 = ˜(A21a1) = A21ã1A12 . (1.43)

Systems of linear vector equations can be written in a compact form
if, in addition to matrices with vectorial elements, matrices with tensors as
elements are used. Such matrices are characterized by underlined sans-serif
upright letters. They have the general form

D =

⎡
⎢⎣

D11 . . . D1r

...
Dm1 . . . Dmr

⎤
⎥⎦ (1.44)

with arbitrary numbers of rows and columns. The scalar product D ·b of the
(m× r)-matrix D from the right with an (r×n)-matrix b with vectors bij is
defined as an (m × n)-matrix with the elements

r∑

k=1

Dik · bkj (i = 1, . . . , m; j = 1, . . . , n) . (1.45)

A similar definition holds for the scalar product of D from the left with an
(n × m)-matrix b with vectors bij . The following example illustrates the
practical use of these notations. Suppose it is desired to write the scalar

c =
n∑

i=1

n∑

j=1

ai · Dij · bj (1.46)

as a matrix product. This can be done in symbolic form, c = aT · D · b with
the factors

a =

⎡
⎢⎣

a1

...
an

⎤
⎥⎦ , D =

⎡
⎢⎣

D11 . . . D1n

...
Dn1 . . . Dnn

⎤
⎥⎦ , b =

⎡
⎢⎣

b1

...
bn

⎤
⎥⎦ . (1.47)

When it is desired to calculate c numerically the following expression in
terms of coordinate matrices is more convenient. Let ai, bi and Dij be the
coordinate matrices of ai, bi and Dij (i, j = 1, . . . , n), respectively, in some
common vector base. Then,

c =
n∑

i=1

n∑

j=1

aT
i Dijbj . (1.48)
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This can, in turn, be written as the matrix product c = aT D b with

a =

⎡
⎢⎣

a1
...
an

⎤
⎥⎦ , D =

⎡
⎢⎣

D11 . . . D1n
...
Dn1 . . . Dnn

⎤
⎥⎦ , b =

⎡
⎢⎣

b1
...
bn

⎤
⎥⎦ . (1.49)

Problem 1.1. Given is the direction cosine matrix A21 relating the vector bases

e1 and e2. Express the matrix products e1 · e1T
, e1T · e1, e1 × e1T

, e1T × e1,

e2 · e1T
, e1 · e2T

and e2T · e1 in terms of A21 or of elements of A21.

Problem 1.2. Let a and b be vectorial matrices and let c be a scalar matrix of
such dimensions that the products a ·cb and a×cb exist. Show that the former
product is identical with a c · b and the latter with a c × b.

Problem 1.3. e1 and e2 = A21e1 are two vector bases, and a, b and c are vec-
tors whose coordinate matrices a1 and b1 in e1 and c2 in e2, respectively, are
given. Furthermore, D is a tensor with the coordinate matrix D2 in e2. Formu-
late in terms of A21 and of the given coordinate matrices the scalars 1. a · b × c,
2. a × b · b × c, 3. c · D · a and 4. c · b × D · c as well as the coordinate ma-
trices in e1 of the vectors 5. a × b, 6. a × c, 7. a × (c × b), 8. c × D · a and
9. a × [(D · b) × c].

Problem 1.4. Rewrite the vector equations

a1 = b × (v1 × b + v2 × c) + d × v2 ,

a2 = c × (v1 × b + v2 × c) − d × v1

in the form
»

a1

a2

–

=

»

D11 D12

D21 D22

–

·
»

v1

v2

–

with explicit expressions for the tensors Dij (i, j = 1, 2). How are D12 and D21

related to one another? In some vector base the vectors in the original equations
have the coordinate matrices a1, a2, v1, v2, b, c and d, respectively. Write down
the coordinate matrix equation

»

a1

a2

–

=

»

D11 D12

D21 D22

–

·
»

v1

v2

–

giving explicit expressions for the (3 × 3) submatrices Dij (i, j = 1, 2). What can
be said about the (6 × 6) matrix on the right-hand side?



2

Rigid Body Kinematics

In rigid body kinematics purely geometrical aspects of individual positions
and of continuous motions of rigid bodies are studied. Forces and torques
which are the cause of motions are not considered. In this chapter only some
basic material is presented.

2.1 Generalized Coordinates of Angular Orientation

In order to specify the angular orientation of a rigid body in a vector base e1

it is sufficient to specify the angular orientation of a vector base e2 which is
rigidly attached to the body. This can be done, for instance, by means of the
direction cosine matrix (see (1.6)):

e2 = A21e1 . (2.1)

The nine elements of this matrix are generalized coordinates which describe
the angular orientation of the body in base e1. Between these coordinates
there exist the six constraint Eqs. (1.9):

3∑

k=1

a21
ik a21

jk = δij (i, j = 1, 2, 3) . (2.2)

It is often inconvenient to work with nine coordinates and six constraint equa-
tions. There are several useful systems of three coordinates without constraint
equations and of four coordinates with one constraint equation which can be
used as alternatives to direction cosines. In the following subsections gener-
alized coordinates known as Euler angles, Bryan angles, rotation parameters
and Euler–Rodrigues parameters will be discussed.

2.1.1 Euler Angles

The angular orientation of the body-fixed base e2 is thought to be the result
of three successive rotations. Prior to the first rotation the base e2 coincides
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Fig. 2.1. Euler angles ψ, θ, φ

with the base e1. The first rotation is carried out about the axis e1
3 through

an angle ψ. It carries the base from its original orientation to an intermediate
orientation denoted e2′′

(Fig. 2.1). The second rotation through the angle θ
about the axis e2′′

1 results in another intermediate orientation denoted e2′

.
The third rotation through the angle φ about the axis e2′

3 produces the final
orientation of the base. It is denoted e2 in Fig. 2.1. A characteristic property
of Euler angles is that each rotation is carried out about a base vector of
the body-fixed base in a position which is the result of all previous rotations.
A further characteristic is the sequence (3, 1, 3) of indices of rotation axes.
The desired presentation of the transformation matrix A21 in terms of ψ, θ
and φ is found from the transformation equations for the individual rotations
which are according to Fig. 2.1.

e2 = Aφe
2′

, e2′

= Aθe
2′′

, e2′′

= Aψe1 (2.3)

with

Aφ =

⎡
⎢⎣

cosφ sin φ 0

− sinφ cosφ 0

0 0 1

⎤
⎥⎦ , Aθ =

⎡
⎢⎣

1 0 0

0 cos θ sin θ

0 − sin θ cos θ

⎤
⎥⎦ ,

Aψ =

⎡
⎢⎣

cosψ sin ψ 0

− sinψ cosψ 0

0 0 1

⎤
⎥⎦ . (2.4)

From (2.3) it follows that A21 = AφAθAψ. Multiplying out and using the
abbreviations cψ, cθ, cφ for cosψ, cos θ, cosφ and sψ, sθ, sφ for sinψ, sin θ,
sin φ, respectively, one obtains the final result

A21 =

⎡
⎢⎣

cψcφ − sψcθsφ sψcφ + cψcθsφ sθsφ

−cψsφ − sψcθcφ −sψsφ + cψcθcφ sθcφ

sψsθ −cψsθ cθ

⎤
⎥⎦ . (2.5)
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Fig. 2.2. Euler angles in a two-gimbal suspension

The advantage of having only three coordinates and no constraint equation
is paid for by the disadvantage that the direction cosines are complicated
functions of the three coordinates. There is still another problem. Figure 2.1
shows that in the case θ = nπ (n = 0,±1, . . .) the axis of the third rotation
coincides with the axis of the first rotation. This has the consequence that ψ
and φ cannot be distinguished.

Euler angles can be illustrated by means of a rigid body in a two-gimbal
suspension system (Fig. 2.2). The bases e1 and e2 are attached to the mate-
rial base and to the suspended body, respectively. The angles ψ, θ and φ are,
in this order, the rotation angle of the outer gimbal relative to the material
base, of the inner gimbal relative to the outer gimbal and of the body relative
to the inner gimbal. With this device all three angles can be adjusted inde-
pendently since the intermediate bases e2′′

and e2′

are materially realized by
the gimbals. For θ = nπ (n = 0, 1, . . .) the planes of the two gimbals coincide
(gimbal lock).

Euler angles are ideally suited as position variables for the study of mo-
tions in which θ(t) is either exactly or approximately constant, whereas ψ
and φ are (exactly or approximately) proportional to time, i.e. ψ̇ ≈ const
and φ̇ ≈ const. Euler angles are advantageous also whenever there exist two
physically significant directions, one fixed in the reference base e1 and the
other fixed in the body-fixed base e2. In such cases the base vectors e1

3 and
e2
3 are given these directions so that θ is the angle between the two. For ex-

amples see Sects. 4.1.4, 4.2 and 4.4. The use of Euler angles is, however, not
restricted to such special cases.
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It is often necessary to calculate the Euler angles which correspond to
a numerically given matrix A21. For this purpose the following formulas are
deduced from (2.5):

cos θ = a21
33 , sin θ = σ

√
1 − cos2 θ (σ = +1 or − 1) ,

cosψ = −a21
32/ sin θ , sinψ = a21

31/ sin θ ,

cosφ = a21
23/ sin θ , sinφ = a21

13/ sin θ .

⎫
⎪⎬
⎪⎭

(2.6)

If (ψ, θ, φ) are the angles associated with σ = +1 then the angles associated
with σ = −1 are (π + ψ,−θ, π + φ). Both triples produce one and the same
final position of the base e2. Numerical difficulties arise when θ is close to
one of the critical values nπ (n = 0, 1, . . .).

2.1.2 Bryan Angles

These angles are also referred to as Cardan angles. The angular orientation
of the body-fixed base e2 is, again, represented as the result of a sequence
of three rotations at the beginning of which the base e2 coincides with the
reference base e1. The first rotation through an angle φ1 is carried out about
the axis e1

1. It results in the intermediate base e2′′

(Fig. 2.3). The second
rotation through an angle φ2 about the axis e2′′

2 produces another interme-
diate base e2′

. The third rotation through an angle φ3 about the axis e2′

3

gives the body-fixed base its final orientation denoted e2 in Fig. 2.3. The
transformation equations for the individual rotations are

e2 = A3e
2′

, e2′

= A2e
2′′

, e2′′

= A1e
1 (2.7)

Fig. 2.3. Bryan angles φ1, φ2, φ3
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with

A3 =

⎡
⎢⎣

cosφ3 sinφ3 0

− sinφ3 cosφ3 0

0 0 1

⎤
⎥⎦ , A2 =

⎡
⎢⎣

cosφ2 0 − sinφ2

0 1 0

sin φ2 0 cosφ2

⎤
⎥⎦ ,

A1 =

⎡
⎢⎣

1 0 0

0 cosφ1 sin φ1

0 − sinφ1 cosφ1

⎤
⎥⎦ . (2.8)

The desired direction cosine matrix relating the bases e1 and e2 is A21 =
A3A2A1. Multiplying out and using the abbreviations ci = cosφi, si = sin φi

(i = 1, 2, 3) one obtains the final result

A21 =

⎡
⎢⎣

c2c3 c1s3 + s1s2c3 s1s3 − c1s2c3

−c2s3 c1c3 − s1s2s3 s1c3 + c1s2s3

s2 −s1c2 c1c2

⎤
⎥⎦ . (2.9)

The only significant difference as compared with Euler angles is the sequence
(1, 2, 3) of indices of rotation axes. Bryan angles, too, can be illustrated by
means of a rigid body in a two-gimbal suspension system. The arrangement
is shown in Fig. 2.4. The bases e1 and e2 are attached to the material base
and to the suspended body, respectively. The angles φ1, φ2 and φ3 are, in this
order, the rotation angle of the outer gimbal relative to the material base,
of the inner gimbal relative to the outer gimbal and of the body relative to
the inner gimbal. The three angles can be adjusted independently since the
intermediate bases e2′′

and e2′

are materially realized by the gimbals. For
φ2 = 0 the three rotation axes are mutually orthogonal. As with Euler angles
there exists a critical case in which the axes of the first and of the third
rotation coincide. This occurs if φ2 = π/2 + nπ (n = 0, 1, . . .).

Fig. 2.4. Bryan angles in a two-gimbal suspension
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In contrast to Euler angles linearization for small angles is possible. In
the case |φi| ≪ 1 (i = 1, 2, 3) one has sin φi ≈ φi, cosφi ≈ 1 and with this

A21 ≈

⎡
⎢⎣

1 φ3 −φ2

−φ3 1 φ1

φ2 −φ1 1

⎤
⎥⎦ = I − φ̃ . (2.10)

For the skew-symmetric matrix φ̃ and its role in vector cross-products see
(1.34). The occurrence of this matrix suggests to interpret φ1, φ2, φ3 as co-
ordinates of a rotation vector φ. Note that in the linear approximation the
coordinates are the same in both bases. Indeed, transformation, i.e. multipli-
cation of the coordinate matrix φ = [φ1 φ2 φ3]

T with A21, causes no change

(see (1.39)): A21φ ≈ (I − φ̃)φ = φ.
The rotation vector φ can be used as follows. Let r and r∗ be the positions

of an arbitrary body-fixed vector before and after the small rotation. If, as
usual, r∗1 and r∗2 denote the coordinate matrices of r∗ in e1 and in e2,
respectively, then r∗1 = A12r∗2. The coordinate matrix r∗2 is identical with
the coordinate matrix r1 of r in base e1 since before the rotation e2 coincides
with e1 and the body-fixed vector coincides with r. Therefore,

r∗1 = A12r1 . (2.11)

With (2.10) this is the equation r∗1 ≈ (I + φ̃)r1. It is the coordinate form of
the vector equation

r∗ ≈ r + φ × r (valid for small rotations only) . (2.12)

The conclusion of these considerations is that within linear approximations
small rotation angles can be added like vectors.

What follows is not restricted to small angles. If the matrix A21 in (2.9)
is given then the associated Bryan angles are calculated from the equations

sin φ2 = a21
31 , cosφ2 = σ

√
1 − sin2 φ2 (σ = +1 or − 1) ,

sin φ1 = −a21
32/ cosφ2 , cosφ1 = a21

33/ cosφ2 ,

sin φ3 = −a21
21/ cosφ2 , cosφ3 = a21

11/ cosφ2 .

⎫
⎪⎬
⎪⎭

(2.13)
If (φ1, φ2, φ3) are the angles associated with σ = +1 then the angles associ-
ated with σ = −1 are (π + φ1, π − φ2, π + φ3). Both triples produce one and
the same final position of the base e2. Numerical difficulties arise when φ2 is
close to one of the critical values π/2 + nπ (n = 0, 1, . . .).

2.1.3 Rotation Tensor

In Chap. 1 it has been shown that a direction cosine matrix A21 relating
two bases e1 and e2 has the determinant +1 and that its inverse equals
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its transpose (see (1.8) and (1.10)). Now, another property of fundamental
importance is revealed. The eigenvalue problem A21v = λv or

(A21 − λI)v = 0 (2.14)

is investigated. This is the transformation rule A21v1 = v2 in the special
case v2 = λv1. Since the absolute value of a vector does not change under
a transformation it can be predicted that all three eigenvalues have the ab-
solute value one. The eigenvalues are the roots of the characteristic equation
det(A21 − λI) = 0. Omitting the superscript this is the cubic equation

− λ3 + λ2 trA

− λ[(a11a22 − a12a21) + (a22a33 − a23a32) + (a33a11 − a31a13)]

+ detA = 0 . (2.15)

The determinant is +1. In the coefficient of λ every expression in parenthe-
ses represents the so-called co-factor of one diagonal element of A21. Since
the determinant is +1 the co-factor is identical with the diagonal element.
Consequently, the coefficient of λ represents the trace of the matrix. Thus,
the equation reads

−λ3 + λ2 tr A21 − λ tr A21 + 1 = 0 . (2.16)

It shows that every direction cosine matrix A21 has the eigenvalue λ = +1.
Division by (λ−1) produces for the other eigenvalues the quadratic equation
λ2 − (tr A21 − 1)λ + 1 = 0. It has the roots

λ2,3 =
tr A21 − 1

2
± i

√

1 −
(

tr A21 − 1

2

)2

= cosϕ ± i sin ϕ = e±iϕ (2.17)

with

cosϕ =
tr A21 − 1

2
. (2.18)

If A21 is the unit matrix, then it has the triple eigenvalue +1. In the case
tr A21 = −1 it has the double eigenvalue λ2,3 = −1.

Let n be the normalized eigenvector associated with the eigenvalue λ =
+1. It is calculated from the equations

(
A21 − I

)
n = 0 , n2

1 + n2
2 + n2

3 = 1 . (2.19)

This eigenvector n represents the coordinate matrix of a unit vector n which
has identical coordinate matrices in the two bases e1 and e2 related by A21.
Imagine that, starting from the initial position, the body-fixed base e2 is ro-
tated about this vector n. Every value of the rotation angle is associated with
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a final position. Independent of the angle the vector n has identical coordi-
nate matrices in e1 and in e2. The existence of the eigenvector guarantees
the existence of an angle which carries the base from its initial position to
the final position which is given by the matrix A21. Hence, the

Theorem 2.1 (Euler). The displacement of a body-fixed base from an initial
position e1 to an arbitrary final position e2 is achieved by a rotation through
a certain angle about an axis which is fixed in both bases. The axis has the
direction of the eigenvector associated with the eigenvalue λ = +1 of the
direction cosine matrix A21.

Proposition: The rotation angle in Theorem 2.1 is the angle ϕ in the
eigenvalues λ2 and λ3 in (2.17). The proof is achieved by solving the inverse
problem. Given is a rotation through the axial unit vector n and the angle of
rotation ϕ (both arbitrary). The rotation is called rotation (n, ϕ). Note: The
rotations (n, ϕ), (−n,−ϕ) and (n, ϕ + 2π) produce the same final position.
For this reason, they are called equal. In what follows an expression for the
direction cosine matrix A21 in terms of n and ϕ is developed. The matrix is
found from a comparison of the coordinate matrices in the bases e1 and e2 of
a body-fixed vector. In Fig. 2.5 this vector is shown in its positions r and r∗

before and after the rotation, respectively. In both positions the vector lies
on a circular cone whose axis is defined by the unit vector n. Let r∗1 and
r1 be the coordinate matrices of r∗ and of r, respectively, in e1. For reasons
explained earlier these two matrices are related through (2.11):

r∗1 = A12r1 . (2.20)

According to Fig. 2.5 the vectors r∗ and r are related through the equation
r∗ = r+ (1− cosϕ)b + sin ϕa or, recognizing that a = n× r and b = n×a,

r∗ = r + (1 − cosϕ)n × (n× r) + sinϕn × r (2.21)

= cosϕ r + (1 − cosϕ)nn · r + sin ϕn × r . (2.22)

Fig. 2.5. Rotation of a body-fixed vector r about an axial unit vector n
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Decomposition in base e1 results in the coordinate equation

r∗1 = [cosϕ I + (1 − cosϕ)n nT + sinϕ ñ ] r1 . (2.23)

Equation (2.20) shows that the expression in brackets is the matrix A12.
Hence, the transpose A21 is, with the abbreviations c = cosϕ and s = sin ϕ,

A21 =

⎡
⎣

n2
1 + (1 − n2

1)c n1n2(1 − c) + n3s n1n3(1 − c) − n2s
n1n2(1 − c) − n3s n2

2 + (1 − n2
2)c n2n3(1 − c) + n1s

n1n3(1 − c) + n2s n2n3(1 − c) − n1s n2
3 + (1 − n2

3)c

⎤
⎦ .

(2.24)
The diagonal elements can be given other forms if use is made of the con-
straint equation n2

1 + n2
2 + n2

3 = 1. The diagonal elements yield the first
equation below and the off-diagonal elements yield the second:

cosϕ =
tr A21 − 1

2
, ni sinϕ =

a21
jk − a21

kj

2
(i, j, k = 1, 2, 3 cyclic) . (2.25)

The first equation is identical with (2.18). This proves that the rotation
angle ϕ is the angle in the eigenvalues λ2,3 = e±iϕ of the direction cosine
matrix.

When the matrix A21 is given numerically, the rotation parameters ϕ and
n1, n2, n3 can be determined in two ways. Either n is calculated from (2.19):
(A21 − I)n = 0. Then, the two Eqs. (2.25) together determine ϕ uniquely.
The alternative way is to take one of the two solutions ϕ satisfying the first
Eq. (2.25) and to calculate n1, n2, n3 from the second equation. This second
equation for n1, n2, n3 fails in the particularly simple case ϕ = π. In this case
A21 is the symmetric matrix

A21 = 2nnT − I . (2.26)

The trace is −1, whence follows that the matrix has the real double eigenvalue
λ2,3 = −1. A symmetric matrix has mutually orthogonal eigenvectors. Let
z be the eigenvectors associated with the double eigenvalue λ = −1. Equa-
tion (2.14) for z has the form 2nnT z = 0 whence follows nT z = 0. This means
that any vector perpendicular to the rotation axis n is an eigenvector. The
kinematical interpretation of these eigenvectors is the following. By (2.22) any
body-fixed vector r perpendicular to n is rotated into the position r∗ = −r.
This is the characteristic of eigenvectors associated with the eigenvalue −1.

The general formulation (2.24) of the matrix A21 in terms of the four
rotation parameters n1, n2, n3 and ϕ is particularly useful if a body is rotating
about a fixed axis which is not aligned with one of the base vectors. Then,
n1, n2, n3 are constants and only ϕ is a variable. For small rotations with
|ϕ| ≪ 1 the Taylor expansion of (2.23) up to second-order terms yields the
approximation

A21 ≈ I − ϕ ñ +
1

2
ϕ2(n nT − I) . (2.27)

The linear approximation A21 ≈ I − ϕ ñ is known from (2.10).
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2.1.4 Euler–Rodrigues Parameters

In what follows (2.21) is considered again. It is given a new form. By means
of the relations

1 − cosϕ = 2 sin2 ϕ

2
, sinϕ = 2 sin

ϕ

2
cos

ϕ

2
(2.28)

the transition to the half-angle is made. New quantities are defined as follows:

q0 = cos
ϕ

2
, q = n sin

ϕ

2
. (2.29)

The vector q lies in the rotation axis. Therefore, it has identical coordi-
nates in the bases e1 and e2. These coordinates are denoted q1, q2, q3 and
the coordinate matrix is called q. The four quantities q0, . . . , q3 are called
Euler–Rodrigues parameters. They satisfy the constraint equation (here and
in other places the exponent 2 of Euler–Rodrigues parameters will not be
misunderstood as superscript 2 refering to a reference base)

q2
0 + q2 =

3∑

i=0

q2
i = 1 . (2.30)

This can be written in the forms

1 − 2q2 = q2
0 − q2 = 2q2

0 − 1 . (2.31)

From (2.29) it is seen: A change of the signs of all four parameters means that
either cos ϕ

2 and sin ϕ
2 change signs or cos ϕ

2 and n change signs. The former
has the effect that (n, ϕ) is replaced by (n, ϕ + 2π). The latter means that
(n, ϕ) is replaced by (−n,−ϕ). Neither one of these changes has an effect on
the rotation.

With (2.28), (2.29) and (2.31) one gets for (2.21) the new form

r∗ = r + 2q× (q × r) + 2q0q × r (2.32)

= (q2
0 − q2)r + 2(qq · r + q0q × r) . (2.33)

Decomposition in base e1 results in the coordinate equation

r∗1 =
[
(q2

0 − q2)I + 2(q qT + q0q̃)
]

r1 . (2.34)

This is the new form of (2.23). With the same arguments as before the ex-
pression in brackets is the matrix A12. Thus, for the transpose A21 the new
form is obtained:

A21 =

⎡
⎣

q2
0 + q2

1 − q2
2 − q2

3 2(q1q2 + q0q3) 2(q1q3 − q0q2)
2(q1q2 − q0q3) q2

0 + q2
2 − q2

3 − q2
1 2(q2q3 + q0q1)

2(q1q3 + q0q2) 2(q2q3 − q0q1) q2
0 + q2

3 − q2
1 − q2

2

⎤
⎦ . (2.35)
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With (2.31) the diagonal elements can be given the alternative form a21
ii =

2(q2
0 + q2

i ) − 1 (i = 1, 2, 3).
In what follows the inverse problem is considered, again. Given is the ma-

trix A21. To be determined are the Euler–Rodrigues parameters q0, q1, q2, q3.
The diagonal elements yield the first formula below and the off-diagonal ele-
ments yield the second:

q0 =
1

2

√
1 + trA21 , qi =

a21
jk − a21

kj

4q0
, (i, j, k = 1, 2, 3 cyclic) . (2.36)

The formulas for q1, q2, q3 fail in the case q0. This is the case ϕ = π, again. By
definition, in this case qi = ni (i = 1, 2, 3). The eigenvector n is determined
from (2.19).

In contrast to Euler angles and to Bryan angles (and to any other set
of three generalized coordinates) there is no critical case in which either
the four parameters n1, n2, n3, ϕ or the four Euler–Rodrigues parameters are
indeterminate1.

2.1.5 Euler–Rodrigues Parameters in Terms of Euler Angles

Expressions for Euler–Rodrigues parameters in terms of Euler angles are
obtained when in (2.36) for A21 (2.5) is substituted. First, one calculates

1 + tr A21 = 1 + cθ + cθ(cψcφ − sψsφ) + (cψcφ − sψsφ)

= (1 + cθ)[1 + (cψcφ − sψsφ)]

= (1 + cos θ)[1 + cos(ψ + φ)] = 4 cos2
θ

2
cos2

ψ + φ

2
. (2.37)

This yields q0 = cos θ
2 cos ψ+φ

2 (sign arbitrary). From (2.36) first q1 is calcu-
lated and for this purpose

a21
23 − a21

32 = sθ(cψ + cφ) = 4 sin
θ

2
cos

θ

2
cos

ψ + φ

2
cos

ψ − φ

2
. (2.38)

From this and from the result for q0 one obtains q1 = sin θ
2 cos ψ−φ

2 . In
a similar manner also q2 and q3 are calculated. All four formulas together
read

q0 = cos
θ

2
cos

ψ + φ

2
, q2 = sin

θ

2
sin

ψ − φ

2
,

q1 = sin
θ

2
cos

ψ − φ

2
, q3 = cos

θ

2
sin

ψ + φ

2
.

⎫
⎪⎬
⎪⎭

(2.39)

1 Hopf [29] was the first to prove that no representation of finite rotations by
three parameters is possible without singular points. For a simpler proof see
Stuelpnagel [78].
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From these equations follow the relationships

cos2
θ

2
= q2

0 + q2
3 , sin2 θ

2
= q2

1 + q2
2 , (2.40)

tan
ψ + φ

2
=

q3

q0
, tan

ψ − φ

2
=

q2

q1
. (2.41)

2.1.6 Quaternions

A quaternion, abbreviated Q, is composed of a scalar u and a vector v, i.e. of
four quantities altogether. Therefore, the name quaternion. The quaternion
is denoted Q = (u,v). The product of a quaternion (u,v) by a scalar λ
is defined to be the quaternion (λu, λv). The sum and the product of two
quaternions Q1 and Q2 are defined as follows:

Q1 + Q2 = Q2 + Q1 = (u1 + u2,v1 + v2) , (2.42)

Q2Q1 = (u2,v2)(u1,v1) = (u2u1 − v2 · v1 , u2v1 + u1v2 + v2 × v1) . (2.43)

Both the sum and the product are themselves quaternions. Because of the
term v2 × v1 multiplication is not commutative. It is associative, however,
as can be verified by multiplying out: Q3Q2Q1 = Q3(Q2Q1) = (Q3Q2)Q1.

The special quaternion (1,0) is called unit quaternion because multipli-
cation with an arbitrary quaternion Q yields Q:

(1, 0)Q = Q(1, 0) ≡ Q . (2.44)

The conjugate of Q = (u,v) is defined to be the quaternion Q̃ = (u,−v).
The product of a quaternion with its own conjugate is, according to the rule
(2.43)

QQ̃ = (u,v)(u,−v) = (u2 + v2, 0) = (u2 + v2)(1, 0) . (2.45)

Thus, it is a non-negative scalar multiple of the unit quaternion. The square
root of this scalar is called the norm of Q, abbreviated

‖Q‖ =
√

u2 + v2 . (2.46)

An arbitrary quaternion Q with the norm ‖Q‖ �= 0 satisfies the equation
(Q̃/‖Q‖2)Q = (1,0). Because of this property Q̃/‖Q‖2 is called the inverse
of Q.

Let Q1 and Q2 be the quaternions from (2.43), again. Then, the conjugate
of the product is (the vector part is multiplied by −1)

Q̃2Q1 = (u2u1 − v2 · v1, −u2v1 − u1v2 − v2 × v1) . (2.47)
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Following the rule (2.43) also the product is calculated:

Q̃1Q̃2 = (u1,−v1)(u2,−v2) = (u1u2 − v1 · v2, −u1v2 − u2v1 + v1 × v2) .
(2.48)

Comparison reveals the formula

Q̃1Q̃2 = Q̃2Q1 . (2.49)

It is natural to define a quaternion which is composed of the Euler–
Rodrigues parameters q0 and q of a rotation (n, ϕ). It is denoted D:

D = (q0,q) =
(

cos
ϕ

2
, n sin

ϕ

2

)
. (2.50)

It has the norm ‖D‖ =
√

q2
0 + q2 = 1. Thus, its inverse equals its conjugate:

D̃ = (q0, −q) , D̃D = (1, 0) . (2.51)

The conjugate is the quaternion of the inverse rotation (n,−ϕ). The quater-
nion of the null rotation (ϕ = 0) is the unit quaternion (1,0).

With an arbitrary vector r the special quaternion (0, r) can be con-
structed. With the vector r shown in Fig. 2.5 and with the quaternion D
of the rotation in this figure the product is calculated:

D(0, r)D̃ = (q0,q)(0, r)(q0,−q) . (2.52)

In a first step one calculates

(0, r)(q0,−q) = (r · q, q0r − r × q) . (2.53)

With this expression the scalar part of D(0, r)D̃ is

q0r · q − q · (q0r − r × q) = 0 . (2.54)

The vector part is

q0(q0r − r × q) + (r · q)q + q × (q0r− r × q)

= q2
0r + q0q × r + q(q · r) + q0q × r + q × (q × r) . (2.55)

Reformulation of the double cross product yields the expression

(q2
0 − q2)r + 2(qq · r + q0q × r) . (2.56)

Comparison with (2.33) shows that this is the vector r∗ of Fig. 2.5. Thus,
one has the equation

(0, r∗) = D(0, r)D̃ . (2.57)

Next, two consecutive rotations with quaternions D1 (first rotation) and
D2 are carried out. The result of the first rotation is (0, r∗) = D1(0, r)D̃1.
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The second rotation carries the vector r∗ into the new position r∗∗ given
by the equation (0, r∗∗) = D2(0, r∗)D̃2. For r∗ the expression from the
previous equation is substituted. This yields the relationship (0, r∗∗) =
D2D1(0, r)D̃1D̃2 or, because of (2.49),

(0, r∗∗) = (D2D1)(0, r) ˜(D2D1) . (2.58)

This has the form (2.57). Thus, one has the2

Theorem 2.2. The quaternion Dres of the resultant of two consecutive rota-
tions with quaternions D1 (first rotation) and D2 is the product

Dres = D2D1 = (q02,q2)(q01,q1)

=
(

cos
ϕ2

2
, n2 sin

ϕ2

2

)(
cos

ϕ1

2
, n1 sin

ϕ1

2

)
. (2.59)

The multiplication rule (2.43) yields the formulas

q0res
= q02q01 − q2 · q1 , qres = q02q1 + q01q2 + q2 × q1 . (2.60)

More explicitly, these are formulas for the rotation angle ϕres and for the unit
vector nres of the resultant rotation:

cos
ϕres

2
= cos

ϕ2

2
cos

ϕ1

2
− n2 · n1 sin

ϕ2

2
sin

ϕ1

2
, (2.61)

nres sin
ϕres

2
= n1 cos

ϕ2

2
sin

ϕ1

2
+ n2 cos

ϕ1

2
sin

ϕ2

2

+n2 × n1 sin
ϕ2

2
sin

ϕ1

2
. (2.62)

Because of the term n2×n1 the axis of the resultant rotation is not located in
the plane of the axes of the other two rotations. Its location depends upon the
order in which the two rotations are carried out. In contrast, the angle ϕres

is independent of the order.
Linearization in the case of small angles ϕ1 and ϕ2 yields the approxima-

tions
cos

ϕres

2
≈ 1 , nresϕres ≈ n1ϕ1 + n2ϕ2 . (2.63)

From the first equation it follows that also ϕres is small. The second equation
proves that in this approximation it is possible to define rotation vectors
ϕres = nresϕres, ϕi = niϕi and to calculate the resultant vector by the
parallelogram rule

ϕres ≈ ϕ1 + ϕ2 . (2.64)

The vector of a small rotation was first introduced in the context of (2.10).

2 The invention of quaternions is attributed to Hamilton with the date Oct. 16,
1843. However, Theorem 2.2 was published by Rodrigues [67] in 1840 already.
Euler [34] communicated quaternions in a letter to Goldbach on May 4, 1748.
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Problem 2.1. Determine the eigenvalues and eigenvectors of the matrix

2

4

1 0 0
0 cos ϕ sin ϕ
0 − sin ϕ cos ϕ

3

5

Problem 2.2. Given are the direction cosine matrices

A1 =

2

6

6

4

2
3

1
3

2
3

1
3

2
3

−2
3

−2
3

2
3

1
3

3

7

7

5

, A2 =

2

6

6

4

2
3

1
3

2
3

−11
15

2
15

2
3

2
15

−14
15

1
3

3

7

7

5

,

A3 =
1

9

2

4

−7 4 4
4 −1 8
4 8 −1

3

5 .

Determine the corresponding Euler angles and Euler–Rodrigues parameters.

Problem 2.3. Determine all rotations (n, ϕ) which result in positions that can be
produced by Bryan angles in the critical case cos φ2 = 0.

Problem 2.4. Determine the resultant of two successive 180◦-rotations about in-
tersecting axes n1 and n2 which enclose the angle α.

Problem 2.5. A body-fixed base e2 which is initially coincident with a reference
base e1 is subjected to three successive rotations. The first rotation is carried out
about the axis e1

1 through the angle φ1, the second about e1
2 through φ2 and the

third about e1
3 through φ3. Note that in contrast to Bryan angles all three rotations

are carried out about base vectors of the reference base e1. Express the direction
cosine matrix A21 relating the final orientation of e2 to e1 as product of three
matrices, each representing one of the three rotations. Express the quaternion Dres

of the resultant rotation as product of three quaternions, each representing one of
the three rotations. Evaluate A21 and Dres for the three sets of angles (φ1, φ2, φ3) =
(π/2, π/2, π/2), (0, π/2, 0) and (π, π, π). Check the results experimentally.

2.2 Kinematics of Continuous Motion

2.2.1 Angular Velocity. Angular Acceleration

Let e1 be some arbitrarily moving base. Relative to this base a rigid body
is in arbitrary motion. Fixed on this body there is a base e2 with origin A.
Furthermore, a point P is considered which is moving relative to the body.
With the notations of Fig. 2.6

r = rA + ̺ . (2.65)

The goal of the present investigation is an expression for the velocity v of
P relative to the base e1 in terms of the velocity vrel of P relative to the
body, of the velocity vA of A relative to e1 and of some as yet unknown
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Fig. 2.6. Radius vectors of two points A (body-fixed) and P (moving relative to
the body)

quantity which accounts for changes of the body angular orientation in base
e1. A velocity relative to a specified base is calculated as time derivative of
the radius vector in this base. More precisely, the velocity coordinates are
the time derivatives of the coordinates of the radius vector. In what follows
the base in which a vector is differentiated is denoted by an upper index (1)
or (2) placed in front. With this notation the two velocities of P are

v =
(1) dr

dt
, vrel =

(2) d̺

dt
. (2.66)

In contrast to vectors scalar quantities have identical time derivatives in
different bases. These derivatives are denoted by a dot as usual.

The relationship between time derivatives of a vector in two bases e1 and
e2 is met frequently and not only with position vectors. For this reason it is
formulated first for a vector p of arbitrary physical nature. Let pi (i = 1, 2, 3)
be the coordinates of p in e2. Then

(1) dp

dt
=

(1) d

dt

3∑

i=1

pi e
2
i =

3∑

i=1

ṗi e
2
i +

3∑

i=1

pi

(1) d

dt
e2

i . (2.67)

By definition, the first sum represents the time derivative of p in e2. Hence,

(1) dp

dt
=

(2) dp

dt
+

3∑

i=1

pi

(1) d

dt
e2

i . (2.68)

The derivative of e2
i is a vector. Let aij (j = 1, 2, 3) be its unknown coordi-

nates in base e2:

(1) d

dt
e2

i =

3∑

j=1

aij e2
j (i = 1, 2, 3) . (2.69)

The base vectors satisfy the orthonormality conditions e2
i · e2

k = δik (i, k =
1, 2, 3). Differentiation of this equation in base e1 yields

(
(1) d

dt
e2

i

)
· e2

k + e2
i ·

(
(1) d

dt
e2

k

)
= 0 (i, k = 1, 2, 3) . (2.70)
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The two derivatives in parentheses are expressed by means of (2.69):

⎛
⎝

3∑

j=1

aij e2
j

⎞
⎠ · e2

k + e2
i ·

⎛
⎝

3∑

j=1

akj e2
j

⎞
⎠ = 0 (i, k = 1, 2, 3) . (2.71)

Because of the orthonormality conditions this reduces to aik +aki = 0 (i, k =
1, 2, 3). It follows that a11 = a22 = a33 = 0. Instead of nine unknowns aij

there are only three. The non zero ones are given the new names aij = −aji =
ωk (i, j, k = 1, 2, 3 cyclic). Then, (2.69) gets the form

(1) d

dt
e2

i = −ωj e2
k + ωk e2

j (i, j, k = 1, 2, 3 cyclic) . (2.72)

Now, the three quantities ωi (i = 1, 2, 3) are interpreted as coordinates of
a vector ω21 in base e2. Then, (2.72) is the equation

(1) d

dt
e2

i = ω21 × e2
i (i = 1, 2, 3) . (2.73)

The vector ω21 is called angular velocity of the body, i.e. of the base e2,
relative to e1. In (2.68) – (2.73) the origin A of the base e2 does not play
any role. Hence, the angular velocity is independent of the choice of A. In
figures the angular velocity vector can be attached to any point of the body.
It is not wrong but sometimes misleading to talk about the angular velocity
about A. This is particularly true if the body has a fixed axis which does not
pass through A.

With (2.73) one gets for (2.68) the form

(1) dp

dt
=

(2) dp

dt
+ ω21 × p (ω21 = angular velocity of e2 relative to e1) .

(2.74)
This is the desired relationship between the time derivatives of an arbitrary
vector p in two different bases. The application to ω21 itself shows that the
time derivatives in the two bases are identical. Therefore, without distinction
one can simply write ω̇21:

(1) dω21

dt
=

(2) dω21

dt
= ω̇21 . (2.75)

This vector is called angular acceleration of the body relative to e1.
After these preparations we return to (2.65): r = rA + ̺. The equation

is differentiated with respect to time in base e1. The derivative of rA is the
velocity vA of the body-fixed point A relative to e1. For differentiating ̺

(2.74) is used. Instead of ω21 simply ω is written. Using the notations (2.66)
one obtains for the velocity v of P the expression

v = vA + ω × ̺ + vrel . (2.76)
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Let a be the acceleration of P relative to e1. It is found by differentiating
v one more time in e1. In doing so (2.74) is applied to the second and to the
third vector. Each of these vectors contributes the term ω×vrel. Taking into
account also (2.75) one obtains the expression

a = aA + ω̇ × ̺ + ω × (ω × ̺) + 2ω × vrel + arel . (2.77)

2.2.2 Inverse Motion

The motion of the base e1 relative to e2 is called the inverse of the motion
of e2 relative to e1. Let ωrel and ω̇rel be the angular velocity and the angular
acceleration, respectively, of e1 relative to e2. Furthermore, let vrel and arel be
the velocity and the acceleration, respectively, relative to e2, of a point fixed
in e1. These quantities are determined as follows. Equation (2.74) is solved for
the right-hand side time derivative of p. This is achieved by interchanging
the indices 1 and 2. The result is: ω12 = −ω21. By definition, ω12 is the
desired angular velocity ωrel. This yields the first equation below. The second
equation follows by the argument used for (2.75) (again ω is written instead
of ω21):

ωrel = −ω , ω̇rel = −ω̇ . (2.78)

Next, (2.76) is applied twice, once to the point A fixed in e2 and once to that
point fixed in e1 which instantaneously coincides with A. In the first case
the equation is v = vA. In the second case one has v = 0, and vrel is the
desired velocity of the inverse motion. The equation reads: 0 = vA +vrel. By
combining both equations one obtains the result

vrel = −v . (2.79)

In the same way an expression for arel is obtained from (2.77). The two
applications yield the equations a = aA and 0 = aA + 2ω × vrel + arel. The
combination of these two equations with (2.79) yields

arel = −a + 2ω × v . (2.80)

Here, too, the quantities on the left-hand side belong to the inverse motion
and the ones on the right-hand side to the motion. Equations (2.78)–(2.80)
are summarized in the

Theorem 2.3. The switch from motion to inverse motion has the conse-
quence that angular velocity, angular acceleration and velocities of arbitrary
points are multiplied by (−1). For accelerations this rule is valid only for
those points which satisfy the condition ω × v = 0. These are all points of
the instantaneous screw axis.
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2.2.3 Instantaneous Screw Axis. Raccording Axodes

In the special case vrel = 0, arel = 0 (2.76) and (2.77) express the velocity
and the acceleration, respectively, of the body-fixed point P defined by the
position vector ̺:

v = vA + ω × ̺ , (2.81)

a = aA + ω̇ × ̺ + ω × (ω × ̺) . (2.82)

The first equation describes the velocity distribution of a rigid body. All
body-fixed points along an arbitrary line parallel to ω have, instantaneously,
identical velocities (different for different lines). There exists a single line
parallel to ω the points of which have a velocity in the direction of ω, i.e.
the velocity v = pω with a scalar p of dimension length. Hence, for all points
on this line pω = vA + ω × ̺. Let u be the perpendicular from A onto this
particular line. Then, also pω = vA + ω ×u. Cross- and dot-multiplying this
equation by ω and making use of the orthogonality ω · u = 0 one gets for u
and for p the expressions

u =
ω × vA

ω2
, p =

ω · vA

ω2
. (2.83)

If in (2.81) as point A an arbitrary point on the line determined by u is
chosen then the velocity distribution in the body is

v = pω + ω × ̺ , (2.84)

i.e. the superposition of a rotation with angular velocity ω about this par-
ticular line and of the translation with the velocity pω along the line. This
is the velocity distribution of a screw motion. The particular line is the in-
stantaneous screw axis (ISA) and p is the pitch of the screw. The velocity v
of an arbitrary body-fixed point not located on the ISA has the direction of
the helix through this point.

In general, the ISA is time-varying. It moves relative to the reference
system and relative to the body. Thereby, it is the generator of a ruled surface
fixed in the reference system and of another ruled surface fixed in the body
and moving with the body. The two ruled surfaces are called fixed axode Ff

(fixed in the reference system) and moving axode Fm (fixed in the body).
By definition, the ISA is common to both Ff and Fm. Proposition: At

every point along the common ISA the tangent planes of both Ff and Fm

coincide. Proof: Let km be an arbitrary curve fixed on Fm, i.e. fixed on the
moving body, which intersects the generators of Fm. The generator is the ISA
which, in the course of time, is sweeping out Fm. Let P be the point which
at all times t is located on both km and the ISA(t), and let, furthermore, vrel

be the velocity of P along km. On Ff P is moving along a different trajectory
kf. Its velocity along kf is, according to (2.76) and (2.84), v = pω + vrel.
The plane spanned by pω and v coincides with the plane spanned by pω
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and vrel. Since these planes represent the tangent planes of Ff and of Fm,
respectively, also the tangent planes coincide. End of proof. These statements
are summarized in the

Theorem 2.4 (Painlevé). Every continuous motion of a rigid body can be
interpreted as raccording motion of the body-fixed axode Fm on the axode Ff

fixed in the reference-base. The axodes are generated by the ISA. They are in
tangential contact along the ISA. The raccording motion is the superposition
of the translation with velocity pω along the ISA and the rotation (rolling
motion) with angular velocity ω about the ISA.

In what follows the orientation of the tangent planes in all points along
the ISA is investigated at a fixed time t = const (arbitrary). With the abbre-
viations

r(0) = rA + u, e =
ω

|ω| (2.85)

and with a free parameter λ of dimension length the ISA has the parameter
equation

r(λ) = r(0) + λe . (2.86)

The plane tangent to the axodes at the point r(λ) is spanned by the vectors
e and ṙ = ṙ(0)+ λė. These two vectors define the unit normal vector n(λ) of
the tangent plane at this point:

n(λ) =
(ṙ(0) + λė) × e

|(ṙ(0) + λė) × e | . (2.87)

In the infinitely distant points λ → −∞ and λ → +∞ the unit normal vectors
of the tangent planes are the mutually opposite vectors

n−∞ =
e × ė

|e× ė | , n+∞ = − e× ė

|e× ė | . (2.88)

These formulas show: When traveling from the infinite point λ → −∞ to
the infinite point λ → +∞ the tangent plane rotates through the angle π.
The particular point on the ISA where one half of this rotation is executed
is referred to as striction point S on the ISA. The unit vector nS normal the
tangent plane at S is

nS = n−∞ × e =
(e× ė) × e

|e× ė | . (2.89)

From ω = ωe and ω̇ = ω̇e + ωė it follows that (ω × ω̇)×ω = ω3(e× ė)× e.
This yields the expression

nS =
(ω × ω̇) × ω

|ω × ω̇| |ω| . (2.90)
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The cartesian base with the origin at the striction point S and with axes along
ω, ω × ω̇ and nS constitutes the so-called instantaneous canonical reference
frame of the raccording axodes (of both axodes).

Let ϕ(λ) be the angle through which the normal vector n(λ) of the tangent
plane at the point r(λ) is rotated against nS (see Fig. 2.7). The unknown
function ϕ(λ) as well as the unknown location of the striction point on the
ISA are found from properties of the acceleration of body-fixed points which
momentarily coincide with the ISA. The point coinciding with r(λ) has the
acceleration (see (2.82))

a(λ) = a(0) − λ

|ω| ω × ω̇ (2.91)

where a(0) is the acceleration of the body-fixed point at the foot of the
perpendicular u on the ISA:

a(0) = aA + ω̇ × u − ω2u = aA − ω × vA +
ω̇ × (ω × vA)

ω2
. (2.92)

Proposition: The acceleration a(λ) lies in the plane spanned by the ISA and
by n(λ). Proof: The acceleration has a component along the ISA due to the
translatory part of the raccording motion and a component ar(λ) due to the
rolling motion. Consider the rolling motion alone. The body-fixed point which
is in rolling contact at r(λ) is passing through a cusp of its trajectory with
the normal unit vector n(λ) being, in the limit, the tangent to the trajectory.
From this it follows that ar(λ) has the direction of n(λ). End of proof.

In particular, the acceleration aS = a(λS) of the body-fixed point coin-
ciding with the striction point lies in the plane spanned by ω and nS. From
this together with (2.90) it follows that the striction point is characterized
by coplanarity of the vectors aS, ω and ω̇:

aS · ω × ω̇ = 0 . (2.93)

Into this equation the expression (2.91) with λ = λS is substituted. This
equation yields

λS

|ω| =
a(0) · ω × ω̇

(ω × ω̇)2
. (2.94)

Fig. 2.7. Collinear vectors n(λ) and ar(λ) and angle ϕ(λ) in the plane of the
mutually orthogonal vectors nS and ω × ω̇ perpendicular to the ISA
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Substitution into (2.86) yields the desired expression for the position vector rS

of the striction point:

rS = rA +
ω × vA

ω2
+

a(0) · ω × ω̇

(ω × ω̇)2
ω . (2.95)

The function ϕ(λ) is found as follows. Equation (2.91) is written in the form

a(λ) = aS + (λS − λ)
ω × ω̇

|ω| . (2.96)

In Fig. 2.7 the collinear vectors n(λ) and ar(λ) are shown in the canonical
reference frame. They are located in the plane spanned by nS and ω × ω̇.
The angle ϕ(λ) is determined by

cosϕ(λ) =
ar(λ) · nS

|ar(λ)| , sin ϕ(λ) =
ar(λ) · ω × ω̇

|ar(λ)| |ω × ω̇| . (2.97)

The numerator expressions are with (2.90), (2.91), (2.93) and (2.96)

ar(λ) · nS = a(λ) · nS = a(0) · nS =
a(0) · [(ω × ω̇) × ω]

|ω × ω̇| |ω| , (2.98)

ar(λ) · ω × ω̇ = (λS − λ)
(ω × ω̇)2

|ω| . (2.99)

From these expressions it follows that

tan ϕ(λ) =
λS − λ

δ
(2.100)

with

δ =
a(0) · [(ω × ω̇) × ω ]

(ω × ω̇)2
. (2.101)

Thus, one has the simple result: On the ISA at t = const (arbitrary) tanϕ(λ)
is proportional to the distance from the striction point. The constant param-
eter δ is called distribution parameter. In (2.98) also a(λ) · nS = aS · nS is
correct. This yields the more appealing formula

δ =
aS · [(ω × ω̇) × ω ]

(ω × ω̇)2
. (2.102)

At the beginning of this section it has been shown that the two raccording
axodes are in tangential contact everywhere along the ISA. For this to be the
case it suffices that the two axodes have, at every instant of time, the same
striction point and the same distribution parameter. The moving axode and
the fixed axode exchange their roles when the transition from motion to
inverse motion is made. According to Theorem 2.3 the quantities vA, a(0),
aS, ω and ω̇ are multiplied by −1. Neither rS nor δ is effected by this change.
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Through (2.101), (2.95) and (2.90)3 the distribution parameter δ, the
striction point rS and the normal nS and, with it, the canonical reference
frame are expressed in terms of the same five kinematical quantities rA, vA,
aA, ω and ω̇ which determine the velocity screw and the raccording axodes
(u and p in (2.83)). Imagine an arbitrary spatial 1-d.o.f. mechanism. As a re-
sult of a kinematics analysis the five kinematical quantities are explicitly
available for each link of the mechanism as functions of a single input vari-
able ϕ and of its derivatives ϕ̇ and ϕ̈. With the said equations the ISA, the
striction point, the canonical reference frame and the distribution parameter
are known for every link. The spatial trajectories of the striction point S on
the fixed axode and on the moving axode are called striction lines. The line
on the fixed axode is determined by the coordinates of rS(ϕ) in the reference
base e1. The line on the moving axode is determined by the coordinates of
rS(ϕ) − rA(ϕ) in base e2. In general, the two striction lines are not tangent
to one another at the striction point.

The shape of the two axodes and the raccording motion are particularly
simple if the body under consideration is moving about a point A fixed in the
reference base e1. Equations (2.83) yield u = 0 and p = 0. This means that
the ISA is always passing through the fixed point A. Both axodes are, there-
fore, general cones, one fixed in the body and the other fixed in the reference
base (Fig. 2.8). The raccording motion is pure rolling without slipping. That
the two cones are in tangential contact along the ISA is a consequence of
(2.75) which states that ω(t) is sweeping out both cones with equal rates of
change.

In the simplest possible case, the case of planar motion, the raccord-
ing axodes are general cylinders which are rolling one on the other without
translation along the ISA. It suffices to visualize the intersection curves of
the cylinders with the plane of motion. These curves are called centrodes and
the point of contact, i.e. the intersection of the ISA with the plane of motion,
is the instantaneous center of rotation.

Fig. 2.8. The cones generated by ω in two bases e1 and e2, ω being the angular
velocity of e2 relative to e1

3 Reported in Wittenburg [101].
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Problem 2.6. Derive from (2.82) an expression for the jerk j (the time derivative
of the acceleration a) of body-fixed points relative to e1.

Problem 2.7. Given are in some reference base the instantaneous position vectors
r1, r2, r3 of three noncollinear points P1, P2, P3 of a rigid body as well as the
instantaneous velocities v1, v2, v3 of these points. To be determined is the instan-
taneous angular velocity ω of the body. Since none of the three points is dominant
in any way it is possible to find an expression for ω which is cyclically symmetric
with respect to the indices 1, 2, 3.

2.3 Kinematic Differential Equations

The angular velocity of a body cannot, in general, be represented as time
derivative of another vector. This is possible only in the trivial case when the
direction of ω is constant. The coordinates ω1, ω2 and ω3 of ω in a body-fixed
vector base do not, therefore, represent generalized velocities in the sense of
analytical mechanics. From this it follows that generalized coordinates for the
angular orientation of a body cannot be determined from ωi(t) (i = 1, 2, 3)
by simple integration. Instead, differential equations must be solved in which
ωi(t) (i = 1, 2, 3) appear as variable coefficients. These equations will now
be formulated for direction cosines, Euler angles, Bryan angles and Euler–
Rodrigues parameters as generalized coordinates.

2.3.1 Direction Cosines

Let r be the position vector of an arbitrary body-fixed point. Its constant
coordinate matrix r2 in e2 and its time-varying coordinate matrix r1(t) in e1

are related through the equation r1(t) = A12(t) r2. Differentiation yields the
velocity coordinates relative to e1 and decomposed in e1:

ṙ1 = Ȧ
12

r2 . (2.103)

The velocity vector is also given in the form ω×r. Its coordinate matrix in e2

is ω̃ r2 and in e1 it is A12ω̃ r2. Comparison with (2.103) yields the equation

Ȧ
12

r2 = A12ω̃ r2. This is valid for any arbitrary matrix r2. Hence, also the
preceding factors on both sides are equal. Transposition yields

Ȧ
21

= −ω̃ A21 . (2.104)

These are, in matrix form, the desired differential equations for direction
cosines. They are called Poisson’s equations. They are linear equations with
time-varying coefficients. Equations for individual direction cosines are found
by multiplying out:

ȧ21
11 = ω3a

21
21 − ω2a

21
31 etc. (2.105)
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Because of the six constraint Eqs. (2.2) only three differential equations need
be integrated.

The kinematic differential equations determine the direction cosines when
ω1(t), ω2(t), ω3(t) are known from an analytical or numerical integration of
dynamics equations of motion. Frequently, dynamics equations of motion
contain as unknowns not only ω1, ω2, ω3 and ω̇1, ω̇2, ω̇3 but also the direction
cosines themselves. In such cases the dynamics equations of motion and the
kinematic differential equations must be integrated simultaneously.

Equally interesting is the inverse problem: Given is as function of time
the direction cosine matrix. Then, (2.104) yields for the coordinates of ω the
equation

ω̃ = −Ȧ
21

(t)A21T
(t) . (2.106)

2.3.2 Euler Angles

Figure 2.1 yields for the angular velocity ω of the base e2 the expression

ω = ψ̇e1
3 + θ̇e2′

1 + φ̇e2
3 . (2.107)

The vectors are decomposed in base e2. With the help of (2.3) this results in
the coordinate equations

⎡
⎣

ω1

ω2

ω3

⎤
⎦ =

⎡
⎣

sin θ sin φ cosφ 0
sin θ cosφ − sin φ 0
cos θ 0 1

⎤
⎦
⎡
⎣

ψ̇

θ̇

φ̇

⎤
⎦ . (2.108)

Inversion yields the desired differential equations
⎡
⎣

ψ̇

θ̇

φ̇

⎤
⎦ =

⎡
⎣

sin φ/ sin θ cosφ/ sin θ 0
cosφ − sin φ 0

− sinφ cot θ − cosφ cot θ 1

⎤
⎦
⎡
⎣

ω1

ω2

ω3

⎤
⎦ . (2.109)

These equations are nonlinear. Numerical problems arise when θ gets close
to one of the critical values nπ (n = 0,±1, . . .).

2.3.3 Bryan Angles

Figure 2.3 yields for the angular velocity ω of the base e2 the expression

ω = φ̇1e
1
1 + φ̇2e

2′

2 + φ̇3e
2
3 . (2.110)

The vectors are decomposed in base e2. With the help of (2.7) this results in
the coordinate equations

⎡
⎣

ω1

ω2

ω3

⎤
⎦ =

⎡
⎣

cosφ2 cosφ3 sin φ3 0
− cosφ2 sinφ3 cosφ3 0

sin φ2 0 1

⎤
⎦
⎡
⎣

φ̇1

φ̇2

φ̇3

⎤
⎦ . (2.111)



34 2 Rigid Body Kinematics

Inversion yields the desired differential equations

⎡
⎣

φ̇1

φ̇2

φ̇3

⎤
⎦ =

⎡
⎣

cosφ3/ cosφ2 − sinφ3/ cosφ2 0
sin φ3 cosφ3 0

− cosφ3 tan φ2 sin φ3 tanφ2 1

⎤
⎦
⎡
⎣

ω1

ω2

ω3

⎤
⎦ . (2.112)

These equations are nonlinear. Numerical problems arise when φ2 gets close
to one of the critical values π/2 + nπ (n = 0,±1, . . .).

In Sect. 2.1.2 it has been shown that in the case of small angles φ1, φ2, φ3

linearization of the direction cosine matrix is possible (see (2.10)). Lineariza-
tion of (2.111) yields ωi ≈ φ̇i (i = 1, 2, 3). Thus, the angular orientation of
the body is the result of simple integration:

φi ≈
∫

ωi dt (|φi| ≪ 1; i = 1, 2, 3) . (2.113)

2.3.4 Euler–Rodrigues Parameters

Kinematic differential equations for Euler–Rodrigues parameters are estab-
lished by two different methods. The first method starts out from (2.60) for
the Euler–Rodrigues parameters of the resultant of two consecutive rotations:

q0res
= q02q01 − q2 · q1 , qres = q02q1 + q01q2 + q2 × q1 . (2.114)

The parameters (q01,q1) are attributed to time t during a continuous motion
and the parameters (q0res

,qres) are attributed to time t + dt. The quantities
(q02,q2) represent the Euler–Rodrigues parameters of the differential rotation
ω dt = eωω dt during the time interval dt (unit vector eω). These parameters
are

q02 = cos

(
1

2
ω dt

)
= 1 , q2 = eω sin

(
1

2
ω dt

)
=

1

2
ω dt . (2.115)

With these expressions Eqs. (2.114) take the forms

q0(t+ dt) = q0(t)−
1

2
ω ·q(t) dt , q(t+ dt) = q(t)+

1

2
[q0(t)ω+ω×q(t)] dt .

(2.116)
Division by dt yields for q̇0 and for the derivative of q in the reference base
e1 the differential equations

q̇0 = −1

2
ω · q ,

(1) dq

dt
=

1

2
(q0ω + ω × q) . (2.117)

In kinematics as well as in dynamics the derivative of q in the body-fixed
base e2 is needed. By the general rule (2.74) this derivative is

(2) dq

dt
=

1

2
(q0ω − ω × q) . (2.118)
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Decomposition of this equation in e2 yields the desired kinematic differential
equations: [

q̇0

q̇

]
=

1

2

[
0 −ωT

ω −ω̃

] [
q0

q

]
. (2.119)

The equations are linear with a time-varying skew-symmetric coefficient ma-
trix.

The second method leading to the same equations uses relationships be-
tween Euler–Rodrigues parameters and Euler angles. The elements (3, 3) of
the direction cosine matrices in (2.5) and in (2.35) are identical, whence fol-
lows

cos θ = q2
0 − q2

1 − q2
2 + q2

3 . (2.120)

Furthermore, from (2.41) the relations are known

tan
ψ + φ

2
=

q3

q0
, tan

ψ − φ

2
=

q2

q1
. (2.121)

This yields

ψ = tan−1 q3

q0
+ tan−1 q2

q1
, φ = tan−1 q3

q0
− tan−1 q2

q1
. (2.122)

Differentiation with respect to time produces the equations

ψ̇ =
q0q̇3 − q3q̇0

q2
0 + q2

3

+
q1q̇2 − q2q̇1

q2
1 + q2

2

, φ̇ =
q0q̇3 − q3q̇0

q2
0 + q2

3

− q1q̇2 − q2q̇1

q2
1 + q2

2

. (2.123)

These expressions and the expression for cos θ from (2.120) are substituted
into the third differential Eq. (2.108) for Euler angles: ω3 = ψ̇ cos θ + φ̇. This
results in the equation

ω3 =
q0q̇3 − q3q̇0

q2
0 + q2

3

(q2
0 − q2

1 − q2
2 + q2

3 + 1)︸ ︷︷ ︸
2(q2

0+q2
3)

+
q1q̇2 − q2q̇1

q2
1 + q2

2

(q2
0 − q2

1 − q2
2 + q2

3 − 1)︸ ︷︷ ︸
−2(q2

1+q2
2)

= 2(q0q̇3 − q3q̇0 − q1q̇2 + q2q̇1) . (2.124)

Equations for ω2 and ω1 are obtained by cyclic permutation of the indices
1, 2 and 3. The three equations constitute the rows 2, 3 and 4 of the matrix
equation below. The first row represents the time derivative of the constraint
equation 1 = q2

0 + q2
1 + q2

2 + q2
3 .

⎡
⎢⎢⎣

0
ω1

ω2

ω3

⎤
⎥⎥⎦ = 2

⎡
⎢⎢⎣

q0 q1 q2 q3

−q1 q0 q3 −q2

−q2 −q3 q0 q1

−q3 q2 −q1 q0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

q̇0

q̇1

q̇2

q̇3

⎤
⎥⎥⎦ . (2.125)
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The coefficient matrix is orthogonal (the scalar product of any two rows or
columns i and j equals δij). Consequently, the inverse equals the transpose.
Thus, an explicit expression is obtained for the column matrix [q̇0 q̇1 q̇2 q̇3]

T .
Rearranging this expression results again in (2.119).

In the course of numerical integration of the equations inevitable numeri-
cal errors have the effect that computed quantities qi(t) (i = 0, 1, 2, 3) do not
strictly satisfy the constraint equation q2

0 +q2
1 +q2

2 +q2
3 = 1. Such faulty quan-

tities must not be used for calculating from (2.35) a direction cosine matrix
for the transformation of vector coordinates. Before doing so the quantities
must be replaced by corrected quantities which satisfy the constraint equa-
tion. Corrected quantities q∗i (i = 0, . . . , 3) are calculated such that the sum

of squares of the corrections, i.e.
∑3

i=0(q
∗
i − qi)

2, is minimal. This criterion
yields the formulas

q∗i =
qi√∑3
j=0 q2

j

(i = 0, . . . , 3) . (2.126)

Problem 2.8. A rigid body is suspended in two gimbals as is shown in Fig. 2.9.
In the outer gimbal the two axes are offset from 90◦ by an angle α and in the inner
gimbal by an angle β. Let φ1, φ2 and φ3 be defined like Bryan angles, i.e. as rotation
angles of the outer gimbal about e1

1, of the inner gimbal relative to the outer gimbal
and of the body relative to the inner gimbal, respectively. For φ1 = φ2 = φ3 = 0
the planes of the gimbals are perpendicular to one another and, furthermore, the
base vectors e1

1 and e1
2 of the reference base as well as the body-fixed vector e2

1 lie
in the plane of the outer gimbal. Develop (i) an expression for the direction cosine
matrix A21 and (ii) kinematic differential equations similar to (2.112).

Fig. 2.9. Two-gimbal suspension with nonorthogonal gimbal axes
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Basic Principles of Rigid Body Dynamics

The two most important physical quantities in rigid body dynamics are ki-
netic energy and angular momentum. Both lead directly to the definition of
the inertia tensor.

3.1 Kinetic Energy

The kinetic energy is a scalar quantity. For a point mass m it is defined as
T = mṙ2/2 where ṙ is the absolute velocity of m, i.e. its velocity relative
to an inertial reference base. Throughout this chapter a dot over a vector
designates differentiation with respect to time in an inertial base. For a rigid
body as for any extended body the kinetic energy is the integral

T =
1

2

∫

m

ṙ2 dm . (3.1)

Let A be an arbitrary point fixed on the body (Fig. 3.1). The absolute ve-
locity ṙ of a mass particle dm is according to (2.81) ṙ = ṙA + ω × ̺ where
ṙA is the absolute velocity of the reference point A, ω the absolute angular
velocity of the body and ̺ the radius vector from A to the mass particle. The

Fig. 3.1. Radius vectors of a mass particle dm on a rigid body. Center of mass C
and body-fixed reference point A
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point C in Fig. 3.1 at the radius vector ̺C =
−→
AC indicates the body center

of mass. Evaluation of the integral yields

T =
1

2
ṙ2
Am + ṙA · (ω × ̺C)m +

1

2

∫

m

(ω × ̺)2 dm . (3.2)

This expression is particularly simple if either the body-fixed point A is also
fixed in inertial space or the center of mass C is used as reference point A.
In the former case ṙA = 0 so that the first two terms equal zero. In the
latter case ̺C = 0 so that the central term vanishes. The first term is then
called kinetic energy of translation Ttrans and the third term kinetic energy
of rotation Trot. For the integrand in the third term the identity holds1

(ω × ̺)2 = ω · [̺ × (ω × ̺)] . (3.3)

In this expression tensor notation is introduced (cf. (1.40)):

̺ × (ω × ̺) =
(
̺2

I − ̺̺
)
· ω . (3.4)

Together with the previous equation this yields
∫

m

(ω × ̺)2 dm = ω · JA · ω (3.5)

where J
A is the tensor

J
A =

∫

m

(
̺2

I − ̺̺
)

dm . (3.6)

It is called inertia tensor of the body with respect to A. In a body-fixed base
e in which ̺ has the coordinate matrix ̺ J

A has the coordinate matrix

JA =

∫

m

(
̺T ̺ I − ̺ ̺T

)
dm (3.7)

or explicitly

JA =

⎡
⎢⎣

∫
m

(
̺2
2 + ̺2

3

)
dm −

∫
m

̺1̺2 dm −
∫

m
̺1̺3 dm

∫
m

(
̺2
3 + ̺2

1

)
dm −

∫
m

̺2̺3 dm

symmetric
∫

m

(
̺2
1 + ̺2

2

)
dm

⎤
⎥⎦ . (3.8)

This symmetric matrix is called inertia matrix of the body with respect to A
and to the chosen body-fixed base e. It is a geometric quantity which is
determined by the mass distribution of the body. The integrals along the
diagonal are called moments of inertia J11, J22 and J33, and the off-diagonal
elements including the minus signs are called products of inertia2 J12, J13

1 In mixed products the symbols of dot and cross multiplication can be inter-
changed so that ω × ̺ · c = ω · ̺ × c. Here, c equals ω × ̺.

2 In some books the integrals without minus signs are referred to as products of
inertia.
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and J23:

Jii =

∫

m

(
̺2

j + ̺2
k

)
dm (i, j, k different) , (3.9)

Jij = −
∫

m

̺i̺j dm (i �= j) . (3.10)

Moments of inertia are nonnegative whereas products of inertia can be posi-
tive, negative or zero.

With (3.5) the kinetic energy expression in (3.2) becomes

T =
1

2
ṙ2
Am + ṙA · (ω × ̺C)m +

1

2
ω · JA · ω . (3.11)

Problem 3.1. Let the input shaft (rotation angle q1) and the output shaft (rotation
angle q2) of a device be coupled by a mechanism which produces a nonuniform
transmission ratio q̇1/q̇2 = i(q1) �= const. A typical example is a Hooke’s joint.
A rotor with moment of inertia J1 is mounted on the input shaft and another
rotor with moment of inertia J2 on the output shaft. Compared with these rotors
the masses and moments of inertia of the coupling mechanism are assumed to be
negligible. Furthermore, it is assumed that no torques are applied to the two shafts
and that no springs and dampers are present in the entire system. Under these
conditions the system is idling with time-varying angular velocities. Determine, for
given initial conditions, the function q̇1 = f(q1) defining the phase portrait.

3.2 Angular Momentum

The absolute angular momentum – also referred to as absolute moment of
momentum – of a point mass m having an absolute velocity ṙ is a vector.
For its definition the specification of a reference point is required. Let 0 be
a point fixed in inertial space. The absolute angular momentum with respect
to 0 is L0 = r× ṙm where r is the radius vector from 0 to the point mass. The
expression explains the name moment of momentum since ṙm is the linear
momentum of the point mass. For a rigid body as for any extended body the
absolute angular momentum with respect to 0 is the integral

L0 =

∫

m

r × ṙ dm . (3.12)

The vectors under the integral are those of Fig. 3.1. With r = rA + ̺ and
ṙ = ṙA + ω × ̺ the integral becomes

L0 =

∫

m

(rA + ̺) × (ṙA + ω × ̺) dm

= rA × (ṙA + ω × ̺C)m + ̺C × ṙAm +

∫

m

̺ × (ω × ̺) dm . (3.13)
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The expression (ṙA + ω × ̺C) is the absolute velocity ṙC of the center of
mass C so that (ṙA + ω × ̺C)m represents the absolute linear momentum
of the body. The expression for L0 is particularly simple if either the body-
fixed point A is also fixed in inertial space or the center of mass C is used as
reference point A. In the former case ṙA = 0 and in the latter ̺C = 0. In both
cases the central term in (3.13) vanishes. The first term then represents the
angular momentum with respect to 0 due to translation of the body center of
mass and the last term represents the angular momentum caused by rotation
of the body. Using tensor notation this last term becomes

∫

m

̺ × (ω × ̺) dm =

∫

m

(
̺2

I − ̺̺
)

dm · ω = J
A · ω . (3.14)

This introduces, again, the inertia tensor of the body with respect to A. With
this expression the angular momentum L0 is

L0 = rA × (ṙA + ω × ̺C)m + ̺C × ṙAm + J
A · ω . (3.15)

3.3 Properties of Moments and of Products of Inertia

Moments and products of inertia are defined with respect to a body-fixed
reference point and with respect to a body-fixed base. Therefore, it is nec-
essary to investigate how moments and products of inertia change when the
reference point and/or the base are changed.

3.3.1 Change of Reference Point. Reference Base Unchanged

Given the inertia tensor J
A of a body with respect to a point A what is the

inertia tensor J
P with respect to another point P? For solving this problem

it is sufficient to establish the relationship between J
A and the central inertia

tensor J
C with respect to the body center of mass C. The same relation-

ship with P instead of A then exists between J
P and J

C so that the desired
relationship between J

P and J
A is obtained by eliminating J

C.

Fig. 3.2. Radius vectors of a mass particle dm. Center of mass C and body-fixed
reference point A
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The points A and C and the vectors shown in Fig. 3.2 are the same as in
Fig. 3.1. According to (3.6) the inertia tensor with respect to A is

J
A =

∫

m

(
̺2

I − ̺̺
)

dm . (3.16)

The same formula with ̺ − ̺C instead of ̺ yields the inertia tensor J
C.

Taking into account that
∫

m ̺ dm = ̺Cm one calculates

J
C =

∫

m

[
(̺ − ̺C)2 I − (̺ − ̺C)(̺ − ̺C)

]
dm

=

∫

m

[(
̺2 − ̺2

C

)
I − (̺̺ − ̺C̺C)

]
dm

= J
A −

(
̺2

C I − ̺C̺C

)
m . (3.17)

This is the desired relationship between J
A and J

C.
The tensors are now resolved in one and the same arbitrarily chosen body-

fixed reference base. This yields the coordinate equation in matrix form

JA = JC +
(
̺T
C
̺
C

I − ̺
C

̺T
C

)
m (3.18)

and for the single moments and products of inertia

JA
ii = JC

ii +
(
̺2
Cj + ̺2

Ck

)
m (i, j, k different) (3.19)

JA
ij = JC

ij − ̺Ci̺Cjm (i �= j) . (3.20)

These formulas are known as Huygens–Steiner formulas. It is seen that the
moment of inertia JC

ii about an axis ei through the center of mass C is
smaller than the moment of inertia JA

ii about any parallel axis not passing
through C. For products of inertia no such statement can be made because
the term ̺Ci̺Cj can be positive or zero or negative.

3.3.2 Change of Reference Base. Reference Point Unchanged

Let e1 and e2 = A21e1 be two vector bases fixed on one and the same body
and let, furthermore, A be a point on this body. Given the inertia matrix J1

of the body with respect to A in base e1 what is the inertia matrix J2 in
base e2 with respect to the same point A (for simplicity, the superscript A is
omitted)? The answer is provided by the transformation equation (1.31) for
tensor coordinates (similarity transformation):

J2 = A21J1A12 . (3.21)

From this matrix equation transformation formulas for individual moments
and products of inertia are found by multiplying out the product on the
right-hand side. These formulas are, however, rather complicated so that it is
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preferable to memorize only the matrix equation as a whole. Simple formulas
result only in the case when J1 is a diagonal matrix with elements J1, J2, J3

along the diagonal. These are the principal moments of inertia explained
further below. With aij being the elements of A12 the formulas then read (in

J
(2)
ij the superscript (2) refers to base e2)

J
(2)
ij =

3∑

k=1

Jkakiakj (i, j = 1, 2, 3) . (3.22)

The similarity transformation and the Huygens–Steiner formulas (3.14)
are commutative. This means: If moments and products of inertia are to be
transformed from a reference point A in a base e1 to another reference point P
in another base e2 then it is immaterial whether the transition from A to P in
base e1 is followed by the similarity transformation from e1 to e2 or whether
the similarity transformation precedes the transition from A to P.

3.3.3 Principal Axes. Principal Moments of Inertia

Suppose that the inertia matrix J1 is known for a body with respect to
a certain reference point A and for a certain body-fixed base e1 and that it
is not a diagonal matrix (the superscript A is omitted, again). Does another
body-fixed base e2 exist for which the inertia matrix J2 with respect to the
same point A is diagonal? If so, how are the diagonal elements of J2 and
the transformation matrix A12 relating e1 and e2 determined from J1? The
answer to these questions is found as follows. The unknowns J2 and A12

are related to J1 by the similarity transformation (3.21). This equation is
written in the form J1A12 = A12J2. Let J1, J2 and J3 be the unknown
diagonal elements of J2 and let Ai (i = 1, 2, 3) be the ith column of A12,
i.e. the coordinate matrix of the unknown base vector e2

i in base e1. The
transformation equation is then equivalent to the set of equations J1Ai =
JiAi (i = 1, 2, 3). Each of these three equations represents the same eigenvalue
problem (

J1 − JiI
)
Ai = 0 . (3.23)

The unknowns J1, J2 and J3 are the eigenvalues. They are the solutions of
the cubic equation

det
(
J1 − JiI

)
= 0 . (3.24)

The unknown column matrices Ai (i = 1, 2, 3) are the corresponding eigen-
vectors. These results not only answer the question how J2 and A12 are
determined from J1. They also show that for any inertia matrix J1 there
exists a real base e2 in which the inertia matrix J2 is diagonal and real.
This follows from the fact that a symmetric matrix has real eigenvalues and
eigenvectors and that, in addition, the eigenvectors are mutually orthogonal
(see Gantmacher [19]).
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The eigenvalues J1, J2 and J3 are called principal moments of inertia
(with respect to A), and the base vectors e2

i (i = 1, 2, 3) determine the
directions of what is called principal axes of inertia (with respect to A). In
determining these principal axes it must be distinguished whether all three
eigenvalues are different from one another or whether (3.24) has a double
or a triple root. In the case of three different eigenvalues each of the three
coefficient matrices (J1 − JiI) in (3.23) has defect one. Each equation then
determines the associated eigenvector Ai, i.e. the coordinates of the principal
axis base vector e2

i (the sum of squares of the coordinates equals one). In
the case of a double eigenvalue J1 = J2 the principal axis which corresponds
to J3 is determined uniquely as before. For the eigenvalue J1 however, the
coefficient matrix (J1 − J1I) in (3.23) has defect two so that the equation
defines only a plane. This is the plane spanned by the two principal axes
which correspond to J1 and J2. Any two mutually perpendicular axes in this
plane (and passing through A) can serve as principal axes of inertia since
for any such axis the moment of inertia has magnitude J1. In the case of
a triple eigenvalue J1 = J2 = J3 the original matrix J1 is already diagonal.
All axes passing through A are then principal axes of inertia. Examples of
such bodies with A being the center of mass are homogeneous spheres, cubes,
regular tetrahedra and cylinders with a ratio height/radius =

√
3.

3.3.4 Invariants. Inequalities

In connection with stability investigations and with other problems it is some-
times necessary to determine the signs of expressions which are composed of
moments and products of inertia. In such cases the knowledge of invariants of
the inertia matrix and of inequalities involving moments and products of in-
ertia is helpful. Equation (3.24) represents a cubic equation for the principal
moments of inertia. Since these moments are independent of the orientation
of the vector base in which the inertia matrix J1 is measured, the coefficients
of the cubic must also be independent. Omitting the superscript 1 this yields
the invariants (J2

12 is the square of J12)

tr J = J11 + J22 + J33 = J1 + J2 + J3 ,(
J11J22 − J2

12

)
+
(
J22J33 − J2

23

)
+
(
J33J11 − J2

31

)
= J1J2 + J2J3 + J3J1 ,

det J = J11J22J33 − J11J
2
23 − J22J

2
31 − J33J

2
12 + 2J12J23J31 = J1J2J3 .

⎫
⎬
⎭

(3.25)
All three invariants are positive.

From the definitions of moments of inertia in (3.9) it follows that for i, j
and k being any permutation of 1, 2 and 3

Jii + Jjj =

∫

m

(
̺2

i + ̺2
j + 2̺2

k

)
dm = Jkk + 2

∫

m

̺2
k dm . (3.26)
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From this it follows that moments of inertia satisfy the so-called triangle
inequalities

Jii + Jjj ≥ Jkk (i, j, k different) . (3.27)

Inequalities involving both moments and products of inertia are the following
(J2

ij is the square of Jij):

Jii ≥ 2|Jjk| (i, j, k different) , (3.28)

JiiJjj ≥ J2
ij (i �= j) . (3.29)

The first one is a consequence of the inequality (̺j ±̺k)2 ≥ 0, whence follows
̺2

j + ̺2
k ≥ 2|̺j̺k| and

∫

m

(
̺2

j + ̺2
k

)
dm ≥ 2

∫

m

|̺j̺k| dm ≥ 2
∣∣∣
∫

m

̺j̺k dm
∣∣∣ . (3.30)

This is the inequality (3.28). The inequality (3.29) is derived from (3.22):

JiiJjj − J2
ij =

(
3∑

k=1

Jka2
ki

)(
3∑

k=1

Jka2
kj

)
−
(

3∑

k=1

Jkakiakj

)2

= J1J2(a1ia2j − a2ia1j)
2 + J2J3(a2ia3j − a3ia2j)

2

+J3J1(a3ia1j − a1ia3j)
2 ≥ 0 . (3.31)

This inequality proves that in the second Eq. (3.25) each of the three terms
on the left-hand side is individually nonnegative.

Problem 3.2. Under which conditions are the equality signs valid in (3.27), (3.28)
and (3.29)?

Problem 3.3. Equation (3.21) for the transformation of moments and products of
inertia is particularly simple if the two vector bases related by the matrix A12 have
one base vector in common, say e1

3 = e2
3. Show that in this special case (3.21) can

be interpreted geometrically by what is known as Mohr’s circle.

Problem 3.4. In Fig. 3.3 a homogeneous solid tetrahedron of density ̺ with three
mutually orthogonal edges of lengths ℓ, ℓ tan γ and ℓ tan γ is shown. Calculate, first,
from triple integrals the moments and products of inertia in base e with respect
to the origin of this base. Then, determine the location of the body center of mass
and calculate the central inertia matrix JC in the same base.

3.4 Angular Momentum Theorem

Newton’s second axiom for translational motions finds its complement in the
angular momentum theorem as the basic law governing rotational motions:
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Fig. 3.3. Tetrahedron with three mutually orthogonal edges

Theorem 3.1. For an arbitrary material system the absolute time derivative
(i.e. the time derivative in an inertial reference base) of the absolute angular
momentum with respect to a reference point 0 fixed in inertial space equals
the resultant torque with respect to the same reference point:

L̇0 = M0 . (3.32)

This law was first formulated as an axiom by Euler3. It cannot be derived
from Newton’s axioms.

The particular form of this law for a rigid body is obtained by substituting
for L0 the expression given in (3.15). The time derivative in inertial space
is obtained by applying (2.74) in combination with the product rule. The
leading term of L0 has been shown to be rA× ṙCm (see (3.13)). This explains
the first two terms below.

L̇0 = m[rA × r̈C + ṙA × (ṙA + ω × ̺C) + (ω × ̺C) × ṙA + ̺C × r̈A]

+ J
A · ω̇ + ω × J

A · ω . (3.33)

Of the five terms in brackets the second is zero and the next two cancel each
other. Consider next the resultant torque M0 on the body with respect to
the point 0. If F is the resultant external force on the body and MA the
resultant external torque with respect to A then M0 = MA + rA × F or in
view of Newton’s law

mr̈C = F (3.34)

M0 = MA + rA × r̈Cm. When this together with (3.33) is substituted into
(3.32) the angular momentum theorem for a rigid body is obtained in the
final form

m̺C × r̈A + J
A · ω̇ + ω × J

A · ω = MA . (3.35)

The steps leading to this equation remain valid if the reference point A in
Fig. 3.1 is not fixed on the body but moves relative to it. The only change
that has to be made is to interpret r̈A as absolute acceleration not of A but
of the body-fixed point which momentarily coincides with A. The angular
momentum theorem takes its simplest form

J
A · ω̇ + ω × J

A · ω = MA (3.36)

3 For the history of the law see Truesdell [81].
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if as reference point A either the body center of mass is chosen (̺C = 0) or
a point (if it exists) for which r̈A = 0 or a point (if it exists) for which ̺C and
r̈A are permanently parallel to one another. The case r̈A = 0 applies when
a body-fixed point A is also fixed in inertial space. The case ̺C permanently
parallel r̈A is very special. When the body is a homogeneous rolling circular
cylinder then the point of contact is a point A with this property.

From now on the superscript A will be omitted. The coordinate formula-
tion of (3.36) in a body-fixed base is then

J ω̇ + ω̃ J ω = M . (3.37)

Using, in particular, principal axes of inertia as directions for the base vectors
this matrix equation is equivalent to

J1ω̇1 − (J2 − J3)ω2ω3 = M1 ,
J2ω̇2 − (J3 − J1)ω3ω1 = M2 ,
J3ω̇3 − (J1 − J2)ω1ω2 = M3 .

⎫
⎬
⎭ (3.38)

These are Euler’s equations of motion for a single rigid body. They can be
integrated in closed form in a few special cases only. Mathematical problems
arise for two reasons. One is the nonlinearity of the left-hand side of the
equations. The other is the generally complicated form of the right-hand side
expressions. Three types of problems can be distinguished. In the first and
simplest case the torque coordinates M1, M2 and M3 are known functions of
ω1, ω2, ω3 and t (and possibly of ω̇1, ω̇2, ω̇3). Physically, this means that the
source of the torque M is rotating together with the body. A typical example
is the torque caused by the reaction of a rocket engine which is mounted on
a missile and which moves relative to the missile according to some prescribed
function of time. In such cases the rigid body is said to be self-excited. All
problems not being of this type can be divided into two classes. The first class
comprises problems in which M1, M2 and M3 depend not only on ω1, ω2, ω3

and t but also on generalized coordinates which describe the angular orienta-
tion of the body in some external reference base. To give an example gravity
acting on a body which is suspended as a pendulum causes a torque whose
coordinates are functions of the direction of the vertical in the principal axes
system. The dependence of M1, M2 and M3 on such generalized coordinates
causes a mathematical coupling between Euler’s equations and kinematic dif-
ferential equations describing the angular orientation of the body. These are
(2.104) or (2.109) or (2.112) or (2.119) depending on the choice of generalized
coordinates. Still more complicated are problems in which M1, M2 and M3

depend also on the location and velocity of the body center of mass. This
dependency provides a coupling with Newton’s law (3.34). Examples for this
most general case are motions of airplanes and ships.

Problem 3.5. In Fig. 3.4 an inhomogeneous circular cylinder of radius R, mass m
and moment of inertia JC about an axis through the center of mass C is shown. The
center of mass is located at the radius b. The cylinder is rolling without slipping on
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Fig. 3.4. Inhomogeneous rolling cylinder with center of mass C

a horizontal plane. Formulate the equation of motion for the angular coordinate φ
by using as reference point A in (3.35) (i) the center of mass C, (ii) the geometric
center M and (iii) the point of contact with the plane.

3.5 Principle of Virtual Power

The principal of virtual power, also referred to as Jourdain’s principle, has
the general form4 ∫

m

δṙ · (r̈ dm − dF) = 0 . (3.39)

It is valid for any material system (axiom). The integral is taken over the
total system mass. The vector r is the radius vector of the mass particle dm
measured from a point fixed in inertial space. The second derivative r̈ is the
absolute acceleration of the mass particle, and δṙ is the variation of its ve-
locity ṙ. This variation is understood to be an arbitrary, infinitesimally small
increment of ṙ which is imposed upon the system at a fixed time t = const
and in a fixed position of the system (r = const for all mass particles) and
which is, furthermore, compatible with all velocity constraints of the system.
The quantity dF represents the total force acting on the mass element dm.
It can be the weight g dm or a finite external force or an internal force such
as the force of a spring. Constraint forces acting in frictionless contacts of
rigid bodies have zero virtual power.

In what follows the principle of virtual power is formulated for a single
rigid body. Let A be an arbitrary body-fixed point. Using again the vectors
shown in Fig. 3.1 one has r = rA + ̺ and δṙ = δṙA + δω × ̺. With these
expressions the principle is written in the form

∫

m

(δṙA + δω × ̺) · [(r̈A + ¨̺) dm − dF] = 0 . (3.40)

The symbols for dot and cross multiplication can be interchanged. The inte-
gral

∫
m

dF represents the resultant external force F on the body. Integrating

4 For relationships between the principles of d’Alembert (virtual work), Jourdain
(virtual power) and Gauss (least action) see Pars [56].
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term by term one gets

δṙA · [(r̈A + ¨̺C)m−F]+ δω ·
[
m̺C × r̈A +

∫

m

̺ × ¨̺ dm −
∫

m

̺ × dF

]
= 0 .

(3.41)
The sum r̈A + ¨̺C represents the absolute acceleration r̈C of the body center
of mass. The last integral is the resultant external torque MA with respect
to A. The first integral is the absolute time derivative of

∫
m

̺ × ˙̺ dm =∫
m ̺ × (ω × ̺) dm and, hence, according to (3.14), of J

A · ω. With this
expression the principle of virtual power for a single rigid body gets the final
form

δṙA · (mr̈C −F) + δω · (m̺C × r̈A + J
A · ω̇ + ω × J

A ·ω −MA) = 0 . (3.42)

If the body is unconstrained then δṙA and δω are independent variations.
The principle then yields the two equations

mr̈C = F , m̺C × r̈A + J
A · ω̇ + ω × J

A · ω = MA . (3.43)

These are Newton’s law (3.34) and Euler’s law of angular momentum (3.35),
respectively. Thus, the principle of virtual power contains these two basic
laws as special cases. Much more important are applications in cases when the
variations δṙA and δω are not independent. As an example see Problem 3.6.
The full potential of the principle will be seen in Sect. 5.4 when it is used for
the formulation of equations of motion of complicated multibody systems.
There, the special form will be used, when as point A the center of mass C
is chosen. This is the form

δṙC · (mr̈C − F) + δω · (JC · ω̇ + ω × J
C · ω − MC) = 0 . (3.44)

Problem 3.6. Two straight lines forming an angle α are frictionless guides for two
pegs P1 and P2 which are fixed on a rigid body of mass m and central moment
of inertia JC (Fig. 3.5). The body center of mass C is constrained to move in the
plane of the guides. The body is subject to external forces F1 and F2 which are
applied to the pegs in the direction of the guides. Derive from (3.42) an equation of
motion for the variable φ and with parameters α, β, a = |a|, ̺C = |̺C|, m and JC.
Let P1 be the reference point A for J

A and MA. Consider the special case α = π/2,
β = 0, ̺C = a/2.

Fig. 3.5. Plane motion of a rigid body with center of mass C. The body-fixed pegs
P1 and P2 move along straight rigid guides
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Classical Problems of Rigid Body Mechanics

In this chapter some of the rare rigid body problems are considered in which
equations of motion can be integrated in closed form. With the exception of
the gyrostat in Sects. 4.6 and 4.7 these problems are treated also in other
books on rigid body mechanics.

4.1 Unsymmetric Torque-Free Rigid Body

In the absence of external torques the equations of motion in the forms (3.36)
and (3.38) read

J · ω̇ + ω × J · ω = 0 (4.1)

and
J1ω̇1 − (J2 − J3)ω2ω3 = 0 ,
J2ω̇2 − (J3 − J1)ω3ω1 = 0 ,
J3ω̇3 − (J1 − J2)ω1ω2 = 0 ,

⎫
⎬
⎭ (4.2)

respectively. Reference point for the moments of inertia is the body center
of mass. These equations apply, for instance, to celestial bodies which are
isolated from any external torque. They describe also the motion of a body
which is supported without friction at its center of mass (provided torques
caused by air resistance can be neglected). Such a support is approximately
realized by a system of gimbals of the kind shown in Fig. 2.2. Strictly speak-
ing, this system consists of three kinematically coupled bodies. The influence
of the gimbals can, however, often be neglected (in Sect. 4.5 this influence
will be the subject of investigation). Equation (4.1) has two algebraic first
integrals which are obtained through scalar multiplication by ω and by J ·ω,
respectively:

ω · (J · ω̇ + ω × J · ω) = ω · J · ω̇ =
1

2

d

dt
(ω · J · ω) = 0 ,

J · ω · (J · ω̇ + ω × J · ω) = J · ω · J · ω̇ =
1

2

d

dt
(J · ω)2 = 0 .

⎫
⎪⎬
⎪⎭

(4.3)
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From these equations it follows that

ω · J · ω = 2T = const ,

(J · ω)2 = L2 = const

}
(4.4)

or in terms of coordinates in the principal axes frame of reference

3∑

i=1

Jiω
2
i = 2T , (4.5)

3∑

i=1

J2
i ω2

i = L2 = 2DT . (4.6)

The quantities T and L represent the kinetic energy of rotation and the mag-
nitude of the absolute angular momentum, respectively. In (4.6) a parame-
ter D with the physical dimension of moment of inertia has been introduced.
The use of 2T and 2DT instead of 2T and L2 as parameters simplifies subse-
quent formulations. Only the general case of three different principal moments
of inertia will be considered. Without loss of generality it is assumed that

J3 < J2 < J1 . (4.7)

The body-fixed base vector in the principal axis associated with Ji is called
ei (i = 1, 2, 3). Equations (4.5) and (4.6) define two ellipsoids which are
fixed on the body and which are both geometric locus of the angular velocity
vector ω. The vector is, therefore, confined to the line of intersection of the
two ellipsoids. These lines are called polhodes.

4.1.1 Polhodes. Permanent Rotations

An investigation of geometric properties of the polhodes contributes to an
understanding of the dynamic behavior of the torque-free rigid body. It is
useful to think of the energy ellipsoid as given and to imagine that the angular
momentum ellipsoid is “blown up” by increasing the parameter D so that on
the invariable energy ellipsoid the family of all physically realizable polhodes
is generated. This family corresponds to a certain interval of D values for
which the angular momentum ellipsoid lies neither entirely inside nor entirely
outside the energy ellipsoid. The minimum and maximum D values are found
by multiplying (4.5) with J1 and with J3, respectively, and by subtracting
both equations separately from (4.6). In the resulting equations

J2(J1 − J2)ω
2
2 + J3(J1 − J3)ω

2
3 = 2T (J1 − D) , (4.8)

J1(J1 − J3)ω
2
1 + J2(J2 − J3)ω

2
2 = 2T (D − J3) (4.9)

the left-hand side expressions are nonnegative so that the inequalities

J3 ≤ D ≤ J1 (4.10)
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must be satisfied. Thus, J3 and J1 are the extreme values of D for which the
equations of motion have real solutions.

Of particular interest are degenerate polhodes which consist of singular
points. In such points the ellipsoids have a common tangential plane. Each
singular point marks a solution ω ≡ ω∗ = const of the equations of motion.
This particular state of motion is referred to as permanent rotation. From
(4.1) it is seen that a solution ω ≡ ω∗ = const is possible only if either ω∗

equals zero (in this trivial case the body is not rotating; both ellipsoids degen-
erate into a single point) or ω∗ and the angular momentum L∗ = J · ω∗ are
collinear. In matrix form this latter condition yields the coordinate equation
J ω∗ = λω∗ with an unknown factor λ, i.e. the eigenvalue problem

(J − λI)ω∗ = 0 . (4.11)

This equation is identical in form with (3.23) which led to principal moments
and principal axes of inertia. From this identity it follows that the eigenvectors
of (4.11), i.e. the axes of permanent rotations, are identical with the principal
axes of inertia. It is now possible to specify the particular values D = D∗

which cause the angular momentum ellipsoid to touch the energy ellipsoid in
singular points. In a state of permanent rotation with an angular velocity of
magnitude ω∗ about the principal axis ei (i = 1, 2, 3) the integrals of motion
are 2T = Jiω

∗2 and 2D∗T = J2
i ω∗2, whence follows

D∗ = Ji . (4.12)

Consider, again, the entire family of polhodes. A clear picture is obtained
if the polhodes are seen in projections along principal axes. The projection
along ei (i = 1, 2, 3) requires the elimination of the coordinate ωi from (4.5)
and (4.6). For the projections along e1 and e3 this has been done already. The
resulting equations are (4.8) and (4.9). In a similar manner the projection
along e2 yields

J1(J1 − J2)ω
2
1 − J3(J2 − J3)ω

2
3 = 2T (D − J2) . (4.13)

Because of the inequalities J3 < J2 < J1 and J3 ≤ D ≤ J1 (4.8) and (4.9)
represent families of ellipses whereas (4.13) represents a family of hyperbolas.
The asymptotes of the hyperbolas correspond to D = J2. In Figs. 4.1a to c
all three projections of polhodes for one and the same set of D values are
illustrated. Solid lines represent the contour ellipses of the energy ellipsoid.
Of the polhode ellipses and hyperbolas only those parts are relevant which lie
inside these contour ellipses. All three projections together produce an image
of the three-dimensional pattern of polhodes. A perspective view is shown in
Fig. 4.1d.

The results just obtained can be summarized as follows. Each of the pa-
rameter values D = D∗ = Ji (i = 1, 2, 3) specifies the axis of permanent
rotation which coincides with the principal axis ei. The value D = D∗ = J2
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Fig. 4.1. Polhodes on the energy ellipsoid of an unsymmetric rigid body seen in
projections along principal axes (a, b, c) and in perspective (d). The figures are
based on the parameters J1 = 7, J2 = 5, J3 = 3, D = 3, 3.3, 3.9, 4.5, 5, 5.5, 6.1,
6.7 and 7 (the same physical unit for all quantities)

specifies in addition, two particular polhodes which intersect one another in
the points of permanent rotation about the axis e2 and which separate all
other polhodes into four families. Two families corresponding to D < J2 en-
velop the axis e3 and the others corresponding to D > J2 envelop the axis e1.
The separating polhodes are called separatrices.

4.1.2 Poinsot’s Geometric Interpretation of the Motion

So far the integrals of motion have been used for characterizing the geometric
locus of the angular velocity vector on the body. The integrals can also be used
for an interpretation of the motion of the body relative to inertial space. This
interpretation is due to Poinsot. The energy equation states that the scalar
product of angular velocity ω and angular momentum L = J ·ω is constant.
Since the magnitude and the direction of L are both constant it follows that
the projection of ω onto this invariable direction of L is constant. Figure 4.2a
illustrates this situation. The vector ω is confined to an invariable plane
perpendicular to L. From this it follows that any (finite or infinitesimally
small) increment ∆ω between two arbitrary moments of time is perpendicular
to L. Hence, L · ∆ω = 0. This equation defines the invariable plane. The
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Fig. 4.2. Poinsot’s interpretation of the motion of a torque-free rigid body

vector ω is also located on the energy ellipsoid defined by (4.6). The total

differential of this equation has the form
∑3

i=1 Jiωi dωi = L·dω = 0. It defines
the tangential plane of the energy ellipsoid at the point with coordinates
ω1, ω2, ω3. Comparison with the equation for the invariable plane reveals that
both planes are parallel. Moreover, since both are geometric locus of ω the
planes coincide with one another. This situation is illustrated in Fig. 4.2b. The
point of contact between the ellipsoid and the invariable plane is located on
the instantaneous axis of rotation. Poinsot’s interpretation of the motion can
be summarized as follows. The body is moving as if its energy ellipsoid were
rolling without slipping on the invariable plane the geometric center M of the
ellipsoid being fixed in inertial space a distance AM = 2T/L above this plane.
During this rolling motion the contact point traces in the invariable plane
another curve called herpolhode. Properties of herpolhodes are discussed by
Grammel [22] and Magnus [51].

4.1.3 Solution of Euler’s Equations of Motion

Euler [15] gave the following closed-form solutions of the dynamic equations
of motion1. First, (4.9) and (4.8) are solved for ω1 and ω3, respectively, as
functions of ω2:

ω2
1 =

J2(J2 − J3)

J1(J1 − J3)

(
a2 − ω2

2

)
, ω2

3 =
J2(J1 − J2)

J3(J1 − J3)

(
b2 − ω2

2

)
. (4.14)

In these expressions a2 and b2 are the non-negative constants

a2 =
2T (D − J3)

J2(J2 − J3)
, b2 =

2T (J1 − D)

J2(J1 − J2)
(4.15)

which satisfy the relationship

a2 − b2 =
2T (J1 − J3)(D − J2)

J2(J1 − J2)(J2 − J3)
. (4.16)

1 In the same volume (pp. 315–317) Euler angles are introduced (1760).
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Substitution of (4.14) into the second of Eqs. (4.2) and separation of the
variables yield

∫
dω2√

(a2 − ω2
2)(b

2 − ω2
2)

= s2(t − t0)

√
(J1 − J2)(J2 − J3)

J1J3
(4.17)

where s2 is an abbreviation for the resultant sign of the two square roots.
This sign will be determined later. The integral on the left-hand side is an
elliptic integral of the first kind. In reducing it to a Legendre normal form
three cases have to be distinguished:

a) a2 < b2 or D < J2

b) a2 = b2 or D = J2

c) a2 > b2 or D > J2.

Cases a) and c) correspond to polhodes which envelop the axes e3 and e1,
respectively, and case b) corresponds to the separatrices (see Fig. 4.1). Con-
sider, first, case a). Equation (4.17) is rewritten in the form

∫
dω2/a√

(1 − ω2
2/a2)(1 − ω2

2/b2)
= s2b(t − t0)

√
(J1 − J2)(J2 − J3)

J1J3
(4.18)

or ∫
dx√

(1 − x2)(1 − k2x2)
= s2τ (4.19)

with the abbreviations

x =
ω2

a
, k =

a

b
, τ = (t − t0)

√
2T (J1 − D)(J2 − J3)

J1J2J3
. (4.20)

The solution has the form x = s2 sn τ or

ω2 = s2

√
2T (D − J3)

J2(J2 − J3)
sn τ (4.21)

(for elliptic integrals and Jacobian elliptic functions see Tölke [80]). When
this is substituted into (4.14) and use is made of the addition theorems sn2τ +
cn2τ = 1 and dn2τ + k2sn2τ = 1 solutions for ω1 and ω3 are obtained in the
forms

ω1 = s1

√
2T (D − J3)

J1(J1 − J3)
cn τ , ω3 = s3

√
2T (J1 − D)

J3(J1 − J3)
dn τ . (4.22)

The quantities s1 and s3 are as yet undetermined signs of the respective
square roots. The missing relationship between s1, s2 and s3 is found when
(4.21) and (4.22) are substituted back into the second of Eqs. (4.2). Taking
into account the relationship d sn τ/dτ = cn τ dn τ one gets s2 = −s1s3 or

s1s2s3 = −1 . (4.23)
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Altogether four combinations of signs satisfying this relationship are possible.
This result is in accordance with the fact that for each value of the parame-
ter D two separate polhodes exist and that on each of them ω2 passes through
zero in two different points (see Fig. 4.1d).

Case c) for D > J2 is treated in a similar manner. The results are

ω1 = s1

√
2T (D − J3)

J1(J1 − J3)
dn τ , ω2 = s2

√
2T (J1 − D)

J2(J1 − J2)
sn τ ,

ω3 = s3

√
2T (J1 − D)

J3(J1 − J3)
cn τ

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(4.24)

with the modulus k = b/a and the argument

τ = (t − t0)

√
2T (J1 − J2)(D − J3)

J1J2J3
. (4.25)

The signs s1, s2 and s3 satisfy (4.23), again.
It is unnecessary to integrate case b) since the solutions for the cases a)

and c) converge both in the limit D → J2 toward the same result

ω1 = s1

√
2T (J2 − J3)

J1(J1 − J3)

1

cosh τ
, ω2 = s2

√
2T

J2
tanh τ ,

ω3 = s3

√
2T (J1 − J2)

J3(J1 − J3)

1

cosh τ

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(4.26)

which, therefore, represents the solution for case b). These formulas show
that the motion of ω along a separatrix is aperiodic. For τ → ∞ ω1 and
ω3 tend toward zero and ω2 approaches asymptotically the value s2

√
2T/J2.

This represents a permanent rotation about the axis e2.

Problem 4.1. Determine from the second Eq. (4.2) the sense of direction in which
ω traces the polhodes in Fig. 4.1d.

4.1.4 Solution of the Kinematic Differential Equations

The last part of the problem is to show how the body is moving in inertial
space. For this purpose Euler angles are used as generalized coordinates.
According to Fig. 2.1 the intermediate angle θ is measured between two
axes one of which is fixed in the reference base e1 (here inertial space) and
the other is fixed on the body. It is convenient to choose as axis fixed in
inertial space the direction of the angular momentum L since this is the only
significant axis. On the body the axis e3 is an appropriate choice for polhodes
which envelop this axis, i.e. for D < J2. In the case D > J2 the polhodes
envelop the axis e1. Therefore, this axis will be chosen. Consider first the case
D < J2 which is illustrated in Fig. 4.2. In this figure θ is the angle PMA and
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ψ is measured in the invariable plane between the straight line PA and some
inertially fixed reference line through A. It is unnecessary to solve kinematic
differential equations of the form (2.109). The problem can be simplified
substantially if use is made of the fact that the angular momentum L has
constant magnitude and constant direction in inertial space. In the principal
axes frame L has coordinates Li = Jiωi (i = 1, 2, 3). These coordinates are
expressed as functions of Euler angles and of time derivatives of Euler angles.
Using the notation of Fig. 2.1 L has the direction of e1

3. Its coordinates in the
principal axes frame are, therefore, found in the third column of the direction
cosine matrix A21 in (2.5). The results are the equations

J1ω1 = L sin θ sinφ , J2ω2 = L sin θ cosφ , J3ω3 = L cos θ . (4.27)

They yield without integration

cos θ =
J3

L
ω3 , tanφ =

J1ω1

J2ω2
. (4.28)

Only the angle ψ is not found directly. Its time derivative is according to the
third Eq. (2.108)

ψ̇ =
ω3 − φ̇

cos θ
=

L

J3

(
1 − φ̇

ω3

)
. (4.29)

The expressions for cos θ and tanφ become with (4.21), (4.22) and (4.23) and
with L2 = 2DT

cos θ = s3

√
J3(J1 − D)

D(J1 − J3)
dn τ , tanφ = −s3

√
J1(J2 − J3)

J2(J1 − J3)

cn τ

sn τ
. (4.30)

From this follows by differentiation

φ̇ = s3 cos2 φ

√
J1(J2 − J3)

J2(J1 − J3)

dn τ

sn2 τ

dτ

dt
. (4.31)

Expressing cos2 φ through tan2 φ and dn τ through ω3 this is given the form

φ̇ = ω3

(
J2

J2 − J3
sn2 τ +

J1

J1 − J3
cn2 τ

)−1

. (4.32)

With this expression (4.29) takes the form

ψ̇ =
L

J3

[J3/(J2 − J3)] sn2 τ + [J3/(J1 − J3)] cn2 τ

[J2/(J2 − J3)] sn2 τ + [J1/(J1 − J3)] cn2 τ
. (4.33)

The results show that θ, φ̇ and ψ̇ are periodic functions of time. The sign of
φ̇ equals that of ω3, and ψ̇ is always positive (clockwise rotation about L). If
the function ψ(t) is desired (4.33) is rewritten in the form

ψ − ψ0 = aτ + b

∫
dτ

sn2 τ + c2
(4.34)
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with new constants a, b and c. The integral has the normal form of an elliptic
integral of the third kind (see Tölke [80]).

The solution for θ(t) can be used to answer the question whether the ori-
entation of the axis e3 in inertial space during a permanent rotation about
this axis is stable or not. For reasons of symmetry of the polhodes on the en-
ergy ellipsoid only the case s3 = +1 need be considered. The elliptic function
dn τ has the lower bound

√
1 − k2 where k is the modulus given by (4.20).

This yields for θ the inequality

cos2 θ ≥ (1 − k2)
J3(J1 − D)

D(J1 − J3)
=

J3(J2 − D)

D(J2 − J3)
. (4.35)

For motions close to a permanent rotation about the axis e3 D is slightly
larger than J3. Setting D = J3 + δ with δ ≪ J3 one obtains the inequality

sin2 θ ≤ J2

J3(J2 − J3)
δ . (4.36)

This indicates that by choosing appropriate initial conditions θ(t) can be
kept smaller than any given arbitrarily small angle. Thus, the orientation in
inertial space of the axis of permanent rotation is stable.

Arguments similar to those just used lead to solutions also in the case
D > J2. Now, θ is defined to be the angle between L and e1. More precisely,
imagine that the body-fixed axes e1, e2, e3 are given the new names e′3, e′1,
e′2, respectively, and that the Euler angles ψ, θ, φ specify the orientation of
this base in the inertial reference base. This explains the following equations
which replace (4.27).

J1ω1 = L cos θ , J2ω2 = L sin θ sin φ , J3ω3 = L sin θ cosφ . (4.37)

From these equations the following results are derived:

cos θ = s1

√
J1(D − J3)

D(J1 − J3)
dn τ , tan φ = −s1

√
J2(J1 − J3)

J3(J1 − J2)

sn τ

cn τ
,

φ̇ = −ω1

(
J2

J1 − J2
sn2 τ +

J3

J1 − J3
cn2 τ

)−1

,

ψ̇ =
ω1 − φ̇

cos θ
=

L

J1

[J1/(J1 − J2)] sn2 τ + [J1/(J1 − J3)] cn2 τ

[J2/(J1 − J2)] sn2 τ + [J3/(J1 − J3)] cn2 τ
.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.38)

The only difference compared with the case D < J2 is that now φ̇ and ω1

have opposite signs. In every other respect the results are qualitatively the
same. In particular, it is found that the orientation of the axis of permanent
rotation e1 in inertial space is stable.

Finally, the stability behavior of permanent rotations about the axis e2

is investigated. For this purpose θ is defined to be the angle between L
and e2. This time, the body-fixed axes e1, e2, e3 are given the names e′2,
e′3, e′1, respectively, and ψ, θ, φ specify the orientation of this base in the
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inertial reference base. The Eqs. (4.37) are replaced by J2ω2 = L cos θ,
J3ω3 = L sin θ sin φ, J1ω1 = L sin θ cosφ. The first equation in combination
with (4.21) and (4.24) yields

cos θ =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

s2

√
J2(D − J3)

D(J2 − J3)
sn τ (D < J2)

s2

√
J2(J1 − D)

D(J1 − J2)
sn τ (D > J2)

(4.39)

For D → J2 both square roots tend toward unity while sn τ changes pe-
riodically between +1 and −1. This means periodic changes of θ between
≈ +90◦ and ≈ −90◦ indicating instability of the permanent rotation about
the axis e2.

Next, the case D = J2 is considered. Both expressions yield cos θ =
s2 tanh τ whence follows θ̇ = −τ̇/ cosh τ . Moreover, with (4.26) tanφ =
J3ω3/(J1ω1) = const and also ψ̇ = (ω2 − φ̇)/ cos θ =

√
2T/J2 = const.

Imagine a sphere of Radius R fixed in inertial space with its center at the
body center of mass and on this sphere the path generated by the point of
intersection with the axis e2. The coordinates ψ and λ = π/2−θ of this point
are interpreted as geographic longitude and geographic latitude, respectively
(L playing the role of the polar axis). The path is traced with velocity coordi-

nates λ̇ = −Rθ̇ = Rτ̇/ cosh τ due north and Rψ̇ sin θ = Rψ̇
√

1 − tanh2 τ =
Rψ̇/ cosh τ due east. The ratio of the two coordinates is constant, whence
follows that the path is a curve of constant heading (a loxodrome) spiraling
toward the north pole.

4.2 Symmetric Torque-Free Rigid Body

The solution developed in the previous section becomes particularly simple
if the body under consideration has two equal principal moments of inertia
as is often the case in engineering applications. It is left to the reader to
adapt the general solution to this special case. Here, it is preferred to start
again from the equations of motion and to develop from them the special
solution directly. It is assumed that the principal axis e3 is the symmetry
axis of the body so that J1 = J2 �= J3. The principal moment of inertia J3

can be either smaller or larger than J1 (the trivial case J1 = J2 = J3 will not
be considered). With these assumptions Euler’s equations reduce to

J1ω̇1 − (J1 − J3)ω2ω3 = 0 ,
J1ω̇2 − (J3 − J1)ω3ω1 = 0 ,
J3ω̇3 = 0 .

⎫
⎬
⎭ (4.40)

They yield at once
ω3 ≡ ω30 = const (4.41)
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and by substituting this into the first two equations

ω̇1 − νω2 = 0 , ω̇2 + νω1 = 0 (4.42)

where ν is the constant

ν = ω30
J1 − J3

J1
. (4.43)

The differential equations have the first integral ω2
1 + ω2

2 = Ω2 = const. The
general solution for initial values ω10 and ω20 has the form

ω1 = ω10 cos ν(t − t0) + ω20 sin ν(t − t0) = Ω sin ν(t − t′0) ,

ω2 = ω20 cos ν(t − t0) − ω10 sin ν(t − t0) = Ω cos ν(t − t′0) .

}
(4.44)

Next, the kinematic equations are considered. Again, Euler angles are used
with θ being the angle between the symmetry axis and the inertially fixed
angular momentum vector L = J1Ω + J3ω30. Equations (4.27) – (4.29) are
valid, again, so that

cos θ =
ω30J3

L
, tan φ =

ω1

ω2
= tan ν(t− t′0) → φ = ν(t− t′0) , (4.45)

ψ̇ =
ω30 − φ̇

cos θ
=

ω30J3

J1 cos θ
=

L

J1
. (4.46)

Thus, θ, φ̇ and ψ̇ turn out to be constant. For a better understanding of
these results Poinsot’s interpretation of the motion is considered again. The
energy ellipsoid in Fig. 4.2 is now an ellipsoid of revolution with the symmetry
axis e3. The polhodes are, therefore, circles (and so are the herpolhodes). The
axis e3 is moving around a circular cone whose axis is the angular momentum
vector L. The angular velocity of this motion around the cone, called nutation
angular velocity, is ψ̇. The angular velocity vector ω of the body lies in the
plane spanned by the symmetry axis and the angular momentum L. Relative
to the body the vector ω is moving around a circular cone which is defined
by the polhode. Relative to inertial space the vector ω is also moving around
a circular cone. The axis of this cone is the angular momentum L. Following
Sect. 2.2.3 (Fig. 2.8) the motion of the body can be visualized as rolling
motion without slipping of the body-fixed cone on the inertially fixed cone.
In Fig. 4.3a,b the cone swept out by e3 and the two cones swept out by ω are
illustrated. Only their projections onto the plane spanned by e3, ω and L are
shown. The ellipses represent contours of the energy ellipsoid. Two figures
are necessary since rod-shaped bodies with J1 > J3 show another behavior
than disc-shaped bodies with J1 < J3. For the former φ̇ is positive and for
the latter negative (see (4.43)). Note that an observer of the motion can see
the cone described by the symmetry axis e3 but that the other two cones
are invisible. Magnus [50] describes an experimental trick which renders the
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Fig. 4.3. The body-fixed ω-cone A is rolling on the space-fixed ω-cone B while the
symmetry axis e3 generates the space-fixed cone C. The energy ellipsoid intersects
cone A in a polhode and rolls on the invariable plane. Figure (a) belongs to a rod-
shaped body and (b) to a disc-shaped body

motion of ω around the body-fixed cone visible. It is left to the reader to
verify that the angles λ and µ are related by the equation

sin λ

sin µ
=

|J1 − J3|
J3

cos θ . (4.47)

In engineering applications motions of symmetric bodies usually differ very
little from permanent rotations about the symmetry axis. For such motions
ω30 is practically identical with ω = |ω|, and θ is very small. The nutation
angular velocity is then approximately

ψ̇ ≈ J3

J1
ω30 for θ ≪ 1 . (4.48)

4.3 Self-Excited Symmetric Rigid Body

The subject of this section is a symmetric rigid body with principal moments
of inertia J1, J2 = J1 and J3 �= J1 which is under the action of a torque
whose coordinates in the principal axes frame are given functions of time.
Euler’s equations of motion have the form

J1ω̇1 − (J1 − J3)ω2ω3 = M1(t) ,
J1ω̇2 − (J3 − J1)ω3ω1 = M2(t) ,
J3ω̇3 = M3(t) .

⎫
⎬
⎭ (4.49)

We begin with the simple case in which M3(t) is identically zero. Then, ω3 =
const, and the first two equations reduce to

ω̇1 − νω2 = m1(t) , ω̇2 + νω1 = m2(t) (4.50)

with the constant ν = ω3(J1 − J3)/J1 and with functions m1(t) = M1(t)/J1

and m2(t) = M2(t)/J1. By introducing the complex quantities ω∗ = ω1 + iω2
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and m∗ = m1 + im2 these equations are combined in the single complex
equation

ω̇∗ + iνω∗ = m∗(t) . (4.51)

It has the general solution

ω∗(t) = e−iνt

[
ω∗

0 +

∫ t

0

m∗(τ)eiντ dτ

]
. (4.52)

When this is split, again, into real and imaginary parts the solutions for ω1(t)
and ω2(t) are obtained:

ω1(t) = ω10 cos νt + ω20 sin νt

+

∫ t

0

[m1(τ) cos ν(τ − t) + m2(τ) sin ν(τ − t)] dτ ,

ω2(t) = ω20 cos νt − ω10 sin νt

+

∫ t

0

[m1(τ) sin ν(τ − t) + m2(τ) cos ν(τ − t)] dτ .

⎫
⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(4.53)

Next, the general case with M3(t) �= 0 is investigated. From the third of
Eqs. (4.49) the solution for ω3(t) is obtained

ω3(t) = ω30 +
1

J3

∫ t

0

M3(τ) dτ . (4.54)

An auxiliary variable α(t) is now introduced by the equation

α(t) =

∫ t

0

ω3(τ) dτ . (4.55)

This variable is a known function of time. For the inverse function t(α)
a closed-form expression may not exist. However, it is available at least nu-
merically. In the first two of Euler’s equations ω̇1 and ω̇2 are expressed in the
form

ω̇i =
dωi

d α
α̇ = ω′

i ω3 (i = 1, 2) (4.56)

where the prime denotes differentiation with respect to α. With these expres-
sions the two equations of motion take the form

ω′
1 − νω2 = m1(α) , ω′

2 + νω1 = m2(α) (4.57)

with the constant ν = (J1 − J3)/J1 and with functions

m1(α) =
M1(t(α))

J1ω3(t(α))
, m2(α) =

M2(t(α))

J1ω3(t(α))
. (4.58)

These equations are identical with (4.50) except that α is the independent
variable instead of t. The solution has, therefore, the form (4.53) provided t
is replaced everywhere by α(t) and m1 and m2 are the functions of α defined
above.
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4.4 Symmetric Heavy Top

A rigid body is considered which is supported in inertial space at a single
point which is not the body center of mass. The body is subject to gravity
only. In the literature this system is known as heavy top. The general solution
of its equations of motion is not known. It is known only for the special case in
which the body is inertia-symmetric and in which, furthermore, the support
point is located on the symmetry axis. In Fig. 4.4 such a symmetric heavy top
is shown in a position in which the support point is at a lower level than the
center of mass. This system the solutions of which were found by Lagrange
is the subject of the following investigation.

The torque caused by gravity is a function of the orientation of the body
in inertial space. This functional relationship has the consequence that Eu-
ler’s equations (3.38) for ω1, ω2, ω3 are coupled with kinematic differential
equations which relate ω to generalized coordinates. For this reason Euler’s
equations will not be used. Instead, it is preferred to establish second-order
differential equations for appropriately chosen generalized coordinates and to
solve these equations. On the body as well as in inertial space there exists
one physically significant direction each, namely the symmetry axis on the
body and the vertical line of action of gravity in inertial space. This suggests
the use of Euler angles as generalized coordinates with θ being the angle
between these two directions. The Euler angles ψ, θ and φ are defined as in
Figs. 2.1 and 2.2. They relate a body-fixed base to a base fixed in inertial
space. In Fig. 4.4 the body-fixed base is not shown. Shown are the base e1

which is fixed in inertial space and the base e2′

of Figs. 2.1 and 2.2. Its base
vector e2′

3 = e2
3 lies in the symmetry axis, and e2′

1 is always perpendicular
to the vertical e1

3. The absolute angular velocity of this base differs from the
absolute angular velocity ω of the body by a component along the symmetry
axis which is equal to φ̇e2

3. For reasons of symmetry the body moments of

Fig. 4.4. Symmetric heavy top with coordinates ψ, θ, φ
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inertia in base e2′

are constant in spite of the motion of this base relative to
the body.

Equations of motion are established from the angular momentum theorem
in the general form (cf. (3.32)):

L̇0 = M0 . (4.59)

As reference point 0 in inertial space the support point of the body is chosen.
Using the basic Eq. (2.74) the absolute time derivative L̇0 is expressed in
terms of the time derivative in base e2′

. Let Ω be the angular velocity of this
base. Then, the angular momentum theorem becomes

(2′) d

dt
L0 + Ω× L0 = M0 . (4.60)

For the components of Ω, L0 and M0 in base e2′

Fig. 4.4 yields the expressions

Ω = θ̇e2′

1 + ψ̇ sin θe2′

2 + ψ̇ cos θe2′

3 , (4.61)

L0 = J1θ̇e
2′

1 + J1ψ̇ sin θe2′

2 + J3(φ̇ + ψ̇ cos θ)e2′

3 , (4.62)

M0 = mgs sin θe2′

1 . (4.63)

The quantity (φ̇+ψ̇ cos θ) represents the angular velocity component ω3 of the
body along the symmetry axis. With these vector components (4.60) yields
directly the desired scalar differential equations of motion:

J1θ̈ + [J3(φ̇ + ψ̇ cos θ) − J1ψ̇ cos θ]ψ̇ sin θ − mgs sin θ = 0 , (4.64)

J1ψ̈ sin θ + 2J1ψ̇θ̇ cos θ − J3θ̇(φ̇ + ψ̇ cos θ) = 0 , (4.65)

J3
d

dt
(φ̇ + ψ̇ cos θ) = 0 . (4.66)

The equations have three first integrals. The first one is

φ̇ + ψ̇ cos θ ≡ ω3 = const . (4.67)

This integral of motion can be concluded more directly from the third Euler
equation which in the case J1 = J2 and M3 = 0 reduces to ω̇3 = 0 (cf. (4.40)).
With this integral of motion (4.64) and (4.65) become

J1θ̈ +
(
J3ω3 − J1ψ̇ cos θ

)
ψ̇ sin θ − mgs sin θ = 0 , (4.68)

J1ψ̈ sin θ + 2J1ψ̇θ̇ cos θ − J3ω3θ̇ = 0 . (4.69)

These equations furnish two more first integrals. When the second equation
is multiplied by sin θ it can be written in the form

d

dt

(
J1ψ̇ sin2 θ + J3ω3 cos θ

)
= 0 . (4.70)
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If, on the other hand, (4.68) is multiplied by θ̇ and (4.69) by ψ̇ sin θ and both
expressions are summed it is found that

d

dt

[
J1

(
ψ̇2 sin2 θ + θ̇2

)
+ 2mgs cosθ

]
= 0 . (4.71)

The two integrals of motion revealed by these equations can be found directly
without equations of motion. Since gravity does not produce a torque about
the vertical e1

3 the angular momentum component in this direction has a con-
stant magnitude L. Equation (4.62) and the geometric relationships shown
in Fig. 4.4 yield for L the expression

J1ψ̇ sin2 θ + J3ω3 cos θ = L = const . (4.72)

This equation is equivalent to (4.70). The system is conservative so that its
total energy E is constant. This yields

J1

(
ω2

1 + ω2
2

)
+ J3ω

2
3 + 2mgs cos θ = 2E (4.73)

or with ω1 = Ω1 and ω2 = Ω2 from (4.61)

J1

(
ψ̇2 sin2 θ + θ̇2

)
+ 2mgs cosθ = 2E − J3ω

2
3 = const . (4.74)

This is equivalent to (4.71).
Before the general solution to the problem is developed two special types

of motion are considered which can be produced by a proper choice of initial
conditions. One is the common plane pendulum motion with ω3 ≡ 0 in which
θ is the only time dependent variable. In this case the equations of motion
reduce to J1θ̈ − mgs sin θ = 0, and of the three integrals of motion only the
energy equation J1θ̇

2 + 2mgs cosθ = 2E is not trivial. These two equations
represent, indeed, the differential equation and the energy integral, respec-
tively, of a plane physical pendulum (note that, normally, ϕ = π − θ is used
as variable). The second special type of motion is characterized by a time
independent angle θ ≡ θ0. With this condition (4.69) yields ψ̇ = const and,
furthermore, (4.67) leads to φ̇ = const. This geometrically simple motion is
referred to as regular precession. The symmetry axis of the body is moving
with a constant precession angular velocity ψ̇ around a circular cone the axis
of which is the vertical e1

3. Equation (4.68) with θ̈ = 0 represents a quadratic
equation for ψ̇ which has the solutions

ψ̇1,2 =

⎧
⎪⎪⎨
⎪⎪⎩

J3ω3

2J1 cos θ0

(
1 ±

√
1 − 4J1mgs cos θ0

J2
3ω2

3

)
(cos θ0 �= 0) ,

mgs

J3ω3
(cos θ0 = 0) .

(4.75)

At this point it should be noted that all results obtained thus far are valid
also for the special case s = 0, i.e. for a symmetric body which is supported
at its center of mass and which is, therefore, torque-free. From Sect. 4.2 it
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is known that under these conditions only two types of motion can occur,
namely a permanent rotation about the symmetry axis and nutations with
a nutation angular velocity ψ̇ given by (4.46). Equation (4.75) yields for s = 0
the two solutions

ψ̇1 =
J3ω3

J1 cos θ0
, ψ̇2 = 0 . (4.76)

These are, indeed, the nutation angular velocity and a result for ψ̇2 which
in the case ω3 �= 0 can be interpreted as a permanent rotation about the
symmetry axis.

Next, the general case of (4.75) with s �= 0 is considered. If the body
is hanging (cos θ0 < 0) both roots ψ̇1 and ψ̇2 are real for any value of θ0.
In positions with cos θ0 > 0 for which Fig. 4.4 shows an example regular
precessions are possible only if the body angular velocity ω3 is large enough
so as to render the expression under the square root positive. In the upright
position θ0 = 0 this is the condition ω2

3 ≥ 4J1mgs/J2
3 .

In Fig. 4.5 the relationship between ψ̇1, ψ̇2 and ω3 is schematically illus-
trated for various values of the parameter θ0. For rapidly spinning bodies the
roots tend toward

lim
ω3→∞

ψ̇1 =
J3ω3

J1 cos θ0
, lim

ω3→∞
ψ̇2 =

mgs

J3ω3
. (4.77)

One of the asymptotic solutions is proportional to ω3 and represents a fast
regular precession while the other is proportional to 1/ω3 and represents
a slow regular precession. The fast regular precession angular velocity is iden-
tical with the nutation angular velocity of a torque-free symmetric rigid body
and also with ψ̇1 for s = 0 while the slow one is identical with the exact so-
lution for ψ̇ in the case cos θ0 = 0.

We now turn to the general solution of the equations of motion. It is
deduced from the integrals of motion. Equation (4.72) yields

ψ̇ =
L − J3ω3 cos θ

J1 sin2 θ
. (4.78)

Fig. 4.5. Angular velocities ψ̇1 and ψ̇2 of regular precessions as functions of ω3

and θ0
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Substitution into (4.74) results in the differential equation for θ

J1θ̇
2 = 2E − J3ω

2
3 − 2mgs cosθ − (L − J3ω3 cos θ)2

J1 sin2 θ
. (4.79)

As soon as its solution θ(t) is known ψ(t) and φ(t) are found by simple
integration from (4.78) and (4.67). With the new variable

u = cos θ , u̇ = −θ̇ sin θ (4.80)

(4.79) takes after simple manipulations the form

u̇2 =

(
2E − J3ω

2
3 − 2mgsu

) (
1 − u2

)

J1
− (L − J3ω3u)2

J2
1

. (4.81)

The expression on the right-hand side is a cubic polynomial in u. About the
location of its roots the following statements can be made. For u = +1 and
also for u = −1 the polynomial has negative values. In the limit u → +∞
it tends toward plus infinity. It has, therefore, at least one real root u3 > 1.
Because of (4.80) only the interval |u| ≤ 1 is of interest. Since for real solu-
tions u̇2(u) must be nonnegative somewhere in this interval the polynomial
must have either two real roots or one real double root in the interval. For
parameter combinations corresponding to real solutions the diagram of the
function u̇2(u) has, therefore, a form of the kind shown in Fig. 4.6. The roots
u1 and u2 have either equal or opposite signs. That both cases are physically
possible is demonstrated by the two special types of motion studied earlier.
For pendulum motions the amplitude of θ can be chosen such that the sign
of u(t) = cos θ(t) is either always negative or alternating. For a regular pre-
cession u is constant.

It is assumed that the roots u1, u2 and u3 are ordered as shown in Fig. 4.6
(u1 ≤ u2 < u3). In terms of these roots (4.81) reads

u̇2 =
2mgs

J1
(u − u1)(u − u2)(u − u3) . (4.82)

When u is replaced by the new variable v defined by

u = u1 + (u2 − u1)v
2 (4.83)

this equation becomes after simple manipulations

v̇2 =
mgs

2J1
(u3 − u1)(1 − v2)(1 − k2v2) (4.84)

Fig. 4.6. Graph of the function u̇2(u)
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with
0 ≤ k2 =

u2 − u1

u3 − u1
≤ 1 . (4.85)

Separation of the variables leads to an elliptic integral of the first kind with
modulus k

∫ v

v0

dv̄√
(1 − v̄2)(1 − k2v̄2)

= (t − t0)

√
(u3 − u1)mgs

2J1
= τ . (4.86)

This equation has the solution v = sn τ . The solution for θ(t) is, therefore, in
view of (4.83) and (4.80),

cos θ = cos θ1 + (cos θ2 − cos θ1) sn2τ . (4.87)

The constants θ1 and θ2 are determined through cos θ1 = u1 and cos θ2 = u2,
respectively. They represent the minimum and maximum values of θ(t). From
(4.78) and (4.67) also ψ̇ and φ̇ are obtained as functions of t:

ψ̇ =
L − J3ω3 cos θ

J1(1 − cos2 θ)
, φ̇ = ω3 − ψ̇ cos θ . (4.88)

The quantities θ, ψ̇ and φ̇ are, thus, shown to be elliptic functions of time.
The period of these functions is half the period of sn τ , i.e. 2K(k) in the
variable τ and

tp = K

√
8J1

mgs(u3 − u1)
(4.89)

in the variable t, K being the complete elliptic integral

K(k) =

∫ 1

0

dv√
(1 − v2)(1 − k2v2)

. (4.90)

The superposition of periodic changes in θ(t) onto a precession about the
vertical with a (periodically changing) angular velocity ψ̇(t) is best visualized
as follows. Imagine a sphere with the center at the support point of the body.
The intersection point of the symmetry axis of the body with this sphere
generates paths which render the periodic changes of θ(t) and of ψ̇(t) clearly

Fig. 4.7. Paths generated by the symmetry axis on a sphere surrounding the
support point of the heavy top
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visible. In Fig. 4.7 characteristic features of all physically realizable types of
paths are illustrated schematically. The two lower paths belong to the special
types of motion described as pendulum motion and regular precession. The
upper three paths represent general cases of motion in which ψ̇(t) is changing
either between negative and positive values (path a) or between zero and
a positive maximum (b) or between two positive extreme values (c). The
periodic nodding motion of the top with θ(t) which is superimposed on the
precessional motion is called nutation. For a more detailed discussion of the
solutions the reader is referred to Arnold/Maunder [3] and Magnus [51].

Many gyroscopic instruments represent, in principle, a symmetric heavy
top (see Magnus [51]). Such instruments are operated under special condi-
tions. For one thing, they are in rapid rotation. By this is meant that the part
J3ω

2
3/2 of the kinetic energy is very large compared with the potential energy

mgs. Second, such instruments are set into motion in such a way that initially
the precession angular velocity ψ̇ is very small compared with ω3. Usually, θ
and ψ are held fixed until the body has reached its full spin. Only then the
constraints on θ and ψ are lifted keeping the initial values of θ̇ and ψ̇ as small
as possible. Under these conditions motions are observed which can hardly be
distinguished from regular precessions. In reality, these motions are governed
by (4.87) and (4.88). The nutation amplitude (θ2 − θ1)/2 is extremely small,
however, and θ(t) is oscillating rapidly. The precession angular velocity ψ̇(t)
is very small, and it appears to be constant although it is undergoing rapid
oscillations. Such motions are called pseudo-regular precessions. Their char-
acteristic properties can be developed from the general solution by means
of approximation formulas. For this purpose it is assumed that the top is
started with the initial conditions θ(0) = θ1, θ̇(0) = 0, ψ̇(0) = ψ̇1 and ω3

(constant throughout the motion). The angular momentum integral and the
energy integral are (see (4.72) and (4.74))

L = J1ψ̇1

(
1 − u2

1

)
+ J3ω3u1 ,

2E = J1ψ̇
2
1

(
1 − u2

1

)
+ 2mgsu1 + J3ω

2
3 .

}
(4.91)

These expressions have to be substituted into the cubic in (4.81). Because of
the initial condition θ̇(0) = 0 the angle θ1 is one of the two extreme values of
θ(t). This means that u1 = cos θ1 is a root of the cubic. Division by (u− u1)
leads after some algebraic manipulations to

u̇2 =
2mgs

J1
(u − u1)

{
u2 − 2au − 1 + 2a

[
u1 + b

(
1 − u2

1

)
(2 − bu1 − b)

]}

(4.92)
where a and b are the dimensionless quantities

a =
J2

3ω2
3

4mgsJ1
, b =

J1ψ̇1

J3ω3
. (4.93)
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The quadratic function of u in curled brackets has the roots

u2,3 = a ∓
√

a2 + 1 − 2a [u1 + b (1 − u2
1) (2 − bu1 − b)] . (4.94)

Under the assumed conditions the quantity a is much larger than one, and the
absolute value of b is much smaller than one. This allows the approximations

u2,3 ≈ a ∓
√

a2 + 1 − 2a [u1 + 2b (1 − u2
1)] . (4.95)

A Taylor expansion up to second-order terms yields

u2 ≈ u1 − (1 − u2
1)

(
1

2a
− 2b

)
, u3 ≈ 2a . (4.96)

With this result for u2 and with the Taylor formula cos θ2 ≈ cos θ1 − (θ2 −
θ1) sin θ1 the nutation amplitude (θ2 − θ1)/2 becomes approximately

θ2 − θ1 ≈
(

1

2a
− 2b

)
sin θ1 =

2J1

J3ω3

(
mgs

J3ω3
− ψ̇1

)
sin θ1 . (4.97)

This is, indeed, a very small quantity. It becomes zero if the initial value ψ̇1

equals the angular velocity of a slow regular precession (see (4.77)). The mod-
ulus k of the elliptic functions determined by (4.85) is very small compared
with unity as can be seen from (4.96) and (4.93). The complete elliptic inte-
gral K(k) is, therefore, approximately π/2. This yields for the period length
of the functions θ(t) and ψ̇(t) the approximation

tp ≈ π

2

√
8J1

mgsu3
=

2πJ1

J3ω3
. (4.98)

The corresponding circular frequency 2π/tp ≈ ω3J3/J1 is very large. It equals
the nutation angular velocity of a torque-free symmetric body in the case of
small nutation amplitudes (see (4.48)). Finally, an approximation formula for
ψ̇ is developed from (4.88) and (4.91):

ψ̇ ≈ J1ψ̇1(1 − u2
1) + J3ω3(u1 − u)

J1(1 − u2
1)

= ψ̇1 +
J3ω3

J1(1 − u2
1)

(u1 − u) . (4.99)

For the difference u1−u = cos θ1−cos θ (4.87) yields (with the approximation
sn τ ≈ sin τ valid for k ≈ 0) u1 − u ≈ (u1 − u2) sin2 τ . For (u1 − u2) (4.96) is
used. This leads to

u1 − u ≈
(
1 − u2

1

)( 1

2a
− 2b

)
sin2 τ (4.100)

and, furthermore, to

ψ̇ ≈ ψ̇1 + 2

(
mgs

J3ω3
− ψ̇1

)
sin2 τ =

mgs

J3ω3
−
(

mgs

J3ω3
− ψ̇1

)
cos 2τ . (4.101)
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This result shows that ψ̇ is oscillating about the mean value mgs/(J3ω3)
which is the angular velocity of a slow regular precession. The amplitude
of the oscillation is zero if the initial value ψ̇1 equals this mean value. The
approximation formulas just established confirm the initial statement that
motions of a rapidly rotating symmetric heavy top differ only slightly from
regular precessions. The motion can be interpreted as superposition of a fast
nutation with very small amplitude (θ2−θ1)/2 onto a slow regular precession.

4.5 Symmetric Heavy Body in a Cardan Suspension

Figure 4.8 depicts a symmetric rigid rotor in a two-gimbal suspension. All
three rotation axes intersect at the point 0. This point is the center of mass of
the rotor as well as of the inner gimbal. In a position when the three rotation
axes are mutually perpendicular these axes represent principal axes of inertia
of the rotor and of the inner gimbal. The axis of the outer gimbal is mounted
in a vertical position. To the symmetry axis of the rotor, at a distance s
from 0, a point mass m is attached. Such a system has many features in
common with a symmetric heavy top (see Fig. 4.4). The only differences
are the presence of gimbals with inertia properties and the constraint torque
normal to the outer gimbal axis which is transmitted to the system by the
bearings on this axis.

In Fig. 4.8 the inertial base e1, the base e2′

fixed on the inner gimbal and
the Euler angles ψ, θ and φ are identical with those of Fig. 2.2 and also with
those of Fig. 4.4. As reference point for angular momenta and torques the
point 0 is chosen. If there is no friction in the bearings which is supposed to be
the case then the resultant torque on the rotor has no component along the
rotor axis. The coordinate ω3 in this direction of the absolute rotor angular
velocity is, therefore, constant. This constitutes a first integral of motion. It

Fig. 4.8. Symmetric rotor in a cardan suspension with vertical outer gimbal axis
and with offset point mass m
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is known already from the heavy top (see (4.67)):

ψ̇ cos θ + φ̇ ≡ ω3 = const . (4.102)

The resultant torque on the entire system, composed of the constraint torque
in the outer gimbal axis and of the torque caused by the weight of the point
mass has no vertical component. Hence, the coordinate L in this direction
of the absolute angular momentum of the entire system is a constant. Note
that this first integral exists only if the axis of the outer gimbal is mounted
vertically. A third first integral expresses the fact that the total energy E
of the system is constant. These three first integrals are the same on which
the analysis of the symmetric heavy top was based. In the present case the
two gimbals contribute to the angular momentum coordinate L and to the
energy E. In order to formulate L and E the absolute angular velocities of
the three bodies are expressed. Figure 4.8 yields

outer gimbal : ω(1) = ψ̇e1
3 ,

inner gimbal : ω(2) = θ̇e2′

1 + ψ̇ sin θe2′

2 + ψ̇ cos θe2′

3 ,

rotor : ω(r) = θ̇e2′

1 + ψ̇ sin θe2′

2 + ω3e
2′

3 .

⎫
⎪⎪⎬
⎪⎪⎭

(4.103)

Let J
(1)
3 be the moment of inertia of the outer gimbal about its vertical axis.

In base e2′

the inner gimbal has principal moments of inertia J
(2)
1 , J

(2)
2 , J

(2)
3

and rotor and point mass together have principal moments of inertia J1,
J2 = J1, J3. With this notation, the outer gimbal has the angular momentum

L(1) = J
(1)
3 ψ̇e1

3. Inner gimbal, rotor and point mass together have in base e2′

the angular momentum components

L(2) + L(r) =
(
J

(2)
1 + J1

)
θ̇e2′

1 +
(
J

(2)
2 + J1

)
ψ̇ sin θe2′

2

+
(
J

(2)
3 ψ̇ cos θ + J3ω3

)
e2′

3 . (4.104)

The constant vertical coordinate L of the total angular momentum is (see
Fig. 4.8)

L = J
(1)
3 ψ̇ + sin θ

(
J

(2)
2 + J1

)
ψ̇ sin θ + cos θ

(
J

(2)
3 ψ̇ cos θ + J3ω3

)

= ψ̇
[
J1 + J

(2)
2 + J

(1)
3 −

(
J1 + J

(2)
2 − J

(2)
3

)
cos2 θ

]

+ J3ω3 cos θ . (4.105)

The total energy of the system is calculated from the angular velocities and
from the position of the mass m:

2E = J
(1)
3 ψ̇2 +

(
J

(2)
1 + J1

)
θ̇2 +

(
J

(2)
2 + J1

)
ψ̇2 sin2 θ + J

(2)
3 ψ̇2 cos2 θ

+ J3ω
2
3 + 2mgs cos θ

= ψ̇2
[
J1 + J

(2)
2 + J

(1)
3 −

(
J1 + J

(2)
2 − J

(2)
3

)
cos2 θ

]

+
(
J1 + J

(2)
1

)
θ̇2 + J3ω

2
3 + 2mgs cos θ . (4.106)



72 4 Classical Problems of Rigid Body Mechanics

Equations (4.105) and (4.106) correspond to (4.72) and (4.74), respectively,
for the symmetric heavy top. They are identical with these equations if all
gimbal moments of inertia are equal to zero. The general solution to the
problem is achieved by the same approach that was used for the symmetric
heavy top. Equation (4.105) is solved for ψ̇

ψ̇ =
L − J3ω3 cos θ

J1 + J
(2)
2 + J

(1)
3 −

(
J1 + J

(2)
2 − J

(2)
3

)
cos2 θ

. (4.107)

Substitution into (4.106) yields for θ the differential equation
(
J1 + J

(2)
1

)
θ̇2 = 2E − J3ω

2
3 − 2mgs cosθ

− (L − J3ω3 cos θ)
2

J1 + J
(2)
2 + J

(1)
3 −

(
J1 + J

(2)
2 − J

(2)
3

)
cos2 θ

. (4.108)

This corresponds to (4.79). As before, θ is substituted by the new variable
u = cos θ, u̇ = −θ̇ sin θ. This results in the differential equation for u

u̇2 =

(
2E − J3ω

2
3 − 2mgsu

) (
1 − u2

)

J1 + J
(2)
1

− (L − J3ω3u)2(1 − u2)(
J1 + J

(2)
1

) [
J1 + J

(2)
2 + J

(1)
3 −

(
J1 + J

(2)
2 − J

(2)
3

)
u2
] .(4.109)

If all gimbal moments of inertia are zero this is identical with (4.81) for
the symmetric heavy top. The gimbal inertia has the effect that the right-
hand side expression is a fractional rational function of u instead of a cubic
polynomial. The solution has, therefore, a completely different character. It
cannot be expressed in terms of known special functions. The equation is
not even soluble in the special case when no point mass and, thus, no torque
caused by gravity is present. For more details about the dynamic effects of
suspension systems the reader is referred to Magnus [51], Arnold/Maunder [3]
and Saidov [70].

4.6 Gyrostat. General Considerations

A gyrostat is a mechanical system which is composed of more than one body
and, yet, has the rigid body property that its moments and products of inertia
are time independent constants. In its simplest form a gyrostat consists of
two bodies as shown in Fig. 4.9. A symmetric rigid rotor is supported in rigid
bearings on another rigid body called the carrier.

We shall first establish equations of motion for this particular system.
Later it will be simple to formulate equations for gyrostats which consist of
more than two bodies. About the central principal moments of inertia of the



4.6 Gyrostat. General Considerations 73

Fig. 4.9. Radius vectors of mass particles on the carrier and the rotor of a gyrostat

composite system and about the orientation of the rotor axis relative to the
principal axes of inertia no special assumptions are made. Let ω denote the
absolute angular velocity of the carrier and ωrel the angular velocity of the
rotor relative to the carrier. In Fig. 4.9 the points C and Cr designate the
composite system center of mass and the rotor center of mass, respectively.
The point 0 is fixed in inertial space. The figure also shows representative
mass particles of the carrier and the rotor. Both have position vectors rC +̺.
Their absolute velocities are different, however, namely vC + ω × ̺ (carrier)
and vC + ω × ̺ + ωrel × ̺′ (rotor). With these vectors the absolute angular
momentum of the total system with respect to the point 0 is the sum of two
integrals, one over the mass mc of the carrier and the other over the mass mr

of the rotor:

L0 =

∫

mc

(rC + ̺) × (vC + ω × ̺) dm

+

∫

mr

(rC + ̺) × [vC + ω × ̺ + ωrel × ̺′] dm . (4.110)

The parts common to both integrals are combined under one integral over
the total system mass m = mc + mr. In the remaining integral the vector ̺

is expressed as a + ̺′. This results in the expression

L0 =

∫

m

(rC + ̺) × (vC + ω × ̺) dm

+

∫

mr

(rC + a + ̺′) × (ωrel × ̺′) dm (4.111)

From (3.15) it is known that the first integral is rC × vCm + J · ω with J

being the central inertia tensor of the entire system composed of carrier and
rotor. The contribution of the constant vector rC + a to the second integral
is zero because of

∫
mr

̺′ dm = 0. Thus, the integral is J
r ·ωrel where J

r is the
rotor inertia tensor with respect to Cr. The inertia tensors J and J

r have both
constant coordinates in a vector base fixed on the carrier. The vector J

r ·ωrel

is the rotor angular momentum relative to the carrier. It is abbreviated h.
Since the rotor axis is a principal axis of inertia of the rotor the vector h has
the direction of this axis. Thus, L0 has the final form

L0 = rC × vCm + J · ω + h . (4.112)
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With this expression the angular momentum theorem (3.32) yields the equa-
tion of motion

J · ω̇ +
◦

h + ω × (J · ω + h) = M (4.113)

which represents a generalization of Euler’s equation (3.36) for the rigid body.

The symbol
◦

h serves as an abbreviation for the time derivative of h in a base

fixed on the carrier. Also
◦

h has the direction of the rotor axis. The vector M
is the resultant external torque with respect to C.

A case of considerable importance in engineering is the special case where
the angular velocity of the rotor relative to the carrier is a prescribed function

of time. Then, h(t) and
◦

h(t) are vectors along the rotor axis with magnitudes
which are known as functions of time. The rotor has no degree of freedom
of its own, and (4.113) together with kinematic differential equations for the

carrier fully describes the system. The term −
◦

h(t) can be treated as if it were
an external torque:

J · ω̇ + ω × (J · ω + h(t)) = M −
◦

h(t) . (4.114)

In the simplest case of this kind the relative angular velocity of the rotor is
constant. The equation then reads

J · ω̇ + ω × (J · ω + h) = M . (4.115)

In another case of importance in engineering the component along the rotor
axis of the torque which is exerted on the rotor by the carrier is a prescribed
function of time. In this case the rotor has one degree of freedom of motion
of its own so that one additional scalar equation of motion is needed. This
equation is established as follows. The angular momentum theorem for the
rotor alone reads

d

dt
[Jr · (ω + ωrel)] = Mr (4.116)

with Mr being the resultant torque on the rotor with respect to the center
of mass Cr. Carrying out the differentiation in a carrier-fixed base we get

J
r · ω̇ +

◦

h + ω × (Jr · ω + h) = Mr . (4.117)

It is reasonable to assume that the external torque M which acts on the
gyrostat as a whole does not contribute to the component of Mr along the
rotor axis. This component is then caused by interaction from the carrier
alone and by assumption it is a given function of time. Let it be called M r(t).
If u is a unit vector along the rotor axis the desired scalar equation of motion
is obtained by scalar multiplication of (4.117) by u:

u ·
(

J
r · ω̇ +

◦

h

)
= u ·Mr = M r(t) . (4.118)

Note that the third term on the left in (4.117) does not give a contribution
since u and h are collinear and since for a symmetric body the vectors u, ω
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and J
r ·ω are coplanar. The equation can be integrated once. For this purpose

it is given the form
d

dt
[u · (Jr · ω + h)] = M r(t) (4.119)

which is identical since the product (ω × u) · (Jr ·ω + h) is zero. Integration
then yields

u · (Jr · ω + h) =

∫
M r(t) dt = Lr(t) (4.120)

where the known function Lr(t) represents the coordinate along the rotor
axis of the absolute angular momentum. In order to describe the motion
completely it is necessary to supplement (4.113) and (4.120) by kinematic
differential equations which relate ω to generalized coordinates for the angu-
lar orientation of the carrier.

Having described the simplest possible type of gyrostat it is now a straight-
forward procedure to formulate equations of motion for gyrostats in which
more than one rotor is mounted on the carrier. Let there be m + n rotors
altogether and let them be identified by an index i which is attached to all
rotor quantities. It is assumed that for the rotors labeled i = 1, . . . , m the
axial torque component M r

i (t) is a given function of time whereas for the re-
maining rotors i = m+1, . . . , m+n the coordinates of hi(t) in a carrier-fixed
base are given functions of time. The equations of motion consist of a single
vector equation of the kind of (4.113) and of a set of m scalar equations of
the form (4.120), one for each of the rotors i = 1, . . . , m:

J·ω̇+

m∑

i=1

◦

hi+ω×
[
J · ω +

m∑

i=1

hi +

m+n∑

i=m+1

hi(t)

]
= M−

m+n∑

i=m+1

◦

hi(t) , (4.121)

ui · (Jr
i · ω + hi) =

∫
M r

i (t) dt = Lr
i(t) (i = 1, . . . , m) . (4.122)

The scalar equations are equivalent to

ui ·
(

J
r
i · ω̇ +

◦

hi

)
= M r

i (t) (i = 1, . . . , m) . (4.123)

This set of equations can be simplified substantially. To begin with, (4.122)
and (4.123) are reformulated. Since ui is an eigenvector of J

r
i the product

ui ·Jr
i ·ω can be rewritten in the form J r

i ui ·ω where J r
i is the principal moment

of inertia of the i th rotor about the rotor axis. Furthermore, ui ·
◦

hi = |
◦

hi|.
Multiplication of (4.123) by ui yields, therefore, the vector equation

J r
i uiui · ω̇ +

◦

hi = uiM
r
i (t) (i = 1, . . . , m) (4.124)

in which J r
i uiui is an inertia tensor. In a similar manner multiplication of

(4.122) by ω × ui produces the vector equation

ω × (J r
i uiui) · ω + ω × hi = ω × uiL

r
i(t) (i = 1, . . . , m) . (4.125)
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Equations (4.124) and (4.125) are summed over i = 1, . . . , m, and both sums
are subtracted from (4.121):

(
J −

m∑

i=1

J r
i uiui

)
· ω̇

+ ω ×
[(

J −
m∑

i=1

J r
i uiui

)
· ω +

m∑

i=1

uiL
r
i(t) +

m+n∑

i=m+1

hi(t)

]

= M −
m∑

i=1

uiM
r
i (t) −

m+n∑

i=m+1

◦

hi(t) . (4.126)

For abbreviation the new quantities are introduced:

J
∗ = J −

m∑

i=1

J r
i uiui , h∗(t) =

m∑

i=1

uiL
r
i(t) +

m+n∑

i=m+1

hi(t) . (4.127)

Because of the identity M r
i (t) = dLr

i(t)/dt one has

◦

h∗(t) =

m∑

i=1

uiM
r
i (t) +

m+n∑

i=m+1

◦

hi(t) . (4.128)

In a carrier-fixed base the tensor J
∗ has constant coordinates, and h∗(t) as

well as
◦

h∗(t) have coordinates which are known functions of time. In terms
of these quantities (4.126) becomes

J
∗ · ω̇ + ω × [J∗ · ω + h∗(t)] = M −

◦

h∗(t) . (4.129)

This equation, together with kinematic differential equations for the carrier,
fully describes the motion of the carrier. The equation has the same form as
(4.114) for a gyrostat with a single rotor and with given functions h(t) and
◦

h(t). Note, however, that in contrast to h(t) in (4.114) the vector h∗(t) in
(4.129) does not have, in general, a fixed direction in the carrier. The two
equations are, therefore, not equivalent. They are equivalent only in special
cases such as the following:

(i) For arbitrary m and n all rotor axes are aligned parallel.
(ii) m = 1 and n = 0. Thus, a gyrostat with a single rotor with given

torque M r(t) and a gyrostat with a single rotor with given relative
angular momentum h(t) are equivalent.

(iii) m = 0, n arbitrary and |hi(t)| = λih(t) for i = 1, . . . , n with constants
λ1, . . . , λn and with an arbitrary function h(t). These conditions are
fulfilled if all rotors are connected by gear wheels.

(iv) m and n arbitrary, M r
i (t) ≡ 0 for i = 1, . . . , m and |hi(t)| = const for

i = m + 1, . . . , m + n.
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Carrier bodies with built-in rotors are not the only multibody systems
with time independent moments of inertia. This property is conserved if the
carrier, in addition to rotors, contains cavities which are completely filled
with homogeneous fluids. Various technical instruments and vehicles with
rotating engines, with fuel tanks and with hydraulic systems represent gy-
rostats of this nature. Their dynamic behavior has been studied by Moi-
seev/Rumiancev [52].

Problem 4.2. In the absence of external torques (4.129) represents the equation of

a self-excited rigid body with the driving torque −ω ×h∗(t)−
◦

h∗(t). Integrate the
equations of motion in closed form in the following case. A gyrostat with one rotor
has principal moments of inertia J1 = J2 �= J3. The axis of the rotor whose moment
of inertia about the symmetry axis is Jr is mounted parallel to the principal axis
about which J3 is measured. The carrier transmits a torque M r(t) to the rotor about
the rotor axis. Solve the equation also if the rotor torque has the form M r(t) − ah
(a > 0, const) where M r(t) is, again, a given function of time and the term −ah
represents a viscous damping torque.

4.7 Torque-Free Gyrostat

In this section (4.129) is investigated in the special case when the external
torque M on the gyrostat is identically zero and when, furthermore, the
relative angular momentum h∗ has constant coordinates in a carrier-fixed
base. Omitting the asterisk we have the equation

J · ω̇ + ω × (J · ω + h) = 0 . (4.130)

It governs torque-free gyrostats whose rotors are operated under the condition
M r

i (t) ≡ 0 for i = 1, . . . , m (arbitrary) and |hi(t)| = const for i = m +
1, . . . , m+n (n arbitrary). For the sake of simplicity the equation will always
be interpreted as that of a gyrostat with a single rotor of constant relative
angular momentum h.

Equation (4.130) possesses two algebraic integrals which are found by
multiplication with ω and with J · ω + h, respectively:

ω · J · ω = 2T = const , (J · ω + h)2 = L2 = const . (4.131)

They are an energy integral and an angular momentum integral. Note that
T is not the total kinetic energy but only that portion of it which remains
when the carrier is rotating with its actual angular velocity ω while the rotor
is “frozen” in the carrier. The quantity L is the magnitude of the absolute
angular momentum of the composite system. Resolved in the principal axes
frame of the composite system (4.130) and (4.131) read

J1ω̇1 − (J2 − J3)ω2ω3 + ω2h3 − ω3h2 = 0 ,
J2ω̇2 − (J3 − J1)ω3ω1 + ω3h1 − ω1h3 = 0 ,
J3ω̇3 − (J1 − J2)ω1ω2 + ω1h2 − ω2h1 = 0 ,

⎫
⎬
⎭ (4.132)
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3∑

i=1

Jiω
2
i = 2T , (4.133)

3∑

i=1

(Jiωi + hi)
2 = L2 = 2DT . (4.134)

The parameter D with the physical dimension of moment of inertia is intro-
duced for convenience and also in order to show the similarity with (4.6) for
the torque-free rigid body.

The following investigation will be concerned with the most general case
in which all three principal moments of inertia are different from one another
and, furthermore, all three angular momentum coordinates h1, h2, h3 are dif-
ferent from zero2. Without loss of generality it is assumed that J3 < J2 < J1.
The same assumption was made in Sect. 4.1 on the dynamics of the torque-
free rigid body.

4.7.1 Polhodes. Permanent Rotations

Equations (4.133) and (4.134) are analogous to the integrals of motion for
a torque-free rigid body (see (4.5) and (4.6)) in that they define two ellip-
soids which are fixed on the carrier and which, both, represent a geometric
locus for the vector ω. The angular velocity is, therefore, confined to the
lines of intersection of the ellipsoids. As for the rigid body, these lines are
called polhodes. Their investigation is considerably more complicated than
in the case of the rigid body since the centers of the ellipsoids are not coinci-
dent. This has the consequence, for instance, that projections of the polhodes
along principal axes are not ellipses or hyperbolas but fourth-order curves.
As in Sect. 4.1.1 it is imagined that the energy ellipsoid is given and that the
angular momentum ellipsoid is “blown up” by increasing D. In this process
the family of all physically realizable polhodes is produced on the energy
ellipsoid. Of particular interest are, again, those degenerate polhodes which
have singular points. These points mark permanent rotations with constant
angular velocities ω ≡ ω∗ = const. Each singular point has its particular
value D∗ of D which determines the corresponding angular momentum el-
lipsoid. The location of the singular points on the energy ellipsoid as well as
relationships between ω∗, D∗ and the system parameters Ji, hi (i = 1, 2, 3)
and 2T are found from the differential equations and from the integrals of
motion. According to (4.130) solutions ω ≡ ω∗ = const require that either
ω∗ = 0 or J · ω∗ + h∗ = 0 or J · ω∗ + h∗ = λ∗ω∗ with an as yet unknown
scalar λ∗. The first two conditions represent trivial cases. In the first case, the
energy ellipsoid degenerates into a single point. Only the rotor is moving, not
the carrier. In the second case, the angular momentum ellipsoid degenerates

2 For special cases not treated here and also for additional details about the general
case see Wittenburg [96].
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into a single point. The third condition implies that the ellipsoids are not
degenerate and that they have a common tangential plane in the singular
point marked by ω∗. This condition does not yield an eigenvalue problem as
in the corresponding case for the rigid body (see (4.11)). Let u1, u2 and u3

be the coordinates of the unit vector u along the rotor axis so that hi = hui

(i = 1, 2, 3). The third condition then yields

ω∗
i =

hui

λ∗ − Ji
(i = 1, 2, 3) . (4.135)

The unknown λ∗ is determined from the equation

3∑

i=1

u2
i Ji

(λ∗ − Ji)2
=

2T

h2
=

1

J0
(4.136)

which is found by substituting ω∗
i into (4.133). The newly introduced con-

stant parameter J0 has the physical dimension of moment of inertia. Equation
(4.136) represents a sixth-order equation for λ∗. Every real solution is asso-
ciated with one permanent rotation. The value D∗ of D which defines the
corresponding angular momentum integral follows from (4.134):

D∗ = J0λ
∗2

3∑

i=1

u2
i

(λ∗ − Ji)2
. (4.137)

In order to be able to make statements about the number of axes of permanent
rotation the function

F (λ) =

3∑

i=1

u2
i Ji

(λ − Ji)2
(4.138)

is considered (see Fig. 4.10). It has second-order poles at λ = Ji (i = 1, 2, 3).
Furthermore, it is positive everywhere and it has exactly one minimum in
each of the intervals J3 < λ < J2 and J2 < λ < J1 since d2 F (λ)/dλ2 > 0.
The location of these minima is found from the condition dF (λ)/dλ = 0, i.e.
from

3∑

i=1

u2
i Ji

(λ − Ji)3
= 0 . (4.139)

This is a sixth-order equation for λ which has exactly two real solutions. From
these properties of the function F (λ) the following conclusions can be drawn.

Fig. 4.10. Graph of the function F (λ)
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Equation (4.136) has either six or four or two real solutions λ∗ depending on
the choice of system parameters. Double roots which are then also roots of
(4.139) may occur. Every real solution is associated with a permanent angular
velocity with coordinates calculated from (4.135). None of these coordinates
can be zero so that axes of permanent rotation are neither parallel to principal
axes of inertia nor parallel to planes spanned by two principal axes of inertia.
Any other axis can – for given moments of inertia J1, J2 and J3 – be made
an axis of permanent rotation by a proper choice of u1, u2 and u3. For
a given set of parameters Ji, ui (i = 1, 2, 3) and J0 no two angular velocity
vectors ω∗ have opposite directions. It is interesting to look at two degenerate
cases. For h = 0 the gyrostat is a rigid body. It should then have six axes of
permanent rotation which coincide with the principal axes of inertia (three
if permanent rotations of opposite directions are not counted separately). In
the limit h → 0, i.e. for J0 → 0 the roots of (4.136) tend toward double
roots λ∗ = Ji (i = 1, 2, 3). For each root two out of three coordinates of
ω∗ are zero according to (4.135). This means that all six permanent angular
velocity vectors have, indeed, directions of principal axes of inertia. In the
second degenerate case h is infinitely large while 2T remains finite. This is
the case of a gyrostat with a slowly rotating carrier and with an infinitely
rapidly spinning rotor. The rotor then dominates the dynamic behavior of the
gyrostat. It should, therefore, be expected that only two axes of permanent
rotation exist and that these axes coincide with the symmetry axis of the
rotor. This is, indeed, the case. In the limit J0 → ∞ (4.136) has only two
real solutions, namely λ∗ → ±∞. For the corresponding permanent angular
velocity coordinates the relationship ω∗

1 : ω∗
2 : ω∗

3 = u1 : u2 : u3 is found from
(4.135) which means that ω∗ is parallel to the rotor axis.

4.7.2 Solution of the Dynamic Equations of Motion

In this subsection closed-form solutions will be obtained for the differential
equations (4.132) by a method which was suggested by Wangerin [88] and
further developed by Wittenburg [96]. The approach leads to real functions
ω1(t), ω2(t), ω3(t). Another method developed by Volterra [84] (see also Wit-
tenburg [96]) results in complex functions of time.

We start out from the integrals of motion. Multiply (4.133) by an as yet
undetermined scalar λ with the dimension of moment of inertia and subtract
(4.134). The result is written in the form

3∑

i=1

Ji(λ − Ji)

(
ωi −

hui

λ − Ji

)2

= 2T [f(λ)− D] (4.140)
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with

f(λ) = λ

[
1 + J0

3∑

i=1

u2
i

λ − Ji

]
. (4.141)

The function f(λ) has first-order poles at λ = Ji (i = 1, 2, 3). From this it
follows that in each of the intervals J3 < λ < J2 and J2 < λ < J1 all values
from −∞ to +∞ are assumed at least once. For λ a value λ0 is chosen which
satisfies the conditions

f(λ0) = D and J3 < λ0 < J2 . (4.142)

If several values exist which satisfy these conditions then one of them is cho-
sen arbitrarily. The equation f(λ0) = D represents a fourth-order equation.
When new variables wi defined as

wi = ωi −
hui

λ0 − Ji
(i = 1, 2, 3) (4.143)

are introduced (4.140) becomes
(

w1

k1w3

)2

+

(
w2

k2w3

)2

= 1 (4.144)

with real constants

k1 =

√
J3(λ0 − J3)

J1(J1 − λ0)
, k2 =

√
J3(λ0 − J3)

J2(J2 − λ0)
. (4.145)

This equation defines a double cone of elliptic cross section whose axis is the
w3-axis (see Fig. 4.11). This cone, too, is a geometric locus of the polhodes,
since its equation is a linear combination of the equations which define the
ellipsoids.
Equation (4.144) for the cone is replaced by the parameter equations with
parameter φ

w1 = k1w3 sin φ , w2 = k2w3 cosφ . (4.146)

Through these equations in combination with (4.143) also ω1 and ω2 are
functions of w3 and φ. Substituting the expressions for ω1 and ω2 into the
energy equation (4.133) one finds for w3 the quadratic equation

a1(φ)w2
3 − 2a2(φ)w3 + a3 = 0 (4.147)

Fig. 4.11. The double cone of (4.144) with a polhode
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with the coefficients

a1(φ) = J1k
2
1 sin2 φ + J2k

2
2 cos2 φ + J3 > 0 ,

a2(φ) =
h1J1k1

J1 − λ0
sin φ +

h2J2k2

J2 − λ0
cosφ +

h3J3

J3 − λ0
,

a3 = 2TJ0

[
3∑

i=1

u2
i Ji

(λ0 − Ji)2
− 1

J0

]
.

⎫
⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(4.148)

The solutions for w3 are

w3(φ) =
a2(φ) ±

√
a2
2(φ) − a1(φ)a3

a1(φ)
. (4.149)

This equation in combination with (4.146) and (4.143) establishes all three
angular velocity coordinates as functions of the single variable φ. For com-
pleting the solution it remains to be shown how φ is related to time. This is
achieved by combining the two integrals of motion with one of the three dif-
ferential equations of motion (4.132). First, the time derivative of the energy
equation (4.133) is formulated:

J1ω1ω̇1 + J2ω2ω̇2 + J3ω3ω̇3 = 0 . (4.150)

In this equation ω̇1 and ω̇2 are replaced by the following expressions which
result from (4.143) and (4.146):

ω̇1 = ẇ1 = k1( w3φ̇ cosφ + ẇ3 sinφ) = k1

(
w2φ̇

k2
+ ω̇3 sin φ

)
,

ω̇2 = ẇ2 = k2(−w3φ̇ sin φ + ẇ3 cosφ) = k2

(
−w1φ̇

k1
+ ω̇3 cosφ

)
.

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(4.151)
This yields the equation

(
k1

k2
J1ω1w2 −

k2

k1
J2ω2w1

)
φ̇

+(J1k1ω1 sin φ + J2k2ω2 cosφ + J3ω3)ω̇3 = 0 . (4.152)

The expression in front of φ̇ is rewritten by substituting for w1 and w2 (4.143)
and for k1 and k2 (4.145). Following this, the third differential equation
(4.132) is brought into play. The resulting expression reads:

k1

k2
J1ω1w2 −

k2

k1
J2ω2w1

= [−(J1 − J2)ω1ω2 + ω1h2 − ω2h1]

√
J1J2

(J1 − λ0)(J2 − λ0)

= −J3ω̇3

√
J1J2

(J1 − λ0)(J2 − λ0)
. (4.153)
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Next, the expression in front of ω̇3 in (4.152) is rewritten. First, ω1, ω2 and ω3

are expressed in terms of w3 and φ with the help of (4.143) and (4.146). Fol-
lowing this, (4.148) and (4.149) are applied. The resulting expression reads:

J1k1ω1 sin φ + J2k2ω2 cosφ + J3ω3

= w3

(
J1k

2
1 sin2 φ + J2k

2
2 cos2 φ + J3

)

+
h1J1k1

λ0 − J1
sinφ +

h2J2k2

λ0 − J2
cosφ +

h3J3

λ0 − J3

= w3a1(φ) − a2(φ) = ±
√

a2
2(φ) − a1(φ)a3 . (4.154)

Substituting this together with (4.153) into (4.152) one gets, after separation
of the variables, for φ the equation

±(t − t0)
1

J3

√
(J1 − λ0)(J2 − λ0)

J1J2
=

∫ φ

φ0

dφ̄√
a2
2(φ̄) − a1(φ̄)a3

. (4.155)

From (4.148) it is seen that the expression under the square root has the form

a2
2−a1a3 = c1 sin2 φ̄+c2 cos2 φ̄+c3+c4 sin φ̄+c5 cos φ̄+c6 sin φ̄ cos φ̄ (4.156)

where c1, . . . , c6 are abbreviations for constant coefficients. The integral is,
therefore, an elliptic integral of the first kind. Its reduction to a normal form
requires a sequence of substitutions of new variables in the course of which
another fourth-order equation must be solved (the first one led to the root λ0

of (4.142)). Additional difficulties arise from the necessity to distinguish be-
tween four different combinations of signs of certain constants in order to
prevent the solution for φ from being a complex function of time. For details
the reader is referred to Wittenburg [96]. At this place we content ourselves
with the statement that the angular velocity coordinates ω1, ω2 and ω3 are
real elliptic functions of time.

A number of mathematical expressions in the analysis just presented are
similar to other expressions which play a role in connection with perma-
nent rotations. Compare, for example, (4.143) with (4.135) and the third
Eq. (4.148) with (4.136). The similarity suggests an investigation of the ques-
tion whether the root λ0 of (4.142) can be identical with a root λ∗ of (4.136).
The function f(λ) defined in (4.141) has the derivative with respect to λ

f ′(λ) =
df

dλ
= −J0

[
3∑

i=1

u2
i Ji

(λ − Ji)2
− 1

J0

]
. (4.157)

Comparison with (4.138) reveals the identity

f ′(λ∗) = −J0

[
F (λ∗) − 1

J0

]
= 0 . (4.158)
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Fig. 4.12. Relationship between the functions F (λ) and f(λ)

This relationship between f(λ) and F (λ) is illustrated in Fig. 4.12. The func-
tion f(λ) is stationary for those values λ∗ of λ which are roots of (4.136)
and which determine the coordinates of permanent angular velocities. Fur-
thermore, according to (4.142), f(λ = λ∗) equals the parameter D∗ which is
associated with λ∗ by (4.137). Figure 4.12 is based on a set of parameters
for which six axes of permanent rotation exist. The roots λ∗ are labeled in
ascending order. Related quantities are identified by the respective indices.
For parameter combinations for which only four axes of permanent rotation
exist the function f(λ) has stationary values in only one of the intervals
J3 < λ < J2 and J2 < λ < J1. It has no stationary values in any of these
intervals if only two axes of permanent rotation exist. In conclusion the fol-
lowing can be said. If a gyrostat is in a state of permanent rotation and if, in
addition, the associated root λ∗ of (4.136) lies in the interval J3 < λ∗ < J2

then this λ∗ is also a root of (4.142) and it can be used as λ0 in all subse-
quent equations. Under no other condition is λ0 a root of (4.142) and (4.136)
simultaneously.

Using the identity λ0 = λ∗ we can develop stability criteria for permanent
rotations with J3 < λ∗ < J2 (λ∗

2 and λ∗
3 in Fig. 4.12) on the basis of the exact

solutions for the equations of motion. From (4.148) and (4.136) follows a3 = 0
so that the solutions for w3(φ) given by (4.149) are w3(φ) ≡ 0 and

w3(φ) =
2a2(φ)

a1(φ)
. (4.159)

The first solution w3(φ) ≡ 0 yields, because of (4.146), w1 = w2 = 0 and,
hence, with (4.143) ωi = hui/(λ∗ − Ji) (i = 1, 2, 3). This represents the
permanent rotation associated with λ∗ (see (4.135)). From w1 = w2 = w3 = 0
it follows that the apex of the cone of Fig. 4.11 lies on the energy ellipsoid. In
addition to this singular point the cone and the energy ellipsoid intersect each
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Fig. 4.13. Polhodes on the double cone associated with (a) unstable and (b) stable
permanent rotations

other in a polhode which is described by (4.159). The form of this polhode
decides whether the permanent rotation is stable or unstable. If the apex
is a double point of the polhode (Fig. 4.13a) then this polhode represents
a separatrix, and the permanent rotation is unstable. If, on the contrary, the
polhode is a closed curve which is isolated from the singular point at the
apex (Fig. 4.13b) then the permanent rotation is stable. The nature of the
polhode is determined as follows. With a3 = 0 (4.155) becomes

c(t − t0) =

∫ φ

φ0

dφ̄

s1 sin φ̄ + s2 cos φ̄ + s3
(4.160)

with

c =

√
(J1 − λ∗)(J2 − λ∗)(λ∗ − J3)

J1J2J3
, s1 =

h1

J1 − λ∗

√
J1

J1 − λ∗
,

s2 =
h2

J2 − λ∗

√
J2

J2 − λ∗
, s3 =

h3

J3 − λ∗

√
J3

λ∗ − J3
.

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(4.161)
The equation has the solution

tan
φ

2
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

s1 −
√

p tan τ

s2 − s3
(p > 0) ,

s1 −
√−p tanh τ

s2 − s3
(p < 0) ,

s1 + 2/τ

s2 − s3
(p = 0)

(4.162)
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where τ is a linear function of time and

p = s2
3 −

(
s2
1 + s2

2

)
. (4.163)

For p > 0 the solution is periodic. The polhode is then of the type shown
in Fig. 4.13b, and the permanent rotation represented by the apex of the
cone is stable. For p < 0 and also for p = 0 the solution is aperiodic. Using
the expressions for tanφ/2 it is straightforward to show that in either case
the function a2(φ) = const×(s1 sin φ + s2 cosφ + s3) tends toward zero for
τ → ∞. Because of (4.159) then also w3(φ) tends toward zero. This means
that the motion along the polhode approaches asymptotically the apex of
the cone. The polhode is, therefore, of the type shown in Fig. 4.13a, and the
permanent rotation is unstable. For the quantity p (4.163) and (4.161) yield

p = −
3∑

i=1

h2
i Ji

(Ji − λ∗)3
= −2h2 dF

dλ

∣∣∣∣
λ=λ∗

. (4.164)

Thus, the sign of the rate of change of the curve in the upper diagram of
Fig. 4.12 determines the stability behavior. The permanent rotation belonging
to the smaller root λ∗

2 is stable and the one belonging to λ∗
3 is unstable.

Unstable is also the case of a double root λ∗
2 = λ∗

3 in which p equals zero.
In an analogous way stability criteria can be developed which are associ-

ated with roots λ∗ in the interval J2 < λ∗ < J1. It has been shown that also
these roots are roots of f(λ) = D∗(λ∗). The details are left to the reader. It
is, first, necessary, to develop new forms for (4.144)–(4.155) which are based
on a root λ0 of the equation f(λ0) = D in the interval J2 < λ0 < J1. This
can be done by a simple permutation of indices. Starting from the new equa-
tions it can be shown that permanent rotations for J2 < λ∗ < J1 are stable
if F ′(λ∗) is positive and unstable otherwise. Thus, the permanent rotation
associated with λ∗

5 in Fig. 4.12 is stable and the one associated with λ∗
4 is

unstable.
The stability of permanent rotations associated with the roots λ∗

1 < J3

and λ∗
6 > J1 cannot be investigated in a similar way. There is another and

even simpler method, however. It is, first, noted that the values D∗ belonging
to these permanent rotations (D∗

1 and D∗
6 in Figs. 4.12a,b) are the smallest

and the largest, respectively, of all values D∗. This can be proven as fol-
lows. For each value D∗ belonging to one of the permanent rotations with
J3 < λ∗ < J1 a polhode is obtained which consists of a singular point and, in
addition, of a closed curve (see Fig. 4.13b). As long as the angular momentum
ellipsoid intersects the energy ellipsoid in a closed curve it is possible to deflate
(or to inflate) the angular momentum ellipsoid by decreasing (increasing) the
parameter D and still get an intersection curve. The intersection curve degen-
erates into a singular point when D reaches a certain minimum (maximum)
value. These extreme values are the values D∗ which belong to λ∗ < J3 and
λ∗ > J1. For parameters D which are not in the interval D∗

1 ≤ D ≤ D∗
6 no
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real polhodes exist. After these preparatory remarks the stability of the per-
manent rotations under consideration can be proven as follows. For λ = λ∗

(4.140) becomes in view of (4.135)

3∑

i=1

Ji(λ
∗ − Ji)(ωi − ω∗

i )2 = 2T (D∗ − D) . (4.165)

On the left-hand side Ωi = ωi − ω∗
i (i = 1, 2, 3) represents the deviation of

ωi from the angular velocity of permanent rotation belonging to D∗. The
function

V =

3∑

i=1

Ji(λ
∗ − Ji)Ω

2
i (4.166)

is negative definite for λ∗
1 < J3 and positive definite for λ∗

6 > J1. Furthermore,
the total time derivative of V is zero since V is a linear combination of two
integrals of motion. With these properties V is a Ljapunov function proving
the stability of the two permanent rotations.

The stability analysis has provided us with information about the pattern
of polhodes on the energy ellipsoid. In Fig. 4.14a the pattern is schematically
illustrated. The separatrices belonging to the two unstable permanent rota-
tions are the “figures eight” shown in solid lines. They divide the ellipsoid
into five regions, namely the two “eyes” for each figure eight and the region
between the two figures eight. The larger eye of one figure eight covers the
entire reverse side and the outer part of the front side of the ellipsoid. The
intersection points of the axes of permanent rotation carry the same indices
as related quantities in Fig. 4.12. The polhodes shown as broken lines are
associated with the permanent rotations number 2 and 5. The one which
circles point 1 belongs to the solution in (4.162) for p > 0 while the solu-
tion for p < 0 belongs to the separatrix which passes through point 3. If the
system parameters are chosen such that (4.136) has a double root λ∗

2 = λ∗
3,

then points 2 and 3 on the energy ellipsoid coincide, and also the polhode
circling point 1 and the separatrix passing through point 3 coincide. The
shape of such a particular polhode is drawn schematically in Fig. 4.14b. Such
a polhode belongs to the solution in (4.162) for p = 0.

Fig. 4.14. The pattern of polhodes on the energy ellipsoid (schematically). (a)
The general case of six different roots of (4.136). (b) A separatrix belonging to
a real double root of (4.136)
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Fig. 4.15. Polhodes on the energy ellipsoid in the case of six (a) and of two axes
of permanent rotation (b). Both computer graphics are based on the parameters
J1 = 7 kgm2, J2 = 5kgm2, J3 = 3 kgm2, J0 = 0.48 kgm2 and 2T = 75 kgm2 s−2.
Different are only the directions of u. Its coordinates are 0.4, 0.1, +

√
0.83 in (a)

and 0.6, 0.4, +
√

0.48 in (b)

In Fig. 4.15 parallel projections are shown of polhode families which were
numerically calculated from the exact solutions of the equations of motion.
The parameters for the two gyrostats in the figure differ only by the direction
of the relative angular momentum h in the carrier. The moments of inertia
J1, J2 and J3, the magnitude of h and the energy constant 2T are the same
in both cases. The gyrostat on the left has six axes and the other has two
axes of permanent rotation.



5

General Multibody Systems

In the preceding chapter mechanical systems were investigated which consist
either of a single rigid body or of several rigid bodies in some particularly
simple geometric configuration. The important role they play in classical
mechanics is due to the fact that their equations of motion can be integrated
in closed form. This is not possible, in general, if a system is constructed of
many rigid bodies in some arbitrary configuration. The engineer is confronted
with an endless variety of such systems. To mention only a few examples one
may think of linkages in machines, of steering mechanisms in cars, of railroad
trains consisting of elastically connected cars, of a single railroad car with its
undercarriage, of walking machines and manipulators etc. The assumption
that the individual bodies of such systems are rigid is an idealization which
may or may not be acceptable, depending largely on the kind of problem
under investigation. Thus, in a crank-and-slider mechanism the seemingly
rigid connecting rod has to be treated as elastic member when its forced
bending vibrations are of concern. At the other extreme, the human body
composed of obviously nonrigid members may well be treated as a system of
interconnected rigid bodies when only its gross motion is of interest. In this
chapter all bodies will be assumed rigid. This does not exclude springs and
dampers interconnecting bodies. These nonrigid elements must, however, be
treated as massless.

5.1 Definition of Goals

The goal of this chapter is a minimal set of exact nonlinear differential equa-
tions of motion, of kinematic relationships, of energy expressions and other
quantities required for investigations into the dynamics of multibody sys-
tems. Minimal means that the number n of variables and of equations equals
the total degree of freedom of the system under consideration. This degree
of freedom may be as small as one or large. Let q1, . . . , qn be a minimal set
of suitably chosen variables. Then, on principle, it is possible to formulate
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equations of motion in the standard matrix form

Aq̈ = B (5.1)

where q̈ is the column matrix of generalized accelerations q̈1, . . . , q̈n. The
nonlinearity of the problem has the effect that the matrix A depends on the
variables q1, . . . , qn and that the column matrix B depends on q1, . . . , qn and
on q̇1, . . . , q̇n. The formalism to be developed should satisfy the following re-
quirements. First, it should be applicable to such diverse mechanical systems
as mentioned earlier. Second, it should give its user the freedom of choice of
variables q1, . . . , qn. In spite of this generality it should allow the generation
of equations of motion, of kinematic relationships, of energy expressions etc.
with only a minimum amount of labor. Classical methods do not satisfy these
requirements. Take, for example, Lagrange’s equations

d

dt

∂L

∂q̇k
− ∂L

∂qk
= Qk (k = 1, . . . , n) . (5.2)

The main disadvantage is that the Lagrangian L and its partial derivatives
can only be formulated for a specific mechanical system and for a specific
choice of generalized coordinates. Even then the amount of labor required
for generating the matrices A and B is prohibitive. Another disadvantage is
that large expressions resulting from the first term in (5.2) cancel identical
expressions resulting from the second term. The larger a multibody system is
the larger are these expressions. Which expressions cancel each other cannot
be predicted so that double generation is unavoidable.

The new formalism to be developed is free of such disadvantages. First of
all, it is applicable to arbitrary multibody systems and to arbitrary choices
of generalized coordinates. This is achieved by the definition of a new pa-
rameter – a matrix with integer elements – which specifies the structure of
a multibody system. The switch from, say, a four-body system forming a sim-
ple open chain to a five-body system having the structure of a star is effected
by changing this matrix. The new formalism leads to simple expressions of
such an explicit form that an automatic generation by a general-purpose
computer program is possible. It is one of the goals of this chapter to enable
the reader to write a program for dynamics simulations of a large class of
engineering multibody systems.

This is not the only application of the formalism, however. The math-
ematical tools and notations used lead to expressions which can easily be
interpreted in physical terms. As a consequence, purely analytical solutions
can be found for some problems. This will be demonstrated in Sects. 5.7.3
and 5.7.4 and in Chap. 6.
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5.2 Elements of Multibody Systems

A multibody system is composed of rigid bodies, of joints and of force ele-
ments. Another important element called the carrier body will be explained
further below.

Joints and force elements have in common that they connect bodies and
that they exert forces of equal magnitude and opposite direction on the two
connected bodies. The difference between joints and force elements is the
nature of these forces.

In a force element the force vector (direction and magnitude) is a known
function of the positions and/or the velocities of the two bodies connected by
the force element. The simplest force elements are springs and dampers. They
are passive elements. Also active force elements (actuators) are admitted in
which the force is determined by a given control law from observed position
and velocity variables. The essential feature of force elements is that they do
not create kinematical constraints.

In contrast, the force exerted on two bodies by a joint connecting these
bodies is a pure kinematical constraint force. It is caused by frictionless rigid-
body contacts. It cannot be expressed as function of position and velocity
variables. Constraint forces do not enter the equations of motion because they
have zero virtual work and zero virtual power. Note the following definition
of joint. The joint connecting two bodies is the complete system of rigid-body
contacts between these bodies. This definition has the consequence that two
bodies cannot be connected by more than one joint. What this means is illus-
trated in Fig. 5.1. The two bodies are not connected by two spherical joints
but by a single joint. This joint is a revolute joint with a single joint variable.
Note also the following convention. A single joint cannot interconnect more
than two bodies. What this means is illustrated in Figs. 5.2a,b. The three
bodies in Fig. 5.2a are mounted on a single shaft. This shaft produces two
revolute joints as is shown in Fig. 5.2b.

Depending on the nature of constraints the degree of freedom f of a joint
is any number 1 ≤ f ≤ 5. Figures 5.3a–e show as examples five joints which
have, in this order, the degrees of freedom f = 1, 2, 3, 4 and 5. In Fig. 5.3c
two plane surfaces, one on each body, are in contact. In Fig. 5.3d one of the

Fig. 5.1. Revolute joint connecting
two bodies

Fig. 5.2. The bodies in (a) are con-
nected by two joints as is shown in (b)
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Fig. 5.3a–f. Joints with degrees of freedom 1, 2, 3, 4, 5 and 6

bodies is a pendulum whose suspension point is free to move along a guide
which is fixed on the other body. In Fig. 5.3e each body has its own guide.
The guides are constrained to touch each other but they are free to slip along
each other.

In Fig. 5.3f two bodies without any material contact are shown. If it is
decided to specify the position of one of the two bodies relative to the other
by six variables then the two bodies are said to be connected by a six-degree-
of-freedom joint. Such joints must be defined whenever without them the
position of a single body or of a subsystem relative to the rest of the system
would be unspecified.

The carrier body: Most multibody systems are connected by joints and/or
by force elements to a frame which is fixed in inertial space. More general
is the case when the system is connected to a moving carrier body the mo-
tion of which is prescribed as a function of time. Typical examples are the

Fig. 5.4. Two systems with tree structure coupled to a carrier body, the motion
of which is prescribed
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Fig. 5.5. Two systems with tree structure without kinematical constraints to in-
ertial space

double-pendulum with a moving suspension point shown in Fig. 5.4a and the
human figure on a moving escalator shown in Fig. 5.4b. It is obvious that the
dimensions and inertia properties of the carrier body are irrelevant since its
motion is prescribed. It is represented by a moving base e0. The prescribed
motion of e0 as well as the properties of joints and of force elements between
e0 and the multibody system enter the equations of motion to be developed.

The multibody satellite in Fig. 5.5a and the human figure in Fig. 5.5b
are examples of multibody systems without kinematical constraints to iner-
tial space. For describing the position of such systems in inertial space it is
necessary to define a six-degree-of-freedom joint connecting one arbitrarily
chosen body of the system to a reference base e0. In the two figures this
joint is indicated by a broken line. Also in these cases the base e0 is referred
to as carrier body. When six-degree-of-freedom joints are taken into account
then every multibody system is a connected system. By this is meant that
between any two bodies of the system including body 0 there exists at least
one path along a sequence of bodies and of joints such that no joint is passed
more than once. A system is said to have tree structure if the path between
any two bodies of the system is uniquely defined. The systems in Figs. 5.4a,b
and 5.5a,b have tree structure. Tree-structured systems have the important
property that the joint variables of all joints are kinematically unconstrained.
This has the consequence that the total degree of freedom of the entire system
equals the sum of the degrees of freedom of the individual joints.

In a system without tree structure the path between two bodies is not
uniquely defined for all pairs of bodies. As an example, consider the system
in Fig. 5.4b when both feet are in contact with the escalator. The legs, the
trunk, the escalator and the connecting ankle, knee and hip joints form what
is called a closed kinematic chain. The closure of this chain establishes con-
straints for the joint variables of the joints in the closed chain (and of these
joints only). This has the consequence that the total degree of freedom of
the entire system is smaller than the sum of the degrees of freedom of the
individual joints. Constraint equations must be formulated for every closed
kinematic chain individually. From these remarks it is seen that systems with
tree structure are more easily analyzed than systems without tree structure.
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Furthermore, it is seen that a system without tree structure can be analyzed
by adding constraint equations to a system with tree structure. For this rea-
son tree-structured systems are investigated first. They are the subject of
Sect. 5.5. Section 5.6 is devoted to the formulation and to the incorporation
of constraint equations for closed kinematic chains.

A final remark: Most multibody systems found in engineering have closed
kinematic chains. However, systems with tree structure are not as excep-
tional as the Figs. 5.4a,b and 5.5a,b might suggest. In a road vehicle, for
example, the engine is connected to the chassis not by joints but by bush-
ings. A bushing is a force element with an internal force which is known as
function of displacement and of velocity of the two connected bodies relative
to one another. The same is true for the tires connecting the vehicle to the
road. Neither bushings nor tires create closed kinematic chains.

5.3 Interconnection Structure of Multibody Systems

In this section mathematical tools are introduced for the description of in-
terconnection structures of multibody systems (Wittenburg [98]). Because of
their abstract nature these tools are applicable to interconnections by joints
alone, to interconnections by force elements alone and also to interconnec-
tions by joints and by force elements in combination. In what follows joints
and force elements in combination are considered. As illustrative example the
system in Fig. 5.6 is used. The bodies are labeled 0, . . . , n and the connections
are labeled 1, . . . , m. In the example n = 7 and m = 10. Both labelings are
arbitrary except that body 0 represents the carrier body. The connections la-
beled 1, . . . , 7 symbolize joints of unspecified nature whereas the connections
8, 9, 10 are drawn as force elements. For what follows this distinction is not
important, however. The figure points to the fact that two bodies may be
connected by more than a single force element.

Fig. 5.6. Multibody system with joints and force elements. Carrier body 0
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5.3.1 Directed System Graph. Associated Matrices

The basic idea is to display the interconnection structure of a multibody
system by a graph. The graph consists of points called vertices and of lines
connecting the vertices called arcs. The vertices 0, . . . , n represent the bodies
of the system, and the arcs 1, . . . , m represent the connections. Since a graph
displays neither locations nor physical properties of bodies or connections the
vertices can be placed arbitrarily and the arcs can be drawn as straight or
as curved lines. Figure 5.7a shows the graph for the system of Fig. 5.6. The
graph is connected since the multibody system is connected by its joints (see
the text following Figs. 5.5a,b).

To each arc of the graph an arbitrary sense of direction is assigned. It
is indicated by the arrows in Fig. 5.7a. The resulting graph is called a di-
rected graph. The sense of direction allows to distinguish the two vertices
connected by an arc. This is necessary for two reasons. When formulating
the kinematics of motion of two joint-connected bodies relative to one an-
other it must be specified unambiguously which motion relative to which
body is meant. Forces produced by a force element act with opposite signs
on the two connected bodies. When formulating system dynamics it must be
specified unambiguously on which body a force is acting with a positive sign
and on which with a negative.

In the previous section it has been shown that the kinematics of multibody
systems is simplest if the interconnection by joints is tree-structured. For
this reason graphs with tree structure are given special attention. A graph
is called tree-structured if between any two vertices there exists a unique
minimal chain of arcs and vertices connecting the two vertices. This chain is
called the path connecting the two vertices. In a tree-structured graph the
identity m = n holds. Proof: Starting with the single vertex 0 one must add
one arc every time one vertex is added to the graph.

From a connected graph with m > n arcs a graph with tree structure is
produced by deleting m−n suitably chosen arcs. In general, this can be done
in more than one way. In Fig. 5.7a the arcs 8, 9 and 10 are deleted. These
arcs are drawn with thin lines. The remaining arcs drawn with bold lines
constitute what is called a spanning tree of the complete graph. In Fig. 5.7b
this spanning tree is shown separately. The tree arcs are labeled 1, . . . , n in an

Fig. 5.7. Directed graph (a) and a spanning tree (b) for the system of Fig. 5.6
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Table 5.1. Integer functions of the directed graph in Fig. 5.7a

a 1 2 3 4 5 6 7 8 9 10

i+(a) 1 1 2 7 3 4 1 0 3 5

i−(a) 0 7 5 6 7 1 5 6 5 3

arbitrary order (in the present case this desired labeling was arranged from
the outset). The deleted arcs are called chords. They are labeled n+1, . . . , m
in an arbitrary order. In order to simplify reading indices i and j refer to
vertices, indices a and b to arcs (both tree arcs and chords) and the index c
to chords alone.

In what follows the complete graph in Fig. 5.7a is considered, again. Each
arc a = 1, . . . , m is incident with two vertices. Let i+(a) and i−(a) be the
labels of the two vertices at the starting point and at the terminating point
of arc a, respectively. Thus, i+(a) and i−(a) are the names of two integer
functions with integer arguments. Both functions can be read from the di-
rected graph. For the directed graph of Fig. 5.7a the two functions are given
in Table 5.1. Columns 1 to 7 are associated with the spanning tree. The di-
rected graph is easily reconstructed from its functions i+(a) and i−(a) (a =
1, . . . , m). First, n+1 vertices labeled 0, . . . , n are marked on a sheet of paper.
Then, for every a = 1, . . . , m an arc is drawn pointing from vertex i+(a) to
vertex i−(a). The result of this procedure is the original directed graph.

In what follows matrices are defined for directed graphs. The first matrix
called incidence matrix is defined for the complete graph. It has rows 0, . . . , n
and columns 1, . . . , m. The rows correspond to vertices and the columns to
arcs. The matrix elements are denoted Sia (i = 0, . . . , n; a = 1, . . . , m). They
are defined as follows:

Sia =

⎧
⎨
⎩

+1 (arc a is incident with and pointing away from vertex i)
−1 (arc a is incident with and pointing toward vertex i)

0 (arc a is not incident with vertex i)
(i = 0, . . . , n; a = 1, . . . , m) .

(5.3)
This can be expressed in the form

Sia =

⎧
⎨
⎩

+1 (i = i+(a))
−1 (i = i−(a))

0 (else)
(i = 0, . . . , n; a = 1, . . . , m) . (5.4)

Still simpler is the formula employing the Kronecker delta

Sia = δi,i+(a) − δi,i−(a) (i = 0, . . . , n; a = 1, . . . , m) . (5.5)

The incidence matrix is partitioned into the row matrix S0 which corresponds
to vertex 0 and the (n × m)-matrix S composed of the elements Sia (i =
1, . . . , n; a = 1, . . . , m). Both these matrices are further partitioned into
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submatrices S0t and St associated with the spanning tree (columns a =
1, . . . , n) and submatrices S0c and Sc associated with chords (columns a =
n + 1, . . . , m):

S0 = [ S0t Sc ] ,

S = [ St Sc ] .
(5.6)

Example: For the directed graph of Fig. 5.7a the matrices are

S0 =
[
−1 0 0 0 0 0 0 +1 0 0

]
, (5.7)

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

+1 +1 0 0 0 −1 +1 0 0 0
0 0 −1 0 0 0 0 0 0 0
0 0 0 0 +1 0 0 0 +1 −1
0 0 0 0 0 +1 0 0 0 0
0 0 +1 0 0 0 −1 0 −1 +1
0 0 0 −1 0 0 0 −1 0 0
0 −1 0 +1 −1 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5.8)

The submatrices to the left of the partitioning lines are associated with the
spanning tree. From the definition (5.4) it follows that every column of S0

and S together contains exactly one element +1 and one element −1. Hence,
the sum of rows 0, . . . , n is a row of zeros. Expressed in matrix form this is
the equation

S0 + 1T S = 0 (5.9)

with the row matrix 1T = [1 1 . . . 1].
In every row j (j = 0, . . . , n) the number of nonzero elements equals

the number of arcs which are incident with vertex j. If a row j of S has
a single nonzero element Sjb then the vertex j is incident with arc b alone.
This means that the vertex j is a terminal vertex of the graph. Example: The
graph in Fig. 5.7a has the terminal vertices 2 and 4, and the spanning tree
in Fig. 5.7b has the terminal vertices 2, 3, 4 and 6 (these are the rows of St

with a single nonzero element). The matrix S alone suffices to reconstruct the
directed graph and, hence, the functions i+(a) and i−(a) (a = 1, . . . , m). The
matrix S0 is not required, because a single nonzero element in a column b of
S indicates that arc b is incident with vertex 0.

The second matrix called path matrix T is defined for tree-structured
directed graphs only. Also this matrix has elements +1, −1 and zero. Like
St it is an (n× n)-matrix. The elements are denoted Tai. The letters a and i
indicate that in this matrix rows correspond to arcs and columns to vertices.
The elements are defined as follows:

Tai =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

+1 (arc a is on the path between vertices 0 and i
and is directed toward vertex 0)

−1 (arc a is on the path between vertices 0 and i
and is directed toward vertex i)

0 (arc a is not on the path between vertices 0 and i)

(i, a = 1, . . . , n) . (5.10)
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There is no column corresponding to vertex 0. Example: The spanning tree
in Fig. 5.7b has the path matrix

T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

+1 +1 +1 +1 +1 +1 +1
0 0 −1 0 0 −1 −1
0 +1 0 0 0 0 0
0 0 0 0 0 −1 0
0 0 +1 0 0 0 0
0 0 0 +1 0 0 0
0 −1 0 0 −1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5.11)

From the definition (5.10) it follows that in every row of T all nonzero ele-
ments are identical. Every row has at least one nonzero element. If in row b
the element Tbj is the only nonzero element then vertex j is a terminal vertex
incident with arc b.

Since the spanning tree is uniquely determined by the matrix St also the
path matrix T is uniquely determined by St. Proposition 1: One matrix is
the inverse of the other:

T = S−1
t . (5.12)

Proposition 2: The matrices T and S0t are related through the equation

S0tT = −1T (5.13)

(the matrix 1T = [1 1 . . . 1] is known from (5.9)).
For proving (5.12) it suffices to show that T St is the unit matrix. This

product is an (n × n)-matrix with elements (T St)ab =
∑n

i=1 TaiSib (a, b =
1, . . . , n). According to (5.4) Sib is equal to +1 for i = i+(b), equal to −1 for
i = i−(b) and zero otherwise. Therefore, (T St)ab = Tai+(b) − Tai−(b). First,
the case b = a is considered. Arc a is either directed toward vertex 0 or away
from vertex 0. If the former is true then Ta,i+(a) = 1, Ta,i−(a) = 0. If the latter
is true then Ta,i+(a) = 0, Ta,i−(a) = −1. Hence, in either case (T St)aa = 1.
Next, the case b �= a is investigated. Consider the path between the vertices
0 and i+(b) and the path between the vertices 0 and i−(b). Arc a belongs
either to both paths or to none of them. In either case, Ta,i+(b) = Ta,i−(b)

and, hence, (T St)ab = 0. End of proof.
For proving (5.13) it must be shown that

∑n
a=1 S0aTai = −1 for i =

1, . . . , n. This is, indeed the case, since for every vertex i a single arc b(i)
satisfies the condition S0bTbi �= 0 (arc b is on the path between vertices 0 and
i and incident with vertex 0). Furthermore, S0bTbi = −1 independent of the
sense of direction of this arc b. End of proof.

The existence of the path matrix T for tree-structured graphs and the
two equations (5.12) and (5.13) are the mathematical reasons why multibody
systems with tree structure are simpler than systems without tree structure.

In contrast to the matrix St the matrix T is not easily determined directly
from the two functions i+(a) and i−(a) of the spanning tree. It is equally dif-
ficult to reconstruct i+(a) and i−(a) from T . An efficient method is described
in Sect. 5.3.3 on regular labeling.
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Problem 5.1. Give a direct proof for the statement StT = I in (5.12).

Problem 5.2. Draw a tree-structured directed graph as follows. Arc a is directed
from vertex a toward vertex 0 (a = 1, . . . , n). Determine the functions i+(a) and
i−(a) and the matrices S0t, St and T .

Problem 5.3. Delete in Fig. 5.7a arcs 1, . . . , 7 and give to arcs 8, 9, 10 the new
labels 1, 2, 3, respectively. The unconnected directed graph thus defined has func-
tions i+(a) and i−(a) (a = 1, 2, 3) and an (8 × 3) incidence matrix with elements
Sia (i = 0, . . . , 7 , a = 1, 2, 3) defined by (5.3). Determine this incidence matrix.

For connected directed graphs without tree structure two more matrices
are defined. As illustrative example the graph in Fig. 5.7a is used, again. As
before it is referred to as complete graph in contrast to its spanning tree
shown in bold lines and separately in Fig. 5.7b.

Each arc of the spanning tree defines a cutset of the complete graph. It
consists of the tree arc itself and of the minimal set of chords which must
be cut in order to split the complete graph in two subgraphs. The cutset
associated with arc a is also called cutset a. Example: The cutset 7 of the
graph in Fig. 5.7a consists of the tree arc 7 and of the chords 9 and 10.
A chord belonging to cutset a is said to be positively directed (in the cutset)
if it points toward the same subgraph as arc a does. Otherwise it is negatively
directed.

Each chord defines a circuit of the complete graph. It consists of the
chord itself and of the minimal set of tree arcs creating a circuit. The circuit
associated with chord c is also called circuit c. Example: The circuit 8 of the
graph in Fig. 5.7a consists of the chord 8 and of the tree arcs 1, 2 and 4. A tree
arc belonging to circuit c is said to be positively directed (in the circuit) if its
sense of direction around the circuit is the same as that of chord c. Otherwise
it is negatively directed.

After this introduction the (n×m) cutset matrix P and the [(m−n)×m]
circuit matrix U are defined. Their elements are denoted Pab and Uca, respec-
tively. Each row of P corresponds to a cutset and each row of U corresponds
to a circuit. The columns of both matrices correspond to the arcs a = 1, . . . , m
of the complete graph. The matrix elements are defined as follows:

Pab =

⎧
⎨
⎩

+1 (arc b belongs to cutset a and is positively directed)
−1 (arc b belongs to cutset a and is negatively directed)

0 (arc b does not belong to cutset a)
(a = 1, . . . , n; b = 1, . . . , m) ,

(5.14)

Uca =

⎧
⎨
⎩

+1 (arc a belongs to circuit c and is positively directed)
−1 (arc a belongs to circuit c and is negatively directed)

0 (arc a does not belong to circuit c)
(c = n + 1, . . . , m; a = 1, . . . , m) .

(5.15)
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Like the matrices S0 and S also P and U are partitioned into submatrices
P t, P c and U t, U c associated with the spanning tree and with chords, respec-
tively. From the definitions it follows that P t and Uc are both unit matrices
(of different dimensions). Thus

P = [ I P c] , U = [U t I ] . (5.16)

For the directed graph and its spanning tree shown in Figs. 5.7a and b the
matrices are

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

+1 0 0 0 0 0 0 −1 0 0
0 +1 0 0 0 0 0 +1 −1 +1
0 0 +1 0 0 0 0 0 0 0
0 0 0 +1 0 0 0 +1 0 0
0 0 0 0 +1 0 0 0 +1 −1
0 0 0 0 0 +1 0 0 0 0
0 0 0 0 0 0 +1 0 +1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (5.17)

U =

⎡
⎣

+1 −1 0 −1 0 0 0 +1 0 0
0 +1 0 0 −1 0 −1 0 +1 0
0 −1 0 0 +1 0 +1 0 0 +1

⎤
⎦ . (5.18)

Between the matrices P , U , S and T there exist numerous relationships.
First, the orthogonality relationship

S UT = 0 . (5.19)

Proof: A single element of the product is

(S UT )ic =
m∑

a=1

SiaUca =
n∑

a=1

SiaUca +
m∑

a=n+1

Sia Uca︸︷︷︸
δca

=
n∑

a=1

SiaUca + Sic

(5.20)
(i = 1, . . . , n; c = n + 1, . . . , m). Two cases must be distinguished. Case 1:
Vertex i is incident with chord c (Sic �= 0). Then, vertex i is incident with
exactly one tree arc, and the sum over a is equal to −Sic independent of the
senses of direction of chord c and of this single tree arc. Case 2: Vertex i is
not incident with chord c (Sic = 0). Then, vertex i is incident with two tree
arcs, and the sum over a is equal to zero independent of whether these two
tree arcs belong to circuit c or not. End of proof.

The next relationship is
T Sc = P c . (5.21)

Proof: A single element of the product is

(T Sc)ac =

n∑

i=1

TaiSic = Ta,i+(c) −Ta,i−(c) (a = 1, . . . , n; c = n+1, . . . , m) .

(5.22)
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Two cases must be distinguished. Case 1: Chord c belongs to cutset a. Then,
independent of the senses of direction of arc a and of chord c, Ta,i+(c) −
Ta,i−(c) = Pac �= 0. Case 2: Chord c does not belong to cutset a. Then,
Ta,i+(c) = Ta,i−(c) and, hence, Ta,i+(c) − Ta,i−(c) = 0 = Pac. End of proof.

Equations (5.12) and (5.21) together establish the relationship

T S = P . (5.23)

When this is postmultiplied by UT one gets, due to (5.19), the equation

P UT = 0 . (5.24)

This represents another orthogonality relationship. Using the partitioning of
(5.16), the equation takes the form UT

t + P c = 0 or

UT
t = −P c . (5.25)

The matrices S, P and U were known to mathematicians for a long time
(see Busacker/Saaty [12]). The path matrix T was first defined by Branin [8]
for electrical networks and independently by Roberson/Wittenburg [66] for
multibody systems.

5.3.2 Directed Graphs with Tree Structure

For graphs with tree structure a few more definitions are introduced. For
every arc a = 1, . . . , n a number σa is defined:

σa =

{
+1 (arc a is directed toward vertex 0)
−1 (arc a is directed away from vertex 0)

(a = 1, . . . , n) .

(5.26)
Examples: The graph in Fig. 5.7b has σ3 = +1 and σ4 = −1.

For every pair of arcs a, b a set κab of vertices is defined as follows. Cutting
two arcs a and b (a, b = 1, . . . , n) results either in three subgraphs (a �= b)
or in two subgraphs (a = b). In the case a �= b κab is the set of vertices of
that subgraph which contains no vertex which is incident with arc b. In the
case a = b κaa is the set of vertices of that subgraph which does not contain
vertex 0. Examples: In the graph of Fig. 5.7b κ25 is the set of vertices 0, 1,
2, 4, 5 and κ55 contains only vertex 3.

For arcs as well as for vertices weak ordering relationships are defined.
For two arcs a and b �= a the ordering relationship arc a < arc b means that
arc a is on the path from vertex 0 to vertex ii+(b) (and also on the path from
vertex 0 to vertex ii−(b)). Note that two arcs a and b located on different
branches of the tree as seen from vertex 0 satisfy neither the relationship
arc a < arc b nor the relationship arc b < arc a.

Similarly, the relationship vertex i < vertex j means that vertex i is
on the path from vertex 0 to vertex j, but that it is not vertex j. In some
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places this is written in the short form vi < vj . Two vertices i and j located
on different branches as seen from vertex 0 satisfy neither the relationship
vi < vj nor the relationship vj < vi.

Next, the inboard arc of a vertex and the inboard vertex of a vertex are
defined. The inboard arc of a vertex j �= 0 is the arc which is located on
the path between the vertices 0 and j and which, furthermore, is incident
with vertex j. The inboard vertex of a vertex j �= 0 is the vertex which is
connected with vertex j by the inboard arc of vertex j. Example: In the graph
of Fig. 5.7b arc 7 and vertex 1 are the inboard arc and the inboard vertex,
respectively, of vertex 5.

Problem 5.4. For the graph in Fig. 5.7b specify the sets κ52 and κ22.

Problem 5.5. For the graph in Fig. 5.7b specify the sets of all vertices i which
satisfy the following conditions (one at a time) for k = 3 and for k = 5
1. vi < vk , 2. vk < vi.

5.3.3 Regular Tree Graphs

In Fig. 5.7b the labeling of vertices and arcs and the sense of directions of
the arcs were intentionally unsystematic in order to show that (5.12) relat-
ing the matrix St and the path matrix T is universally valid for directed
tree-structured graphs. In what follows a regular labeling and regular arc
directions are defined.

A tree-structured graph is regularly directed if all arcs 1, . . . , n are point-
ing toward vertex 0. A labeling is called regular if the following two conditions
are satisfied

• along every branch starting from vertex 0 the sequence of vertex numbers
is monotonically increasing

• the inboard arc of vertex j (j = 1, . . . , n) is arc j.

In general, there is more than one way in which numbers can be assigned
satisfying these conditions. Any such labeling is called regular. A directed
tree graph is called regular if it has regular labeling and regular arc directions.
Then, the two functions i+(a) and i−(a) have the properties

i+(a) = a , i−(a) < a (a = 1, . . . , n) . (5.27)

Under these conditions the function i−(a) alone suffices for defining the in-
terconnection structure. Furthermore, the matrices St and T are both upper
triangular matrices. Both matrices have elements +1 along the diagonal, and
all nonzero elements of T are +1.

In what follows an algorithm is explained which starts out from given
functions i+(a) and i−(a) of an unsystematically labeled and unsystemati-
cally directed graph. The vertices and arcs are regularly relabeled and the arcs
are regularly redirected. Between the original and the new labeling a one-to-
one relationship is established. The method is explained by taking as example
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Table 5.2. Conversion from old labeling to new regular labeling

1 arc a; old labeling 1 2 3 4 5 6 7

2 vertex i+(a); old labeling 1 1 2 7 3 4 1

3 vertex i−(a); old labeling 0 7 5 6 7 1 5

4 vertex; old labeling 1 7 2 6 3 4 5

5 vertex and inboard arc j; new labeling 1 2 7 4 3 5 6

6 inboard vertex i−(j); new labeling 0 1 6 2 2 1 1

the graph in Fig. 5.7b. Its functions i+(a) and i−(a) are copied from Table 5.1
into rows 1, 2 and 3 of Table 5.2. Imagine that rows 4, 5 and 6 of the table
are still empty. Following Table 5.1 it has been explained that a terminal
vertex together with its inboard arc and inboard vertex is identified by the
fact that the vertex number occurs only once in rows 2 and 3. Furthermore,
if this vertex number occurs in row 2 (in row 3) then the inboard arc a is
pointing toward vertex 0 (away from vertex 0). The numbers occurring only
once are 2, 3, 4 and 6. Arbitrarily, the number 2 in column a = 3 is chosen.
Arc 3 is pointing toward vertex 0. To the vertex 2 the new number 7 is given
(n = 7 is the highest number available). In column 3 the numbers 2 and
7 are repeated in rows 4 and 5, respectively. In row 6 no entry is made at
this point. Following this procedure column 3 in rows 1, 2 and 3 is deleted.
This means that one terminal body and its inboard arc are removed from
the graph. For the resulting smaller graph the same procedure is repeated.
The vertex numbers occurring only once are 3, 4, 5 and 6. Arbitrarily, the
number 5 in column a = 7 is chosen. To the vertex with the old number 5 the
new number 6 is given (the highest number still available). The numbers 5
(old) and 6 (new) are filled into rows 4 and 5, respectively, of column 7. This
procedure is repeated until only the vertex number 1 is left. By the same pro-
cedure it is given the new number 1. As final step row 6 is filled in. Consider
column 3 again. The vertex labeled 2 (old) and 7 (new) is connected by its
inboard arc a = 3 (old) to its inboard vertex 5 (old). According to rows 4
and 5 this inboard vertex has the new number 6. This number 6 is the entry
in row 6. The same procedure is repeated in every column.

Fig. 5.8. Directed graph of Fig. 5.7b regularly relabeled and regularly redirected
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Rows 4 and 5 of the table relate old to new vertex numbers and vice
versa. Rows 1 and 5 relate old to new arc numbers and vice versa. Rows 5
and 6 together define the function i−(j) of the regularly labeled and regularly
directed graph. This graph is shown in Fig. 5.8. The matrix St and the path
matrix T of this graph are

St =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

+1 −1 0 0 −1 −1 0
0 +1 −1 −1 0 0 0
0 0 +1 0 0 0 0
0 0 0 +1 0 0 0
0 0 0 0 +1 0 0
0 0 0 0 0 +1 −1
0 0 0 0 0 0 +1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

+1 +1 +1 +1 +1 +1 +1
0 +1 +1 +1 0 0 0
0 0 +1 0 0 0 0
0 0 0 +1 0 0 0
0 0 0 0 +1 0 0
0 0 0 0 0 +1 +1
0 0 0 0 0 0 +1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(5.28)

The matrix T is constructed from rows 5 and 6 of Table 5.2 as follows. For
arbitrary j (j = 1, . . . , n) the arcs on the path from sj to s0 have the numbers
j, i−(j), i−(i−(j)), i−(i−(i−(j))), . . . , 1. In column j of T the elements in
these rows are +1. All other elements are zero. Example: j = 7 yields the
sequence 7, i−(7) = 6 and i−(6) = 1. Hence, T77 = T67 = T17 = +1. This is
in accordance with (5.28).

Problem 5.6. For a system of bodies i = 0, . . . , n interconnected by joints a =
1, . . . , m the following quantities are defined

• absolute angular velocity ωi of body i (i = 1, . . . , n) ; ω0 = 0
• angular velocity Ωa of body i−(a) relative to body i+(a) in joint a (a =

1, . . . , m)
• internal forces +Fa and −Fa produced by a spring in joint a (a = 1, . . . , m);

+Fa is applied to body i+(a) and −Fa to body i−(a)
• resultant force Fires on body i produced by the springs in all joints on body i

(i = 1, . . . , n).

Use the incidence matrix for expressing Ωa (a = 1, . . . , m) in terms of ωi (i =
1, . . . , n) and Fires (i = 1, . . . , n) in terms of Fa (a = 1, . . . , m).

Consider the special case of a system with tree structure with bodies i = 0, . . . , n
and joints a = 1, . . . , n. Define the column matrices ω = [ω1 . . . ωn]T , Ω =
[Ω1 . . . Ωn]T , F = [F1 . . . Fn]T and Fres = [F1res . . . Fnres ]

T and write the two
sets of n equations each in matrix form. Use the path matrix for resolving these
equations for ω and for F.

Denote by ci+(a),a the vector from the center of mass of body i+(a) to the
point of application of the spring force +Fa on this body and, likewise, by ci−(a),a

the vector from the center of mass of body i−(a) to the point of application of
the spring force −Fa on this body. Define, furthermore, the vectors Cia = Siacia

(i, a = 1, . . . , n) and the (n × n)-matrix C with these vectors as elements. It is
a weighted incidence matrix. Express with this matrix the column matrix Mres =
[M1res . . . Mnres ]

T of resultant spring torques on the bodies i = 1, . . . , n.
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5.4 Principle of Virtual Power for Multibody Systems

Dynamics equations of motion can be obtained either by analytical methods
or by the synthetical method starting from Newton’s and Euler’s equations for
isolated bodies. In this section the analytical method based on the principle
of virtual power is chosen. In Sect. 3.5 the principle of virtual power has been
formulated for a single rigid body (see (3.44)). For an arbitrary system of n
rigid bodies the principle has the form

n∑

i=1

[δṙi · (mir̈i − Fi) + δωi · (Ji · ω̇i + ωi × Ji · ωi − Mi)] = 0 . (5.29)

Each quantity carries the index i of the individual body. The carrier body
0 is excluded from the sum because its virtual velocity change is zero. The
index C referring to the body center of mass has been omitted. So, ri is
the position vector of the body i center of mass, Fi is the resultant force
acting on body i and applied at the body i center of mass, and Mi is the
resultant torque about the body i center of mass. Contributions to Fi and to
Mi are made by gravity, by force elements, by sliding friction and by other
forces which contribute to virtual power. Constraint forces caused by ideal
kinematical constraints in joints do not contribute because for any pair of
constraint forces, say F1 = +F and F2 = −F (actio = reactio) the term
δṙ1 · F1 + δṙ2 ·F2 is equal to zero.

In (5.29) the quantities δṙi, δωi, r̈i and ω̇i appear in linear form. For this
reason the following matrix formulation of the equation is possible:

δṙT · (m r̈ − F) + δωT · (J · ω̇ − M∗) = 0 (5.30)

(column matrices r = [r1 . . . rn]T , ω = [ω1 . . . ωn]T , F = [F1 . . .Fn]T , diago-
nal mass matrix m, diagonal matrix J of inertia tensors). The column matrix
M∗ is introduced for abbreviation. It has the elements

M∗
i = Mi − ωi × Ji · ωi (i = 1, . . . , n) . (5.31)

5.4.1 Systems Without Constraints to Inertial Space

If a system is free of constraints to inertial space such as an orbiting spacecraft
or a flying or freely falling system then Newton’s equation of motion for the
composite system center of mass C can be decoupled from the remaining
equations. This is done as follows. The radius vector of the composite system
center of mass C is called rC and the vector from C to the body i center of
mass is called Ri. Thus, by definition

ri = rC + Ri (i = 1, . . . , n) ,

n∑

i=1

Rimi = 0 . (5.32)
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The expression for ri is substituted into (5.29). Multiplying out and using
the second Eq. (5.32) one obtains the equation

δṙC ·
(

M r̈C −
n∑

i=1

Fi

)
+

n∑

i=1

[
δṘi · (miR̈i − Fi) + δωi · (Ji · ω̇i − M∗

i )
]

= 0

(5.33)
with M being the total system mass. The special property of a system without
constraints to inertial space is the independence of δṙC. From this follows the
equation

M r̈C =

n∑

i=1

Fi . (5.34)

This is Newton’s law for the composite system center of mass. The rest of
the equation is written in the matrix form

δṘ
T · (m R̈ − F) + δωT · (J · ω̇ − M∗) = 0 . (5.35)

The formal difference between this equation and (5.30) for arbitrary systems
is that R replaces r. Between R and r exists a simple relationship. By defi-
nition, the radius vector of the composite system center of mass is

rC =
1

M

n∑

j=1

mjrj . (5.36)

Substitution into the first Eq. (5.32) yields

Ri =

n∑

j=1

(
δij −

mj

M

)
rj (i = 1, . . . , n) . (5.37)

Let µ be the dimensionless constant matrix with elements

µij = δij −
mi

M
(i, j = 1, . . . , n) . (5.38)

Then, the matrix form of all n Eqs. (5.37) is

R = µT r . (5.39)

The matrix µ has remarkable properties. It satisfies the three equations

µT 1 = 0 , µ µ = µ , µm = m µT = µ mµT . (5.40)

The first equation states that the sum of all rows is a row of zeros which means
that µ is singular. Hence, (5.39) cannot be resolved for r. This is obvious for
physical reasons. The positions r of the body centers of mass in inertial space
cannot be determined if only the positions relative to the composite system
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center of mass are known. For a proof of the other two equations1 one must
show that (µ µ)ij = µij and that (µ m µT )ij = (µ m)ij = µijmj . For this
purpose one calculates

(µ µ)ij =

n∑

k=1

µikµkj =

n∑

k=1

µik

(
δkj −

mk

M

)
= µij −

1

M

n∑

k=1

µikmk ,

(µ m µT )ij =

n∑

k=1

µikmkµjk =

n∑

k=1

µikmk

(
δjk − mj

M

)

= µijmj −
mj

M

n∑

k=1

µikmk .

The sum
∑n

k=1 µikmk appearing in both equations equals zero. End of proof.
Note: Newton’s law (5.34) for the composite system center of mass is

valid not only for rigid-body systems but for arbitrary systems. So are the
definition (5.36) of the composite system center of mass and the relationship
(5.39).

5.4.2 Generalized Coordinates

Let q = [q1, . . . , qN ]T be an arbitrary set of generalized coordinates which
are suitable for specifying the location and the orientation of a multibody
system. The coordinates may be either joint variables or variables of position
relative to inertial space or a combination of the two. At this point it is
also not necessary to know whether q represents a minimal set of variables
equal in number to the degree of freedom of the entire system or whether N
exceeds the degree of freedom so that there exist constraint equations for the
variables.

The radius vectors ri of the body i centers of mass (i = 1, . . . , n) can be ex-
pressed as some more or less complicated nonlinear functions ri(q1, . . . , qN , t)
of the chosen variables and of time t. Time t appears explicitly because the
position of the carrier body 0 is prescribed as function of time. Differentiation
with respect to time produces equations of the general matrix forms

ṙ = a1q̇ + a10 , δṙ = a1δq̇ , r̈ = a1q̈ + b1 . (5.41)

Here, a1 is an (n × N)-matrix of as yet unknown vectors which depend on
q1, . . . , qN . The elements of the column matrix a10 are the partial derivatives
∂ri(q1, . . . , qN , t)/∂t. They depend on q1, . . . , qN and on t. The column matrix
b1 depends on q1, . . . , qN , on t and, in addition, on q̇1, . . . , q̇N . If the carrier

1 A matrix having the property µ µ = µ is said to be idempotent (Gantmacher

[19]). Every idempotent matrix can be expressed in the form A ∆ A−1 where ∆ is
a diagonal matrix with elements 0 and 1 along the diagonal. From this it follows
that the unit matrix is the only nonsingular idempotent matrix.
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body is inertial space then time t does not appear explicitly, whence follows,
in particular, that a10 = 0. The formula given for δṙ is explained by the fact,
that time t as well as q1, . . . , qN are held fixed.

For the vectors from the composite system center of mass to the body
centers of mass the kinematical relationship (5.39), R = µT r, has been es-
tablished. From this it follows that

Ṙ = µT (a1q̇ + a10) , δṘ = µTa1δq̇ , R̈ = µT (a1q̈ + b1) . (5.42)

In analogy to (5.41) there exist relationships of the forms

ω = a2q̇ + a20 , δω = a2δq̇ , ω̇ = a2q̈ + b2 (5.43)

with other matrices a2, a20 and b2.
The expressions (5.43) and (5.41) are substituted into (5.30) of the prin-

ciple of virtual power. The terms δṙT = δq̇T aT
1 and δωT = δq̇T aT

2 allow

factoring out δq̇T . Ordering of terms results in the equation

δq̇T
{(

aT
1 · m a1 + aT

2 · J · a2

)
q̈−

[
aT

1 · (F− mb1) + aT
2 · (M∗ − J · b2)

]}
= 0

(5.44)
or abbreviated

δq̇T (Aq̈ − B) = 0 (5.45)

with the matrices

A = aT
1 · m a1 + aT

2 · J · a2 ,

B = aT
1 · (F − mb1) + aT

2 · (M∗ − J · b2) .

}
(5.46)

For systems without constraints to inertial space such as orbiting space-
craft and freely falling systems the principle of virtual power has the form
(5.35). Substitution of the expressions (5.42) and (5.43) into this equation
results in the equation

δq̇T (Âq̈ − B̂) = 0 (5.47)

with matrices (replace in (5.46) a1 by µTa1 and b1 by µTb1)

Â = aT
1 µ · m µTa1 + aT

2 · J · a2 ,

B̂ = aT
1 µ · (F − m µTb1) + aT

2 · (M∗ − J · b2) .

}
(5.48)

In what follows it is assumed that the variables q1, . . . , qN represent a min-
imal set of independent variables equal in number to the degree of freedom
of the system under consideration. Then, the variations δq̇ in (5.45) and
(5.47) are independent. Hence, two minimal sets of differential equations are
obtained in the forms

A q̈ = B , (5.49)

Âq̈ = B̂ . (5.50)
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The second set of equations is valid only for systems without constraints to
inertial space, while the first set is valid for arbitrary systems. The column
matrices B and B̂ depend explicitly on q1, . . . , qN , on t and, in addition, on
q̇1, . . . , q̇N . The matrices A and Â depend explicitly on q1, . . . , qN only. They
are symmetric. They are also positive definite. For A this is shown in the case
when the carrier body is inertial space (a10 = 0, a20 = 0). The total kinetic
energy T of the system is

2T =

n∑

i=1

(
miṙ

2
i + ωi · Ji · ωi

)
= ṙT · m ṙ + ωT · J · ω

= q̇T
(
aT

1 · m a1 + aT
2 · J · a2

)
q̇ = q̇T A q̇ . (5.51)

Thus, the matrix A is the coefficient matrix of the total kinetic energy. Since
the kinetic energy is positive definite also the matrix A is.

As a conclusion of this section it can be stated that a minimal set of
equations of motion for a multibody system is explicitly available as soon as
the kinematical matrices a1, a10, b1 and a2, a20, b2 in (5.41) and (5.43)
are known in terms of a minimal set of independent variables. Compact ex-
pressions can be formulated most easily for multibody systems with tree
structure. The next section is devoted to such systems. Based on formula-
tions for tree-structured systems also systems without tree structure can be
handled. This is shown in Sect. 5.6.

5.5 Systems with Tree Structure

Systems with tree structure are simple for two reasons which have already
been explained. The first reason is the kinematical independence of joint
variables. For this reason equations of motion are formulated for joint vari-
ables. The second reason is the existence of the path matrix as inverse of
the incidence matrix. The kinematics of individual joints in terms of joint
variables is the subject of Sect. 5.5.1. In Sect. 5.5.2 the kinematics of entire
systems is formulated with the help of path matrix and incidence matrix.
Sects. 5.5.3–5.5.6 are devoted to various aspects of the resulting equations of
motion.

5.5.1 Kinematics of Individual Joints

This section focuses on a single joint of a multibody system. In the directed
system graph arc a is pointing from vertex i+(a) toward vertex i−(a). In
Fig. 5.9 a single joint a is shown schematically without indication of its na-
ture. The joint connects the bodies i+(a) and i−(a). The arrow indicates the
sense of direction of arc a in the directed graph. Body-fixed reference bases
ei+(a) and ei−(a) are attached to the two bodies at the body centers of mass.
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Fig. 5.9. Vectors on two bodies coupled by joint a of unspecified nature

Exception: The center of mass of the carrier body 0 is of no interest. The
base e0 on this body is attached at some conveniently chosen point. Joint a
has a degree of freedom in the range 1 ≤ fa ≤ 6 (see Figs. 5.3a–f). An equal
number of joint variables qaℓ (ℓ = 1, . . . , fa) is chosen. For the majority of
joints the variables are rotation angles about certain axes or cartesian coor-
dinates. Other types of variables are not ruled out, however. The following
sign convention is adopted. The joint variables describe the position of body
i−(a) relative to body i+(a).

Altogether six kinematical quantities are formulated for joint a as func-
tions of joint variables. Three of them are the angular orientation, the angular
velocity and the angular acceleration of body i−(a) relative to body i+(a).
First, the other three quantities are explained. These are the position, the
velocity and the acceleration relative to body i+(a) of a single point fixed
on body i−(a). How to choose this point will be explained later. The chosen
point is referred to as articulation point a. Its constant position on body i−(a)

is specified by the vector ci−(a),a in base ei−(a) (see Fig. 5.9). The constant
coordinates in this base are system parameters. The position vector of the
articulation point in base ei−(a) is denoted ci+(a),a. It is a known function of
some or of all joint variables of joint a. More precisely, the coordinates of the
vector in base ei+(a) are known functions. The articulation point is chosen
such that these functions are as simple as possible. Examples: If joint a is
a spherical joint then the center of the sphere is chosen. If joint a is a Hooke’s
joint then the intersection point of the two joint axes on the central cross is
chosen. If joint a is a revolute joint then an arbitrary point on the joint axis
is chosen. In all three cases the articulation point is fixed on both bodies
coupled by joint a, i.e. ci+(a),a = const on body i+(a).

The next two kinematical quantities are the velocity and the acceleration
of the articulation point relative to body i+(a). They are denoted va and aa,
respectively. They are the first and the second time derivatives of ci+(a),a in

base ei+(a). They have the forms

va =

fa∑

ℓ=1

kaℓq̇aℓ , aa =

fa∑

ℓ=1

kaℓq̈aℓ + sa . (5.52)
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A vector sa �= 0 exists only if at least one of the vectors kaℓ is not fixed on
body i+(a).
Examples:

1. Spherical, Hooke’s and revolute joints with articulation points chosen as
described: va = 0, aa = 0.

2. Cylindrical joint with articulation point on the joint axis, with unit vector
n along the joint axis, with cartesian coordinate qa1 along n and with
rotation angle qa2 about n: ka1 = n, ka2 = 0, sa = 0.

Next, the angular orientation, the angular velocity and the angular accel-
eration of body i−(a) relative to body i+(a) are expressed in terms of joint
variables. The quantity determining the angular orientation is the direction
cosine matrix Aa relating the bases ei+(a) and ei−(a). The definition is

ei−(a) = Aae
i+(a) . (5.53)

The matrix is a function of the angular variables among the joint variables
of joint a. Example: In a cylindrical joint with variables qa1 and qa2 as before
Aa is a function of qa2 only.

The angular velocity and the angular acceleration of body i−(a) relative
to body i+(a) are denoted Ωa and εa, respectively. They have the forms

Ωa =

fa∑

ℓ=1

paℓq̇aℓ , εa =

fa∑

ℓ=1

paℓq̈aℓ + wa . (5.54)

Examples:

1. Prismatic joint: Ωa = 0, εa = 0.
2. Cylindrical joint with unit vector n and with variables qa1 and qa2 as

before: pa1 = 0, pa2 = n, wa = 0.
3. Hooke’s joint with axial unit vectors pa1 fixed on body i+(a) and pa2 fixed

on body i−(a): Ωa = pa1q̇a1+pa2q̇a2, εa = pa1q̈a1+pa2q̈a2+Ωa×pa2q̇a2,
whence follows wa = pa1 × pa2q̇a1q̇a2.

Alternative formulation for spherical joints: It is known that three angular
joint variables (Euler angles or Bryan angles) can be inconvenient. More
convenient is the following choice of variables. The matrix Aa is expressed in
the form (2.35) as function of Euler–Rodrigues parameters. Equations (5.54)
are replaced by the equations

Ωa =

3∑

ℓ=1

paℓΩaℓ , εa =

3∑

ℓ=1

paℓΩ̇aℓ . (5.55)

The scalars Ωaℓ (ℓ = 1, 2, 3) are the coordinates of Ωa in base ei−(a), and the
vectors paℓ (ℓ = 1, 2, 3) are the base vectors themselves. The Euler–Rodrigues
parameters and the coordinates Ωaℓ are related through the kinematical dif-
ferential equations (2.119).



112 5 General Multibody Systems

Fig. 5.10. Two massless rods creating a 1-d.o.f. joint

The chosen formulations for the six kinematical quantities of a joint are
applicable not only to standard joints but to arbitrarily sophisticated joints.
This is demonstrated by the joint shown in Fig. 5.10. The two bodies labeled
i+(a) and i−(a) are coupled by two rods with revolute joints at both ends.
The lengths ℓ1, ℓ2, ℓ3, ℓ4 form a planar fourbar. It is assumed that the rods
are massless. This has the effect that the two rods together create a 1-d.o.f.
joint connecting the bodies i+(a) and i−(a). The crank angle φ is chosen as
joint variable qa1 and the point P as articulation point. The figure explains
the angle ψ, the unit vector e along the crank and the unit vector p normal
to the plane. The angle ψ is a function of φ. It is left to the reader to show
that it is determined by the equation2 A cos ψ +B sin ψ = C with coefficients
A = −2ℓ3(ℓ1 − ℓ2 cosφ), B = 2ℓ2ℓ3 sinφ, C = 2ℓ1ℓ2 cosφ− (ℓ2

1 + ℓ2
2 + ℓ2

3− ℓ2
4).

The six kinematical quantities are

ci+(a),a = ℓ2e + const , va = φ̇p × ℓ2e , aa = φ̈p × ℓ2e− φ̇2ℓ2e ,

Aa =

⎡
⎣

cosψ sin ψ 0
− sinψ cosψ 0

0 0 1

⎤
⎦ , Ωa = p

dψ

dφ
φ̇ , εa = p

(
dψ

dφ
φ̈ +

d2ψ

dφ2
φ̇2

)
.

The vectors aa and εa have the forms (5.52) and (5.54), respectively, with
vectors ka1 = ℓ2p×e, sa = −φ̇2ℓ2e, pa1 = p dψ/dφ and wa = pφ̇2 d2ψ/dφ2.

The coordinates of these vectors in base ei+(a) are functions of φ.
In preparation for the following section (5.52) and (5.54) are written in

the matrix forms

va = kT
a q̇

a
, aa = kT

a q̈
a

+ sa , (5.56)

Ωa = pT
a
q̇

a
, εa = pT

a
q̈

a
+ wa (5.57)

with row matrices kT
a = [ka1 . . . kafa

] and pT
a

= [pa1 . . . pafa
]. For

a multibody system with joints a = 1, . . . , n column matrices v, a, s, Ω,

2 Cartesian coordinates xB and yB of the point B are functions of ϕ and ψ. These
expressions are substituted into the constraint equation (ℓ1 − xB)2 + y2

B = ℓ24.
Each angle φ is associated with two (not necessarily real) angles ψ.



5.5 Systems with Tree Structure 113

ε and w of n vectors each are defined, for example v = [v1 . . . vn]T and
w = [w1 . . . wn]T . In terms of these matrices the four sets of n equations
each are combined in the matrix forms

v = kT q̇ , a = kT q̈ + s , (5.58)

Ω = pT q̇ , ε = pT q̈ + w . (5.59)

The matrices kT and pT have block-diagonal form with the row matrices

kT
a and pT

a
along the diagonal, and q̈ is the column matrix composed of the

blocks q̈
a

(a = 1, . . . , n).

5.5.2 Kinematics of Entire Systems

As illustrative example for the general formalism to be developed the tree-
structured system shown in Fig. 5.11 is used. It is the system from Fig. 5.6
without force elements. Its directed graph is shown in Fig. 5.7b. For the asso-
ciated incidence and path matrices see (5.7), (5.8) and (5.11). Each joint is of
the general form shown in Fig. 5.9. Dots stand for the articulation points of
joints. For joint a = 2 the vectors c72 = ci+(a),a and c12 = ci−(a),a are shown
as examples. The carrier body 0 happens to be connected to a single body.
The formalism to be developed is not restricted to this special case. Body 0
can be connected to several tree-structured subsystems. As in Fig. 5.7b the
labeling of the bodies 1, . . . , n and of the joints 1, . . . , n as well as the direc-
tions of arcs in the graph are arbitrary. The following convention is adopted,
however. All arcs incident with vertex 0 are directed toward vertex 0. This
has the following consequences. The articulation points of all joints located
on body 0 are fixed on body 0. The associated vectors c0a are fixed in base
e0 the origin of which has, in inertial space, the prescribed position vector
r0(t). The position vector r0(t) + c0a of the articulation point in inertial
space is a prescribed function of time, too, and so are the absolute velocity

Fig. 5.11. Multibody system with tree structure and with joints of unspecified
nature. Dots in joints and vectors are explained in Fig. 5.9
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ṙ0(t) + ω0(t) × c0a and the absolute acceleration

r̈0(t) + ω̇0(t) × c0a + ω0(t) × [ω0(t) × c0a] . (5.60)

Without loss of generality let it be assumed that the origin of the base e0

with the prescribed position vector r0(t) is one of the articulation points
fixed on body 0. Then, the associated vector c0a is zero. The advantage of
this assumption is that systems with a single joint on body 0 do not have
nonzero vectors c0a. This is the situation shown in Fig. 5.11 with the vector
c01 = 0 in joint 1.

The goal of this section is to express the matrices a1, a10, b1, a2, a20

and b2 in the relationships ṙ = a1q̇ + a10, r̈ = a1q̈ + b1 and ω = a2q̇ +
a20, ω̇ = a2q̈ + b2 (see (5.41) and (5.43)) in terms of joint variables and of
time derivatives of joint variables. First, angular velocities are considered.
Figure 5.11 shows that the absolute angular velocity ωi of an arbitrary body
i is the sum of ω0 and of all vectors Ωa (some positive and some negative)
along the path from body 0 to body i. The formula for ωi is

ωi = ω0 −
n∑

a=1

TaiΩa (i = 1, . . . , n) . (5.61)

The elements Tai of the path matrix sort out the direct path from body 0 to
body i and they provide the correct signs as well. Differentiation with respect
to time yields

ω̇i = ω̇0 −
n∑

a=1

Tai(εa + ωi−(a) × Ωa︸ ︷︷ ︸
fa

) (i = 1, . . . , n) . (5.62)

The matrix forms of these equations are3

ω = ω01 − T TΩ , ω̇ = ω̇01 − TT ε − TT f . (5.63)

Into these equations the expressions (5.59) are substituted. This results in
the equations

ω = ω01 − TT pT q̇ , ω̇ = ω̇01 − TT pT q̈ − TT (w + f) (5.64)

or finally

ω = −(pT )T q̇ + ω01 , ω̇ = −(pT )T q̈ + ω̇01 − TT (w + f) . (5.65)

3 The definition fa = ωi−(a) × Ωa is equivalent to fa = ωi+(a) ×Ωa.
The expression for ω can be obtained without making use of Fig. 5.11. Figure 5.9
yields Ωa = ωi−(a) − ωi+(a) or, with the definition of the incidence matrix,
Ωa = −Pn

i=0 Siaωi (a = 1, . . . , n). This is written in the matrix form Ω =
−ω0S

T
0 −ST ω. Multiplication from the left by T T and application of (5.12) and

(5.13) result in (5.63).
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These equations have the desired forms ω = a2q̇ + a20 and ω̇ = a2q̈ + b2.
The matrices are

a2 = −(pT )T , a20 = ω01 , b2 = ω̇01 − TT (w + f) . (5.66)

Next, the matrices a1, a10 and b1 are formulated. Figure 5.11 shows that
the position vector ri of body i is

ri = r0 −
n∑

a=1

Tai(ci+(a),a − ci−(a),a) (i = 1, . . . , n) . (5.67)

Of the two vectors ci+(a),a and ci−(a),a the latter one is fixed on body i−(a).
This explains the expressions for the first and for the second time derivative
of the difference vector:

ċi+(a),a − ċi−(a),a = −ci+(a),a × ωi+(a) +va

+ci−(a),a × ωi−(a) ,

c̈i+(a),a − c̈i−(a),a = −ci+(a),a × ω̇i+(a) +aa + ha

+ci−(a),a × ω̇i−(a)

⎫
⎪⎪⎬
⎪⎪⎭

(a = 1, . . . , n) . (5.68)

The vectors va and aa are known from (5.52), and ha is

ha = ωi+(a) × (ωi+(a) × ci+(a),a) − ωi−(a) × (ωi−(a) × ci−(a),a)

+ 2ωi+(a) × va (a = 1, . . . , n) . (5.69)

From the definition (5.4) of the incidence matrix it follows that the vector
differences in (5.67) and (5.68) can be written in the forms

ci+(a),a − ci−(a),a =

n∑

i=0

Siacia , (5.70)

ċi+(a),a − ċi−(a),a = −
n∑

i=0

Siacia × ωi + va , (5.71)

c̈i+(a),a − c̈i−(a),a = −
n∑

i=0

Siacia × ω̇i + aa + ha (5.72)

(a = 1, . . . , n). These formulations suggest to define the vectors

Cia = Siacia (i = 0, . . . , n; a = 1, . . . , n) (5.73)

and to construct a matrix with these vectors as elements4. This matrix repre-
sents a weighted incidence matrix. Like the incidence matrix it is partitioned

4 To be precise one must define that cia = 0 if Sia = 0 (i = 0, . . . , n; a = 1, . . . , n).
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into the row matrix C0 with elements C0a (a = 1, . . . , n) and the (n × n)-
matrix C with elements Cia (i, a = 1, . . . , n). With these matrices the n
Eqs. (5.67) are written in the matrix form r = r01 − TT CT

0 − TT CT 1 or5

r = r01 − (C0T )T − (CT )T 1 . (5.74)

For the first and for the second time derivative (5.71) and (5.72) yield the
expressions

ṙ = ṙ01 − ω0 × (C0T )T + (CT )T × ω − TTv , (5.75)

r̈ = r̈01 − ω̇0 × (C0T )T + (CT )T × ω̇ − TT (a + h) (5.76)

with column matrices v = [v1 . . .vn]T , a = [a1 . . .an]T and h = [h1 . . .hn]T .
For v and a the expressions (5.58) are substituted and for ω and ω̇ the
expressions ω = a2q̇ + ω01 and ω̇ = a2q̈ + b2 (see (5.65)). This yields

ṙ = [(CT )T × a2 − (kT )T ]q̇

+ ṙ01 − ω0 × [(C0T )T + (CT )T 1] , (5.77)

r̈ = [(CT )T × a2 − (kT )T ]q̈

+ r̈01 − ω̇0 × (C0T )T + (CT )T × b2 − TT (s + h) . (5.78)

These equations have the desired forms ṙ = a1q̇ + a10 and r̈ = a1q̈ +b1. The
matrices are

a1 = (CT )T × a2 − (k T )T , (5.79)

a10 = ṙ01 − ω0 × [(C0T )T + (CT )T 1] , (5.80)

b1 = r̈01 − ω̇0 × (C0T )T + (CT )T × b2 − TT (s + h) . (5.81)

With these matrices and with the matrices in (5.66),

a2 = −(pT )T , a20 = ω01 , b2 = ω̇01 − T T (w + f) , (5.82)

the final goal of the analysis has been achieved.

5.5.3 Equations of Motion

The matrices (5.79)–(5.82) determine the matrices (cf. (5.46))

A = aT
1 · m a1 + aT

2 · J · a2 ,

B = aT
1 · (F − mb1) + aT

2 · (M∗ − J · b2)

}
(5.83)

5 The expression for r can be obtained without making use of Fig. 5.11. Fig-
ure 5.9 yields ri+(a)−ri−(a) = ci−(a),a−ci+(a),a (a = 1, . . . , n) or

Pn

i=0 Siari =

−Pn

i=0 Cia (a = 1, . . . , n). This is written in the matrix form r0S
T
0 + ST r =

−CT
0 −CT 1. Multiplication from the left by T T yields (5.74).
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in the equations of motion (5.49) of tree-structured systems:

A q̈ = B . (5.84)

The prescribed motion of the carrier body is represented by the vectors ṙ0(t),
r̈0(t), ω0(t) and ω̇0(t) which enter the right-hand side B of the equations.
These terms are zero if the carrier body is inertial space. The term r̈01 −
ω̇0 × (C0T )T in (5.81) accounts for accelerations of articulation points fixed
on the carrier body. Following (5.60) it has been said that C0 equals zero if
the carrier body 0 is connected to the system via a single joint and if r0 is
defined as position vector of the articulation point chosen for this joint.

The equations of motion are particularly simple for systems which have
revolute joints only and which are mounted on a stationary body 0. Many
robots are systems of this kind. Each joint a has a single axial unit vector pa

and a single rotation angle qa around this vector. The matrix p is the diagonal
matrix of the vectors p1, . . . ,pn. As articulation points points on the joint
axes are chosen. This has the consequence that not only the vectors ci−(a),a

but also the vectors ci+(a),a and, hence, all vectors in the matrix C are body-
fixed vectors. Furthermore, k = 0, w = 0 and s = 0. The essential kinematics
equations have the special forms

ṙ = a1q̇ , r̈ = a1q̈ + b1 ,
ω = a2q̇ , ω̇ = a2q̈ + b2

}
(5.85)

with matrices

a1 = (CT )T × a2 , b1 = (CT )T × b2 − TTh ,

a2 = −(pT )T , b2 = −TT f .

}
(5.86)

In Sect. 5.7 systems are investigated in which all joints are spherical joints,
and in Sect. 5.8 the special case of planar motions of systems with revolute
joints is considered.

For systems without kinematical constraints to inertial space equations
of motion have the special form (5.50):

Âq̈ = B̂ . (5.87)

According to (5.48) the matrices Â and B̂ are obtained from (5.83) if a1 is
replaced by µT a1 and b1 by µTb1. These matrices are

µT a1 = (CT µ)T × a2 − (kT µ)T , (5.88)

µTb1 = (CT µ)T × b2 − (T µ)T (s + h) , b2 = −TT (w + f) . (5.89)

The terms representing the motion of body 0 are eliminated because of the
first Eq. (5.40).
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Fig. 5.12. System with a massless central body

Problem 5.7. Formulate the matrices A and B in (5.83) for a system in which
the joints allow only translational motions of bodies relative to one another and in
which, furthermore, body 0 does not rotate relative to inertial space.

Problem 5.8. The system shown in Fig. 5.12 with a massless central body can be
modeled either as a system of two bodies coupled by a two-degree-of-freedom joint
or as system of three bodies coupled by two revolute joints. Does the masslessness
of the central body have the effect that the matrix A in the equations of motion
A q̈ = B is singular?

5.5.4 Augmented Bodies

In the matrices A and B of the equations of motion (5.84) a dominant
role is played by the matrix product CT . It originated from (5.74): r =
r01 − (C0T )T − (CT )T 1. As a consequence of (5.39), R = µT r , the ma-
trix product CT µ is equally dominant in the equations of motion (5.87) for
systems without constraints to inertial space. In what follows geometrical
interpretations are given for the elements of these two matrix products.

For simplicity, it is assumed that body 0 is connected to the system by
a single joint, and that the vector r0 fixed on body 0 is the articulation point
of this joint. This has the consequence that C0 = 0. Hence,

r = r01 − (CT )T 1 (5.90)

and, because of (5.40), µT 1 = 0,

R = −(CT µ)T 1 . (5.91)

First, the matrix CT is investigated. Its elements are abbreviated dij . Equa-
tion (5.90) then yields for a single vector rj the formula

rj = r0 −
n∑

i=1

dij (j = 1, . . . , n) . (5.92)

With (5.73) the vector dij is

dij = (CT )ij =
n∑

a=1

SiaciaTaj (i, j = 1, . . . , n) . (5.93)
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Both indices of dij are associated with bodies since the first index of C as
well as the second index of T is associated with a body. Since all vectors cia

are located on body i also dij is located on body i. For (5.92) all vectors
dij (i = 1, . . . , n) are required for a fixed value of j. The products SiaTaj

are different from zero only for those arcs a which are incident with vertex i
(Sia �= 0) and which are, furthermore, on the path from vertex 0 to vertex j
(Taj �= 0). There are two such arcs if vertex i < vertex j, a single arc if i = j
and no arc at all otherwise. Hence,

dij = 0 if neither i = j nor vertex i < vertex j (i, j = 1, . . . , n) .
(5.94)

The case vertex i < vertex j: Let the two arcs be arc b and arc c with arc b
being the inboard arc of vertex i. Independent of the sense of direction of these
arcs SibTbj = +1 and SicTcj = −1. From this it follows that dij = cib − cic.
The case i = j: The only arc is the inboard arc b of vertex j. Hence, djj = cjb.
For illustration the system shown in Fig. 5.11 is used. Let body j be body 7.
The only nonzero vectors di7 are d17 = c11 − c12 and d77 = c72. Equation
(5.92) reads r7 = r0 − d17 − d77. These vectors are shown in Fig. 5.13. This
concludes the geometrical interpretation of the elements of the matrix CT .

Next, the elements of the matrix CT µ are investigated. In order to do
so the important concept of augmented bodies is introduced. For each of
the bodies i = 1, . . . , n an augmented body is constructed is follows. At the
tip of each vector cia on body i a point mass is attached which is equal
to the sum of the masses of all bodies except body 0 which are connected
with body i either directly or indirectly via the respective joint a. To give an
example, in the system of Fig. 5.13 the augmented body 7 is obtained from
the original body 7 by attaching three point masses, namely the point mass
m1 + m4 + m5 + m2 at the tip of the vector c72, the point mass m3 at the
tip of c75 and the point mass m6 at the tip of c74. The augmented body 2 is
obtained by attaching to body 2 the point mass m1+m3+m4+m5+m6+m7

at the tip of c23. Each augmented body has the mass M of the total system.

Fig. 5.13. Multibody system with chain of vectors r7 = r0 − d17 − d77
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Augmented bodies are of particular interest in the case of multibody sys-
tems all joints of which are either spherical or revolute or Hooke’s joints.
Then, the articulation point of each joint a is chosen such that it is fixed not
only on body i−(a) but also on body i+(a). This has the consequence that
each augmented body is a rigid body which does not change when the system
is moving. In what follows arbitrary joints are admitted. In this general case
the augmented body i has an instantaneous mass distribution. It has – in-
stantaneously – a center of mass which, in general, does not coincide with
the center of mass Ci of the original body i. The center of mass of the aug-
mented body i is called the barycenter Bi of the body. In Fig. 5.14 a body i
is depicted with its center of mass Ci and its barycenter Bi. Also shown are
body 0 and another body j. Both bodies are connected with body i either
directly or indirectly. Broken lines indicate the paths between bodies. On
the augmented body i vectors bij (j = 0, . . . , n) are defined. The vector bii

points from the barycenter Bi to the center of mass Ci. The vector bij with
j �= i points from the barycenter Bi to the tip of the vector cia which leads
either directly or indirectly to body j. In Fig. 5.14 vectors bii, bi0 and bij

are shown. The vectors bij with j �= i play for the augmented bodies the role
that is played by the vectors cia for the original bodies. Notice, however, the
following differences. The second index of cia corresponds to a joint whereas
the second index of bij corresponds to a body. Vectors bij exist for all index
combinations i = 1, . . . , n; j = 0, . . . , n. The number of different vectors bij

is smaller than the number of different combinations of indices i, j. In the
system of Fig. 5.13, for instance, the identities b17 = b13 = b16 hold. From
the definition of the vectors it follows that

n∑

k=1

mkbik = 0 (i = 1, . . . , n) . (5.95)

Proposition: The vectors dij and bij are related through the equation

dij = bi0 − bij (i, j = 1, . . . , n) . (5.96)

For a proof four cases have to be distinguished: (i) i = j, (ii) vertex i <
vertex j, (iii) vertex j < vertex i and (iv) otherwise. Consider case (iv).

Fig. 5.14. Body i with center of mass Ci, barycenter Bi and vectors bii, bi0, bij
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According to (5.94) dij = 0. The vector bij is, indeed, identical with bi0.
The other cases are equally elementary.

Equation (5.96) together with (5.95) is the key to the geometrical inter-
pretation of the matrix CT µ. The elements of the matrix are

(CT µ)ij =

n∑

k=1

(CT )ik µkj =

n∑

k=1

dik µkj

=

n∑

k=1

(bi0 − bik)
(
δkj −

mk

M

)
= −bij +

mk

M

n∑

k=1

bikmk

= −bij (i, j = 1, . . . , n) . (5.97)

Through this equation the augmented body vectors bij (i, j = 1, . . . , n) are
shown to be dominant system parameters. The equation provides a simple
algorithm for calculating the coordinates of the vectors. The combination of
(5.97) with (5.91) yields for a single vector Rj the remarkable relationship

Rj =

n∑

i=1

bij (j = 1, . . . , n) . (5.98)

Every vector bij in this sum is located on another body i. As has already
been pointed out this equation is valid even in the case when the augmented
bodies are not rigid bodies, i.e. for systems with arbitrary joints. Rigidity is
important only when the vectors dij and bij are differentiated with respect

to time. Only then ḋij = ωi × dij and ḃij = ωi × bij . This will be the case
in Sect. 5.7 which is devoted to systems with spherical joints.

Problem 5.9. Identify in Fig. 5.13 the vectors dij , bij and bi0 in (5.96) for the
following sets of indices (i, j): (1, 2), (1, 3), (2, 1), (2, 2) and (2, 6).

5.5.5 Force Elements

Subject of this section are force elements in a system governed by (5.84)
or by (5.87). Force elements are either passive (linear or nonlinear springs
and dampers) or active (actuators). They exert forces or torques of equal
magnitude and of opposite direction on the two bodies connected by the
force element. These forces and torques appear in the matrix B and in this
matrix in the term

aT
1 · F + aT

2 ·M . (5.99)

By definition (see (5.29)) Fi is the resultant force on body i with its line
of action passing through the body center of mass, and Mi is the resultant
torque about the center of mass. The mathematical formulation is simplest
for force elements which are torsional springs or dampers resisting the relative
rotation in joint axes. This case is treated first. It is assumed, again, that each
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joint a = 1, . . . , n of the system is a revolute joint with an angular variable
qa and with unit vector pa along the joint axis. In each joint a torsional
spring with spring constant ka is located which is unstressed in the position
qa = qa0. The first term in (5.99) is zero. With (5.86) the second term is
−pT ·M where p is the diagonal matrix of the altogether n unit vectors. The
torque exerted by the spring in joint a is −pa ka(qa−qa0) on body i−(a) and
+pa ka(qa − qa0) on body i+(a). The incidence matrix allows the statement:
The torque exerted on an arbitrary body i is Siapa ka(qa−qa0). The resultant
of all torques exerted on body i is Mi =

∑n
a=1 Siapa ka(qa−qa0). This yields

for the column matrix M the expression M = S pK(q − q
0
) where K is the

diagonal matrix of spring constants. Thus,

−pT ·M = −pT · S pK(q − q
0
) = −K(q − q

0
) (5.100)

because T S = I and p · p = I. If, in addition to torsional springs, torsional
dampers with damper constants da are mounted in the joints then the term
in the equations of motion is −D q̇ − K(q − q

0
) with a diagonal damping

matrix D.
Next, a single force element is considered which is attached to points fixed

on two bodies as is shown in Fig. 5.15. The force exerted on the two bodies
has the direction of the line connecting the attachment points. If the force
element is a spring or damper then the magnitude of the force is a given
function of the distance L and of the rate of change of the distance of the
attachment points. In the case of an active element the magnitude of the
force is determined by a control law from kinematical data. In the course
of numerical integration of the equations of motion the positions and the
velocities of the attachment points as well as other kinematical data are
available at every time t. Hence, also direction and magnitude of the force
are known. A simple algorithm requires the following calculations. Let k and
ℓ �= k (arbitrary) be the labels of the two bodies and let, furthermore, ck and
cℓ be the body-fixed vectors from the respective body centers of mass to the
attachment points. The position vectors and the velocities of the attachment
points are

uk = rk + ck , vk = ṙk + ωk × ck ,
uℓ = rℓ + cℓ , vℓ = ṙℓ + ωℓ × cℓ .

}
(5.101)

Fig. 5.15. Force element connecting two bodies k and ℓ
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These quantities determine the vector z = uℓ − uk, the distance L = |z|, the
unit vector e = z/L and the rate of change L̇ = (vℓ −vk) ·e. The magnitude
of the force is a known function F (L, L̇). Let Fk = +Fe be the force acting
on body k. Then, Fℓ = −Fk is acting on body ℓ. The torques exerted on the
two bodies are Mk = ck × Fk and Mℓ = cℓ × Fℓ. The four vectors Fk, Fℓ,
Mk and Mℓ have to be substituted into (5.99).

If a system has more than a single force element then the same calculations
have to be made for each element separately with individual parameters k,
ℓ, ck and cℓ. For each force element the respective vectors Fk, Fℓ, Mk and
Mℓ have to be substituted into (5.99).

In what follows a different formulation with new notations is presented in
order to demonstrate applications of system graphs without tree structure.
The force elements are labeled a = n + 1, . . . , m. As is shown in Fig. 5.16
the labels of the two bodies coupled by the force element a are denoted
i+(a) and i−(a), respectively. The vectors from the body centers of mass to
the attachment points are denoted ci+(a),a and ci−(a),a, respectively (for the
vectors c0a on body 0 see the text following Fig. 5.11). The vector from the
attachment point on body i+(a) to the attachment point on body i−(a) is
called za.

To the tree-structured directed graph representing the interconnection by
joints 1, . . . , n directed arcs n + 1, . . . , m representing the interconnection by
the force elements are added. This graph is called the complete graph. The di-
rected graph displaying the interconnections by joints alone is a spanning tree
of the complete graph, and the added arcs a = n+1, . . . , m are chords of the
complete graph. As illustrative example see the two graphs in Figs. 5.7a and
b for the system of Fig. 5.6. The complete graph has an (n×m) incidence ma-
trix defined in (5.4) with elements Sia (i = 0, . . . , n; a = 1, . . . , m). Through
(5.73) the vectors Cia = Siacia were defined. This definition is now general-
ized to include the chords:

Cia = Siacia (i = 0, . . . , n; a = 1, . . . , m) . (5.102)

Equation (5.6) showed the partitioning

[
S0t S0c

St Sc

]
of the incidence matrix.

With the vectors Cia = Siacia the partitioned weighted incidence ma-

trix

»

C0t C0c

Ct Cc

–

is formed. In the preceding sections only the submatrices

Fig. 5.16. Force element a connecting bodies i+(a) and i−(a)
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S0t, St, C0t and Ct were used. They were called S0, S, C0 and C, respec-
tively.

After this introduction the forces exerted by the force elements are con-
sidered. Notation and sign convention: The force element a (a = n+1, . . . , m)
produces the force +Ff

a and the torque +ci+(a),a × Ff
a on body i+(a) and

the force −Ff
a and the torque −ci−(a),a × Ff

a on body i−(a). The upper in-
dex f (force element) is necessary because Fa is, by definition, the resultant
force on body a. With the definition of the incidence matrix the force exerted
on body i (i = 1, . . . , n) by the force element a is SiaF

f
a and the torque is

Siacia × Fa = Cia × Ff
a. The resultant force on body i (i = 1, . . . , n) by

all force elements is Fi =
∑m

a=n+1 SiaF
f
a and the resultant of all torques

is Mi =
∑m

a=n+1 Cia × Ff
a. Define Ff = [Ff

n+1 . . . Ff
m]T . With this ma-

trix the column matrices of resultants needed in (5.99) are F = ScF
f and

M = Cc × Ff . Thus, the expression (5.99) becomes

(
aT

1 Sc + aT
2 × Cc

)
· Ff . (5.103)

For expressing the force Ff
a the vector za is required. The appropriate

tool for this purpose is the (n × m) circuit matrix U defined in (5.15). Each
chord a = n + 1, . . . , m creates a circuit (see Fig. 5.7a). The closure of the
circuit formed in Fig. 5.16 by the vector za and by a chain of vectors located
on bodies is expressed in the form

za +

m∑

b=1

Uab(ci+(b),b − ci−(b),b) = 0 (a = n + 1, . . . , m) . (5.104)

Let D be the column matrix with elements Db = ci+(b),b − ci−(b),b (b =

1, . . . , m). Then, the column matrix z = [zn+1 . . . zm]T is the product

z = −U D . (5.105)

The column matrix D is the transpose of the sum of all rows of the weighted

incidence matrix

[
C0t C0c

Ct Cc

]
.

Problem 5.10. Modify (5.100) to be valid for systems with Hooke’s joints and
with torsional springs in both axes of the central cross-shaped body. Consider the
case of nonorthogonal axes.

Problem 5.11. Develop (5.105) for z from the equation za = (ci−(a),a−ci+(a),a)−
(ri+(a)−ri−(a)) (a = n+1, . . . , m) in combination with the expression (5.74) for r.

5.5.6 Constraint Forces and Torques in Joints

Kinematical constraints in joints are caused by rigid-body contacts either at
individual points or along lines or surfaces. Constraint forces are, therefore,
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distributed forces. Since the contacting lines and surfaces are assumed rigid,
it is impossible to determine the distribution of constraint forces. All one can
do is to define for each joint an equivalent force system which consists of
a single force and a single torque. The torque depends upon the choice of the
point at which the single force is thought to be acting. It is natural to choose
for each joint a the articulation point fixed on body i−(a). Let Xa and Ya

be the constraint force and the constraint torque, respectively, thus defined
for joint a. More precisely, +Xa and +Ya are acting on body i+(a) and −Xa

and −Ya on body i−(a). The incidence matrix allows the statement: Body i
(arbitrary) is subject to SiaXa and to SiaYa. The resultant of all constraint
forces and the resultant of all constraint torques acting on body i are

n∑

a=1

SiaXa and

n∑

a=1

Sia(cia × Xa + Ya) (i = 1, . . . , n) , (5.106)

respectively. With these expressions Newtons’s and Euler’s equations for iso-
lated bodies have the forms

mir̈i = Fi +
m∑

a=1

SiaXa ,

Ji · ω̇i + ωi × Ji · ωi = Mi +

m∑

a=1

Cia × Xa +

m∑

a=1

SiaYa

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

(5.107)

(i = 1, . . . , n). In matrix form these equations read

m r̈ = F + S X , J · ω̇ = M∗ + C× X + S Y (5.108)

with column matrices X = [X1 . . . Xn]T and Y = [Y1 . . . Yn]T . The other
quantities are defined as in (5.30). Premultiplication with the path matrix T
yields for the constraint forces and torques the explicit expressions

X = T (m r̈− F) , Y = T (J · ω̇ − M∗ − C× X) . (5.109)

The expression for X is substituted into the equation for Y. In the course of
numerical integration of the equations of motion the terms on the right-hand
side of these equations are known as functions of time.

The constraint force Xa in joint a satisfies the orthogonality conditions

Xa · kaℓ = 0 (ℓ = 1, . . . , fa) . (5.110)

In revolute joints and in Hooke’s joints the constraint torque Ya satisfies the
analogous orthogonality conditions

Ya · paℓ = 0 (ℓ = 1, . . . , fa) (5.111)

if the articulation point is located on the axis of the revolute joint (on both
axes of the Hooke’s joint). For the definitions of kaℓ and paℓ see (5.52), (5.54).
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5.5.7 Software Tools

The compact expressions for the matrices a1, b1, a2 and b2 and for the
matrices A and B in the equations of motion are easily programmable. The
change from one multibody system to another is possible by a simple change
of input data. Input data are

• number n of bodies and of joints
• integer functions i+(a) and i−(a) (a = 1, . . . , n)
• body masses mi and inertia tensors Ji (i = 1, . . . , n)
• forces Fi and torques Mi (i = 1, . . . , n) acting on bodies
• for each joint a = 1, . . . , n

– matrix Aa

– vectors ci−(a),a and ci+(a),a

– vectors in the matrices ka and p
a

– vectors sa and wa.

Up to this point not a single vector or tensor has been decomposed in any
reference frame. The execution of vector products in terms of scalar coordi-
nates is left to the computer. The only scalar coordinates visible to the user of
a program are the coordinates of the vectors and tensors listed as input data.
For each of these vectors the coordinates are known in a reference base fixed
on a particular body. To give an example, the vector ci−(a),a has constant

coordinates in base ei−(a) fixed on body i−(a). Input data are these coor-
dinates and, in addition, the label i−(a) of the base. In this way the input
data of every vector and of every tensor consists of coordinates together with
the label of the base in which the coordinates are given. The functions i+(a)
and i−(a) contain the information how to transform vector and tensor coor-
dinates via a chain of joints and with the help of the matrices Aa from given
reference frames into other reference frames. Transformations are carried out
automatically.

The matrix notation of mathematical expressions has the advantage of
being compact and easily interpretable. When programming such expressions
a different strategy should be followed. In many expressions the path matrix T
appears in the form TT multiplied by some column matrix. Examples are
(5.63) and (5.74):

ω = ω01 − TT Ω , r = r01 − (C0T )T − (CT )T 1 . (5.112)

The factor TT is an indication that the elements of the product are calculated
recursively starting with body 0 and terminating at terminal bodies of the
system. For the elements of ω and r the recursive equations are (see Fig. 5.9):
ωi+(a) = ωi−(a) − Ωa (a = 1, . . . , n), ri+(a) = ri−(a) + ci−(a),a − ci+(a),a

(a = 1, . . . , n). For an efficient evaluation it is essential that the graph is
regularly labeled and regularly directed. Then, the recursion formulas are
ωi = ωi−(i) − Ωi, ri = ri−(i) + ci−(i),i − cii (i = 1, . . . , n). The recursion
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starts with i = 1, ωi−(1) = ω0(t) and ri−(1) = r0(t). Note: The labeling of
bodies and of joints chosen by the user of the program need not be regular.
The conversion to regular labeling is done by the program with the algorithm
described in Sect. 5.3.3. Provided efficient recursive programming techniques
are used the computation time required for calculating the matrices A and
B in the equations of motion A q̈ = B for an n-body system is of the order
O(n) (Keppler [35]).

The first software tool based on the formalism was a FORTRAN pro-
gram written by the author in 1975 for Daimler-Benz AG for simulating the
dynamics of a human dummy in car accidents (passenger inside the car or
pedestrian outside). The dummy was modeled as system of eleven bodies.
A six-degree-of-freedom joint connected one body of the trunk with the car.
The neck had three degrees of freedom of rotation and two of translation.
The other joints were spherical joints or revolute joints (knees and elbows).
The three-dimensional motion of the car (carrier body 0) was prescribed by
arbitrary functions of time. Seat and safety belts were treated as force ele-
ments with arbitrary geometry and arbitrary material laws. Interaction forces
between head and windshield were modeled as functions of windshield defor-
mation. The program calculated as functions of time positions, velocities and
accelerations as well as forces acting on the dummy. For many years the pro-
gram was intensively used for the development of safety belts, airbags and
other measures in car safety research.

Based on the same formalism Liu, author of [48], developed in 1985 for
the Shanghai Sport Committee a computer program simulating high-jump
and other maneuvers of the human body without contact to the ground. The
human body was modeled as a system of fifteen rigid bodies. Conservation of
total angular momentum was achieved by Baumgarte’s method of stabilizing
integrals of motion [4]. One of the purposes of the program was to study the
effect of mid-air maneuvers by arms and legs on the performance in high-
jump.

The formalism is the basis of the software tool MESA VERDE (ME-
chanism, SAtellite, VEhicle, Robot Dynamics Equations) originally created
by Wolz [106] in 1985. MESA VERDE is not restricted to systems with tree
structure. Its characteristic feature is the generation of symbolic expressions.
Input data as well as output data are symbolic expressions (Wittenburg,
Wolz, Schmidt [104]). To give an example, the input data for body 2 might
have the form

body 2 alias frame .

Here, body and alias are key words, and “frame” is the name given to body
2 by the program user. This input has the effect that for body 2 symbolic
expressions for mass, for moments of inertia and for products of inertia are
automatically defined (symbols for products of inertia are not defined if an
additional key word indicates that principal axes of inertia are used). Input
data for joints is equally simple. Suppose, for example, that joint 3 is a rev-
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olute joint connecting body 2 (“frame”) to body 0 referred to as “inertial
space” and that, furthermore, i−(3) = 0. Then, the input data might have
the form

joint 3 type revolute from frame to inertial space .

The key words from to indicate the sense of direction of the arc. The input
“revolute” has the effect that symbolic expressions are defined for all quanti-
ties associated with a revolute joint. These are the elements of the matrix A3,
coordinates of the vectors c03 and c23 and the coordinates of the single vec-
tor p3 along the joint axis. These expressions are provided by an expandable
joint library which is part of MESA VERDE. For each type of joint such as
“revolute” the associated symbolic expressions are automatically provided.

In terms of the symbolic expressions representing input data the program
produces symbolic expressions for the elements of the matrices A and B in
the equations of motion A q̈ = B together with symbolic expressions for var-
ious kinematical quantities and for forces of interest. These expressions are
stored for subsequent numerical evaluations in other software packages. The
availability of symbolic expressions is important for several reasons. The first
reason is that only nonzero expressions have to be evaluated. If products
of inertia are known to be zero then no symbolic expressions are defined. If
a joint is known to be a revolute joint then no symbolic expressions are defined
for quantities which occur only in more sophisticated joints. These aspects
of saving computation time played a key-role in the 1980s and in the early
1990s, when computers were still comparatively slow and expensive. Today,
the availability of symbolic expressions in C/C++ code is of prime impor-
tance for other reasons. First, symbolic expressions are open in the sense
that they can be integrated into other software tools with graphical user in-
terfaces, with 3D-visualization and with other post-processing capabilities.
Second, symbolic expressions can be compiled in real-time operating systems
such as REAL-TIME Linux, for example. The technology called Hardware-
in-the-Loop (HiL) allows real-time simulations of systems one component of
which is the mathematical model of a multibody system while other compo-
nents are physical hardware.

Collaboration with IPG Automotive, Karlsruhe opened the way to the
development of professional engineering software tools for a large range of
applications in the automotive industry. MESA VERDE-generated kinemat-
ics and dynamics equations for vehicles form the backbone of IPG’s Car-
Maker� product range which has become a powerful tool for vehicle dynam-
ics analysis and HiL-testing of vehicle electronic control systems. CarMaker
is, in turn, the basis of AVL InMotion� which is used for developing and
testing engines and powertrains. In these HiL applications engines or entire
powertrains (consisting of engine, gearbox, differential and halfshafts) are
the hardware part while the rest of the vehicle is modelled mathematically.
MESA VERDE-generated equations are used in the software tool FADYNA
developed by IPG for Daimler-Chrysler [107]. It is a comprehensive library
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of vehicle simulation models covering the entire range of Daimler-Chrysler
commercial vehicles ranging from vans to 40-ton semi-trailer trains. MESA
VERDE is also used by Renault, PSA Peugeot Citroen and Opel.

5.6 Systems with Closed Kinematic Chains

A system with closed kinematic chains has a graph of joint connections which
does not have tree structure. From Sect. 5.2 it is known that the joint vari-
ables in the joints forming a closed kinematic chain are subject to constraint
equations. This has the effect, that the number of independent joint variables
is smaller than the total number of joint variables. The goal of this section
is the formulation of equations of motion for a set of independent joint vari-
ables. This is achieved in two steps. In the first step the system is converted
into a system with tree structure. For this system equations of motion are
formulated by the method described in the previous sections. In the second
step constraint equations for joint variables are formulated. These constraint
equations are then incorporated into the formalism for the system with tree
structure. The conversion of a system with closed kinematic chains into a sys-
tem with tree structure can be achieved in different ways. In what follows
two methods referred to as removal of joints and duplication of bodies are
explained.

5.6.1 Removal of Joints. Holonomic Constraints

The system under consideration is converted into a system with tree structure
by removing suitably selected joints. The resulting system is referred to as
spanning tree of the original system. For the spanning tree joint variables q
are chosen as usual. In terms of these variables the matrices A and B in (5.83)
are formulated. The original system does not have the equations of motion
Aq̈ = B. However, the principle of virtual power in the form (5.45) is valid:

δq̇T (Aq̈ − B) = 0 . (5.113)

The variations δq̇ are subject to the kinematical constraints caused by the re-
moved joints. Depending on the nature of these joints kinematical constraints
are either holonomic or nonholonomic. The present section is devoted to holo-
nomic constraints. Nonholonomic constraints are the subject of Sect. 5.6.4.
Let N be the number of variables represented in q. Then, a holonomic con-
straint equation has the general form f(q1, . . . , qN , t) = 0 where f is some
function. In general, more than a single constraint equation exists. Let ν be
the total number of independent constraint equations:

fi(q1, . . . , qN , t) = 0 (i = 1, . . . , ν) . (5.114)
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If time t appears explicitly then the constraint is called holonomic-rheonomic,
otherwise holonomic-skleronomic. Among the N variables N −ν are indepen-
dent and the remaining ν are dependent. Which ones are chosen as indepen-
dent is, in some cases, dictated by the equations. Often, it is a matter of
taste. In a 1-d.o.f. mechanism, for example, one might choose the input vari-
able as independent variable. In many cases the equations are too complex for
an explicit solution for the dependent variables in terms of the independent
variables.

Implicit total time differentiation of the constraint equations produces the
equations ḟi = 0 and f̈i = 0 (i = 1, . . . , ν). These are the equations

N∑

j=1

∂fi

∂qj
q̇j +

∂fi

∂t
= 0 (i = 1, . . . , ν) , (5.115)

N∑

j=1

∂fi

∂qj
q̈j +

N∑

j=1

N∑

k=1

∂2fi

∂qj∂qk
q̇j q̇k + 2

N∑

j=1

∂2fi

∂qj∂t
q̇j +

∂2fi

∂t2
= 0 (5.116)

(i = 1, . . . , ν). The various partial derivatives are themselves functions of
q1, . . . , qN and of t. In the case of skleronomic constraints the second term in
(5.115) and the last two terms in (5.116) are missing.

The first set of equations is linear with respect to q̇j and the second
is linear with respect to q̈j (j = 1, . . . , N). Both sets are solved for the
ν dependent quantities in terms of the N − ν independent quantities. The
result of this procedure are expressions of the form

q̇ = G q̇∗ + Q , δq̇ = G δq̇∗ , q̈ = G q̈∗ + H . (5.117)

Here, q is the column matrix of all N variables, and q∗ is the column matrix
of the N − ν independent variables. G is an [N × (N − ν)]-matrix which
depends explicitly on q1, . . . , qN and on t. Also the column matrix Q depends
explicitly on q1, . . . , qN and on t. The column matrix H depends, in addition,
also on q̇1, . . . , q̇N . In the case of skleronomic constraints Q is zero. Since each
element of q∗ is identical with one element of q N − ν of the N equations are
identities. Suppose, for example, that q∗ℓ = qk. Then Qk = 0, Hk = 0, and
the kth row of G is 1ℓ = [ 0 0 . . . 1 . . . 0] with the element 1 in the position ℓ.

Substitution of (5.117) into (5.113) results in the equation

δq̇∗T (A∗q̈∗ − B∗) = 0 (5.118)

with
A∗ = GT A G , B∗ = GT (B − A H) . (5.119)

The independence of the variations δq̇∗ has the consequence that

A∗q̈∗ = B∗. (5.120)
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This is the desired minimal set of equations of motion. The matrices A∗ and
B∗ depend on all variables q1, . . . , qN . In the course of numerical integration
the matrices A∗ and B∗ must be evaluated at every time step. If the constraint
Eqs. (5.114) cannot be solved explicitly for the dependent variables then they
must be solved numerically. For two reasons this is not a very time-consuming
task. First, the Jacobian G is available so that a Newton–Raphson method
can be applied. Second, the solution for the previous time step is always
a good approximation for the actual solution. Only the determination of
initial values for t = 0 is more difficult.

In Sects. 5.6.6.1–5.6.6.3 the matrices G and H are formulated for a planar
system and for two spatial systems. The spatial systems demonstrate that
the formulation of constraint equations can be a difficult task6. Even more
difficult is sometimes the proof that constraint equations are independent.
If no analytical proof is available then the number of independent equations
must be determined numerically. It equals the rank of the Jacobian with
elements ∂fi/∂qj (i = 1, . . . , ν; j = 1, . . . , N).

General-purpose program packages for multibody system dynamics are
not accepted by the engineering community if the user is required to formulate
the matrices G, Q and H himself. What is needed is an algorithm which
generates the matrices automatically from kinematical expressions for a tree-
structured system. The algorithm described in the following section meets
these requirements. It was first published by Lilov/Chirikov [46].

5.6.2 Duplication of Bodies

The method is explained for a system with a single closed kinematical chain.
The generalization to several closed kinematical chains is obvious. The first
step is the creation of a tree-structured system. In the previous section this
has been done by the removal of a single joint. Now it is done by the du-
plication of a single body. Let this be the triangular body in Fig. 5.17a. As
is shown in Fig. 5.17b it is replaced by two identically shaped twin-bodies
labeled, say, k and ℓ. The masses and the inertia tensors of the two bodies

Fig. 5.17. Duplication of the triangular body in system (a) results in system (b)

6 For a systematic formulation of constraint equations for closed kinematic chains
with seven variables in revolute, prismatic and cylindrical joints see Woernle
[105], Li [42], Wittenburg [100,102].
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must add up to the mass and to the inertia tensor, respectively, of the original
body. The original body has two joints which belong to the closed kinematic
chain under consideration. One of these joints is eliminated on body k and
the other is eliminated on body ℓ. The bodies k and ℓ are allowed to drift
apart (see Fig. 5.17b). This results in a tree-structured system with one addi-
tional body and with the original set of joints. Constraint equations express
conditions that the bodies do not drift apart. These conditions are formulated
on the level of joint variables and on the level of accelerations. Level of joint
variables: The two body centers of mass must coincide. This is the condition
rk = rℓ. Both vectors are elements of the matrix r in (5.74):

r = r01 − (C0T )T − (CT )T 1 . (5.121)

Both vectors are functions of joint variables. The vector equation yields three
scalar equations.

Not only the two body centers of mass must coincide. In addition, the
angular orientation of the bodies k and ℓ must be identical. This is a condition
on the direction cosine matrices Aa defined in (5.53). More precisely speaking,
the ordered product of the matrices Aa (or AT

a depending on the sense of
direction of the joints) of all joints in the closed chain must be the unit
matrix. Of the nine equations represented by this condition only three need be
considered. Level of accelerations: The two bodies must satisfy the conditions
r̈k = r̈ℓ and ω̇k = ω̇ℓ. The vectors in these equations are elements of column
matrices in (5.41) and (5.43):

r̈ = a1q̈ + b1 , ω̇ = a2q̈ + b2 . (5.122)

The two vector equations establish six inhomogeneous linear equations for q̈.
In the course of numerical integration of the equations of motion these equa-
tions are generated numerically. The rank of the coefficient matrix is deter-
mined. This rank determines the number of independent acceleration vari-
ables. Once these variables have been identified numerical values for the ma-
trices G and H are obtained. For more details see Wolz [106] and Weber [89].

5.6.3 Controlled Joint Variables

This section deals with a particularly simple, yet important rheonomic con-
straint. A single angle of rotation qk in an individual revolute joint of a sys-
tem is prescribed as function of time qk(t). Then, also q̇k and q̈k are pre-
scribed functions of time. Typical examples of interest are the functions q̇k =
const and q̇k = A cosωt with ω = const. For producing the function a motor
mounted on the axis of the joint must produce an appropriate torque Mk

which acts with opposite signs on the two bodies coupled by the joint. With
qk being prescribed the degree of freedom of the entire system is reduced by
one. To be formulated is a system of differential equations of motion for the
reduced set of N − 1 variables. In addition, an expression is to be formulated
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for the motor torque Mk. In what follows this problem is, first, solved for
systems with tree structure. The equations of motion for the complete set of
variables q1, . . . , qN including qk have the form A q̈ = B. The unknown mo-
tor torque Mk appears in the matrix B and in this matrix in the expression
−p · T M. Let b be the label of the joint with the variable qk and with the
axial unit vector pk. Let, furthermore, +Mkpk be the torque on body i+(b)
and −Mkpk the torque on body i−(b). In the column matrix T M the ele-
ment b is the only nonzero element, and this element is +Mkpk. In column b
of the matrix p the kth element is the only nonzero element, and this element
is pk. From this it follows that the kth element of −p ·T M is −Mk and that
all other elements are free of Mk. Writing the kth element of the matrix B
in the form Bk = B′

k − Mk the equations of motion are

⎡
⎢⎢⎢⎢⎢⎢⎣

A11 . . . A1k . . . A1N

...
Ak1 . . . Akk . . . AkN

...
AN1 . . . ANk . . . ANN

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

q̈1

...
q̈k(t)

...
q̈N

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

B1

...
B′

k − Mk

...
BN

⎤
⎥⎥⎥⎥⎥⎥⎦

. (5.123)

The kth equation is solved for the unknown motor torque Mk:

Mk = B′
k − [ Ak1 . . . Akk . . . AkN ]q̈ . (5.124)

In the remaining N − 1 equations the terms involving q̈k(t) are shifted to the
right-hand side. The result is the desired reduced set of differential equations:
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

A11 . . . A1,k−1 A1,k+1 . . . A1N

...
Ak−1,1

Ak+1,1

...
AN1 ANN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

q̈1

...
q̈k−1

q̈k+1

...
q̈N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

B1

...
Bk−1

Bk+1

...
BN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

− q̈k(t)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1k

...
Ak−1,k

Ak+1,k

...
ANk

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(5.125)
The coefficient matrix is symmetric, again. This matrix is now an explicit
function of time since it depends on the variable qk(t). Once the solution
is obtained by numerical integration the motor torque Mk(t) is calculated
from (5.124). The method just described can be generalized to the case with
more than one variable prescribed as function of time. In the extreme all N
variables are prescribed. Then, the left-hand side of (5.123) is prescribed and
the right-hand side has the form B′−M with the column matrix M of motor
torques.

In what follows the same problem is treated when the equations of motion
have the form (5.120):

(GT AG)q̈ ∗ = GT (B − AH) . (5.126)
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The elements of q∗ are the independent variables of a larger set q. The two
sets are related through (5.117): q̈ = G q̈∗ + H . As before, the kth variable
qk of the set q is prescribed as function of time and the associated torque Mk

is unknown. It is assumed that qk is one of the variables q∗ and that it is the
ℓth of these variables. Following (5.117) it has been explained that then the
kth row of G is 1ℓ = [ 0 0 . . . 1 . . . 0] with the element 1 in the position ℓ.
The kth element of B is B′

k −Mk as before. Hence, the matrix B is identical
with the one on the right-hand side of (5.123). It is now written in the form
B = B′−Mk1T

k . It follows that GT B = GT B′−Mk1T
ℓ . Thus, (5.126) becomes

(GT AG)q̈ ∗ = GT (B′ − A H) − Mk1T
ℓ . (5.127)

Compare this with (5.123). On the left-hand side q̈ ∗
ℓ (t) is a prescribed func-

tion of time. On the right-hand side the unknown Mk occurs in the ℓth
equation only. This ℓth equation is solved for Mk. The result is an equation
of the form (5.124). In the remaining equations the terms involving q̈ ∗

ℓ (t)
are shifted to the right-hand side. This results in a reduced set of differential
equations for the remaining variables which has the structure of (5.125).

In what follows the transition from (5.123) to (5.125) is made in a dif-
ferent way. Equation (5.123) resulted originally from the principle of virtual
power (5.29) in combination with the kinematical relationships (5.41) and
(5.43). The condition that an individual variable qk is a prescribed function
of time is now incorporated into (5.41) and (5.43). In (5.41) q̇k(t) and q̈k(t)
are multiplied by the kth column of a1. The three equations are written in
the form (note that δq̇k = 0)

ṙ = a1rq̇r
+ q̇k(t)ak

1 +a10 , δṙ = a1rδq̇r
, r̈ = a1rq̈r

+ q̈k(t)ak
1 +b1 (5.128)

where ak
1 denotes the kth column of a1, a1r the reduced matrix a1 (reduced by

its kth column) and q
r
the reduced set of variables (reduced by qk). Similarly,

(5.43) is written in the form

ω = a2rq̇r
+ q̇k(t)ak

2 + a20 , δω = a2rδq̇r
, ω̇ = a2rq̈r

+ q̈k(t)ak
2 + b2 .

(5.129)
Substitution of these expressions into (5.29) yields instead of (5.44) the equa-
tion

δq̇T
r

{(
aT

1r · m a1r + aT
2r · J · a2r

)
q̈
r
−
[
aT

1r · (F− mb1) + aT
2r · (M∗ − J · b2)

−q̈k(t)
(
aT

1r · m ak
1 + aT

2r · J · ak
2

) ]}
= 0 . (5.130)

The expression in curled brackets is zero. This is seen to be the reduced set
of Eqs. (5.125).
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5.6.4 Nonholonomic Constraints

Nonholonomic constraint equations for a set of variables q1, . . . , qN have the
Pfaffian form

gi(q, q̇, t) = ai1q̇1 + . . . + aiN q̇N + ai0 = 0 (i = 1, . . . , µ) . (5.131)

The coefficients ai1, . . . , aiN , ai0 are functions of q1, . . . , qN and, possibly,
of time t. If t does not appear explicitly, then the constraints are called
nonholonomic-skleronomic, otherwise nonholonomic-rheonomic. In the sklero-
nomic case the term ai0 is missing. The coefficients are such that it is
impossible to reduce the constraint equations by integration to the form
fi(q1, . . . , qN , t) = 0 (i = 1, . . . , µ) of holonomic constraint equations. Non-
holonomic constraint equations do not reduce the degree of freedom of a sys-
tem. The constraints are placed on velocities only. In what follows the general
case is investigated that a tree-structured system governed by the equation

δq̇T (Aq̈ − B) = 0 (5.132)

is subject to µ nonholonomic constraint Eqs. (5.131) and, in addition, to
ν holonomic constraint equations fi(q1, . . . , qN , t) = 0 (i = 1, . . . , ν). These
holonomic constrained equations are treated as before. Their first and second
time-derivatives resulted in two sets of ν linear equations for the velocities
q̇j and the accelerations q̈j (see (5.115) and (5.116)). The nonholonomic con-
straint equations have already the form of linear equations for velocities. They
are differentiated only once in order to produce linear equations for acceler-
ations. Combining both types of constraints, one has ν + µ linear equations
for velocities and ν + µ linear equations for accelerations. These equations
lead again to equations of the forms (see (5.117))

q̇ = G q̇∗ + Q , δq̇ = G δq̇∗ , q̈ = G q̈∗ + H . (5.133)

As before, q̇ is the column matrix of all N generalized velocities, and q̇∗ is the
column matrix of N−(ν+µ) independent generalized velocities. Substitution
into (5.132) results again in an equation of the form (5.120):

(GT AG)q̈∗ = GT (B − A H) . (5.134)

This is a set of N − (ν + µ) second-order differential equations. However, the
total degree of freedom of the system is N − ν. Hence, another µ first-order
differential equations are required. These are the nonholonomic constraint
Eqs. (5.131). The two sets of equations are integrated simultaneously in order
to determine all position variables. In Sect. 5.6.6.4 the matrices G, Q and H
are formulated for a system with six nonholonomic constraint equations.

5.6.5 Constraint Forces and Torques in Joints

In a system with closed kinematic chains with bodies i = 0, . . . , n and with
joints a = 1, . . . , m (m > n) each constraint force Xa and each constraint
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torque Ya (a = 1, . . . , m) satisfies the orthogonality conditions (5.110) and
(5.111), respectively (the latter ones under the conditions specified there).
For the constraint forces and torques of a spanning tree constructed either
by the removal of joints or by duplication of bodies Eqs. (5.109) are valid. The
entire system of constraint forces and torques is indeterminate if the entire
system of equations does not have full rank. This is illustrated by the planar
fourbar shown in Fig. 5.18. Constraint torques in three out of the four revo-
lute joints suffice to keep the system in plane motion. The constraint torque
in the fourth revolute joint is unnecessary and, therefore, indeterminate. In
a good engineering design the bearing in one joint is self-aligning so that no
constraint torque can be produced. The indeterminacy of internal reactions
in systems with closed kinematic chains is familiar from statics. The only
difference in dynamics is the presence of inertia forces in addition to external
forces.

5.6.6 Illustrative Examples

In what follows constraint equations and the associated matrices G, Q and H
in (5.117) and (5.133) are formulated for four multibody systems with closed
kinematic chains.

5.6.6.1 Planar Fourbar

The closed kinematic chain to be analyzed is the planar fourbar shown in
Fig. 5.18. Its link lengths are ℓ, r, a and b. Removal of the joint B creates
a spanning tree having the form of a triple pendulum. As joint variables
the angles q1 = ϕ, q2 = α and q3 = β are chosen. The set of constraint
Eqs. (5.114) expressing the restitution of the removed joint reads

r sin ϕ + a sin(ϕ + α) + b sin(ϕ + α + β) − ℓ = 0 ,
r cosϕ + a cos(ϕ + α) + b cos(ϕ + α + β) = 0 .

}
(5.135)

These equations are independent. Hence, there are two dependent variables.
As independent variable the input crank angle ϕ is chosen. Differentiation

Fig. 5.18. Planar fourbar
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with respect to time produces the set of Eqs. (5.115):

α̇[a cos(ϕ + α) + b cos(ϕ + α + β)] + β̇b cos(ϕ + α + β) = 0 ,

α̇[a sin(ϕ + α) + b sin(ϕ + α + β)] + β̇b sin(ϕ + α + β) = −ℓϕ̇ .

}
(5.136)

The coefficient determinant is ab sinβ. The solutions are

α̇ =
ℓ cos(ϕ + α + β)

a sin β
ϕ̇ , β̇ =

−ℓ[a cos(ϕ + α) + b cos(ϕ + α + β)]

ab sinβ
ϕ̇ .

(5.137)
In positions with sinβ = 0 (lengths a and b collinear) both angular velocities
are indeterminate. The first Eq. (5.117) has the form

⎡
⎢⎢⎢⎢⎢⎣

ϕ̇

α̇

β̇

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

1

ℓ cos(ϕ + α + β)

a sin β

−ℓ[a cos(ϕ + α) + b cos(ϕ + α + β)]

ab sinβ

⎤
⎥⎥⎥⎥⎥⎦

ϕ̇ . (5.138)

The formulation of the matrix H in (5.117) is left to the reader.
The nonlinear Eqs. (5.135) can be resolved explicitly for α and β. For this

purpose they are rewritten in the form

b sin(ϕ + α) cosβ + b cos(ϕ + α) sin β = ℓ − r sinϕ − a sin(ϕ + α) ,
b cos(ϕ + α) cosβ − b sin(ϕ + α) sin β = − r cosϕ − a cos(ϕ + α) .

}

(5.139)
This yields

cosβ =
1

b
[ℓ sin(ϕ + α) − r cosα − a] , sin β =

1

b
[ℓ cos(ϕ + α) + r sinα] .

(5.140)
The condition cos2 β + sin2 β = 1 is the equation A cosα + B sin α = C with
A = 2a(ℓ sinϕ − r), B = 2aℓ cosϕ, C = ℓ2 + r2 + a2 − b2 − 2rℓ sinϕ. This
equation determines for each value of ϕ two (not necessarily real) solutions
for cosα and for sinα:

cosαk =
[
AC + (−1)kB

√
A2 + B2 − C2

]
/(A2 + B2) ,

sin αk =
[
BC − (−1)kA

√
A2 + B2 − C2

]
/(A2 + B2)

}
(k = 1, 2).

(5.141)
With each solution αk (5.140) determines the associated values cosβ and
sin β.

5.6.6.2 Orthogonal Bricard Mechanism

The spatial mechanism shown in Fig. 5.19 is a special case of a family known
as orthogonal Bricard mechanisms (see Bricard [10]). It is composed of six
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Fig. 5.19. Orthogonal Bricard mechanism

bodies labeled 0, . . . , 5. Body 0 is fixed in inertial space. The bodies are
connected by six revolute joints labeled 1, . . . , 6. The two joint axes of each
body are mutually orthogonal. Bodies 0, 2 and 4 are identical and bodies 1, 3
and 5 are identical. Furthermore, body 1 is a mirror image of body 0. In the
position shown the bodies are inscribed in a cube. This cube configuration
is symmetric with respect to the plane spanned by the joint axes 1 and 4.
It is also symmetric with respect to the plane spanned by the joint axes 3
and 5. Finally, it is centrally symmetric with respect to the center of the
cube. The joint axes 1, 3 and 5 on the one hand and the joint axes 2, 4
and 6, on the other intersect in a single point. On each joint axis a torsional
spring and a torsional damper are mounted whose constant coefficients are
denoted ka and da, respectively, (a = 1, . . . , 6). In the cube configuration all
springs are unstressed. To be determined are the total degree of freedom N
of the mechanism, equations of motion A q̈ = B for a spanning tree and the
matrices G and H in the equations of motion for N independent variables.

Solution: From mere inspection it is not clear whether the system has a de-
gree of freedom N > 0 at all. Following the procedure described in Sect. 5.6.1
joint 6 is removed. The result is a system with tree structure (a spanning tree)
with the degree of freedom f = 5, one in each of the joints 1 to 5. Reconsti-
tution of the removed joint introduces five constraint equations. These must
be formulated first. Then, the number ν of independent constraint equa-
tions must be determined. Only in the case ν < 5 a total degree of freedom
N = f − ν > 0 is obtained.

On each body i (i = 0, . . . , 5) a body-fixed base ei is defined. In Fig. 5.19
only the base e0 is shown. In the cube configuration all body-fixed bases are
aligned parallel. The locations of the origins are without interest. Three of
the five constraint equations express the fact that, independent of rotation
angles in the joints, the chain of vectors leading from the point P on body 0
along body edges to the coincident point P on body 5 is closed. This is the
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vector equation
−e0

2 − e1
3 + e2

1 + e3
2 + e4

3 − e5
1 = 0 . (5.142)

Two more scalar constraint equations express the fact that the vectors e5
1

and e5
2 are both orthogonal to e0

3:

e5
1 · e0

3 = 0 , e5
2 · e0

3 = 0 . (5.143)

The altogether five scalar constraint equations must be expressed in terms of
joint variables. In joint i (i = 1, . . . , 5) let qi be the rotation angle of body i
relative to body i − 1. Sign convention: q1, q2, q3 are positive and q4, q5 are
negative in the case of a right-handed rotation about the base vector in the
respective joint axis. In the cube configuration all angles are zero. Let Ai be
the transformation matrix which transforms in joint i from ei−1 to ei. With
the abbreviations ci = cos qi, si = sin qi these matrices are:

A1 =

⎡
⎣

1 0 0
0 c1 s1

0 −s1 c1

⎤
⎦ , A2 =

⎡
⎣

c2 0 −s2

0 1 0
s2 0 c2

⎤
⎦ , A3 =

⎡
⎣

c3 s3 0
−s3 c3 0

0 0 1

⎤
⎦ ,

A4 =

⎡
⎣

1 0 0
0 c4 −s4

0 s4 c4

⎤
⎦ , A5 =

⎡
⎣

c5 0 s5

0 1 0
−s5 0 c5

⎤
⎦ . (5.144)

The coordinate transformations for (5.142) and (5.143) are simplest if all
vectors are transformed either into base e2 or into base e3. Using e3 (5.142)
takes the form

A3A2A1

⎡
⎣

0
−1

0

⎤
⎦ + A3A2

⎡
⎣

0
0

−1

⎤
⎦ + A3

⎡
⎣

1
0
0

⎤
⎦ +

⎡
⎣

0
1
0

⎤
⎦

+AT
4

⎡
⎣

0
0
1

⎤
⎦ + AT

4 AT
5

⎡
⎣
−1

0
0

⎤
⎦ =

⎡
⎣

0
0
0

⎤
⎦ . (5.145)

Multiplying out one gets the equations

c3[1 + s2(1 − s1)] − s3c1 − c5 = 0 , (5.146)

s3[1 + s2(1 − s1)] + c3c1 − s4(1 − s5) − 1 = 0 , (5.147)

c2(1 − s1) − c4(1 − s5) = 0 . (5.148)

Also the scalar products in (5.143) are expressed in terms of vector coordi-
nates in base e3. This yields the equations

c5(−c3s2c1 + s3s1) + s5[s4(s3s2c1 + c3s1) + c4c2c1] = 0 , (5.149)

c4(s3s2c1 + c3s1) − s4c2c1 = 0 . (5.150)
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From the symmetry properties in Fig. 5.19 it can be predicted that in the
original mechanism including joint 6, if it is mobile, the joint axes 1, 3 and
5 on the one hand and the joint axes 2, 4 and 6, on the other intersect in
a single point in every position of the mechanism. This is expressed by the
three independent constraint equations

q3 = q1 , q5 = q1 , q4 = q2 . (5.151)

With these equations, (5.146)–(5.150) get the simple forms

c1(s1 + s1s2 − s2) = 0 ,
(s1 − 1)(s1 + s1s2 − s2) = 0 ,

0 = 0 ,
c1(1 + s1 + s1s2)(s1 + s1s2 − s2) = 0 ,

c1c2(s1 + s1s2 − s2) = 0 .

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(5.152)

These equations are satisfied if s1 + s1s2 − s2 = 0. This is the equation

sin q2 =
sin q1

1 − sin q1
. (5.153)

In addition to (5.151) this constitutes a fourth independent constraint equa-
tion. There are no other independent constraint equations. From this it fol-
lows that the mechanism has the degree of freedom N = 1. As independent
variable the angle q1 is chosen.

Remark on (5.151): These constraint equations are found without recourse
to intuition as follows. Multiply (5.147) by c1c4, (5.148) by −c1s4, (5.150)
by −(1 − s1) and add. Simple reformulation followed by division through c4

results in the equation relating q3 to q1:

(1 − s1)c3 = (1 − s3)c1 . (5.154)

The solutions are q3 = q1 and q3 = π/2. Only the first solution is useful. This
is the first Eq. (5.151). Because of the equal character of all bodies and of all
joints and because of the definitions of the angles this equation holds true if
the indices are increased by 1 and by 2. This yields the other two constraint
equations q4 = q2 and q5 = q3. End of remark on (5.151).

The relationship (5.153) is illustrated in the diagram of Fig. 5.20. Be-
cause of the conditions | sin q1,2| ≤ 1 the angles are restricted to the intervals
−210◦ ≤ q1 ≤ +30◦ and −30◦ ≤ q2 ≤ +210◦. Motion in these intervals is pos-
sible without collision of neighboring bodies if the angle γ shown in Fig. 5.19
is γ ≤ 30◦. The complicated motion of the mechanism is best understood if
a model is available. It can be produced by folding cardboard with glued-in
strips of plastic as joints.

Differentiation of (5.153) with respect to time produces the relationship
between angular velocities:

q̇2 = q̇1
cos q1

(1 − sin q1)2 cos q2
= q̇1

cos q1

(1 − sin q1)
√

1 − 2 sin q1
. (5.155)
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Differentiating one more time one gets for the angular acceleration the ex-
pression

q̈2 = q̈1 g(q1) + q̇2
1h(q1) (5.156)

with

g(q1) =
cos q1

(1 − sin q1)
√

1 − 2 sin q1
, h(q1) =

2(1 − sin q1) − sin2 q1

(1 − sin q1)(1 − 2 sin q1)3/2
.

(5.157)
This equation in combination with the equations q5 = q3 = q1 and q4 = q2

determines the matrices G and H in the equation q̈ = [q̈1 . . . q̈5]
T = G q̈1+H.

Both matrices are column matrices:

G = [ 1 g(q1) 1 g(q1) 1 ]T ,

H = [ 0 q̇2
1h(q1) 0 q̇2

1h(q1) 0 ]T .

}
(5.158)

The closed chain is governed by the single scalar differential equation GTAGq̈1

= GT (B−A H) with A and B being the matrices in the equations of motion
A q̈ = B for the spanning tree. These matrices are determined from (5.83)
and (5.86). The definitions of the variables q1, . . . , q5 imply that

p =

⎡
⎢⎢⎢⎢⎣

e1
1

e2
2

e3
3

−e4
1

−e5
2

⎤
⎥⎥⎥⎥⎦

, T =

⎡
⎢⎢⎢⎢⎣

−1 −1 −1 −1 −1
0 −1 −1 −1 −1
0 0 −1 −1 −1
0 0 0 −1 −1
0 0 0 0 −1

⎤
⎥⎥⎥⎥⎦

. (5.159)

The springs and dampers in joints 1, . . . 5 contribute to the right-hand side
of the equation the term −D q̇−K q with diagonal (5×5)-matrices D and K
of the damper constants and the spring constants, respectively (see (5.100)).
The spring-damper torque in joint 6 represents an external torque M5 on
body 5. Let q6 be the angle of rotation of body 0 relative to body 5 (positive
about the axis −e5

3 = −e0
3). This definition is such that q6 = q4 = q2. The

torque on body 5 is M5 = (d6q̇2 + k6q2)e
5
3. It enters the right-hand side of

Fig. 5.20. Relationship between q1 and q2 in the Bricard mechanism of Fig. 5.19
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the equation in the term −pT · M with M = [0 0 0 0 M5]
T . This is the

column matrix

(d6q̇2 + k6q2)
[
0 e2

2 · e0
3 e3

3 · e5
3 − e4

1 · e5
3 0

]T
(5.160)

and with (5.144) and (5.151)

(d6q̇2 + k6q2) [0 s1 c1c2 s1 0]T . (5.161)

5.6.6.3 Stewart Platform

Figure 5.21 depicts a Stewart platform. The body labeled 1 is the platform
proper. Its center of mass C is the origin of the base e1. The platform is sup-
ported in inertial space (body 0 with base e0) by six telescopic legs with
spherical joints in the articulation points Qi and Pi (i = 1, . . . , 6). The
points Qi have position vectors Ri in e0, and the points Pi have position
vectors ̺i in e1. Neither the six points Qi nor the six points Pi are assumed
to be coplanar or otherwise regularly arranged. Due to the speed of opera-
tion in combination with compactness and stiffness Stewart platforms find
applications whenever objects must be oriented both rapidly and precisely.
Examples are grippers of robots, platforms for vehicles in car and flight sim-
ulators and for work pieces in heavy-duty machine tools. Mechanical or hy-
draulic actuators in the legs produce forces which act with equal magnitude
and with opposite directions on the two sections of a leg. Within a certain
workspace the platform has the degree of freedom six. Each leg is free to
rotate about its longitudinal axis. In practice, this freedom is suppressed by
replacing in each leg one spherical joint by a Hooke’s joint. Here, this prob-
lem is eliminated by the assumption that the legs are infinitesimally thin
rods with zero moment of inertia about the longitudinal axis and with equal
moments of inertia about lateral axes. With this assumption the position of
each leg is determined by the position of the platform. Between platform
and body 0 a six-degree-of-freedom joint is defined. Joint variables for this
joint are chosen as follows. Three of the variables are the coordinates of the
position vector r of the center of mass C in e0. The angular orientation of e1

Fig. 5.21. Stewart platform
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in e0 is described by Euler–Rodrigues parameters q0, q1, q2, q3. The direction
cosine matrix A10 relating e1 and e0 is (see (2.35))

A10 =

⎡
⎣

q2
0 + q2

1 − q2
2 − q2

3 2(q1q2 + q0q3) 2(q1q3 − q0q2)
2(q1q2 − q0q3) q2

0 + q2
2 − q2

3 − q2
1 2(q2q3 + q0q1)

2(q1q3 + q0q2) 2(q2q3 − q0q1) q2
0 + q2

3 − q2
1 − q2

2

⎤
⎦ . (5.162)

Let ω be the angular velocity of the platform and let ω be the column matrix
of its coordinates in e1. The parameters q0, q1, q2, q3 are the solutions of the
kinematic differential equations (2.119):

[
q̇0

q̇

]
=

1

2

[
0 −ωT

ω −ω̃

] [
q0

q

]
. (5.163)

Each leg creates a closed kinematic chain containing the leg, the platform,
body 0, the joints of the leg and the six-degree-of-freedom joint between plat-
form and body 0. In what follows the closed kinematic chain created by a sin-
gle representative leg is investigated. The goal is to express all kinematical
quantities of the leg in terms of the variables in the six-degree-of-freedom
joint and in terms of derivatives of these variables. In Fig. 5.22 the platform
and the single leg are shown together with the bases e0 and e1, with the po-
sition vector r of C and with the position vectors R and ̺ of the articulation
points Q and P, respectively. The position rP, velocity ṙP and acceleration
r̈P of P are

rP = r+̺ , ṙP = ṙ+ω×̺ , r̈P = r̈+ ω̇×̺+ω× (ω×̺) . (5.164)

The second equation yields

δṙP = δṙ + δω × ̺ . (5.165)

The leg is composed of two segments 1 and 2 with centers of mass C1 and C2,
respectively. The locations of these centers of mass on the two segments are
given by the constant lengths ℓ1 and ℓ2. The variable leg length is called L,
and e denotes the variable unit vector pointing in the direction from Q to P.
Since the leg is treated as infinitesimally thin rod the longitudinal component
of its angular velocity can be neglected (if the leg has spherical joints at both
ends then this component can actually be zero). Both segments have equal
angular velocities perpendicular to the axis e of the leg. This angular velocity
is called Ω. Also the angular accelerations Ω̇ of the two segments are identical
and perpendicular to e.

The goal of the kinematics analysis is to express Ω, Ω̇, the position r1, the
velocity ṙ1 and the acceleration r̈1 of C1 in terms of the platform quantities
ω, ω̇, r, ṙ and r̈. The length L and the vector e depend on the platform
position only. Figure 5.22 yields the expressions

L = |−R + r + ̺| , e =
−R + r + ̺

L
. (5.166)
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In terms of these quantities the position and the velocity of P are

rP = R + Le , ṙP = L̇e + LΩ× e . (5.167)

Dot and cross multiplications of the second equation by e yield

L̇ = e · ṙP , Ω =
1

L
e× ṙP , δΩ =

1

L
e× δṙP =

1

L
e× (δṙ + δω × ̺) .

(5.168)
Time-differentiation of Ω produces the expression

Ω̇ =
1

L
[e× r̈P + (Ω × e) × ṙP] − L̇

L2
e× ṙP (5.169)

and, after substitution of the expressions for r̈P, L̇ and Ω,

Ω̇ =
1

L
e× [r̈ + ω̇ × ̺ + ω × (ω × ̺)] − 2

L2
e× ṙP(e · ṙP) . (5.170)

From Fig. 5.22 it follows that r1 = rP − ℓ1e. The second time-derivative is
r̈1 = r̈P − ℓ1(Ω̇ × e− Ω2e) or, with the expressions for r̈P, Ω̇ and Ω,

r̈1 = T · [r̈ + ω̇ × ̺ + ω × (ω × ̺)]

+
ℓ1

L2

{
2(e · ṙP)ṙP +

[
v2

P − 3(e · ṙP)2
]
e
}

(5.171)

where T is the symmetric tensor

T = (1 − ℓ1

L
)I +

ℓ1

L
ee . (5.172)

From this it follows that

δṙ1 = T · (δṙ + δω × ̺) . (5.173)

This concludes the kinematics analysis of the leg.
The desired equations of motion are deduced from the principle of virtual

power in its original form (5.29):

Fig. 5.22. Platform and a single representative leg
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δṙ · (mr̈− F) + δω · (J · ω̇ + ω × J · ω − M)

+
6∑

i=1

[
δṙ1i · (m1ir̈1i − F1i) + δΩi ·

(
J1i · Ω̇i + Ωi × J1i · Ωi − M1i

)]

+
6∑

i=1

δΩi ·
(
J2i · Ω̇i + Ωi × J2i ·Ωi − M2i

)
. (5.174)

The first line is the contribution of the platform, the second line the con-
tribution of the segments 1 of the legs and the third the contribution of the
segments 2. In the third line use is made of the fact that segment 2 is rotating
about a point Qi fixed in inertial space. Hence, J2i is the inertia tensor with
respect to Qi whereas J1i is the inertia tensor of segment 1 with respect to
its center of mass. Both inertia tensors are symmetric with respect to the
axis of the leg, and Ωi is perpendicular to this axis. From this it follows that
J1i · Ω̇i = J1iΩ̇i where J1i is the moment of inertia about the lateral axis.
Furthermore, Ωi × J1i · Ωi = 0. The same holds true for segment 2.

Next, the virtual power of forces and torques acting on leg i is formulated.
Omitting the index i for a while, this is the expression δṙ1 ·F+ δΩ ·M. Both
segments of the leg are subject to weight and to actuator forces. Let τe be the
actuator force acting on segment 1. Its torque about the center of mass C1 is
zero. Its virtual power is δṙ1 · τe = τδṙP · e. The virtual power of the force
−τe acting on segment 2 is zero. Weight of the two segments is expressed
in the forms −m1gev and −m2gev, respectively, where ev is the upward
vertical unit vector. The torque of −m2gev about Q is M = −m2gℓ2e × ev.
The virtual powers of these forces are −m1gδṙ1 · ev = −m1gδṙP · ev and
−m2gℓ2δΩ · e× ev, respectively.

The two sums are now combined in a single sum. With the term −mgev

added for weight of the platform (5.174) becomes

δṙ · (mr̈ + mgev − F) + δω · (J · ω̇ + ω × J · ω − M)

+

6∑

i=1

[
δṙ1i · (m1ir̈1i + m1igev)

+ δΩi · [(J1i + J2i)Ω̇i + m2igℓ2ie × ev] − τiδṙPi
· ei

]
. (5.175)

This is re-arranged such that the terms with highest-order derivatives are
separated from the rest:

m δṙ · r̈ + δω · J · ω̇ +

6∑

i=1

[m1i δṙ1i · r̈1i + (J1i + J2i) δΩi · Ω̇i]

+ δṙ · (mg ev − F) + δω · (ω × J · ω − M)

+
6∑

i=1

[m1ig δṙ1i · ev + m2igℓ2i δΩi · ei × ev − τi δṙPi
· ei] . (5.176)
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In what follows only terms with highest-order derivatives and terms with
actuator forces are considered. For δṙPi

, δṙ1i, r̈1i, δΩi and Ω̇i the expressions
in (5.165), (5.173), (5.171), (5.168) and (5.170) are substituted:

δṙPi
= δṙ + δω × ̺i ,

δṙ1i = Ti · (δṙ + δω × ̺i) , δΩi =
1

Li
ei × (δṙ + δω × ̺i) ,

r̈1i = Ti · (r̈ + ω̇ × ̺i) + . . . , Ω̇i =
1

Li
ei × (r̈ + ω̇ × ̺i) + . . . .

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(5.177)
Dots indicate terms with lower-order derivatives.

The desired equations of motion are equations for the coordinates of r in
base e0 and for the coordinates of ω in e1. Let r and ω be the column matrices
of these coordinates. Since both bases are involved the transformation matrix
(5.162) and with it the Euler–Rodrigues parameters q0, q1, q2, q3 come into
play. The vector ̺i and the inertia tensor J of the platform have in e1 constant
coordinate matrices ̺

i
and J , respectively. The matrix J is the diagonal

matrix of principal moments of inertia if the base vectors of e1 are principal
axes of inertia. The vector ω × ̺ has in e1 the coordinate matrix − ˜̺

i
ω.

The coordinate matrix in e0 is −A01 ˜̺
i
ω. Let, furthermore, ei and T i be the

coordinate matrices of ei and of Ti in e0. With this notation the vectors
(5.177) have in e0 the coordinate matrices

δṙPi
= δṙ − A01 ˜̺

i
δω ,

δṙ1i = T i

(
δṙ − A01 ˜̺

i
δω

)
, δΩi =

1

Li
ẽi

(
δṙ − A01 ˜̺

i
δω

)
,

r̈1i = T i

(
r̈ − A01 ˜̺

i
ω̇
)

+ . . . , Ω̇i =
1

Li
ẽi

(
r̈ − A01 ˜̺

i
ω̇
)

+ . . . .

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(5.178)
For (5.175) the following products are formed.

δṙ · r̈ = δṙT r̈ , δω · J · ω̇ = δωT J ω̇ ,

δṙ1i · r̈1i = δṙT
1i r̈1i =

(
δṙT + δωT ˜̺

i
A10

)
T i T i

(
r̈ − A01 ˜̺

i
ω̇
)

+ . . . ,

δΩi · Ω̇i = δΩT Ω̇ = − 1

L2
i

(
δṙT + δωT ˜̺

i
A10

)
ẽi ẽi

(
r̈ − A01 ˜̺

i
ω̇
)

+ . . . ,

δṙPi
· ei =

(
δṙT + δωT ˜̺

i
A10

)
ei .

⎫
⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(5.179)
Substitution of these expressions into (5.175) results in an equation of the
form δṙT (. . .)+δωT (. . .) = 0. The expressions in brackets are both zero. This
yields the desired equations of motion. They have the form

[
A B

BT D

] [
r̈
ω̇

]
= K τ + . . . (5.180)
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with a symmetric coefficient matrix. Each of the (3 × 3)-matrices A, B and
D contains the matrices

M i = m1i T i T i −
J1i + J2i

L2
i

ẽi ẽi (i = 1, . . . , 6) . (5.181)

With (5.172) for T i and with (1.41) for ẽi ẽi this is

M i =

[
m1i

(
1 − ℓ1i

Li

)
+

J1i + J2i

L2
i

]
I +

(
m1i

ℓ1i

Li
− J1i + J2i

L2
i

)
ei eT

i .

(5.182)
The matrices A, B and D are

A = mI +

6∑

i=1

M i , B = −
6∑

i=1

M iA
01 ˜̺

i
, D = J −

6∑

i=1

˜̺
i
A10M iA

01 ˜̺
i
.

(5.183)
In the (6 × 6) coefficient matrix K of τ = [τ1 . . . τ6]

T column i is composed
of ei placed on top of ˜̺

i
A10ei (i = 1, . . . , 6). The matrices A, B, D and

K depend on the variables r1, r2, r3, q0, q1, q2, q3. It is left to the reader to
formulate from (5.176) the terms indicated by dots. Equations (5.180) are
numerically integrated together with (5.163).

5.6.6.4 Table on Wheels

Formulate equations of motion for the three-legged table shown in Fig. 5.23a.
At the end of each leg a wheel is held in a vertical position by means of a cage
which is free to rotate about a vertical axis fixed in the leg (Fig. 5.23b). It
is assumed that the wheels are in contact with ground at all times and that
they are rolling without slipping. The inertia of cages and wheels is to be
taken into account. The legs are identical, and the main body has its center
of mass on the axis of symmetry.

Solution: The rolling condition introduces nonholonomic constraints. First,
a system with tree structure is constructed which differs from the given sys-
tem only in that the nonholonomic constraints are missing. A schematic view
is shown in Fig. 5.24 together with its directed graph. Joint 1 between ground
(body 0) and the main body 1 is a three-degree-of-freedom joint. The remain-
ing six joints are revolute joints. Body-fixed vector bases and joint variables
are explained in Fig. 5.25 which shows, in vertical projection, body 1 with
its center of mass C1 and bodies 2 and 3. On bodies i = 0, 1, 2, 4 and 6
the body-fixed base vector ei

3 is the upward vertical (in what follows it is
denoted e3). The base vectors e2

1 = e3
1 are directed along the wheel axis.

The vector R from C1 to the axis of body 2 in the leg lies under a constant
angle γ against e1

1. The angle q3 is one of the three variables in joint 1. It is
the angle of rotation of body 0 relative to body 1 (see the sense of direction
of arc 1 in the directed graph of Fig. 5.24). The other two variables in this
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joint, denoted q1 and q2, position the origin C0 of e0 (not shown) in base e1.
This means that C1 has in e0 the position vector −q1e

1
1 − q2e

1
2. The angular

variables in joints 2 and 3 are denoted q4 (cage 2 relative to table 1) and
q5 (wheel 3 relative to cage 2). For the other two cage-and-wheel units not
shown in the figure the angles corresponding to (γ, q4, q5) are (γ−120◦, q6, q7)
and (γ + 120◦, q8, q9), respectively. The angles q4, q6 and q8 are zero when
the cages are pointing radially away from C1. For the variables q1, . . . , q9

equations of motion Aq̈ = B are formulated according to Sect. 5.5.3.
Next, the nonholonomic constraint equations expressing rolling conditions

are formulated. Let ż be the absolute velocity of that point fixed on a wheel
which is, instantaneously, in contact with ground. Rolling requires that ż = 0.
Since the vector ż is in the horizontal plane this yields two scalar equations
of the form (5.131) for each wheel. The details are worked out for the wheel 3
shown in Fig. 5.25. With the vectors R and a of constant lengths and with
the wheel radius r

z = −q1e
1
1 − q2e

1
2 + R + a − re3 . (5.184)

Differentiation with respect to time yields the absolute velocity

ż = −q̇1e
1
1 − q̇2e

1
2 + q̇3

[
q1e

1
2 − q2e

1
1 − e3 × (R + a)

]
+ q̇4e3 × a− q̇5re

2
1 × e3 .
(5.185)

Rolling requires that ż · e2
1 = 0 and ż · e2

2 = 0. The scalar forms of these
conditions represent the nonholonomic constraint equations (5.131):

g1 = −q̇1 sin(q4 + γ) + q̇2 cos(q4 + γ)
+q̇3[−q1 cos(q4 + γ) − q2 sin(q4 + γ) + R cos q4 + a] − q̇4a = 0 ,

g2 = −q̇1 cos(q4 + γ) − q̇2 sin(q4 + γ)
+q̇3[q1 sin(q4 + γ) − q2 cos(q4 + γ) − R sin q4] + q̇5r = 0 .

⎫
⎪⎪⎬
⎪⎪⎭

(5.186)
Similar equations are valid for the wheels 5 and 7. They are obtained by re-
placing (γ, q4, q5) by (γ−120◦, q6, q7) and by (γ+120◦, q8, q9(t)), respectively.

Fig. 5.23. Table on wheels (a) and a single cage-and-wheel unit (b)
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Fig. 5.24. Tree-structured system without nonholonomic constraints and the as-
sociated directed graph

Fig. 5.25. Kinematics of a single cage-and-wheel unit

From the constraint equations the first Eq. (5.133), q̇ = G q̇∗, is formu-

lated. The column matrix on the left-hand side is q̇ = [ q̇1 q̇2 q̇3 . . . q̇9 ]T .
The constraint Eqs. (5.186) are most easily resolved for q̇4 and q̇5 and, sim-
ilarly, the other two sets of equations for q̇6, q̇7 and for q̇8, q̇9, respectively.
Therefore, it is decided to identify q̇ ∗ with [ q̇1 q̇2 q̇3 ]T . The matrix G is
of size (9 × 3). The (3 × 3) submatrix composed of rows 1, 2 and 3 is the
unit matrix expressing identities. Rows 4 and 5 are read from (5.186). The
elements of these rows are

G41 = − 1
a sin(q4 + γ) , G42 = 1

a cos(q4 + γ) ,

G43 = − 1
a [q1 cos(q4 + γ) + q2 sin(q4 + γ) − R cos q4 − a] ,

G51 = 1
r cos(q4 + γ) , G52 = 1

r sin(q4 + γ) ,

G53 = − 1
r [q1 sin(q4 + γ) − q2 cos(q4 + γ) − R sin q4] .

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(5.187)

Rows 6 to 9 are obtained by copying rows 4 and 5 with (γ, q4, q5) replaced by
(γ−120◦, q6, q7) and by (γ+120◦, q8, q9), respectively. It is left to the reader to
differentiate the constraint equations with respect to time and to collect the
terms forming the column matrix H . In the final expressions the angle γ can
be set equal to zero. With the matrices G and H thus obtained Eqs. (5.134)
are formulated. These equations are integrated numerically together with the
six nonholonomic constraint equations.
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Fig. 5.26. Table in initial position and trajectories of wheel contact points

Suppose that the angular velocity q̇9 of wheel 7 relative to cage 6 is a pre-
scribed function of time q̇9 = Ω(t). Then, also q9 and q̈9 are prescribed
functions of time. These functions of time have to be substituted into the
right-hand side of the equations of motion as well as into the nonholonomic
constraint equations. In the latter ones the term rq̇9 = rΩ(t) represents the
term ai0 in (5.131).

Figure 5.26 shows results of numerical integration for a system without
control on wheel 7. The triangle to the left shows the table in vertical projec-
tion in its initial position. The corners of the triangle represent the turning
points of the wheel cages (the tip of R in Fig. 5.23). The tips of the short
legs are the wheel contact points on the floor. At time t = 0 body 1 is in
pure translation with initial velocity v0. All wheels are pointing forward.
Only the front wheel is given an initial angular deviation of 10−6 rad. No
external forces are acting on the system. For masses and moments of iner-
tia realistic values were chosen. The curved lines represent the trajectories
of the wheel contact points. The results are in agreement with experience.
The initial angular deviation of the front wheel causes the wheel cages to
turn around. In this phase of motion strong nonholonomic constraint forces
are acting. The resultant torque causes the table to rotate. Once the wheels
are trailing behind the torque is almost zero. Hence, the table continues to
rotate.

5.7 Systems with Spherical Joints

Subject of investigation are tree-structured n-body systems all joints of which
are spherical joints. The systems are either coupled by a single spherical joint
to a moving carrier body 0 or they are in free flight without kinematical con-
straint to a carrier body. In Fig. 5.27 both cases are illustrated depending
on whether body zero and joint 1 exist or not. In engineering, systems with
spherical joints are relatively rare. They are studied because equations of mo-
tion can be written in such a simple form that it is possible to find analytical
solutions for some multibody problems of theoretical interest. In Sects. 5.7.3
and 5.7.4 two such problems will be analyzed in detail.
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Equations of motion are developed from the principle of virtual power,
again. Starting point are (5.30) and (5.35):

δṙT · (m r̈− F) + δωT · (J · ω̇ − M∗) = 0 , (5.188)

δṘ
T · (m R̈ − F) + δωT · (J · ω̇ − M∗) = 0 . (5.189)

In both equations M∗ is the column matrix with elements

M∗
i = Mi − ωi × Ji · ωi (i = 1, . . . , n) . (5.190)

The first equation governs motions of systems with or without coupling to in-
ertial space, whereas the second equation governs motions about the compos-
ite system center of mass of systems without coupling to inertial space. In the
first equation, r is the column matrix of the position vectors ri (i = 1, . . . , n)
of the body centers of mass in inertial space. In the second equation, R is the
column matrix of the position vectors Ri (i = 1, . . . , n) of the body centers of
mass measured from the composite system center of mass C (see Fig. 5.27).
From (5.90) and (5.91) the expressions are known:

r = r01 − (CT )T 1 , R = −(CT µ)T 1 . (5.191)

The elements of the matrix CT are the vectors dij (see (5.93) and Fig. 5.13).
The elements of CT µ are the vectors −bij on the augmented bodies of the
system (see (5.97) and Fig. 5.14). In spherical joints the centers of the joints
are chosen as articulation points. This has the consequence that the vectors
dij and bij are fixed on the respective body i (first index). The augmented
bodies are rigid bodies. For what follows equations (5.191) are written in the
forms

r = r01 − [dij ]
T

1 , (5.192)

R = [bij ]
T 1 . (5.193)

Fig. 5.27. Tree-structured system with spherical joints with or without coupling to
a carrier body 0. Composite system center of mass C of the system without body 0
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The first time derivatives of these equations are

ṙ = ṙ01 − [−dij × ωi]
T

1 = ṙ01 + [dij ]
T × ω , (5.194)

Ṙ = − [bij ]
T × ω . (5.195)

From this it follows that

δṙT = −δωT × [dij ] , (5.196)

δṘ
T

= δωT × [bij ] . (5.197)

The accelerations are written in the forms

r̈ = r̈01 −
[
d̈ij

]T

1 , (5.198)

R̈ =
[
b̈ij

]T

1 . (5.199)

Only later the explicit formula d̈ij = ω̇i ×dij +ωi × (ωi ×dij) and a similar

formula for b̈ij will be substituted.
The expressions (5.196) and (5.198) are substituted into (5.188). This

results in the equation

δωT ·
{
− [dij ] ×

[
m
(
r̈01 −

[
d̈ij

]T

1
)
− F

]
+ J · ω̇ − M∗

}
= 0 (5.200)

(in the first mixed product of vectors the multiplication symbols are inter-
changed). A system with spherical joints has the property that the angular
velocities of its bodies are unconstrained. From this it follows that the ex-
pression in curled brackets equals zero. This is the equation

[dij ] × m
[
d̈ij

]T

1 − [dij ] × (m r̈01 − F) + J · ω̇ − M∗ = 0 . (5.201)

Substitution of the expressions (5.197) and (5.199) into (5.189) results in the
similar, yet simpler equation

[bij ] × m
[
b̈ij

]T

1 − [bij ] × F + J · ω̇ − M∗ = 0 . (5.202)

For the further development of this equation see Sect. 5.7.2. Equation (5.201)
is the subject of the following section.

5.7.1 Systems Coupled to a Carrier Body

In (5.201) an important role is played by the matrix [dij ]×m
[
d̈ij

]T

. A single

element, abbreviated gij , is the vector

gij =
n∑

k=1

mkdik × d̈jk (i, j = 1, . . . , n) . (5.203)
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The indices i, j and k refer to vertices in the directed graph. Four cases have
to be distinguished: (i) i = j, (ii) vertex i < vertex j, (iii) vertex j < vertex i
and (iv) otherwise. Because of the properties of the vectors dij (see (5.94))
in case (ii) only those vertices k contribute to gij for which either j = k or
vertex j < vertex k (for all others djk equals zero). For these vertices dik

is, independent of k, identical with dij . Likewise, in case (iii) only vertices k
contribute for which either i = k or vertex i < vertex k, and for them, djk

is identical with dji. Finally, in case (iv) at least one of the two vectors dik

and djk is zero. Hence

gij =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n∑

k=1

mkdik × d̈ik (i = j)

dij ×
n∑

k=1

mkd̈jk (vertex i < vertex j)

n∑

k=1

mkdik × d̈ji (vertex j < vertex i)

0 (otherwise) .

(5.204)

Further simplifications are possible with the help of (5.95) and (5.96). In the
case vertex i < vertex j, for example, substitution yields

n∑

k=1

mkd̈jk =

n∑

k=1

mk(b̈j0 − b̈jk) = M b̈j0 (5.205)

(remember that M is the total system mass). An analogous result is obtained
for the sum in the case vertex j < vertex i. Together they yield

gij =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

n∑

k=1

mkdik × d̈ik (i = j)

Mdij × b̈j0 (vertex i < vertex j)

Mbi0 × d̈ji (vertex j < vertex i)
0 (otherwise) .

(5.206)

These expressions are substituted into (5.201). At this point the matrix for-
mulation is abandoned replacing the equation again by n individual vector
equations. The quantity M∗

i is replaced by its original expression (5.190).
The equations then read

n∑

j=1

gij −
n∑

j=1

dij × (mj r̈0 − Fj) + Ji · ω̇i + ωi × Ji · ωi = Mi (5.207)
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Fig. 5.28. Vectors locating mass particle dm and point mass mk on body i

(i = 1, . . . , n) or explicitly

Ji · ω̇i + ωi × Ji · ωi +

n∑

k=1

mkdik × d̈ik −
n∑

j=1

dij × (mj r̈0 − Fj)

+M

⎛
⎝

n∑

j: vi < vj

dij × b̈j0 + bi0 ×
n∑

j: vj < vi

d̈ji

⎞
⎠ = Mi (5.208)

(i = 1, . . . , n). The symbol j: vi < vj is a short-hand notation indicating
that the sum is taken over all vertices j satisfying the condition vertex i <
vertex j.

The two leading terms Ji · ω̇i + ωi × Ji · ωi together represent the time
derivative of the absolute angular momentum of body i with respect to its
center of mass Ci. From (3.14) it is known that

Ji · ω̇i + ωi × Ji · ωi =

∫

mi

̺ × ¨̺ dm (5.209)

where ̺ is the vector leading from Ci to the mass element dm of body i.
Proposition: The three leading terms in (5.208) together represent the time
derivative of the absolute angular momentum of the augmented body i with
respect to its inboard articulation point. This is the articulation point which
leads toward body 0. It is located by the vector dii (see Fig. 5.28).
Proof: The contribution of the distributed mass mi of body i is the integral
(5.209) with ̺ − dii instead of ̺. The mass mk of body k �= i is attached
as point mass at the articulation point which is located by the vector −dik.
Hence, the time derivative of the angular momentum of the augmented body i
with respect to its inboard articulation point is

∫

m

(̺ − dii) × (¨̺ − d̈ii)dm +

n∑

k=1
�=i

mkdik × d̈ik

=

∫

m

̺ × ¨̺ dm + midii × d̈ii +

n∑

k=1
�=i

mkdik × d̈ik

= Ji · ω̇i + ωi × Ji · ωi +

n∑

k=1

mkdik × d̈ik . (5.210)

End of proof.
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Let Ki be the inertia tensor of the augmented body i with respect to its
inboard articulation point. It is related to the central inertia tensor Ji of the
original body i through the equation

Ki = Ji +

n∑

k=i

mk

(
d2

ik I − dikdik

)
(i = 1, . . . , n) . (5.211)

With this tensor the expression (5.210) is

Ji · ω̇i + ωi × Ji · ωi +

n∑

k=i

mkdik × d̈ik = Ki · ω̇i + ωi × Ki · ωi . (5.212)

In (5.208) the term involving r̈0 is reduced with the help of (5.95) and (5.96)
to

n∑

j=1

dij × mj r̈0 =
n∑

j=1

mj(bi0 − bij) × r̈0 = Mbi0 × r̈0 . (5.213)

In the sum over dij × Fj in (5.208) the vectors dij are zero for the index
combinations given in (5.94). Therefore, this sum is

n∑

j=1

dij × Fj = dii × Fi +

n∑

j: vi < vj

dij × Fj . (5.214)

With this expression and with (5.213) and (5.212) the equations of motion
(5.208) take the form

Ki ·ω̇i + ωi×Ki ·ωi + M

⎡
⎣

n∑

j: vi < vj

dij×b̈j0 + bi0×

⎛
⎝−r̈0 +

n∑

j: vj < vi

d̈ji

⎞
⎠
⎤
⎦

+ dii×Fi +

n∑

j: vi < vj

dij×Fj = Mi (i = 1, . . . , n) . (5.215)

The final form is obtained by substituting the expressions

b̈j0 = ω̇j × bj0 + ωj × (ωj × bj0)

d̈ji = ω̇j × dji + ωj × (ωj × dji)

}
(i, j = 1, . . . , n) . (5.216)

This results in the following set of coupled differential equations for the an-
gular velocities of the bodies:
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Ki · ω̇i + M

⎡
⎣

n∑

j: vi < vj

dij × (ω̇j × bj0) + bi0 ×
n∑

j: vj < vi

ω̇j × dji

⎤
⎦

+ ωi × Ki · ωi

+ M

⎧
⎨
⎩

n∑

j: vi < vj

dij × [ωj × (ωj × bj0)] + bi0 ×
n∑

j: vj < vi

ωj × (ωj × dji)

⎫
⎬
⎭

= Mbi0 × r̈0 + Mi − dii × Fi −
n∑

j: vi < vj

dij × Fj (i = 1, . . . , n) . (5.217)

In the first line the terms involving angular accelerations are collected. These
terms can be represented in the form

n∑

j=1

Kij · ω̇j (i = 1, . . . , n) (5.218)

with the tensors

Kij =

⎧
⎪⎪⎨
⎪⎪⎩

Ki (i = j)
M(bj0 · dij I − bj0dij) (vi < vj)
M(dji · bi0 I − dji bi0) (vj < vi)
0 (else) .

(5.219)

These tensors satisfy the relationship Kji = Kij (conjugate of Kij).
The n first-order differential equations (5.217) (equivalent to 3n scalar

equations) have to be supplemented by scalar differential equations which
relate angular velocities ωi to the time derivatives of generalized coordinates.
If Euler–Rodrigues parameters are chosen the kinematic differential equations
are n sets of equations, each having the form (2.119) with an index i attached
to ω1,2,3 and to q0,1,2,3.

This section is closed with an interpretation of (5.215). An individual
equation labeled i is rearranged in the form

M(−bi0) ×

⎛
⎝r̈0 −

n∑

j: vj < vi

d̈ji

⎞
⎠ + Ki · ω̇i + ωi × Ki · ωi = MA

i (5.220)

with

MA
i = Mi − dii × Fi −

n∑

j: vi < vj

dij × (M b̈j0 + Fj) . (5.221)

It will now be shown that this has the form of the angular momentum theorem
for a single rigid body if as reference point for angular momentum and for
external torques a body-fixed point other than the center of mass is chosen.
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Fig. 5.29. Interpretation of M b̈j0 +Fj as force applied to the suspension point of
a pendulum

In (3.35) this law has been written in the form

m̺C × r̈A + J
A · ω̇ + ω × J

A · ω = MA , (5.222)

where A is a body-fixed reference point, r̈A its absolute acceleration, J
A the

inertia tensor and MA the external torque, both with respect to A, and ̺C

the vector from A to the center of mass. Equation (5.220) has this form if the
rigid body is understood to be the augmented body i and if, furthermore,
the inboard articulation point of the body is chosen as reference point A.
The mass of the body is then M and its center of mass is the barycenter Bi.
The vector from the inboard articulation point to the barycenter is −bi0 (see
Fig. 5.14). Equation (5.92) shows that the sum of vectors in parentheses is
the absolute acceleration of the inboard articulation point A. Thus, the left-
hand side of (5.220) has the desired form. Consider now the torque MA

i . It
contains, first, the resultant torque Mi about the body i center of mass Ci.
By definition, the line of action of the external force Fi is passing through the
body center of mass so that −dii×Fi is its torque with respect to the inboard
articulation point. Also the remaining terms have the desired form in that
the vectors −dij are pointing away from the inboard articulation point on
body i. For values of j satisfying the condition vertex i < vertex j the torque
−dij×(M b̈j0+Fj) can be interpreted as follows. Imagine that the augmented
body j is isolated from the system and suspended as a pendulum in inertial
space at its own inboard articulation point. In Fig. 5.29 this pendulum is
shown together with bodies i and 0 and with the paths between them. The
augmented body j is subject to the external force Fj . If now the augmented
body j with mass M and with center of mass Bj is rotating with its actual
angular velocity and angular acceleration then it is exerting on its suspension
the force M b̈j0 + Fj . This force has to be shifted until its line of action is
passing through the articulation point of body i which is leading toward
body j (point Q in Fig. 5.29). It then produces on body i the torque −dij ×
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(M b̈j0 + Fj) with respect to point A. This is the physical interpretation of
the last term in MA

i .

Problem 5.12. The n Eqs. (5.217) are combined in the matrix form K·ω̇ = M+Q.
Here, K is the matrix of the tensors Kij defined in (5.218), and Q is the abbreviation
for the terms other than external torques. Imagine that each spherical joint is
converted into a revolute joint by directing through the center of the spherical joint
an axis fixed on the two bodies. The axis constrains the relative angular velocity of
the bodies to have the direction of the axis. It causes a constraint torque normal
to the axis. In joint a (a = 1, . . . , n) the unit vector along the axis is called pa; the
angle of rotation of body i−(a) relative to body i+(a) is called qa and the constraint
torque acting on body i+(a) is called Ya. Starting from the equation K ·ω̇ = M+Q
develop equations of motion of the form A q̈ = B. Compare with the equations of
motion developed in Sect. 5.5.3 for the same system.

5.7.2 Systems Without Coupling to a Carrier Body

Subject of investigation are systems of the kind shown in Fig. 5.27 without
coupling to a carrier body 0 by a spherical joint 1. Starting point for the
development of equations of motion is (5.202):

[bij ] × m
[
b̈ij

]T

1 − [bij ] × F + J · ω̇ − M∗ = 0 . (5.223)

In what follows the matrix [bij ] × m
[
b̈ij

]T

is considered. Its elements, ab-

breviated gij , are the vectors

gij =

n∑

k=1

mkbik × b̈jk (i, j = 1, . . . , n) . (5.224)

In the case i �= j this can be simplified substantially. For this purpose the
directed system graph is divided into two parts by drawing a line across an
arbitrary arc on the path between the vertices i and j (see Fig. 5.30). Let
the set of indices of all vertices of the part containing vertex i be denoted by
I and the set of indices of all vertices of the other part by II. Then, for all
indices k belonging to I (abbreviated k ∈ I) the identity bjk = bji holds and
for all indices k ∈ II the identity bik = bij holds. Hence, gij becomes

gij =

(
∑

k∈I

mkbik

)
× b̈ji + bij ×

∑

k∈II

mkb̈jk (i �= j) . (5.225)

Fig. 5.30. Sets I and II of vertex indices related to two vertices i and j �= i
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The two sums are written in the forms

∑

k∈I

mkbik =
n∑

k=1

mkbik −
∑

k∈II

mkbik ,

∑

k∈II

mkb̈jk =

n∑

k=1

mkb̈jk −
∑

k∈I

mkb̈jk .

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(5.226)

According to (5.95) the first sum on the right-hand side in each equation
equals zero. In the second sums the identities from above are used. The
equations then read

∑

k∈I

mkbik = −bij

∑

k∈II

mk ,
∑

k∈II

mkb̈jk = −b̈ji

∑

k∈I

mk . (5.227)

With these expressions, gij takes the final form

gij = −
(
∑

k∈I

mk +
∑

k∈II

mk

)
bij × b̈ji = −Mbij × b̈ji (i �= j) . (5.228)

These expressions are substituted into (5.223). At this point the matrix for-
mulation is abandoned replacing the equation again by n individual vector
equations. The quantity M∗

i is replaced by its original expression (5.190).
The equations then read

n∑

j=1

gij −
n∑

j=1

bij × Fj + Ji · ω̇i + ωi × Ji · ωi = Mi (5.229)

(i = 1, . . . , n) or, with the previous results for gij ,

Ji · ω̇i + ωi × Ji · ωi +
n∑

k=1

mkbik × b̈ik

−M

n∑

j=1
�=i

bij × b̈ji = Mi +

n∑

j=1

bij × Fj (i = 1, . . . , n) . (5.230)

Compare this with (5.208) for systems coupled to a carrier body 0 by a spher-
ical joint 1. Through the arguments leading to (5.210) it has been proven that
the sum of the three leading terms in (5.208) represents the time derivative of
the angular momentum of the augmented body i with respect to the inboard
articulation point. When −dik is replaced by bik the sum of the three lead-
ing terms in (5.230) is obtained. Whereas the vectors −dik locate the mass
points mk relative to the inboard articulation point the vectors bik locate the
same mass points relative to the barycenter Bi. From this it follows that the
sum of the three leading terms in (5.230) represents the time derivative of

the angular momentum of the augmented body i with respect to Bi. Let K̂i
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be the inertia tensor of the augmented body i with respect to Bi. It is related
to the central inertia tensor Ji of the original body i through the equation

K̂i = Ji +

n∑

k=i

mk(b2
ik I − bikbik) (i = 1, . . . , n) . (5.231)

In terms of K̂i equations (5.230) have the form

K̂i · ω̇i + ωi × K̂i · ωi − M
n∑

j=1
�=i

bij × b̈ji = Mi +
n∑

j=1

bij × Fj (5.232)

(i = 1, . . . , n). For b̈ji the expression ω̇j × bji + ωj × (ωj × bji) is substi-
tuted. This results in the following set of coupled differential equations for
the angular velocities of the bodies:

K̂i · ω̇i − M

n∑

j=1
�=i

bij × (ω̇j × bji)

+ωi × K̂i · ωi − M

n∑

j=1
�=i

bij × [ωj × (ωj × bji)]

= Mi +

n∑

j=1

bij × Fj (i = 1, . . . , n) . (5.233)

In the first sum bij × (ω̇j × bji) = (bji · bij I − bjibij) · ω̇j . The terms
involving angular accelerations are collected in the form

n∑

j=1

Kij · ω̇j (i = 1, . . . , n) (5.234)

with tensors

Kij =

{
K̂i (i = j)
−M(bji · bij I − bjibij) (i �= j) .

(5.235)

These tensors satisfy the relationship Kji = Kij (conjugate of Kij).
Equations (5.233) are complemented by the single Eq. (5.34) for the mo-

tion of the composite system center of mass. In addition, kinematic differential
equations have to be formulated. They are identical with the ones added to
(5.218) so that no further comment is needed.

In what follows an interpretation is given to (5.232). A single equation
labeled i is written in the form

K̂i · ω̇i + ωi × K̂i · ωi = MB
i (i = 1, . . . , n) (5.236)
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Fig. 5.31. Interpretation of M b̈ji + Fj as force applied to the suspension point of
a pendulum

with

MB
i = Mi + bii × Fi +

n∑

j=1
�=i

bij × (M b̈ji + Fj) . (5.237)

This has the form of the angular momentum theorem for a single rigid body
in the special case when the center of mass is used as reference point for
angular momentum and for external torques. The role of the rigid body is
played by the augmented body i. The reference point for K̂i is, indeed, its
center of mass, i.e. the barycenter Bi. The torque MB

i contains, first, the
external torque Mi. By definition, the line of action of the external force Fi

is passing through the body center of mass so that bii ×Fi is its torque with
respect to Bi. Also the remaining terms have the desired form in that the
vectors bij are pointing away from Bi. The torque bij × (M b̈ji +Fj) can be
interpreted as follows. Imagine that the augmented body j is isolated from the
system and suspended as a pendulum in inertial space at its articulation point
which is leading toward body i. In Fig. 5.31 this pendulum is shown together
with body i and with the path between the two bodies. The augmented
body j is subject to the external force Fj . If now the augmented body j
with mass M and with center of mass Bj is rotating with its actual angular
velocity and angular acceleration then it is exerting on its suspension the
force M b̈ji +Fj . This force has to be shifted until its line of action is passing
through the point Q in Fig. 5.31. It then produces on body i the torque
bij × (M b̈ji + Fj) with respect to Bi. This is the physical interpretation of
the last term in MB

i .
This section closes with an observation which establishes a simple rela-

tionship between systems with and without coupling to a carrier body (Wit-
tenburg [93]). Imagine that to a system without such coupling a point mass
m0 → ∞ is attached at some point A fixed on an arbitrarily chosen body,
say body 1. This point mass has the effect that point A of body 1 is fixed in
inertial space (it is assumed that m0 has zero velocity). Furthermore, m0 does
not impose any kinematical constraint on the rotational motion of body 1.
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Thus, the infinite mass is equivalent to a spherical joint 1 which connects
body 1 at point A with inertial space. This means that the equations of mo-
tion of a system without spherical joint 1 but with a point mass m0 → ∞ are
identical with the equations of motion of a system with a spherical joint 1
connecting body 1 to a stationary carrier body. Formally, this is shown as
follows. With m0 → ∞ fixed at point A on body 1 this point becomes the
center of mass C1 of body 1. Furthermore, on each augmented body i the
barycenter Bi coincides with the inboard articulation point (see Fig. 5.14).
From this it follows that bi0 = 0 (i = 1, . . . , n). Equation (5.96) yields

bij = −dij (i, j = 1, . . . , n; m0 → ∞) . (5.238)

This proves that the Eqs. (5.202) for the system with point mass m0 are
identical with (5.201) for the system with spherical joint 1 in the case r̈0 ≡ 0.
In the final Eqs. (5.217) the vectors dij appear in combination with the
vectors bj0. The vector bj0 is defined on the augmented body j for the system
without point mass m0 whereas dij is, according to (5.238), the vector −bij

on the augmented body i of the system with infinite mass m0. The matrix µ
of this system (see (5.38)) has the elements µij = δij − δi1 (i, j = 1, . . . , n).

Equations (5.233) were published by Roberson and Wittenburg [66]. The
equations marked the starting point for the development of the entire mate-
rial presented in Chaps. 5 and 6 of this book. The simple form of the equations
makes it possible to solve some multibody problems in analytical form. Sec-
tions 5.7.3 and 5.7.4 are devoted to two such problems. The first numerical
simulation based on the equations was made by NASA in 1968. The system
under investigation was a satellite consisting of a small central body with
four very long and very flexible spaghetti-like antennas. It was feared that
slow rotational motions of the satellite might cause violent bending vibra-
tions of the antennas. Each antenna was modeled as a chain of four rigid
rods interconnected with one another and with the central body by spherical
joints and by springs and dampers in the joints. Numerical simulations of
the resulting system of seventeen bodies with a variety of initial conditions
showed that no built-up of large bending vibrations was to be expected. The
simulation required 180 min of computation time per minute of real time.
The subsequent performance of the satellite in orbit was successful.

Problem 5.13. n identical homogeneous rods of length ℓ, mass m and central
moment of inertia J (about an axis perpendicular to the rod) are connected by
spherical joints to form a chain. Give a formula for the central moment of inertia K̂i

(about an axis perpendicular to the rod) of the ith augmented body (i = 1, . . . , n).

Problem 5.14. Write a computer program for the calculation of the constant co-
ordinates of the vectors dij and bij and of the tensors Ki and K̂i (i, j = 1, . . . , n)
in the respective body-fixed bases ei. Use as input data the masses and inertia
components of the individual bodies and the constant coordinates of the vectors
cia (i, a = 1, . . . , n).
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5.7.3 Permanent Rotations of a Two-Body System

Subject of investigation is a system of two rigid bodies which are intercon-
nected by a spherical joint. The system is not constrained to inertial space.
It is free of external forces and torques, and there is no internal torque in the
joint. Rotational motions of the system are governed by (5.233). Omitting

the hat of K̂i they read

Ki · ω̇i + Mbij × (bji × ω̇j) (5.239)

= −ωi × Ki · ωi + Mbij × [ωj × (ωj × bji)] (i, j = 1, 2; j �= i) .

It is to be investigated whether the system can be in a state of motion called
permanent rotation. By this is meant that both bodies have identical and
constant angular velocities ω1 ≡ ω2 ≡ ωe = const. During permanent rota-
tion the system moves as if it were a single rigid body. The relative attitude
of the two bodies is unknown, however, and so is the direction of e relative
to the two bodies. The unknowns must be determined from (5.239) which
under the said conditions reduce to

e× Ki · e− Mbij × [e× (e × bji)] = 0 (i, j = 1, 2; j �= i) . (5.240)

In what follows only the most general case is considered in which none of
the bodies is inertia-symmetric and in which the spherical joint is neither on
a principal axis of inertia nor in the plane of two principal axes of any of
the two bodies7. Such a system has altogether 13 parameters, namely three
principal moments of inertia for each augmented body, three components for
each of the vectors b12 and b21 and the total system mass M = m1 + m2.
In Fig. 5.32 two bodies and the relevant vectors are schematically shown. On
each body the spherical joint is on the dotted line connecting the body center
of mass and the barycenter. The vectors b12 and b21 are pointing from the
barycenters to the spherical joint.

Fig. 5.32. Two-body system in permanent rotation

7 For special cases and for more details on the general case see Wittenburg [95].
The method of solution presented here is simpler.
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Scalar multiplications of (5.240) with e and with bij (j �= i) produce the
three equations

e · b12 × b21 = 0 , (5.241)

b12 · e× K1 · e = 0 , b21 · e× K2 · e = 0 . (5.242)

These equations state that the five vectors b12, b21, e, K1 · e and K2 · e
are coplanar. The common plane is the plane of the centers of mass of the
two bodies and of the spherical joint. For coplanar vectors the identity holds
bij × [e× (e× bji)] = −e× bjibij · e. For verification write e× bji = c and
use that bij · c = 0. Hence, (5.240) becomes

e× (Ki + Mbjibij) · e = 0 (i, j = 1, 2; j �= i) . (5.243)

The sum of these two equations reads

e× [K1 + K2 + M(b12b21 + b21b12)] · e = 0 . (5.244)

It is left to the reader to show that the symmetric tensor in brackets represents
the central inertia tensor of the composite system. The equation states what
is known anyway, namely that e has the direction of a principal axis of the
quasi-rigid two-body system. The equation will not be used further. The
tensors in the two Eqs. (5.243) are not symmetric.

In what follows Eqs. (5.242) are considered. Omitting indices each of the
equations requires that on an augmented body three vectors b, e and K ·e be
coplanar. In the x, y, z-system of principal axes of inertia only the vector e
is unknown. It can be predicted that the condition is satisfied by a one-
parametric manifold of vectors e with the following properties. The manifold
is the intersection curve of a unit sphere with a (noncircular) double cone
because the vector −e satisfies the condition if the vector e does. Particular
vectors belonging to the manifold are the eight vectors along principal axes
and along ±b. An explicit expression for the manifold is found by resolving
the three vectors in the x, y, z-system. The vector e on the unit sphere sur-
rounding the origin is specified by its geographical longitude u and latitude
v (the x, y-plane is considered as equatorial plane with u = 0 on the x-axis).
With these definitions and with principal moments of inertia Kx, Ky, Kz of
the augmented body the vectors e and K · e have the coordinates

e : [cosu cos v , sin u cos v , sin v] , (5.245)

K · e : [Kx cosu cos v , Ky sin u cos v , Kz sin v] . (5.246)

A unit vector e∗ along the given vector b has given coordinates (u∗, v∗).
Its x, y, z-coordinates are those of e with the asterisk added everywhere.
Coplanarity of the three vectors requires that the (3× 3)-determinant of the
coordinates be zero. This equation is factored in the two equations cos v = 0
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and

[(Kx−Kz) sin u∗ cosu + (Kz−Ky) cosu∗ sin u] cos v∗ sin v

− (Kx−Ky) sin v∗ sin u cosu cos v = 0 . (5.247)

The equation cos v = 0 yields as solutions only the poles on the z-axis. In
(5.247) the originally suppressed index i is given back to all parameters and
variables. Each of the resulting two equations is solved for vi as function of ui:

vi(ui) = tan−1

(
pi sin ui

tan ui − qi

)
(i = 1, 2) (5.248)

with constants

pi =
(Kix − Kiy) tan v∗i
(Kiz − Kiy) cosu∗

i

, qi =
Kix − Kiz

Kiy − Kiz
tan u∗

i (i = 1, 2) .

(5.249)
Each equation describes the predicted one-parametric manifold on the re-
spective augmented body i. The poles on the z-axis are the points where
tan ui = qi.

For every value of u1 (5.248) yields two vectors e. Each vector is associated
with a plane fixed on body 1 in which b12, e and K1 ·e are located. Likewise,
for every value of u2 (5.248) yields two vectors e and with each of them
a plane fixed on body 2 in which b21, e and K2 · e are located. Consider one
of the planes on body 1 and one of the planes on body 2. Equation (5.241)
requires that (i) the two planes are coplanar and that (ii) the vector e in one
plane coincides with the vector e in the other plane. These requirements are
satisfied in two relative configurations which differ by a 180◦-rotation of one
plane about e.

Now, the Eqs. (5.243) are considered. The vectors e × Ki · e and e × bji

(i = 1, 2, j �= i) are collinear (perpendicular to the plane). Hence, the two
scalar equations must be satisfied:

(e× K1 · e)2 − (Me× b21b12 · e)2 = 0 ,
(e× K2 · e)2 − (Me× b12b21 · e)2 = 0 .

}
(5.250)

For the vectors coordinates are calculated from (5.245) and (5.246) with vi

given by (5.248). Thus, the two equations are equations for the two unknowns
u1 and u2. They must be solved numerically. For a simple algorithm see Wit-
tenburg [95]. Nothing is known about the number of real solutions. In some
numerical examples 36 different states of permanent rotation were found.

5.7.4 Multibody Satellite in a Circular Orbit

The problem to be investigated is explained, first, for the simple case when
instead of a multibody system a single rigid body is considered. The body is
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moving as a satellite in a circular orbit about the Earth. The gravitational
force is given by Newton’s law. This means that a mass particle dm of the
satellite at a radius vector r from the center of Earth is attracted by the force

dF = −κ
dm r

r3
(5.251)

where κ denotes the product of the universal gravitational constant and the
mass of Earth. The relationship points out the physical phenomenon to be
examined. Particles of identical mass but at different locations within the
satellite experience different gravitational attraction forces. A typical length
of the satellite is on the order of several meters. If the radius of the orbit
trajectory is 6.500 km then the ratio between the two lengths is on the order
of 10−6. The difference between the gravitational attraction forces acting on
two particles of identical mass is, therefore, exceedingly small compared with
the attraction force itself. The difference can safely be neglected when the
orbit trajectory is determined. In this part of the problem, therefore, for all
mass particles the radius vector r is replaced by the radius vector rC of the
satellite center of mass. This simplification results in a Keplerian orbit for the
center of mass. In the present case, in particular, it is assumed that the orbit
is circular so that the magnitude of rC is independent of time. The satellite
is moving along its trajectory with a constant orbital angular velocity ω0

whose magnitude depends on the orbit radius rC. The relationship is given
by Kepler’s third law

ω2
0 =

κ

r3
C

. (5.252)

The nonhomogeneity of the gravitational field over the volume occupied by
the satellite must not be neglected, however, when rotational motions of the
satellite are of concern. The force dF applied to a mass particle dm causes
a torque about the body center of mass. When this is integrated over the
entire mass a resultant gravity gradient torque is obtained which, in general,
is not zero. Although this torque is extremely small it must not be neglected
for the simple reason that it is the only external torque on the body (it
is assumed here that there are no other torques such as those caused by
atmospheric drag, by solar pressure on the satellite surface or by interaction
with the Earth’s magnetic field, for instance). From the explanation given for

Fig. 5.33. Body in circular Earth orbit. Orbital reference frame e
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the resultant gravity gradient torque it follows at once that it is a function of
the angular orientation of the body relative to Earth. For the description of
this orientation the orbital reference frame e shown in Fig. 5.33 is used. Its
origin coincides at all times with the satellite center of mass, and it is rotating
relative to Earth with the orbital angular velocity ω0. The base vector e3 is
directed along the local outward vertical and the vector e2 along ω0. Let
J and ω be the central inertia tensor of the body and its absolute angular
velocity, respectively. If Mgrav denotes the resultant gravity gradient torque
then rotational motions of the body are governed by the equation

J · ω̇ + ω × J · ω = Mgrav . (5.253)

Relative to the orbital reference frame the body is rotating with an angular
velocity ωrel. Hence, ω = ω0 + ωrel and ω̇ = ω̇rel. The rotation relative to
the orbital reference frame is, therefore, governed by the equation

J · ω̇rel + (ω0 + ωrel) × J · (ω0 + ωrel) = Mgrav . (5.254)

It is interesting to investigate whether this equation has the solution ωrel ≡ 0,
i. e. whether the satellite can remain stationary relative to the orbital ref-
erence frame. Such a state exists and is called relative equilibrium position.
From (5.254) follows as condition for relative equilibrium the equation

ω0 × J · ω0 = Mgrav . (5.255)

The quantity on the right-hand side has been shown to be a function of the
angular orientation of the body relative to the orbital reference frame. The
same is true for the term on the left-hand side since ω0 has constant coordi-
nates in the orbital reference frame whereas J has constant inertia components
in a body-fixed frame of reference. The equation is, therefore, determining
the unknown angular orientation in the state of relative equilibrium. Relative
equilibrium positions of this kind can be observed in nature. The moon is in
relative equilibrium in its Earth orbit and the planet Mercury in its orbit
about the sun. Relative equilibrium positions have considerable practical im-
portance for the performance of orbiting spacecraft. In the design phase of
orbiting artificial satellites for observation and signal transmission purposes
the relative equilibrium positions must be known in advance. Only then can
cameras and antennas be mounted in such a way that during flight they are
always pointing vertically toward Earth.

After these introductory remarks the general problem to be treated can
be formulated. Given is a multibody system with tree structure and with
spherical joints without any internal joint torques. Each individual body is
a gyrostat with rotors whose angular velocities relative to the carrier body are
kept constant by control devices. The entire system is moving as a satellite
in a circular orbit about the Earth. The questions to be answered are: Does
the system possess relative equilibrium positions in the sense that all carriers



168 5 General Multibody Systems

of the system are simultaneously in a state of relative equilibrium with the
rotors rotating relative to the carriers? If so, how do the relative equilibrium
positions depend upon the parameters of the system, in particular upon the
angular momenta of the rotors relative to the carriers? Mutual gravitational
attraction forces between bodies of the system can be neglected.

The solution will be found by following the line of arguments described
above for the single-body satellite. First, equations of rotational motions
of the system will be formulated. For the external gravitational forces and
torques explicit expressions will be developed. From the resulting equations
equilibrium conditions will be obtained by introducing the identities ωi ≡ ω0

(i = 1, . . . , n) for the absolute angular velocities of all carriers of the system.
The equations of rotational motions are developed from (5.233). The external
forces Fi and Mi (i = 1, . . . , n) caused by the Earth’s gravitational field will
be examined later. The only other point requiring attention is the presence
of rotors on the bodies. Equation (5.233) governs a system without rotors.
It is a simple matter, however, to add terms which render the equations
applicable to the present case. For this purpose it must be remembered that,
except for the formulation, (5.233) and (5.230) are identical. In (5.230) the
terms Ji · ω̇i + ωi × Ji · ωi represent the time derivative L̇i of the absolute
angular momentum Li of body i with respect to its center of mass. If body i is
a gyrostat consisting of a carrier and of rotors with constant angular velocities
relative to the carrier then the absolute angular momentum is composed of
two parts (see Sect. 4.6). The first part is the angular momentum of the body
(carrier plus rotors) when all rotors are “frozen”. This part is the quantity
called Li. The second part is the resultant angular momentum relative to the
carrier of all rotors mounted on the carrier. It is a vector hi whose coordinates
in a carrier-fixed reference frame are constant. Its time derivative in inertial
space is ωi×hi. Thus, L̇i has to be replaced by L̇i+ωi×hi. The vector-cross
product is the only additional term caused by the rotors. With this addition
and with (5.234) the rotational equations (5.233) become

n∑

j=1

Kij · ω̇j + ωi × (K̂i · ωi + hi) − M

n∑

j=1
�=i

bij × [ωj × (ωj × bji)]

=

n∑

j=1

bij × Fj + Mi (i = 1, . . . , n) . (5.256)

Next, expressions are developed for Fi and Mi (i = 1, . . . , n). They are
independent of the rotations of the rotors relative to the carriers since only the
mass distribution of the system is relevant. Therefore, the rotors are assumed,
for the moment, to be “frozen”. Figure 5.34 shows the system together with
the orbital reference frame e whose origin is at the composite system center of
mass at the radius vector rC from the Earth’s center. The magnitude rC of rC

is constant by assumption. As before, the vector from the system center of
mass to the body i center of mass is called Ri (i = 1, . . . , n). The location of
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the mass particle dm on body i is defined by the body-fixed radius vector ̺.
The gravitational force acting on the mass element is

dFi = −κ
rC + Ri + ̺

|rC + Ri + ̺|3 dm . (5.257)

The denominator is developed into the Taylor series

|rC + Ri + ̺|3 = [(rC + Ri + ̺)2 ]3/2 = r3
C

[
1 +

2e3 · (Ri + ̺)

rC
+ . . .

]3/2

= r3
C

[
1 +

3e3 · (Ri + ̺)

rC
+ . . .

]
. (5.258)

Dots indicate terms of second and higher order in |Ri + ̺|/rC which can be
neglected (in the numerical example given earlier the second-order terms are
on the order of 10−12). With this expression dFi takes the form

dFi = − κ

r3
C

(rC + Ri + ̺)

[
1 − 3e3 · (Ri + ̺)

rC

]
dm + . . . . (5.259)

When this is multiplied out the term (Ri + ̺)2/rC can be neglected against
|Ri + ̺| as a second-order term. The factor in front of the first bracket is
−ω2

0 (see (5.252)). Hence,

dFi = −ω2
0[rC − 3e3e3 · (Ri + ̺) + Ri + ̺] dm + . . . . (5.260)

Now, the integration is performed over the total mass of body i. Recognizing
that

∫
mi

̺dm = 0 we get

Fi = −ω2
0mi(rC + Ri − 3e3Ri · e3) (i = 1, . . . , n) . (5.261)

The force would simply be −ω2
0mirC = −κmirC/r3

C if the total mass of
body i were to be concentrated at the composite system center of mass. The

Fig. 5.34. Multi-body satellite in a circular orbit with vectors locating a mass
particle on body i
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remaining terms which are smaller by a factor on the order of 10−6 in the
example given earlier are caused by the finite dimensions of the system.

Next, the torque Mi with respect to the body i center of mass is evaluated.
It is represented by the integral

Mi =

∫

mi

̺ × dFi (i = 1, . . . , n) (5.262)

or with (5.260)

Mi = −ω2
0

∫

mi

̺ × [rC − 3e3e3 · (Ri + ̺) + Ri + ̺] dm . (5.263)

Because of
∫

mi
̺ dm = 0 this is equal to

Mi = 3ω2
0

∫

mi

̺ × e3e3 · ̺ dm = −3ω2
0e3 ×

∫

mi

̺̺ dm · e3 . (5.264)

This can also be written in the form

Mi = 3ω2
0e3 ×

∫

mi

(̺ 2
I − ̺̺) dm · e3 (5.265)

since e3 × I · e3 = e3 × e3 is equal to zero. The integral represents the central
inertia tensor Ji of body i. Thus, the final result is obtained

Mi = 3ω2
0e3 × Ji · e3 (i = 1, . . . , n) . (5.266)

It confirms the statement made earlier that in a nonhomogeneous gravita-
tional field a body of finite dimensions is, in general, subject to a very small
torque which is a function of the angular orientation of the body relative to
the orbital reference frame. The magnitude of the torque is mainly determined
by ω0 which for near-Earth orbits is on the order of 2π/(100 min)≈ 10−3/s.

Before substituting the expressions for Fi and Mi into the equations of
motion let us briefly return to the special case of a single rigid body in orbit.
Its equation of motion (5.253) is now

J · ω̇ + ω × J · ω = 3ω2
0e3 × J · e3 . (5.267)

From this equation it follows that two different bodies with identical ratios
J1:J2:J3 of principal moments of inertia move with identical angular velocities
ω(t) provided ω0 and the initial conditions are also identical. The size of the
bodies has no influence. With ω = ω0e2 the equilibrium condition (5.255) for
the single rigid body becomes

e2 × J · e2 = 3e3 × J · e3 . (5.268)

Either side of the equation is zero if e2 as well as e3 are parallel to principal
axes of inertia of the body. Then, all three principal axes of inertia are paral-
lel to the base vectors e1,2,3. It can be shown that these positions of relative
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equilibrium are the only solutions of the equilibrium condition. For this pur-
pose the equation is decomposed into three scalar equations for coordinates
in the orbital reference frame. The coordinate matrices of e2, e3 and J are

e2 =

⎡
⎣

0
1
0

⎤
⎦ , e3 =

⎡
⎣

0
0
1

⎤
⎦ , J =

⎡
⎣

J11 −J12 −J13

−J12 J22 −J23

−J13 −J23 J33

⎤
⎦ . (5.269)

The elements of J are, of course, still unknown because the equilibrium posi-
tion is unknown. Equation (5.268) yields ẽ2J e2 = 3ẽ3J e3 or after multiplying
out both sides ⎡

⎣
J23

0
J12

⎤
⎦ = 3

⎡
⎣
−J23

J13

0

⎤
⎦ . (5.270)

Hence, in a position of relative equilibrium all three products of inertia J12,
J13 and J23 are zero. This proves that in positions of relative equilibrium all
principal axes of inertia are parallel to the base vectors e1,2,3. It would now
be necessary to investigate the stability of these equilibrium positions. This
will not be done here. The reader is referred to Magnus [51] and Beletski [5].

We return now to the equations of motion (5.256) with Fi and Mi given by
(5.261) and (5.266), respectively. First, the sum

∑n
k=1 bik ×Fk is examined.

For Rk the expression
∑n

j=1 bjk is substituted (see (5.98)). This yields

n∑

k=1

bik×Fk = −ω2
0

n∑

k=1

bik×

⎛
⎝rC +

n∑

j=1

bjk − 3e3

n∑

j=1

bjk · e3

⎞
⎠mk . (5.271)

The contribution of the term involving rC is zero because of the relationship∑n
k=1 bikmk = 0 (see (5.95)). The remaining expression is rewritten in the

form

n∑

k=1

bik × Fk = −ω2
0

n∑

j=1

n∑

k=1

mkbik × bjk − 3ω2
0e3 ×

n∑

j=1

n∑

k=1

mkbikbjk · e3 .

(5.272)
The first term contains the sum

∑n
k=1 mkbik × bjk. Except for the absence

of differentiation dots it is identical with gij in (5.224). In the case j �= i this
has been reduced to (5.228). The same line of arguments is applicable here.
Hence,

n∑

k=1

mkbik × bjk = −Mbij × bji (i, j = 1, . . . , n; i �= j) . (5.273)

In the case j = i the sum is zero. The second term in (5.272) contains the
sum

∑n
k=1 mkbikbjk, which differs from the one just considered only by the

multiplication symbol. The arguments leading from (5.224) to (5.228) can,
again, be used analogously. This yields
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n∑

k=1

mkbikbjk =

⎧
⎪⎨
⎪⎩

n∑

k=1

mkbikbik (i = j)

−Mbijbji (i �= j)

(i, j = 1, . . . , n) . (5.274)

Combining this and (5.273) with (5.272) one obtains the expression

n∑

k=1

bik × Fk = −3ω2
0e3 ×

n∑

k=1

mkbikbik · e3

+ ω2
0M

n∑

j=1
�=i

(bij × bji + 3e3 × bijbji · e3) (5.275)

(i = 1, . . . , n). The first term and the torque Mi from (5.266) are combined
to yield

3ω2
0e3 ×

(
Ji −

n∑

k=1

mkbikbik

)
· e3 . (5.276)

This is identical with

3ω2
0e3 ×

[
Ji −

n∑

k=1

mk(b2
ik I − bikbik)

]
· e3 (5.277)

since e3× I ·e3 = e3×e3 is equal to zero. Comparison with (5.231) shows that

the expression in square brackets represents the central inertia tensor K̂i of the
augmented body i. The entire expression is, therefore, simply 3ω2

0e3× K̂i ·e3.
Substituting this and the second term of (5.275) into the equations of motion
(5.256) we get

n∑

j=1

Kij · ω̇j + ωi × (K̂i · ωi + hi) − M
n∑

j=1
�=i

bij × [ωj × (ωj × bji)]

= 3ω2
0e3 × K̂i · e3 + ω2

0M
n∑

j=1
�=i

(bij × bji + 3e3 × bijbji · e3) (5.278)

(i = 1, . . . , n). Conditions for relative equilibrium are now obtained by sub-
stituting ω̇i ≡ 0, ωi ≡ ω0e2 for i = 1, . . . , n. This yields

e2 ×
(

K̂i · e2 +
hi

ω0

)
− M

n∑

j=1
�=i

bij × [e2 × (e2 × bji)]

= 3e3 × K̂i · e3 + M

n∑

j=1
�=i

(bij × bji + 3e3 × bijbji · e3) (5.279)
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(i = 1, . . . , n). A further simplification is achieved when the triple vector-cross
product on the left-hand side is rewritten in the form

bij × [e2 × (e2 × bji)] = bij × (e2bji · e2 − bji)

= −e2 × bijbji · e2 − bij × bji . (5.280)

The second term in this expression produces the sum M
∑n

j=1
�=i

bij × bji on

the left-hand side of the equilibrium conditions (5.279). It cancels the same
expression on the right-hand side. With the remaining terms the conditions
read

ω0(e2 × Bi · e2 − 3e3 × Bi · e3) + e2 × hi = 0 (i = 1, . . . , n) (5.281)

where Bi is an abbreviation for the tensor

Bi = K̂i + M

n∑

j = 1
�= i

bijbji (i = 1, . . . , n) . (5.282)

This tensor Bi contains vectors which are fixed on different bodies. Its co-
ordinates in a vector base fixed on body i change when the orientation of
bodies changes.

The equilibrium conditions (5.281) can be considered from the following
point of view. As has been mentioned earlier the relative angular momentum
vector hi on carrier i has constant coordinates in a vector base fixed on this
carrier. It is assumed that there are at least three rotors on each carrier whose
axes are not coplanar. Then, it is possible to give hi any desired magnitude
and direction in the carrier-fixed vector base by a proper choice of rotor an-
gular velocities relative to the carrier. The vectors h1, . . . ,hn influence the
relative equilibrium positions. This suggests the following question. Is it pos-
sible to choose h1, . . . ,hn in such a way that the system possesses a relative
equilibrium position with certain prescribed characteristics? The practical
significance of this problem is illustrated by the following example. Suppose
a satellite with a camera mounted on one of the bodies is in orbit. As a result
of a change in the mass distribution of the system caused by fuel consump-
tion the original relative equilibrium position is disturbed. This causes the
camera axis to leave its nominal vertical orientation. It would be desirable
to change the system parameters in such a way that a new relative equilib-
rium position is created in which the camera axis is, again, in its nominal
orientation. The only system parameters that can be changed on command
from Earth are the relative rotor angular velocities. It is, therefore, desirable
to deduce from the equilibrium conditions (5.281) two sets of equations. One
set represents the explicit solution for h1, . . . ,hn. The other set should be
a set of equilibrium conditions which is free of h1, . . . ,hn. The first goal is
achieved by cross-multiplication of (5.281) with e2 and the other by scalar
multiplication with e2.



174 5 General Multibody Systems

First, the explicit solution for h1, . . . ,hn is developed. Equations (5.281)
show that equilibrium positions are unaffected by the component of hi in
the direction of e2, i.e. of the orbit angular velocity ω0. This had to be
expected. Let λie2 be this component of hi (i = 1, . . . , n). The component
in the plane normal to e2 is obtained by cross-multiplication of (5.281) with
e2. The explicit solution for hi reads

hi = λie2 + ω0e2 × (e2 × Bi · e2 − 3e3 × Bi · e3) (i = 1, . . . , n). (5.283)

Next, the scalar multiplication of (5.281) with e2 is carried out. This mul-
tiplication eliminates the first and the third term. The second term yields
e2 · e3 × Bi · e3 = e2 × e3 · Bi · e3 = e1 · Bi · e3. Thus, one gets the equations

e1 · Bi · e3 = 0 (i = 1, . . . , n). (5.284)

Equations (5.283) and (5.284) together are equivalent to the original equi-
librium conditions (5.281). Each solution of (5.284) determines a relative
equilibrium position provided the vectors h1, . . . ,hn satisfy (5.283) with free
parameters λ1, . . . , λn. The vectors Bi · e3 in (5.284) are (see (5.282))

Bi · e3 = K̂i · e3 + M

n∑

j = 1
�= i

bij(bji · e3) (i = 1, . . . , n). (5.285)

Suppose that on each carrier one camera is fixed with an axis of arbitrary
direction and that all n camera axes are aligned parallel to the base vector
e3 in the local vertical. This does not yet uniquely determine the position of
the system in the orbital reference frame. Each carrier can still be rotated
about e3 through an arbitrary angle. These n angles have no influence on
the projections bji · e3 of the body-fixed vectors bji (i, j = 1, . . . , n) onto

the direction of e3 and no influence on the coordinates of the vector K̂i · e3

(i = 1, . . . , n) in a vector base fixed on body i. From this it follows that
during such rotations about e3 the vector Bi · e3 is fixed on carrier i. On
each carrier there is one such vector. In the following, first, the general case
is assumed that none of these vectors is zero or parallel to e3. Then, all n
equations (5.284) can be satisfied by choosing the still undetermined rotation
angles in such a way that on each carrier i = 1, . . . , n the vector Bi · e3

is normal to e1. This determines two positions for each body and, hence,
2n different positions for the entire system. Each one of them is a relative
equilibrium position provided the vectors h1, . . . ,hn are chosen in accordance
with (5.283). For the degenerate case in which the vector Bi ·e3 is either zero
or parallel to e3 for one or several bodies the solution is obvious. For these
particular bodies (5.284) is satisfied independent of the rotation angle about
e3. Each such body has an infinite number of relative equilibrium positions.
For each of the remaining bodies two relative equilibrium positions exist as
before. The results just obtained can be summarized as follows. There exist,
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in general, 2n different relative equilibrium positions (an infinite number in
degenerate cases) which satisfy the requirement that n arbitrarily chosen
camera axes, one on each carrier, are parallel to the local vertical. For each
such position the necessary vectors h1, . . . ,hn are determined explicitly from
(5.283). The necessary stability analysis is not presented here. For this the
reader is referred to Wittenburg/Lilov [103]. Let it only be mentioned that
in the stability analysis the free parameters λ1, . . . , λn play an essential role.

Problem 5.15. Formulate expressions for the kinetic energy T and for the poten-
tial energy V of the satellite considered in this section.

5.8 Plane Motion

In this section arbitrary tree-structured systems with spherical joints of the
general form shown in Fig. 5.27 are considered again. A system is either
coupled to a carrier body 0 by a spherical joint 1 or it is free of this constraint.
Systems with this constraint are governed by the equations of motion (5.217),
and systems without are governed by the equations of motion (5.233). In what
follows both sets of equations are adapted to the special case that the system
is in plane motion. Plane motion can be achieved in various ways. The bodies
can have flat surfaces which are moving in a plane fixed in inertial space. As
an example one may think of a system of interconnected discs moving on
an inclined plane. In contact zones constraint forces normal to the plane are
acting. Plane motion can also be achieved by replacing every spherical joint
by a revolute joint with all joint axes aligned parallel to one another. In each
revolute joint a constraint torque is acting normal to the joint axis.

The characteristic feature of plane motion is that the angular velocities
and accelerations of bodies have the forms

ωi = φ̇ie , ω̇i = φ̈ie (i = 0, . . . , n) . (5.286)

Fig. 5.35. Variables φi (i = 0, . . . , n) for a system with spherical joints in plane
motion. Inertial reference base with unit vectors e1, e2 in the plane and e normal
to the plane. Body-fixed base with unit vectors ei

1, ei
2 in the plane and e normal

to the plane. Carrier body 0 with prescribed motion r0(t) and φ0(t)
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Here, e is the unit vector normal to the plane of motion and φi is the sin-
gle angular variable of body i. It is defined as angle from a reference base
vector e1 fixed in inertial space to the base vector ei

1 fixed on body i. Both
unit vectors are in the plane of motion. This is schematically illustrated in
Fig. 5.35. Only body 0 and one other body i are shown. The angular vari-
able φ0 of the carrier body 0 is a prescribed function of time φ0(t). A set of
scalar differential equations for the variables φ1, . . . , φn is obtained when the
expressions (5.286) are substituted into the equations of motion for general
three-dimensional motions. This is done first for systems coupled to a carrier
body.

5.8.1 Systems Coupled to a Carrier Body

Substitution of (5.286) into (5.217) produces the equations

Ki · e φ̈i + M

⎡
⎣

n∑

j: si < sj

dij × (e × bj0) φ̈j + bi0 ×
n∑

j: sj < si

e× dji φ̈j

⎤
⎦

+ e× Ki · e φ̇2
i

+ M

⎧
⎨
⎩

n∑

j: si < sj

dij × [e× (e × bj0)] φ̇
2
j + bi0 ×

n∑

j: sj < si

e× (e × dji) φ̇2
j

⎫
⎬
⎭

= Mbi0 × r̈0 + Mi −
n∑

j=1

dij × Fj +

n∑

a=1

SiaYa (i = 1, . . . , n) . (5.287)

For the sum over dij × Fj see (5.94). In the newly introduced last term Ya

is an internal spring or damper torque acting in joint a (+Ya on body i+(a)
and −Ya on body i−(a)). The sum is the resultant of these torques acting
on body i.

Each Eq. (5.287) is scalar-multiplied by e. This results in the desired scalar
differential equations for the angular coordinates φ1, . . . , φn. Multiplication
of the first term produces the expression Ki3φ̈i with the axial moment of
inertia Ki3. The fourth term yields e · e × Ki · e = 0. Consider, next, the
single term e · dij × [e × (e × bj0)] which is contributed by the third sum
on the left-hand side. The scalar-multiplication e · dij × [. . .] eliminates the
component of dij along e and the cross-multiplication e×bj0 eliminates the
component of bj0 along e. With the same arguments it is shown that of all
vectors dij and of all vectors bi0 (i, j = 1, . . . , n) only the projections onto
the plane of motion contribute to the equation. In what follows dij and bi0

are understood to be these projections. The projected vector dij is fixed on
body i. It is defined by its absolute value dij and by its constant angle αij

against ei
1. Also the projected vector bi0 is fixed on body i. It is defined by

its absolute value bi0 and by its constant angle βi against ei
1. Figure 5.36

shows the orientation of the vectors ei
1, dij and bi0 relative to e1. In the
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Fig. 5.36. In-plane vectors ei
1, dij , bi0 on body i and ej

1, dji, bj0 on body j.
Constant parameters αij , βi, αji, βj and variables φi, φj

same figure also the vector ej
1 and the projected vectors dji and bj0 fixed on

body j are shown. The angle enclosed by dij and bj0 is φi − φj + αij − βj .
From this it follows that

dij · bj0 = dijbj0 cos(φi − φj + αij − βj) , (5.288)

e · dij × bj0 = −dijbj0 sin(φi − φj + αij − βj) . (5.289)

The first sum in (5.287) contributes the product

e · dij × (e× bj0) = e · [(dij · bj0)e − (dij · e)︸ ︷︷ ︸
=0

bj0)] = dij · bj0

= dijbj0 cos(φi − φj + αij − βj) (5.290)

and the third sum contributes the product

e · dij × [e × (e× bj0)] = e · dij × [(e · bj0)︸ ︷︷ ︸
=0

e− bj0] = −e · dij × bj0

= dijbj0 sin(φi − φj + αij − βj) . (5.291)

The contributions from the second and from the fourth sum are obtained by
interchanging the indices i and j.

Next, the scalar-product of e with the right-hand side terms in (5.287)
is formulated. Of the torques Mi and Ya components normal to e are elim-
inated. Among these are constraint torques in revolute joints which replace
spherical joints. The components of Mi and Ya along e are called Mi and Ya,
respectively. The contribution of a single force Fj is −e · dij ×Fj . The com-
ponent along e is eliminated. Among the eliminated forces are constraint
forces normal to the plane of motion. Let Fj1 and Fj2 be the in-plane
components of Fj along the axes e1 and e2 fixed in inertial space. Then,
−e · dij × Fj = dij [Fj1 sin(φi + αij) − Fj2 cos(φi + αij)]. Similarly, the in-
plane components of r̈0 along e1 and e2 are called r̈01 and r̈02, respectively.
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Then, e · Mbi0 × r̈0 = −Mbi0[r̈01 sin(φi + βi) − r̈02 cos(φi + βi)]. All terms
are collected in the scalar differential equations

n∑

j=1

(
Aij φ̈j + Bij φ̇

2
j

)
= Qi +

n∑

a=1

SiaYa (i = 1, . . . , n) (5.292)

with the abbreviations

Aij =

{
Ki3 (i = j)
Mdijbj0 cos(φi − φj + αij − βj) (vi < vj)
Mdjibi0 cos(φi − φj − αji + βi) (vj < vi)
0 (else) ,

(i, j = 1, . . . , n) , (5.293)

Bij =

{
Mdijbj0 sin(φi − φj + αij − βj) (vi < vj)
Mdjibi0 sin(φi − φj − αji + βi) (vj < vi)
0 (else) ,

(i, j = 1, . . . , n) , (5.294)

Qi = Mi−Mbi0[r̈01 sin(φi+βi)−r̈02 cos(φi+βi)]

+

n∑

j=1

dij [Fj1 sin(φi+αij)−Fj2 cos(φi+αij)] (i=1, . . . , n) . (5.295)

Equations (5.292) can be written in the matrix form

A

⎡
⎢⎣

φ̈1

...

φ̈n

⎤
⎥⎦ + B

⎡
⎢⎣

φ̇2
1
...

φ̇2
n

⎤
⎥⎦ = Q + S Y . (5.296)

The matrix A is symmetric and B is skew-symmetric.
Of particular interest are mechanical systems with torsional springs and

dampers in the joints. Let ka and da be the constant spring and damper
coefficients, respectively, in joint a (a = 1, . . . , n). So far, nothing has been
said about the zero position φ1 = φ2 = . . . = φn = 0 of the system. Now,
it is defined to be the position in which all springs are unstressed. For this
to be the case the vector bases ei (i = 1, . . . , n) must be fixed on the bodies
i = 1, . . . , n in such a way that they are aligned parallel to the base e0 fixed on
the carrier body 0 when the springs are unstressed. In this case the internal
torque Ya is

Ya = −ka

(
φi+(a) − φi−(a)

)
− da

(
φ̇i+(a) − φ̇i−(a)

)
(a = 1, . . . , n) . (5.297)

The minus sign follows from the convention that +Ya is the torque applied
to body i+(a) and that in the present case it is a torque resisting the growth
of the two differences shown in brackets. In what follows it is assumed that
the single joint located on body 0 is joint 1. With this assumption and with
the incidence matrix one can write

Ya = −ka

n∑

i=0

Siaφi − da

n∑

i=0

Siaφ̇i

= −(k1φ0+d1φ̇0)S0a−ka

n∑

i=1

Siaφi−da

n∑

i=1

Siaφ̇i (a=1, . . . , n) .(5.298)
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The column matrix of all joint torques is

Y = −(k1φ0 + d1φ̇0)S
T
0 − K ST φ − D ST φ̇ (5.299)

where K and D are diagonal (n × n)-matrices of the spring and damper
coefficients, respectively. Substitution into (5.296) yields

A

⎡
⎢⎣

φ̈1

...

φ̈n

⎤
⎥⎦ + B

⎡
⎢⎣

φ̇2
1
...

φ̇2
n

⎤
⎥⎦ + S D ST

⎡
⎢⎣

φ̇1

...

φ̇n

⎤
⎥⎦+ S K ST

⎡
⎢⎣

φ1

...
φn

⎤
⎥⎦

= Q + (d1φ̇0 + k1φ0)

⎡
⎢⎢⎢⎣

1
0
...
0

⎤
⎥⎥⎥⎦ . (5.300)

The last column matrix [ 1 0 . . . 0 ]T is the product −S ST
0 . The matrices

A, S D ST , S K ST are symmetric and B is skew-symmetric. The initial
assumption that the springs and dampers have constant coefficients can now
be dropped. The equations are obviously still valid if ka and da are functions
of φi+(a) − φi−(a) and of φ̇i+(a) − φ̇i−(a), respectively.

The equations of motion in the special form (5.300) and in the more gen-
eral form (5.296) are applicable to many mechanical systems of interest. In
Sect. 5.8.3 they are used for modeling a cantilever beam with large deforma-
tions. In Sect. 5.8.4 the stability of anuprightmultibodypendulumwith ground
excitation is investigated. Another example is the problem of gait of an an-
thropomorphic figure. The individual links of the human body are executing
motions which can with reasonable accuracy be considered as plane motions.
Equation (5.296) is valid for a phase of motion in which one foot has contact
with the ground. This is the situation shown in Fig. 5.4b. Equations of motion
for phases of motion with no ground contact are developed in the next section.
Two feet on the ground create a closed kinematic chain with constraint equa-
tions for the variables of this chain. The incorporation of such constraint equa-
tions into the equations of motion has been explained in Sect. 5.6.1.

5.8.2 Systems Without Coupling to a Carrier Body

In this section equations of plane motions of systems are developed which
are not joint-connected to a carrier body 0. The development follows the
same line of arguments which started from (5.287). In the present case the
corresponding equations are obtained by substituting (5.286) into (5.233)
(supplemented by the last term with internal spring and damper torques Ya):
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K̂i · e φ̈i − M

n∑

j=1
�=i

bij × (e × bji) φ̈j

+ e× K̂i · e φ̇2
i − M

n∑

j=1
�=i

bij × [e× (e× bji)] φ̈2
j

= Mi +

n∑

j=1

bij × Fj +

n∑

a=1

SiaYa (i = 1, . . . , n) . (5.301)

In order to produce a set of differential equations for φ1, . . . , φn each of these
equations is scalar-multiplied by e. Of the vectors bij only the projections
onto the plane of motion contribute. The projected vector bij is defined by
its absolute value bij and by its constant angle βij against the base vector ei

1

fixed on body i. Repeating the arguments leading to (5.290) and (5.291) one
gets the desired equations of plane motions in the form (compare (5.296))

A

⎡
⎢⎣

φ̈1

...

φ̈n

⎤
⎥⎦ + B

⎡
⎢⎣

φ̇2
1
...

φ̇2
n

⎤
⎥⎦ = Q + S Y . (5.302)

The symmetric matrix A, the skew-symmetric matrix B and the column
matrix Q have the elements (compare with (5.295))

Aij =

{
K̂i3 (i = j)
−Mbijbji cos(φi − φj + βij − βji) (i �= j)

(i, j = 1, . . . , n) ,

Bij = −Mbijbji sin(φi − φj + βij − βji) (i, j = 1, . . . , n) ,

Qi = Mi −
n∑

j=1

bij [Fj1 sin(φi + βij) − Fj2 cos(φi + βij)] (i = 1, . . . , n) .

(5.303)
Systems with springs and dampers in the joints are governed by (5.300) with
the new matrices A, B and Q. The only other difference is that the spring
constant k1 and the damping constant d1 associated with joint 1 are zero.

Numerical solutions for φ(t) and φ̇(t) must be complemented by expres-
sions for positions, velocities and accelerations of the body centers of mass,
i.e. for the in-plane coordinates of the column matrices r and ṙ. These are
obtained from Newton’s equation of motion for the composite system center
of mass, M r̈C =

∑n
j Fj , and from (5.32) and (5.98):

ri = rC +

n∑

j=1

bji , ṙi = ṙC + e×
n∑

j=1

φ̇jbji (i = 1, . . . , n) . (5.304)



5.8 Plane Motion 181

Scalar multiplications with e1 and e2 yield the desired coordinate equations:

r̈C1 =
1

M

n∑

j=1

Fj1 , r̈C2 =
1

M

n∑

j=1

Fj2 , (5.305)

ri1 = rC1 +
n∑

j=1

bji cos(φj + βji) , ṙi1 = ṙC1 −
n∑

j=1

φ̇jbji sin(φj + βji) ,

ri2 = rC2 +

n∑

j=1

bji sin(φj + βji) , ṙi2 = ṙC2 +

n∑

j=1

φ̇jbji cos(φj + βji)

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(i = 1, . . . , n) . (5.306)

5.8.3 Cantilever Beam with Large Deformations

A simple system governed by (5.300) is shown in Fig. 5.37. It is the model of
a cantilever beam. The beam is shown in the undeformed state and in a highly
deformed state in which equations for beams known from elasticity theory
are not valid. The system consists of n identical rigid elements of mass m
and length ℓ which are coupled by revolute joints. The carrier body 0 is fixed
in inertial space (φ0 ≡ 0). This is the body in which the beam is clamped.
The labeling of bodies and of joints is regular, and the arcs in the graph are
assumed to be directed toward body 0. Identical torsional springs with spring
constant k (and no dampers) are attached to all joints. No external forces
and torques are acting. The vector bases ei (i = 0, . . . , n) are oriented as
shown. The vector base e0 on body 0 serves as reference base fixed in inertial
space (in Fig. 5.35 the base e1 , e2 , e). In the undeformed state all angles
φ1, . . . , φn are zero. Under these conditions the right-hand side of (5.300) is
identically zero. From (5.94) and from Fig. 5.36 it follows that dij = −ℓei

1 for
i < j, dii = − 1

2ℓei
1 and dij = 0 for i > j. The nonzero vectors have angles

αij = π. The vector bi0 on body i leads from the barycenter to the inboard
articulation point. Hence, also βi = π. The augmented body i carries, in
addition to its own mass, the point mass (i − 1)m at joint i and the point
mass (n−i)m at joint i+1. From this one calculates bi0 = ℓ(n−i+ 1

2 )/n. The
total system mass is M = nm. With these expressions the matrix elements

Fig. 5.37. Model of a cantilever beam with body 0 fixed in inertial space
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in (5.293) and (5.294) are

Aij = aij cos(φi − φj) , Bij = aij sin(φi − φj) (i, j = 1, . . . , n)
(5.307)

with

aij = aji =

{
Ki3 (i = j)
mℓ2(n − j + 1

2 ) (i < j)
(j = 1, . . . , n) . (5.308)

Note that the formula for Bij gives the correct value Bii = 0. The stiffness
matrix is

S K ST = k S ST = k

⎡
⎢⎢⎢⎢⎢⎢⎣

2 −1 0 . . . .
−1 2 −1 0 . . .

0 −1 2 −1 0 . .
. . . . . . .
. . . 0 −1 2 −1
. . . . 0 −1 1

⎤
⎥⎥⎥⎥⎥⎥⎦

. (5.309)

The elements of A and B show that linearization of the equations requires
that all differences φi−φj (i, j = 1, . . . , n) be small. It is not sufficient that the
differences are small for pairs of neighboring bodies. The linearized equations
have the standard form

[aij ]φ̈ + k S ST φ = 0 (5.310)

with a constant positive definite mass matrix [aij ] and with a constant pos-

itive definite stiffness matrix k S ST . These equations can be used to deter-
mine the spring constant k. It should have a value which yields for the lowest
eigenfrequency of the system the result known from other linearized beam
equations. Once k has been determined the nonlinear equations of motion can
be treated. In a Taylor expansion of the equations the linear terms are fol-
lowed by third-order terms of the form −aij(φi−φj)

2φ̈j/2 and aij(φi−φj)φ̇
2
j

(i, j = 1, . . . , n).

5.8.4 Stabilized Upright Multibody Pendulum

The system shown in Fig. 5.38 is an upright n-body pendulum without springs
and dampers in the joints. The bodies are identical (mass m, length ℓ). The
carrier body 0 is oscillating in vertical direction. Its prescribed law of motion
is given in the form r0 = u0e1 cosΩt with constant amplitude u0 and constant
circular frequency Ω. It is to be investigated whether the upright position of
the pendulum can be stabilized by a proper choice of u0 and Ω.
Solution: The chain of bodies is identical with the one in Fig. 5.37. The
same variables are used again. This time, the upright position is the position
φ1 = φ2 = . . . = φn = 0. Nonlinear equations of motion for φ1, . . . , φn are
obtained from (5.292). The left-hand side terms are identical with those for
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the cantilever beam in Fig. 5.37. In what follows the right-hand side terms
are formulated. The joint torques Ya are zero. In the expression for Qi in
(5.295) the external torque Mi is zero. From r0 = u0e1 cosΩt it follows
that r̈01 = −u0Ω

2 cosΩt and r̈02 = 0. External forces are caused by weight
only. These forces are Fj1 = −mg and Fj2 = 0 independent of j. From the
cantilever beam in Fig. 5.37 it is known that βi = π and αij = π independent
of i and j. With these expressions Qi becomes

Qi =

⎛
⎝Mbi0r̈01 + mg

n∑

j=1

dij

⎞
⎠ sin φi (i = 1, . . . , n) . (5.311)

From the cantilever beam it is known, furthermore, that Mbi0 = mℓ(n−i+ 1
2 )

and that the sum over j equals ℓ(n− i+ 1
2 ). This yields for Qi the expression

Qi =

(
1 − u0Ω

2

g
cosΩt

)
mgℓ(n − i + 1

2 ) sin φi (i = 1, . . . , n) .

(5.312)
For the required stability analysis the equations of motion are linearized
which means that sinφi is replaced by φi. Linearization of the equations
of motion for the cantilever beam resulted in (5.310). In the present case
the second term is missing. Thus, the linearized equations for the upright
pendulum are

[aij ]φ̈ +

(
−1 +

u0Ω
2

g
cosΩt

)
K φ = 0 . (5.313)

For the matrix [aij ] see (5.308). K is the diagonal matrix with elements
Kii = mgℓ(n− i + 1

2 ) (i = 1, . . . , n). Both matrices are positive definite. Let

Φ be the modal matrix associated with the simpler equation [aij ]φ̈+K φ = 0.
It is determined from the eigenvalue problem ([aij ]−λK)z = 0. Because of the

Fig. 5.38. Upright multibody pendulum on excited base. Notation as in Fig. 5.37
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Fig. 5.39. Ince–Strutt stability diagram for the Mathieu equation

positive-definiteness of both matrices all eigenvalues are positive quantities
ω2

i (i = 1, . . . , n). Let them be ordered such that ω1 ≤ ω2 ≤ . . . ≤ ωn. The
transformation φ = Φ x produces the set of decoupled equations ẍi+ω2

i xi = 0
(i = 1, . . . , n). The same transformation applied to (5.313) produces the
equations

ẍi + ω2
i

(
−1 +

u0Ω
2

g
cosΩt

)
xi = 0 (i = 1, . . . , n) . (5.314)

Each of these equations is Mathieu’s equation of a single upright pendulum.
Another transformation τ = Ωt gives the equation the standard form x′′

i +
(λi + γi cos τ)xi = 0 with

λi = −ω2
i /Ω2 < 0 , γi = u0ω

2
i /g (i = 1, . . . , n) (5.315)

and with x′ denoting the derivative with respect to τ . The n-body pendulum
is stable if all n single-body pendulums are stable. Stability depends upon
λi and γi. The Ince–Strutt diagram with axes λ and γ separates stable and
unstable regions. Figure 5.39 shows the pertinent section of this diagram.
Only the small shaded stability region to the left of λ = 0 is of interest.
According to (5.315) the altogether n points (λi, γi) (i = 1, . . . , n) are located
on a straight line in the interval between (λ1, γ1) and (λn, γn). The n-body
pendulum is stable if this interval lies inside the shaded region. This can be
achieved by a proper choice of the parameters u0 and Ω. This result was
obtained first by Otterbein [55] where a pendulum composed of n identical
mass points interconnected by massless rods was investigated. For the more
general case of an n-body pendulum composed of nonidentical bodies see
Wittenburg [99]. Experiments with a four-body pendulum reveal that the
pendulum returns to the vertical position even after severe disturbances.

5.9 Linear Vibrations of Chains of Bodies

In this section it is demonstrated that the incidence matrix and the path
matrix are useful not only in nonlinear systems but in linear systems as
well (Wittenburg [99], [98]). The systems to be investigated consist of bodies
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Fig. 5.40. Chain of bodies connected by springs and dampers

labeled 1, . . . , n each having the single degree of freedom of translation along
a common x-axis. The carrier body 0 is inertial space. The bodies 0, . . . , n
are interconnected by mS linear springs and by mD linear dampers. The
numbers n, mS and mD are arbitrary. In Fig. 5.40 a simple example with
n = 5, mS = 10 and mD = 3 is shown. Each body i = 1, . . . , n is subject
to a given external force F e

i (t). Only F e
3 is shown. The formulations to come

apply also to systems with rotatory instead of translatory oscillators such as
gears with the wheels being the rigid bodies and with the connecting shafts
being springs and dampers.

5.9.1 Spring Graph. Damper Graph. Coordinate Graph

For the connections by springs and by dampers separate directed graphs
are defined (senses of direction arbitrary). Figure 5.41a depicts the spring
graph. This graph happens to be connected. The vertices 1 and 2 are con-
nected by two arcs. Figure 5.41b depicts the damper graph. This graph is
not connected. Each of the two graphs has its own incidence matrix (see
(5.3) and Problem 5.3). Since the carrier body 0 is inertial space row 0 will
not be used. Only the submatrix of rows 1, . . . , n is of interest. This is the
submatrix called S in (5.6). For the spring graph and the damper graph in

Fig. 5.41. Spring graph (a) and damper graph (b)
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Fig. 5.42. Two coordinate graphs for the system in Fig. 5.40

Figs. 5.41a and b the two matrices are

SS =

⎡
⎢⎢⎢⎢⎣

−1 −1 0 0 0 −1 0 1 −1 0
0 1 1 0 1 1 0 0 0 0
0 0 −1 −1 0 0 0 0 0 0
0 0 0 0 −1 0 −1 −1 0 0
0 0 0 1 0 0 1 0 1 −1

⎤
⎥⎥⎥⎥⎦

, SD =

⎡
⎢⎢⎢⎢⎣

1 0 0
0 0 0
0 1 0
0 −1 −1
0 0 1

⎤
⎥⎥⎥⎥⎦

.

(5.316)
As generalized coordinates q1, . . . , qn relative as well as absolute displace-
ments of bodies are accepted. The arbitrarily chosen coordinates are repre-
sented by the arcs of still another directed graph called the coordinate graph.
Also this graph has vertices i = 0, . . . , n. Definition:

qa = displacement of body i−(a) relative

to body i+(a) in positive x-direction (a = 1, . . . , n) . (5.317)

Figure 5.42a depicts a coordinate graph in which q1 and q2 are absolute dis-
placements of the bodies 1 and 3, respectively, whereas q3, q4 and q5 are rela-
tive displacements. If n absolute displacements are chosen as coordinates then
the coordinate graph has the form shown in Fig. 5.42b. The coordinate graph
for any suitably chosen set of coordinates is connected and tree-structured.
If it would consist of unconnected subgraphs then the coordinates would not
be suitable for describing the location of bodies. If the graph would have
a circuit then the coordinates associated with the arcs of this circuit would
not be independent. Thus, for the coordinate graph there exist an incidence
matrix S and a path matrix T which is the inverse of S. For the coordinate
graph shown in Fig. 5.42a the two matrices are

S =

⎡
⎢⎢⎢⎢⎣

−1 0 0 0 0
0 0 1 1 0
0 −1 −1 0 −1
0 0 0 0 1
0 0 0 −1 0

⎤
⎥⎥⎥⎥⎦

, T =

⎡
⎢⎢⎢⎢⎣

−1 0 0 0 0
0 −1 −1 −1 −1
0 1 0 0 1
0 0 0 0 −1
0 0 0 1 0

⎤
⎥⎥⎥⎥⎦

.

For the coordinate graph shown in Fig. 5.42b both matrices are the unit
matrix multiplied by −1.
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Let xi (i = 1, . . . , n) be the absolute displacement of body i in positive
x-direction. The displacements are defined to be zero when the system is
in a state of equilibrium in the absence of external forces. In this state the
springs may be prestressed. We also define x0 ≡ 0. In terms of the incidence
matrix the definition (5.317) of generalized coordinates reads

qa = xi−(a) − xi+(a) = −
n∑

i=1

Siaxi (a = 1, . . . , n) . (5.318)

These n equations are combined in the first equation below. The second
equation is a consequence of the fact that the path matrix is the inverse of
the incidence matrix.

q = −ST x , x = −TT q . (5.319)

Newton’s equation for body i reads

miẍi = F e
i + RS

i + RD
i (i = 1, . . . , n) . (5.320)

Here, RS
i is the resultant of all spring forces on body i, and RD

i is the resul-
tant of all damper forces. In what follows spring forces and, therefore, the
spring graph will be considered. The spring a (a = 1, . . . , mS) with spring
constant ka connects the bodies i+(a) and i−(a). In analogy to the displace-
ments qa defined in (5.318) for the coordinate graph we define for the spring
graph the quantities

∆ℓa = xi−(a) − xi+(a) = −
n∑

j=1

SS
jaxj (a = 1, . . . , mS) . (5.321)

∆ℓa is the change of length of spring a compared with its length in the
equilibrium configuration without external forces. Independent of the sense
of direction of arc a body i+(a) is subject to the force +Fa = ka∆ℓa and body
i−(a) is subject to the force −Fa (in addition to forces already acting in the
equilibrium position due to prestressing of springs). From the definition of
the incidence matrix it follows that the resultant spring force RS

i on body i
is

RS
i =

mS∑

a=1

SS
iaFa = −

mS∑

a=1

SS
iaka

n∑

j=1

SS
jaxj (i = 1, . . . , n) . (5.322)

For the resultant damper force RD
i on body i an equivalent expression is

obtained with elements of the incidence matrix SD for the damper graph and
with damping constants da (a = 1, . . . , mD) instead of spring constants ka.
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With these expressions (5.320) takes the form

miẍi +
mD∑

a=1

SD
iada

n∑

j=1

SD
jaẋj +

mS∑

a=1

SS
iaka

n∑

j=1

SS
jaxj = F e

i (5.323)

(i = 1, . . . , n). All n equations are combined in matrix form as follows:

M ẍ + SDD SDT
ẋ + SSK SST

x = F e . (5.324)

Here, M is the diagonal matrix of the n masses, D is the diagonal matrix of
the mD damper constants, and K is the diagonal matrix of the mS spring
constants.

For x the expression in the second equation (5.319) is substituted. The
equation is then premultiplied by T . This results in the following equation
of motion for the variables q with symmetric mass, damping and stiffness
matrices:

T M TT q̈ + (T SD)D(T SD)T q̇

+ (T SS)K(T SS)T q = −T F e . (5.325)

In this formulation the physical parameters M , D and K, the parameters SD

and SS describing the system topology and the parameter T describing the
choice of coordinates appear separately in the equations.

5.9.2 Chains Without Coupling to Inertial Space

In a chain of bodies without spring and damper connections to body 0 all
spring and damper forces are internal forces without effect on the absolute
acceleration ẍC of the composite system center of mass. This acceleration is
obtained by summing all n Eqs. (5.323). With M being the total system mass
this is the equation

ẍC =
1

M

n∑

i=1

F e
i . (5.326)

Since ẍC is independent of the variables q it must be possible to extract
from (5.323) n − 1 independent equations of motion for as many relative
displacements. In the special case of a chain with n = 2 bodies the procedure
is known. One must multiply the first equation by m2, the second by m1 and
then take the difference. This results in the well-known equation

m1m2

m1 + m2
q̈ + dq̇ + kq =

m1F
e
2 − m2F

e
1

m1 + m2
(5.327)
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with the reduced mass m1m2/(m1 + m2) and with the relative displacement
q = x2 −x1. In what follows the procedure will be shown for the general case
n ≥ 2. Starting point is the principle of virtual power:

n∑

i=1

δẋi(miẍi −Fi) = 0 , Fi = F e
i +RS

i +RD
i (i = 1, . . . , n) . (5.328)

This is equivalent to Newton’s equation (5.320). Auxiliary coordinates z1,
. . . , zn are defined through the equations

xi = xC + zi (i = 1, . . . , n) ,

n∑

i=1

zimi = 0 . (5.329)

This is the scalar form of (5.32). Therefore, (5.39) is valid:

z = µT x . (5.330)

The definition of the matrix µ and one of its properties are (see (5.38) and
(5.40))

µij = δij −
mi

M
(i, j = 1, . . . , n) , µ M = µ M µT . (5.331)

With (5.329), (5.328) becomes

δẋC

(
MẍC −

n∑

i=1

F e
i

)
+

n∑

i=1

δżi(miz̈i − Fi) = 0 . (5.332)

Since δẋC is independent the coefficient is zero. This is (5.326). The rest of
the equation is written in the form

δżT (M z̈ − F ) = 0 . (5.333)

Into this equation the following expressions are substituted which are ob-
tained from (5.330) and (5.324)

z̈ = µT ẍ , δżT = δẋT µ , F = F e−SDD SDT
ẋ−SSK SST

x . (5.334)

This produces the equation

δẋT
(
µ M µT ẍ + µ SDD SDT

ẋ + µSSK SST
x − µ F e

)
= 0 . (5.335)

Since the elements of δẋ are independent the expression in parentheses is zero.
The damping matrix and the stiffness matrix appear to be unsymmetric, but
they are not. In a system without coupling to inertial space the identities
hold: µ SD = SD and µ SS = SS. Proof for SS: When no spring is connected
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to body 0 then every column of SS contains exactly one element +1 and one
element −1 so that

∑n
j=1 SS

ja = 0 (a = 1, . . . , n). Hence,

(
µ SS

)
ia

=

n∑

j=1

(
δij −

mi

M

)
SS

ja = SS
ia . (5.336)

End of proof. Hence, (5.335) yields the equation with symmetric matrices

µ M µT ẍ + SDD SDT
ẋ + SSK SST

x = µ F e . (5.337)

This equation can be obtained in a much simpler way. Just premultiply
(5.324) with µ and make use of the identities µ M = µ M µT , µ SD = SD

and µ SS = SS. In other words: The insertion of µ and µT into (5.324) in
the described way has the effect of eliminating the equation of motion for the
composite system center of mass. This effect is known from (5.48).

For x the expression from the second Eq. (5.319) is substituted. Following
this, the equation is premultiplied by T . This results in the equations of
motion

(T µ)M (T µ)T q̈ + (T SD)D(T SD)T q̇

+ (T SS)K(T SS)T q = −T µ F e . (5.338)

The damping matrix and the stiffness matrix are the same as in (5.325). Only
the mass matrix and the right-hand side term are different. In what follows
a physical interpretation is given to the elements of the mass matrix. This is
done with the help of the numbers σa (a = 1, . . . , n), of the sets κab (a, b =
1, . . . , n) of vertices and of the ordering relationship arc a < arc b introduced
in Sect. 5.3.2. Let mab be the total mass of all bodies which are associated
with the vertices in the set κab (m0 = 0). Examples: For the coordinate graph
of Fig. 5.42a one has σ1 = σ2 = −1, σ3 = +1, m13 = m1, m31 = m2 + m5

und m22 = m2 +m3 +m4 +m5. From the definitions follow the relationships

n∑

i=1

Taimi = σamaa , (5.339)

(T µ)ai =

n∑

ℓ=1

Taℓ

(
δℓi −

mℓ

M

)
= Tai −

σamaa

M
, (5.340)

n∑

i=1

TaiTbimi =

⎧
⎪⎪⎨
⎪⎪⎩

maa (a = b)
σaσbmaa (arc a > arc b)
σaσbmbb (arc b > arc a)
0 (else) .

(5.341)
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With this the elements of the mass matrix can be given the form

[
(T µ)M (T µ)T

]
ab

=

n∑

i=1

(T µ)ai(T µ)bimi =

n∑

i=1

(
Tai −

σamaa

M

)(
Tbi −

σbmbb

M

)
mi

=
n∑

i=1

TaiTbimi − σaσb
maambb

M

=

⎧
⎪⎪⎨
⎪⎪⎩

maa(M − maa)/M (a = b)
+σaσbmaa(M − mbb)/M (arc b < arc a)
+σaσbmbb(M − maa)/M (arc a < arc b)
−σaσbmabmba/M (else) .

(5.342)

If arc b < arc a then maa = mab and M −mbb = mba < M −maa. Similarly,
if arc a < arc b then mbb = mba < maa and M − maa = mab. In the case
denoted else the following is true: maa = mab and mbb = mba < M − maa.
From the inequalities it follows that in every row and in every column of
the mass matrix the diagonal element has the largest absolute value. The
equalities give the matrix elements the symmetric form

[
(T µ)M (T µ)T

]
ab

=

{
maa(M − maa)/M (a = b)
+σaσb mabmba/M (arc a < arc b or arc b < arc a)
−σaσb mabmba/M (else) .

(5.343)

Every element is a reduced mass in a generalized sense. Example: The coor-
dinate graph of Fig. 5.42a yields

[
(T µ)M (T µ)T

]
13

= m1(m2 + m5)/M .
Let the coordinates q be chosen such that only qn is an absolute displace-

ment (of an arbitrary body). All other coordinates are relative displacements.
Then, only arc n is incident with vertex 0 in the coordinate graph. Conse-
quently, mnn = M and mna = 0 (a �= n). From this it follows that all
elements in the nth row and in the nth column of the mass matrix are equal
to zero. Each of the remaining terms in (5.338) has the form T µ X with
some column matrix X (where the factor µ is missing it can be inserted
again). The nth element is the sum

∑n
i=1(T µ)niXi. With the special choice

of coordinates it follows from (5.340) that (T µ)ni = 0 (i = 1, . . . , n) since
Tni = σn (i = 1, . . . , n) and mnn = M . This proves that the nth equation of
(5.340) is the identity 0 = 0. Thus, one has n − 1 independent equations for
relative displacements q1, . . . , qn−1. In the special case n = 2 the system of
n − 1 equations has the form (5.327).
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Impact Problems in Multibody Systems

The previous chapter was devoted to the mathematical description of con-
tinuous motions of multi-body systems. In contrast, in the present chapter
the case is studied in which a system experiences discontinuous changes of
velocities and angular velocities. Such phenomena occur when a multi-body
system collides with a single body or with another multi-body system or
when two bodies belonging to one and the same multi-body system collide
with one another. Typical examples are illustrated in Fig. 6.1. The actual
physical processes during impact are highly complex. In order to render the
problem amenable to mathematical treatment some simplifying assumptions
must be made. Whether these are acceptable must be judged in every partic-
ular case of application of the resulting formalism. The assumptions concern
the dynamic behavior of bodies under the action of impulsive forces and the
phenomena in the immediate vicinity of the point of collision, in particular.
They are the same which are made in the classical treatment of the collision
between two rigid bodies. In addition, some assumptions are made about the
nature of constraints in joints. These latter assumptions do not go beyond
the ones made in the last chapter.

Fig. 6.1. Collision between two systems (a) and collision within a system (b)
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6.1 Basic Assumptions

As regards the behavior of bodies it is postulated that the impact is taking
place in such a short time interval ∆t that in the mathematical description the
idealization ∆t → 0 is possible. This implies that any propagation of waves
of deformations and stresses through bodies is neglected since such processes
require finite periods of time. Hence, all bodies of a system are treated as rigid
bodies during impact. During the infinitesimally short time interval positions
and angular orientations of bodies remain unchanged since all velocities and
angular velocities remain finite. Springs and dampers in a system do not
play any role since they exert forces and torques of finite magnitude whose
integrals over the infinitesimally short time interval are zero. Only impulsive
forces can cause discontinuous changes of velocities and angular velocities.

A force F(t) is called impulsive force if the integral
∫ t0+∆t

t0
F(t)dt over the

time interval ∆t converges toward a finite quantity F̂ when ∆t approaches
zero. For this to be the case the magnitude of F(t) must tend toward infinity

during ∆t in the limit case ∆t → 0. The quantity F̂ is called impulse. The
torque of an impulse is called impulse couple.

The assumption of rigid bodies applies, in particular, to mechanisms in
joints. This has the consequence that an impulsive force acting at a point of
collision causes simultaneously acting impulsive constraint forces and impul-
sive constraint torques in the joints of a system. As in the previous chapter on
continuous motion joints are assumed to be frictionless. This together with
the assumption ∆t → 0 has the consequence that impulsive constraint forces
and impulsive constraint torques have constant directions during the time
interval of collision. As in Sect. 5.6.5 the constraint force in joint a is called
Xa, and the torque about the articulation point a at the tip of the vector
cia is called Ya. Figure 6.2 depicts a single body of a multibody system
which is isolated from the rest of the system. At the point of collision located
by the vector ̺ the impulsive force F is acting, and in a single joint a the
constraint force Xa and the constraint torque Ya are acting. Newton’s law

Fig. 6.2. Isolated body during impact. The impulsive force F at the point of
collision P has unknown direction when the collision is ideally plastic, and it has the
direction of the impact normal with unit vector n when the collision is frictionless.
Constraint reactions Xa and Ya in a single joint
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and the angular momentum theorem read

mr̈ = F + Xa , J · ω̇ + ω × J · ω = ̺ × F + cia × Xa + Ya . (6.1)

Both equations are integrated over the time interval ∆t. In the limit ∆t → 0
the tensor J and the vector ̺ have constant coordinates in inertial space.
The finite term ω × J ·ω does not contribute to the integral. Therefore, the
resulting equations read

m∆ṙ = F̂ + X̂a , J · ∆ω = ̺ × F̂ + cia × X̂a + Ŷa . (6.2)

They are homogeneous linear equations with constant coefficients for the
increments ∆ṙ and ∆ω of velocity and angular velocity, respectively, and
for impulses and impulse couples.

Rigidity of the bodies is assumed everywhere with the exception of the
immediate vicinity of the point of collision. In a volume surrounding this
point elastic and/or plastic deformations are allowed to occur. It is assumed,
however, that this volume is infinitesimally small so that the previous assump-
tions of rigid bodies and of an infinitesimally short time interval of impact
are not violated. Two cases are distinguished:

1. Ideally plastic collisions: Plastic deformations, eventually in combination
with friction at the point of collision, have the effect that the colliding bodies
have zero velocity relative to one another at the point of collision immediately
after impact. In this case both magnitude and direction of the impulse F̂ are
unknown. Let v1 and v2 be the absolute velocities immediately before impact
of the two colliding body-fixed points and let ∆v1 and ∆v2 be the finite
increments of these velocities as the result of the collision. The condition
that the velocity of the two body-fixed points relative to one another is zero
immediately after impact reads

(v1 + ∆v1) − (v2 + ∆v2) = 0 . (6.3)

This vector equation is required for determining the unknown vector F̂.

2. Frictionless collisions: Under this assumption the collision force F has the
constant direction of the impact normal, i.e. of the normal to the common
tangent plane at the point of collision. In Fig. 6.2 the impact normal is
identified by the unit vector n. Together with F also the impulse F̂ has this
direction, i.e.

F̂ = F̂n . (6.4)

Since n is known, only the scalar F̂ is unknown.

Frictionless collisions actually represent a whole family of cases because it
must be distinguished whether the deformation of the bodies in the vicinity
of the point of collision is a purely plastic compression or whether the phase
of compression is followed by a phase of either total or partial decompression.
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Let F̂c (superscript c for compression) be the impulse which is exerted on
one of the colliding bodies by the other colliding body during the phase of
compression. A parameter e called coefficient of restitution is defined. It is
the ratio between the impulse in the phase of decompression and F̂ c. Hence,
the total impulse during impact is

F̂ = (1 + e)F̂c . (6.5)

The parameter e is zero if the compression is fully plastic and one if it is
fully elastic. For partially elastic compressions it is in the range 0 < e < 1.

Let ∆vc
C

be the finite increment of the absolute velocity vC of the body
center of mass in the compression phase. Similarly, let ∆ωc be the increment
of the absolute angular velocity in the compression phase. Also the point
of collision experiences a velocity increment in the compression phase. It is
denoted ∆vc. Since the velocity of deformation of the body is zero at the
beginning and at the end of the compression phase the rigid-body formula is
applicable:

∆vc = ∆vc
C

+ ∆ωc × ̺ . (6.6)

As in the classical theory of collision between two bodies the assumption is
made that in both colliding bodies the compression phase ends at the same
time. Under this condition the following statement is valid. At the end of the
compression phase the component of the relative velocity of the two colliding
body-fixed points in the direction of the normal n is zero. With indices 1 and
2 for the two points this is the equation

[(v1 + ∆vc
1) − (v2 + ∆vc

2)] · n = 0 (6.7)

where v1 and v2 are, as before, the absolute velocities of the two points imme-
diately before impact. The dynamic equations (6.2) as well as the kinematic
equation (6.6) are homogeneous linear equations with constant coefficients
for unknown velocity increments, impulses and impulse couples. This allows
the conclusion that for all these unknowns relationships in the form of (6.5)
exist. In particular, ∆v1 = (1 + e)∆vc

1 and ∆v2 = (1 + e)∆vc
2 are the veloc-

ity increments of the two colliding body-fixed points between the moments
immediately before and immediately after impact. With these expressions,
(6.7) becomes

[(
v1 +

∆v1

1 + e

)
−
(
v2 +

∆v2

1 + e

)]
· n = 0 (6.8)

or
[(v1 + ∆v1) − (v2 + ∆v2)] · n = −e(v1 − v2) · n . (6.9)

The quantity on the left-hand side is the component along n of the velocity
of the two colliding body-fixed points relative to one another immediately
after impact. It is (−e) times the same quantity immediately before impact.
This is the same kinematic relationship that is valid in the classical theory
of collision between two rigid bodies (Routh [68]). The single scalar equation
is required for determining the unknown scalar F̂ in (6.4).
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6.2 Velocity Increments. Impulses

With the assumptions specified in the previous section the problem of impact
is now reduced to the determination of two groups of mechanical quantities.
One group is made up of instantaneous finite increments of velocities. Veloci-
ties of interest are the first time derivatives of generalized coordinates as well
as angular velocities of bodies and translational velocities of body centers of
mass and of other body-fixed points. The second group comprises the impulse
applied to a system at the point of collision and, in addition, constraint im-
pulses and constraint impulse couples in joints. Only joints with holonomic
constraints are considered. The unknowns must be determined from a set
of equations which consists of dynamics equations of the general form (6.2),
of kinematics equations of the general form (6.6) and of a single equation
which has either the form (6.3) or the form (6.9), depending on the type
of collision. Equations (6.2) and (6.6) are homogeneous linear equations for
the unknowns, whereas (6.3) and (6.9) are inhomogeneous linear equations.
The initial velocities v1 and v2 as well as the position of the system which
determines the constant coefficients of the equations are known. From this it
follows that all unknown constraint impulses and impulse couples in joints as
well as all unknown velocity and angular velocity increments are proportional
to the impulse F̂ at the point of collision. The unknown impulse F̂ itself is
determined either from (6.3) or from (6.9).

In what follows the proportionality between the velocity increments of the
two colliding bodies at the point of collision on the one hand and the impulse
F̂ on the other hand is expressed. The general situation is schematically
shown in Fig. 6.3. The two colliding bodies are labeled i and j. At the
point of collision P they are shown separated from one another. Arbitrarily
it is assumed that the impulse +F̂ is applied to body i, and, consequently,
the impulse −F̂ to body j. As is shown in Fig. 6.1 the two bodies belong
either to two different systems or to one and the same system. In the first
case each system is subject to a single impulse, whereas in the second case
the single system is subject to +F̂ and to −F̂ in two different places. Let
∆vi and ∆vj be the velocity increments at the point P on body i and

Fig. 6.3. Two colliding bodies i and j subject to impulses +F̂ and −F̂ at the
point of collision P. Vectors ̺i, ̺j locating P and velocity increments ∆vi, ∆vj

at P
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on body j, respectively. The unknown proportionality factors can only be
tensors because the velocity increments do not have, in general, the direction
of F̂. The following notation is adopted. For two points with arbitrary labels
k and ℓ the tensor relating ∆vk at point k to the impulse F̂ at point ℓ is
denoted Ukℓ. With this notation the two velocity increments in Fig. 6.3 have
the following forms.

Collision between two multibody systems:

∆vi = Uii · F̂ ,

∆vj = −Ujj · F̂ .

}
(6.10)

Collision within one multibody system:

∆vi = (Uii − Uij) · F̂ ,

∆vj = (Uji − Ujj) · F̂ .

}
(6.11)

In Sect. 6.3 explicit expressions for the tensors in these equations are devel-
oped. In what follows (6.3) and (6.9) are formulated in terms of these tensors.
In both equations the indices 1 and 2 are replaced by i and j, respectively.
Equation (6.3) for the ideally plastic collision between two multibody systems

reads (vi + Uii · F̂) − (vj − Ujj · F̂) = 0 or

(Uii + Ujj) · F̂ = −(vi − vj) . (6.12)

In order to solve this equation for F̂ all vectors and tensors are decomposed
into scalar coordinates in some common reference base. This yields the equa-
tion

(U ii + U jj)F̂ = −(vi − vj) . (6.13)

The solution is

plastic coll. betw. two systems: F̂ = −(U ii + U jj)
−1(vi − vj) . (6.14)

In the same way (6.4) combined with (6.11) leads to the equation

plastic coll. within one system: F̂ = −(U ii−U ij −U ji +U jj)
−1(vi−vj) . (6.15)

Next, (6.9) for frictionless collisions is formulated. With (6.10) this is the
equation (vi − vj) ·n + F̂n · (Uii + Ujj) · n = −e(vi −vj) ·n, whence follows

frictionless coll. betw. two systems: F̂ = −(1 + e)
(vi − vj) · n

n · (Uii + Ujj) · n
. (6.16)

In the same way (6.9) combined with (6.11) leads to the equation

frictionless coll. within one system: F̂ = −(1 + e)
(vi − vj) · n

n · (Uii − Uij − Uji + Ujj) · n
.

(6.17)
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6.3 Analogy to the Law of Maxwell and Betti

In this section explicit expressions are developed for the tensors Uij (i, j =
1, . . . , n) for arbitrary multibody systems. Starting point are equations of con-
tinuous motion. Tree-structured systems are governed by (5.84) and (5.83):

A q̈ = B , (6.18)

A = aT
1 · ma1 + aT

2 · J · a2 ,

B = aT
1 · (F− mb1) + aT

2 · (M∗ − J · b2) .

}
(6.19)

When the variables q are subject to holonomic constraints caused by the
closure of kinematic chains then only a subset of variables q∗ is independent.
The two sets are related through (5.117):

q̇ = G q̇∗ + Q , q̈ = G q̈∗ + H . (6.20)

The system is governed by (5.120) and (5.119):

A∗q̈∗ = B∗ , (6.21)

A∗ = GT A G , B∗ = GT (B − A H) . (6.22)

In the absence of constraint equations the matrices are G = I and H = 0.
In this case (6.21) is identical with (6.18). In what follows the more general
equations (6.21) are used.

In order to find expressions for all tensors Uij (i, j = 1, . . . , n) it is nec-
essary to apply to each body i of the system one impulsive force Fi. Forces
and torques enter the equations via the term aT

1 · F + aT
2 · M in the ma-

trix B. In the derivation of the equations of motion Fi was the resultant
external force applied to body i at the body i center of mass, and Mi

was the resultant external torque applied to body i. Now, the force Fi is
applied to an arbitrary point of body i which is defined by the vector ̺i.
This has the consequence that the force produces the torque ̺i × Fi. For
reasons which will become clear later it is assumed that in addition to the
impulsive force Fi also an impulsive torque Mi is acting on body i. Thus,
the resultant impulsive torque on body i is Mi + ̺i × Fi. The column ma-
trix [̺1 × F1 . . . ̺n × Fn]T is written in the form ̺ × F where ̺ is the
diagonal matrix of the vectors ̺1, . . . ,̺n. The matrix M is then replaced
by the expression M + ̺ × F , and the entire expression aT

1 · F + aT
2 · M is

replaced by (aT
1 + aT

2 × ̺) ·F + a T
2 ·M (the multiplication symbols × and ·

can be interchanged). Since ̺ is a diagonal matrix this is written in the final

form (a1 − ̺ × a2)
T ·F + a T

2 ·M.
Equations (6.21) are integrated over the infinitesimally small time interval

∆t → 0. During this time interval the matrices A∗, a1 and a2 are constant
because they depend on q1, . . . , qn only. All terms containing neither F nor
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M are finite. Therefore, the integration results in the equations

A∗∆q̇∗ = GT
[
(a1 − ̺ × a2)

T · F̂ + a T
2 · M̂

]
, (6.23)

∆q̇ = G ∆q̇∗ = G (A∗)
−1

GT
[
(a1 − ̺ × a2)

T · F̂ + a T
2 · M̂

]
.(6.24)

The points of application of the impulses experience the finite velocity incre-
ments

∆vi = ∆ṙi − ̺i × ∆ωi (i = 1, . . . , n) . (6.25)

The column matrix of these velocity increments is

∆v = ∆ṙ − ̺ × ∆ω (6.26)

where ̺ is the diagonal matrix from (6.24). From the basic equations (5.41)
and (5.43) it follows that

∆ṙ = a1∆q̇ , ∆ω = a2∆q̇ . (6.27)

In combination with (6.26) this yields the equation

∆v = (a1 − ̺ × a2)∆q̇ . (6.28)

In this equation and in the equation for ∆ω (6.24) is substituted. Both equa-
tions are then combined in matrix form as follows:

[
∆v

∆ω

]

=

[
(a1 − ̺ × a2)G (A∗)−1GT (a1 − ̺ × a2)T (a1 − ̺ × a2)G (A∗)−1GT

a
T
2

a2 G (A∗)−1GT (a1 − ̺ × a2)T
a2 G (A∗)−1GT

a
T
2

]
·
[

F̂

M̂

]
.

(6.29)

Every element of the (2n×2n) coefficient matrix is a tensor. The tensors Uii,
Uij , Uji and Ujj in (6.14) and (6.17) relate velocity increments to impulses.
These tensors are the elements (i, i), (i, j), (j, i) and (j, j), respectively, of
the matrix. The tensors Uii and Ujj in (6.16) are related to two different
systems engaged in the collision. Each of these systems has its own Eq. (6.29).

The coefficient matrix in (6.29) is equal to its conjugate, which means that
Uji = Uij . When all vectors in (6.29) are decomposed in a common reference
base the resulting scalar (6n× 6n) coefficient matrix is symmetric. The sym-
metry establishes an analogy between rigid body dynamics and elastostatics
(Wittenburg [94]). In elastostatics the following problem is considered. A lin-
early elastic structure which is in a state of equilibrium is subject to forces
and to couples at a number of points P1, . . ., Pn (a single force Fi and a single
couple Mi at each point Pi). There exists a linear relationship of the form

[
u

φ

]
=

[
A11 A12

A21 A22

]
·
[

F

M

]
. (6.30)
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The column matrices F, M, u and φ are composed of n vectors each. The
elements of u are the displacements of the points P1, . . ., Pn from their
locations in the unloaded state, and the elements of φ are the rotation angles
of the system at the points P1, . . ., Pn (small rotation angles can be treated
as vectors). Decomposition of all vectors and tensors in a common reference
base results in an equation with a (6n × 6n) coefficient matrix. The law of
Maxwell and Betti states that this matrix is symmetric. This means that
the tensorial matrix in (6.30) is conjugate symmetric. Thus, the equation is
analogous to (6.29). Note, however, the following difference between the two
problems. The law of Maxwell and Betti results from energy considerations.
These do not provide a closed-form expression for the matrix in (6.30). In
fact, a closed-form expression is unknown for all but the simplest types of
elastic structures (trusses, for instance). In contrast, the matrix in (6.29) is
explicitly known. It is a highly complex expression. This is seen from (6.22)
and (6.19) for A∗ and A and from (5.79) and (5.82) for a1 and a2.

In the derivation of (6.29) it was assumed that each body of the system
is subject to a single impulsive force. Motivated by the fact that in every
joint of a body an impulsive constraint force is acting the generalization to
an arbitrary number of impulsive forces is made. This requires modifications
in two places. First, if the resultant force on body i is still denoted Fi then
Fi = Fi1 + . . .Fiνi

where νi is the number of forces on body i. Define
F∗ = [F11 . . .F1ν1

. . . Fn1 . . .Fnνn
]T . Then, the equation F = DTF∗

defines a block-diagonal matrix D composed of elements 0 and 1 ( a block
of νi elements 1 in column i). The resultant torque on body i is no longer
Mi + ̺i × Fi, but Mi + ̺i1 × Fi1 + . . . ̺iνi

× Fiνi
. The column matrix of

the n resultant torques is written in the form M + ̺∗T × F∗ where also

̺∗ is a block-diagonal matrix (the block [̺i1 . . . ̺iνi
]T in column i). With

these modifications the original expression aT
1 · F + aT

2 · M is replaced by
(aT

1 DT + aT
2 × ̺∗T ) · F∗ + a T

2 · M = (D a1 − ̺∗ × a2)
T ·F∗ + a T

2 · M.
The second expression requiring modification is ∆v in (6.28). The point

of application of F̂ij experiences a velocity increment ∆vij . Define the col-

umn matrix ∆v∗ = [∆v11 . . . ∆v1ν1
. . . ∆vn1 . . . ∆vnνn

]T . It is left to the
reader to verify that

∆v∗ = (D a1 − ̺∗ × a2)∆q̇ . (6.31)

Equation (6.29) remains valid if the matrices ∆v, F̂ and (a1 − ̺ × a2) are

replaced by ∆v∗, F̂
∗

and (D a1 − ̺∗ × a2), respectively.

Illustrative Example: This is an example for the action of two impulses
on a single body. The point P2 of the body shown in Fig. 6.4 is constrained to
move along a straight guide. At the point P1 the body is subject to a given
impulse F̂1. The points P1 and P2 are located by the body-fixed vectors
̺1 and ̺2, respectively, measured from the body center of mass C. To be
determined are the reaction impulse F̂2 exerted on the body by the guide
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Fig. 6.4. Single body subject to impulse F̂1 at P1 and to a constraint at P2

at P2, the velocity increments ∆v1 and ∆v2 of P1 and P2, respectively, as
well as the angular velocity increment ∆ω of the body.
Solution: Instead of adapting (6.29) to the present simple case we develop
the desired relationship from basic principles of rigid body dynamics. Inte-
gration of Newton’s equation and of the angular momentum theorem over
the infinitesimal time interval of collision yields the equations

m∆vC = F̂1 + F̂2 , J · ∆ω = M̂ + ̺1 × F̂1 + ̺2 × F̂2 . (6.32)

The impulse couple M̂ is deliberately included although it is zero. The points
of application of the impulses experience the finite velocity increments ∆vi =
∆vC − ̺i × ∆ω (i = 1, 2). Decomposition of all four equations in some
common frame of reference yields for the coordinate matrices of ∆ω, ∆v1

and ∆v2 the expressions

∆ω = J−1
(
M̂ + ˜̺

1
F̂ 1 + ˜̺

2
F̂ 2

)
,

∆vi = ∆v
C
− ˜̺

i
∆ω

=
1

m

(
F̂ 1 + F̂ 2

)
− ˜̺

i
J−1

(
M̂ + ˜̺

1
F̂ 1 + ˜̺

2
F̂ 2

)
(i = 1, 2) .

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭
(6.33)

They are combined in the matrix form

⎡
⎢⎣

∆v1

∆v2

∆ω

⎤
⎥⎦ =

⎡
⎢⎣

1
mI − ˜̺

1
J−1 ˜̺

1
1
mI − ˜̺

1
J−1 ˜̺

2
− ˜̺

1
J−1

1
mI − ˜̺

2
J−1 ˜̺

1
1
mI − ˜̺

2
J−1 ˜̺

2
− ˜̺

2
J−1

J−1 ˜̺
1

J−1 ˜̺
2

J−1

⎤
⎥⎦

⎡
⎢⎢⎣

F̂ 1

F̂ 2

M̂

⎤
⎥⎥⎦ .

(6.34)
This represents the scalar form of (6.29). The coefficient matrix is symmetric.
If for decomposition of all vectors and tensors the base shown in Fig. 6.4 with
the base vector e1 along the guide is used then the two column matrices are

[ ∆v11 ∆v12 ∆v13 ∆v2 0 0 ∆ω1 ∆ω2 ∆ω3 ]T ,

[F̂11 F̂12 F̂13 0 F̂22 F̂23 0 0 0 ]T .

The underlined quantities are the unknowns. They are determined by the
matrix equation. End of example.
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6.4 Constraint Impulses and Impulse Couples in Joints

In the context of (6.1) it has been said that the constraint force Xa and
the constraint torque Ya in joint a are defined as in Sect. 5.5.6. Hence,
all equations formulated in Sect. 5.5.6 are valid. Equation (5.109) gave for
the constraint forces and torques of a tree-structured system the explicit
expressions

X = T (m r̈ − F) , Y = T (J · ω̇ − M∗ − C× X) . (6.35)

By definition, M∗
i = Mi −ωi × Ji ·ωi. The second term drops out when the

equation is integrated over the infinitesimally short time interval ∆t. In the
derivation of (6.29) it was explained that the matrix M has to be replaced
by M + ̺ × F, because the force Fi is applied not at the body i center of
mass but at a point located by the vector ̺i (see Fig. 6.3). Among the forces
listed in F only impulsive forces at the point of collision are of interest. This
is either a single force F acting on one body or two forces F and −F acting
on two bodies. All external torques in M are of finite magnitude. Hence,
integration of the equations over the infinitesimally short time interval ∆t
yields for the constraint impulses and impulse couples in joints the explicit
expressions

X̂ = T (m ∆ṙ − F̂) , Ŷ = T (J · ∆ω − ̺ × F̂ − C× X̂) . (6.36)

This is complemented by (6.27),

∆ṙ = a1∆q̇ , ∆ω = a2∆q̇ . (6.37)

These equations determine X̂ and Ŷ once all velocity increments and the
impulse at the point of collision are known. The constraint impulses and
impulse couples satisfy the orthogonality conditions (see (5.111))

X̂a · kaℓ = 0 , Ŷa · paℓ = 0 (ℓ = 1, . . . , fa) (6.38)

(the latter ones only under the conditions stated there). These equations are
used for systems with closed kinematic chains.

6.5 Chain Colliding with a Point Mass

A chain consisting of eleven identical links with revolute joints is resting on
a horizontal table. The links are homogeneous rods of length ℓ, mass m and
central moment of inertia mℓ2/12 about the vertical axis. The angle between
neighboring bodies is 9π/10 for all pairs of neighboring bodies so that the
chain is enveloping a semicircle with the center at 0 (Fig. 6.5a). The fourth
link is hit at its own center by a point mass of mass m which is moving with
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Fig. 6.5. (a) Chain hit by point mass m. (b) Velocity increments ∆vi of body
centers of mass and instantaneous centers of rotation Pi (i = 1, . . . , 11). (c) Five
positions of the chain at equal time intervals. Collision of bodies 1 and 7 at P causes
new initial conditions for the subsequent motion

velocity v normal to the direction of the link. The collision is ideally elastic.
To be determined are the velocities of the centers of mass of all links and
the angular velocities of all links immediately after impact. The subsequent
motion of the chain is to be computed by numerical integration of equations
of motion. It is assumed that no friction occurs between the table and the
chain and that no internal torques are acting in the joints.

Solution: The system is of the kind described as system with tree structure
and with spherical joints not joint-connected to a carrier body 0. Its equations
of motion consist of the single equation r̈C = (1/M)

∑11
j=1 Fj for the com-

posite system center of mass and of equations describing rotational motions.
For the present case of plane motions these latter ones are (5.302), (5.303).
The angle φi (i = 1, . . . , n) is measured in the plane between a base vector
ei
1 fixed on body i and the base vector e1 of an inertial frame of reference.

The orientation of these base vectors is chosen as shown in Fig. 6.5a. The
origin of e is the point 0, e1 has the direction of v and ei

1 has the direc-
tion of the longitudinal axis of body i. Under these conditions all vectors bij
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(j = 1, . . . , n) on body i are parallel to ei
1 so that βij = 0 for i, j = 1, . . . , n.

Neither internal torques in joints nor external torques on bodies are acting.
During the time interval ∆t of collision body 4 is the only body subject to
an external force and this force has the form F4 = Fe1. In this special case,
the dynamics equations for the composite system center of mass and (5.302),
(5.303) for the angular variables have the forms (written without the hat of
K̂i3)

r̈C1 =
1

M
F , A

⎡
⎢⎣

φ̈1

...

φ̈n

⎤
⎥⎦+ B

⎡
⎢⎣

φ̇2
1
...

φ̇2
n

⎤
⎥⎦ = F Q , (6.39)

Aij =

{
Ki3 (i = j)
−Mbijbji cos(φi − φj) (i �= j)

(i, j = 1, . . . , n) , (6.40)

Bij = −Mbijbji sin(φi − φj) (i, j = 1, . . . , n) , (6.41)

Qi = −bi4 sin φi (i = 1, . . . , n) . (6.42)

In addition, the kinematics equations (5.306) for the body centers of mass
are required:

ṙi1 = ṙC1 −
n∑

j=1

φ̇jbji sin φj , ṙi2 =

n∑

j=1

φ̇jbji cosφj (i = 1, . . . , 11) .

(6.43)
Since the chain is at rest prior to the collision the velocity increments

caused by the collision represent the initial velocities for the subsequent mo-
tion. They are determined through integration of the dynamics equations
over the infinitesimal time interval of collision:

ṙC1(0) =
1

M
F̂ , φ̇(0) = F̂ [A(0)]−1Q(0) . (6.44)

The impulse F̂ is determined from (6.16):

F̂ = −(1 + e)
(vi − vj) · n

n · (Uii + Ujj) · n
. (6.45)

Let the index i in this equation refer to the chain and the index j to the point
mass. The tensor Ujj of the point mass is abbreviated U. The tensor Uii of
the chain is called U44 because it relates the velocity increment of the body 4
center of mass to the impulse applied at the same point. The velocities prior
to the collision are vi = 0 (body 4 of the chain) and vj = ve1. Furthermore,
n = e1 and e = 1 (ideally elastic collision). Equation (6.45) then reads

F̂ =
2v

e1 · (U44 + U) · e1
. (6.46)
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From Newton’s equation for a point mass it follows that U = (1/m) I and,
hence, e1 · U · e1 = 1/m.

An expression for U44 is developed from Eqs. (6.39)–(6.44). By defi-
nition, U44 is the tensor in the equation ∆ṙ4 = U44 · F̂e1 . Hence, e1 ·
U44 · e1 = ∆ṙ41/F̂ . The first Eq. (6.43) yields the expression ∆ṙ41 =
∆ṙC1−

∑n
j=1 ∆φ̇jbj4 sin φj . Comparison with (6.42) shows that this is ∆ṙ41 =

∆ṙC1 +
∑n

j=1 Qj∆φ̇j = ∆ṙC1 + QT ∆φ̇ with the matrix Q from (6.39). All
velocity and angular velocity increments in this equation represent the re-
spective initial velocities immediately after impact. For the initial values on
the right-hand side the expressions (6.44) are substituted. This yields

ṙ41(0) = F̂

(
1

M
+ QT (0)[A(0)]−1Q(0)

)
. (6.47)

The expression in parentheses is the desired product e1 · U44 · e1. With this
expression and with e1 · U · e1 = 1/m (6.46) yields for the impulse F̂ the
final result

F̂ =
2v

1/m + 1/M + QT (0)[A(0)]−1Q(0)
. (6.48)

The expression on the right-hand side is determined by the given conditions
prior to the collision. With F̂ the initial velocity ṙC1(0) of the composite
system center of mass and the initial angular velocities of all bodies are
calculated from (6.44). Next, the initial velocities of all body centers of mass
are calculated from (6.43). Finally, the constraint impulses in the joints are
calculated from the first Eq. (6.36).

Numerical results based on the given parameters are listed in the equation
below and in Table 6.1.

F̂ = 1.323 mv , ṙC1(0) = 0.1189 v . (6.49)

Table 6.1. Initial angular velocities and initial velocities of body centers of mass

i φ̇i(0) ℓ/v ṙi1(0)/v ṙi2(0)/v

1 −0.0070 0.1132 0.0837
2 −0.3716 −0.0391 0.1958
3 0.9185 0.2474 0.1630
4 −0.0133 0.6774 0.0211
5 −0.9460 0.2209 −0.1250
6 0.3384 −0.0920 −0.1717
7 −0.0269 0.0370 −0.0831
8 0.0561 0.0377 −0.0674
9 0.0239 0.0464 −0.0287

10 0.0249 0.0425 −0.0049
11 0.0257 0.0311 0.0173
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Table 6.2. Apparent system mass M∗ for collisions of the mass m with different
bodies i

i 1 2 3 4 5 6

M∗/m 1.173 1.761 1.892 1.952 1.979 1.987

The vectors ∆vi (i = 1, . . . , 11) in Fig. 6.5b show magnitude and direction
of the initial velocities of the body centers of mass (∆vi = ṙi(0)). With the
data in Table 6.1 the locations of the instantaneous centers of rotation P1,
. . ., Pn of the bodies are calculated. The results satisfy the condition that the
line connecting the centers of rotation of any two neighboring bodies passes
through the joint connecting these bodies.

If the total mass of the chain were to be concentrated in a single point
the interaction impulse would be F̂ = 2v/(1/m + 1/M). The actual interac-

tion impulse F̂ can be represented in the form F̂ = 2v/(1/m + 1/M∗). This
equation defines an apparent system mass M∗. Comparison with (6.48) yields
1/M∗ = 1/M + QT (0)[A(0)]−1Q(0). The matrix A(0) is positive definite so
that M∗ < M . In the present case M∗ equals 1.952 m. If the calculation is
repeated for the case when the point mass does not strike the fourth body
but the i th body (i = 1, . . . , 6) – always at the center of mass and normal
to the body – then the results listed in Table 6.2 are obtained. The appar-
ent system mass is always much smaller than the actual mass M = 11 m,
and except for i = 1, it depends little on the location of the point of colli-
sion.

With the given initial conditions the continuous motion of the chain fol-
lowing the collision is found by integrating equations of motion. These are
Eqs. (6.39) with zero right-hand sides. In Fig. 6.5c the chain is shown in five
positions at equal intervals of time. In the fourth position the end-point of
body 1 collides with body 7 at the point P. This collision causes instanta-
neous changes of velocities and of angular velocities (not of ṙC) which are
calculated from equations similar to the ones used before. The details are
left to the reader. With new initial conditions thus obtained the numerical
integration is continued until the next collision occurs.

The results displayed in Fig. 6.5c were tested experimentally ten years
after making the calculations. The chain was supported by teflon feet on
a polished glass plate. The point mass was replaced by a piston which was
propelled by a prestressed spring in a fixed cylinder. The observed motion
was precisely as calculated including the collision between bodies 1 and 7 and
the subsequent motion.

Problem 6.1. The solar panels on the spacecraft in Fig. 6.6 are deployed by means

of torsional springs in the revolute joints. The individual bodies are (unrealistically)

considered as rigid. When neighboring bodies reach their final relative orientation

their motion relative to one another is suddenly stopped (ideally plastic collision).
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Fig. 6.6. Spacecraft unfolding solar panels at the moment of collision in joint 6

It is assumed that these collisions occur one at a time. Determine the finite angular

velocity increment of the central body 1 caused by the collision in joint 6. Joints 2

to 5 are still unfolding while joint 7 has reached its final state already.



Solutions to Problems

Problem 1.1: I ; 3 ;

2

4

0 e1
3 −e1

2

−e1
3 0 e1

1

e1
2 −e1

1 0

3

5 ; 0 ; A12 ; A21 ; tr A21

Problem 1.2: (a c · b)ij =
P

k

P

ℓ aiℓcℓk · bkj =
P

ℓ

P

k aiℓ · cℓkbkj = (a · cb)ij

Problem 1.3: 1. a1T
b̃
1
A12c2 , 2. −b1

T
ã1 b̃

1
A12c2 , 3. c2T

D2A21a1 ,

4. c2T
A21 b̃

1
A12D2c2 , 5. ã1 b1 , 6. ã1A12 c2 , 7. ã1A12 c̃2 A21 b1 ,

8. A12c̃2D2A21a1 , 9. −ã1A12 c̃2 D2A21 b1

Problem 1.4: If p and q are any vectors for which p × q = d then
D11 = b · bI − bb = D̄11 , D12 = (c · bI − cb) + (qp − pq) = D̄21 ,
D22 = c · cI − cc = D̄22 ,
D11 = bT b I − b bT = DT

11 , D12 = cT b I − c bT + d̃ = DT
21 ,

D22 = cT c I − c cT = DT
22 ; the (6 × 6) matrix is symmetric

Problem 2.1: Eigenvalues λ1 = 1, λ2,3 = cos ϕ ± i sin ϕ.
Eigenvectors n1 = [1 0 0], n2,3 = [0 ∓ i 1]

Problem 2.2: Matrix A1: ψ = 225◦, θ = cos−1 1
3

(principal value), φ = 45◦ ,

q0 =
p

2/3 , q1 = q2 = −
p

1/6 , q3 = 0.
Matrix A2: ψ = cos−1 7

10

√
2 (principal v.), θ = cos−1 1

3
(principal v.),

φ = 135◦ , q0 =
p

8/15 , q1 =
p

3/10 , q2 = −
p

1/30 , q3 =
p

2/15.
Matrix A3: ϕ = 180◦ (because A21 is symmetric), q0 = 0 , q = n ,
(A21−I)n = 0 yields n1 = 1/3 , n2 = 2/3 , n3 = 2/3 , cθ = −1/9 , sθ = (4/9)

√
5 ,

cψ = −(2/5)
√

5 , sψ = (1/5)
√

5 , cφ = (2/5)
√

5 , sφ = (1/5)
√

5

Problem 2.3: cos φ2 = 0 if in (2.9) a21
31 = σ (+1 or −1). This is the condition

(see (2.24)) n1n3 cos ϕ−n2 sin ϕ = n1n3−σ. It has the form A cos ϕ+B sin ϕ = C.
Hence, cos ϕ = (AC ±BW )/N , sin ϕ = (BC ∓AW )/N with N = A2 + B2 and
W =

√
A2 + B2 − C2 =

p

n2
1n

2
3 + n2

2 − (n1n3 − σ)2 =
p

−(n3 − σn1)2 . Real roots
(a double root) exist only if n3 = σn1, whence follows n2

2 = 1 − 2n2
1,

cos ϕ = −n2
1/(1 − n2

1), sin ϕ = σn2/(1 − n2
1) with n2

1 ≤ 1/2 (arbitr.)
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Problem 2.4: Equations (2.61) and (2.62) formulated with ϕ1 = −π (equivalent
to ϕ1 = π) and with ϕ2 = π yield cos ϕres

2
= n1 · n2 = cos α,

nres sin ϕres

2
= n1 × n2, whence follows ϕres = 2α and nres = n1 × n2/ sin α

Problem 2.5: A body-fixed vector with the coordinate matrix r2 in e2 has in
e1 after the first rotation the coordinate matrix r1 = A12

1 r2, after the second r1 =
A12

2 A12
1 r2 and after the third r1 = A12

3 A12
2 A12

1 r2, where (with ci = cos φi, si =
sin φi)

A12
3 =

2

4

c3 s3 0
−s3 c3 0

0 0 1

3

5 , A12
2 =

2

4

c2 0 −s2

0 1 0
s2 0 c2

3

5 , A12
1 =

2

4

1 0 0
0 c1 s1

0 −s1 c1

3

5 .

After the third rotation A21 = (A12
3 A12

2 A12
1 )T and Dres = D3D2D1.

Special cases: A21 =

2

4

0 0 −1
0 1 0

−1 0 0

3

5 and Dres = D2 for the first two sets of angles;

A21 = I and Dres = (1,0) for the third set

Problem 2.6: j = jA + (γ − ω2ω) × ̺ − 3(ω̇ · ω)̺ + 2(ω · ̺)ω̇ + (ω̇ · ̺)ω
where γ is the time derivative of ω̇ in the body-fixed base e2

Problem 2.7:
(v1 − v3) × (v2 − v3) = [ω × (r1 − r3)] × (v2 − v3) = −ω (r1 − r3) · (v2 − v3)
= −ω [(r1 − r3) ·ω × (r2 − r3)]. From this it follows: ω lies in the plane of the three
points if (v1 − v3) × (v2 − v3) = 0. Assume, first, that this is not the case. Then

ω =
(v1 − v3) × (v2 − v3)

(r3 − r1) · (v2 − v3)
=

v1 × v2 + v2 × v3 + v3 × v1

(r3 − r1) · (v2 − v3)
.

Differentiation of (r3 − r1) · (r2 − r3) = const produces for the denominator (abbre-
viated D) the expression D = −(v3 − v1) · (r2 − r3) or, by adding D to both sides,
2D = [(r3 − r1) · (v2 − v3) − (v3 − v1) · (r2 − r3)]. Hence,

ω = 2
v1 × v2 + v2 × v3 + v3 × v1

v1 · (r2 − r3) + v2 · (r3 − r1) + v3 · (r1 − r2)
.

Special case: ω lies in the plane of the three points. Ansatz: ω = λ(r1−r2)+µ(r2−
r3) with unknowns λ and µ. Hence, v1 − v2 = ω × (r1 − r2) = µn and v2 − v3 =
ω×(r2−r3) = −λn with n = −(r1−r2)×(r2−r3) = −(r1×r2+r2×r3+r3×r1).
Hence, λ = −(v2 − v3) · n/n2, µ = (v1 − v2) · n/n2, whence follows
ω = (n/n2) · [v1(r2 − r3) + v2(r3 − r1) + v3(r1 − r2)]

Problem 2.8: A21 = A3B2A2B1A1 with A3, A2, A1 from (2.8) and with

B2 =

2

4

1 0 0
0 cβ −sβ

0 sβ cβ

3

5 , B1 =

2

4

cα sα 0
−sα cα 0

0 0 1

3

5 .

ω = A3B2A2B1[φ̇1 0 0]T + A3B2[0 φ̇2 0]T + [0 0 φ̇3]
T and [φ̇1 φ̇2 φ̇3]

T =

=
1

c2cαcβ

2

4

c3cβ −s3cβ 0
c2s3cα + c3(sαcβ + s2cαsβ) c2c3cα − s3(sαcβ + s2cαsβ) 0
−cα(s2c3 + c2s3sβ) cα(s2s3 − c2c3sβ) c2cαcβ

3

5

2

4

ω1

ω2

ω3

3

5

(ci = cos φi, si = sin φi (i = 1, 2, 3), cα, cβ , sα, sβ = cos α, cos β, sin α, sin β,
respectively)
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Problem 3.1: Conservation of kinetic energy requires that J1q̇
2
1 + J2q̇

2
2 ≡ 2T =

const. This yields the desired equation: q̇1(q1) =
p

2T/[J1 + J2/i2(q1)]. With the
dimensionless parameter λ2 = J2/J1 and with the constant angular velocity ω0

defined through the equation 2T = (J1 + J2)ω
2
0 it takes the form

q̇1(q1) = ω0

s

1 + λ2

1 + λ2/i2(q1)

Problem 3.2:
Equation (3.27): The entire body mass must be located in the plane ̺k = 0.
Equation (3.28): The entire body mass must be located in one of the two planes
which contain the axis ei and which are inclined under 45◦ against the axes ej and
ek, so that for every mass element ̺2

j + ̺2
k = 2̺j̺k.

Equation (3.29): The entire body mass must be located either on the axis ei or on
the axis ej . Then Jij = 0 and either Jii = 0 or Jjj = 0

Problem 3.4: Center of mass at ℓ [a/4 1/2 − a/4] with a = tan γ;
mass m = ̺ℓ3a2/6;

JC =
̺ℓ5a2

40

2

4

1/3 + a2/4 a/6 −a2/12
a/6 a2/2 a/6

−a2/12 a/6 1/3 + a2/4

3

5

Problem 3.5: If A is the contact point then ̺C = −b sin φe1 − (R − b cos φ)e2,
r̈A = −Rφ̇2e2, JA · ω = [JC + m(R2 + b2 − 2Rb cos φ)]φ̇e3, ω̇ = φ̈e3,
MA = −mgb sin φe3 . Equation of motion:
[JC + m(R2 + b2 − 2Rb cos φ)]φ̈ + mbRφ̇2 sin φ + mg b sin φ = 0 .
For using the other reference points introduce reaction forces at the point of contact
and eliminate these forces from the law of angular momentum by formulating also
Newton’s law

Problem 3.6: rA =
−−→
0P1 = c sin φ e1 with c = a/ sin α, δṙA = c cos φ δφ̇ e1,

δω = δφ̇ e3, r̈A = c(φ̈ cos φ− φ̇2 sin φ)e1, r̈C = r̈A+ φ̈e3×̺C− φ̇2̺C, MA = a×F2.
Equation of motion (with JA = JC + m̺2

C):
φ̈{JA + m[c2 cos2 φ − 2c ̺C cos φ sin(φ + α − β)]}
−φ̇2mc[c sin φ cos φ + ̺C cos(2φ + α − β)] = c[F1 cos φ + F2 cos(φ + α)].
Special case α = π/2, β = 0, ̺C = a/2: JAφ̈ = a(F1 cos φ − F2 sin φ)

Problem 4.1: J2ω̇2 = (J3 − J1)ω3ω1 < 0 for ω3ω1 > 0

Problem 4.2:

J1ω̇1 − (J1 − J∗
3 )ω2ω3 = −ω2L

r(t),
J1ω̇2 − (J∗

3 − J1)ω3ω1 = +ω1L
r(t),

J∗
3 ω̇3 = − M r(t)

with J∗
3 = J3 − Jr and Lr(t) =

R t

t0
M r(τ ) dτ + Lr(t0). Integrals of motion:

ω2
1 + ω2

2 = Ω2 = const and J∗
3 ω3 + Lr(t) = J3ω3 + h = L = const (axial coordinate

of total absolute angular momentum).
Solution: ω3 = ω3(t0) − [Lr(t) − Lr(t0)]/J∗

3 , ω1 = Ω sin α(t),
ω2 = Ω cos α(t) with α(t) = α(t0) +

R t

t0
f(τ ) dτ and f(t) = L/J1 − ω3(t).

Interaction torque M r(t)−ah: Equation (4.129) is replaced by (4.114) and (4.117)
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with the additional term −ah. This yields

J1ω̇1 − (J1 − J3)ω2ω3 = −ω2h,
J1ω̇2 − (J3 − J1)ω3ω1 = ω1h,

J3ω̇3 + ḣ = 0,

Jr
3ω̇3 + ḣ = M r(t) − ah .

Integrals of motion ω2
1 + ω2

2 = Ω2 = const and J3ω3 + h = L = const as before.
Solution:
h(t) = φ(t) + [h(t0) − φ(t0)]exp(bt),

ω3 = ω3(t0) +
1

J3
{φ(t) + [h(t0) − φ(t0)]exp(−bt) − h(t0)}, b = a

J3

J∗
3

.

φ(t) is the particular solution of ḣ + bh = M r(t)J3/J∗
3 ; ω1 = Ω sin α(t),

ω2 = Ω cos α(t) with α(t) as before.

Problem 5.1: Replace in (5.93) cia by one and adapt the subsequent arguments

Problem 5.2: i+(a) = a, i−(a) = 0 (a = 1, . . . , n), S0t = −1T , St = T = I

Problem 5.3: The transpose of the (8 × 3) incidence matrix is
2

4

+1 0 0 0 0 0 −1 0
0 0 0 +1 0 −1 0 0
0 0 0 −1 0 +1 0 0

3

5

Problem 5.4: κ52 contains only vertex 3. κ22 is the set of vertices 3, 6 and 7

Problem 5.5: k = 3: 1. vertices 1, 7 ; 2. no vertex ;
k = 5: 1. vertex 1 ; 2. vertex 2

Problem 5.6: Ωa = ωi−(a) − ωi+(a) = −Pn

i=1 Siaωi (a = 1, . . . , m),
Fires =

Pm

a=1 SiaFa (i = 1, . . . , n),
tree structure: Ω = −ST ω ↔ ω = −TT Ω, Fres = S F ↔ F = T Fres,
Mres = C × F

Problem 5.7: A = (kT ) ·m(kT )T = const , B = (kT ) · [m(r̈01−TT s)−F]

Problem 5.8: A is not singular

Problem 5.10: Equation (5.100) is replaced by
−pT · M = −pT · S pT K(q − q

0
) = −p · pT K(q − q

0
). Diagonal matrix K.

A Hooke’s joint labeled a is associated with the matrix (see (5.57)) pT

a
= [pa1 pa2].

The matrix p · pT has submatrices p
a
· pT

a
=

»

1 pa1 · pa2

pa1 · pa2 1

–

along the

diagonal. It is the unit matrix if in all Hooke’s joints the joint axes are orthogonal.

Problem 5.11: za = −Pn

i=0 Siacia −Pn

i=0 Siari = −Pn

i=0 Cia −Pn

i=0 Siari,

z = −CT
0c −CT

c 1 − r0S
T
0c − ST

c r and with (5.74)
z = −r0(S

T
0c + ST

c 1) − CT
0c − CT

c 1 − ST
c [−(C0T )T − (CT )T 1]

= −(C0c −C0T Sc)
T − (Cc −CT Sc)

T 1. The factor of r0 is zero because of (5.9).
According to (5.21) and (5.25) T Sc = −UT

t . Hence
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z = −(C0c + C0U
T
t )T − (Cc + CUT

t )T 1 = −U tC
T
0 − CT

0c − U tC
T 1 − CT

c 1

= −[U t I ]

"

CT
0 + CT 1

CT
0c + CT

c 1

#

= −U D

Problem 5.12: On body i the resultant constraint torque
Pn

a=1 SiaYa is acting
in addition to the external torque. Thus, K · ω̇ = M + Q + S Y. Multiplication
from the left by T yields T K · ω̇ = T (M + Q) + Y. Scalar multiplication by p
eliminates the constraint torques: pT ·K · ω̇ = pT · (M + Q). According to (5.65)

and (5.66) ω̇ = a2q̈+b2 with a2 = −(pT )T , b2 = ω̇01−TT f (w = 0 in systems
with revolute joints). Substitution yields the desired equations of motion:
aT

2 ·K ·a2 q̈ = aT
2 · (M+Q−K ·b2). Comparison with (5.83) and (5.86) shows that

aT
2 · K · a2 = aT

1 · m a1 + aT
2 · J · a2 with a1 = (CT )T × a2, a2 = −(pT )T .

Problem 5.13: K̂i = Ji + mℓ2

4n
[4(n − i)(i − 1) + n − 1]

Problem 5.15:

2T = M ṙ2
C +

n
X

i=1

"

ωi ·K̂·ωi + M
n
X

j=1
�=i

(ωi×bij)·(bji×ωj) + 2ωi ·hi +

si
X

k=1

Jik ω
2
ikrel

#

,

V =
1

2
ω

2
0

n
X

i=1

 

3e3 · Bi · e3 − M

n
X

j=1
�=i

bij · bji

!

absolute velocity ṙC of the satellite center of mass, axial moment of inertia Jik of
the kth rotor on body i, angular velocity ωikrel

of this rotor relative to its carrier,
number si of rotors on body i, tensor Bi as in (5.282). See Wittenburg/Lilov [103]

Problem 6.1:
In what follows the joint axes are not required to be parallel to one another. At the
moment immediately prior to the collision the system consists of six bodies (the
bodies connected by the locked joint 7 represent a single body). The system has
eleven generalized coordinates: q = [q11 q12 q13 q14 q15 q16 q2 q3 q4 q5 q6]

T (six for
body 1 relative to inertial space and one in each of the joints 2, 3, 4, 5, 6). The state
of motion immediately prior to the collision is known, in particular q̇6 is known.
After the collision q̇6 = 0. Thus ∆q̇6 = −q̇6 is known. The locking in joint 6 is
caused by the component along the joint axis of the constraint torque Ŷ6. Joint 1
between body 1 and inertial space is free of joint reactions. Equations (6.36) and
(6.37) read X̂ = Tm ∆ṙ, Ŷ = T (J ·∆ω −C× X̂), ∆ṙ = a1∆q̇, ∆ω = a2∆q̇

with matrices X̂ = [ 0 X̂2 X̂3 X̂4 X̂5 X̂6 ]T and Ŷ = [0 Ŷ2 Ŷ3 Ŷ4 Ŷ5 Ŷ6 ]T .
Decomposition in e1 of the equations for X̂ and Ŷ yields 36 scalar equations.
In X̂ 15 scalar coordinates are unknown. In Ŷ eleven scalar coordinates are un-
known, namely eight coordinates of Ŷ2, . . . , Ŷ5 normal to joint axes and three
coordinates of Ŷ6. The axial coordinates of Ŷ2, . . . , Ŷ5 are zero. In the matrix
∆q̇ = [∆q̇11 . . . ∆q̇16 ∆q̇2 ∆q̇3 ∆q̇4 ∆q̇5 ∆q̇6]

T ten quantities (all except ∆q̇6) are
unknown. The total number of unknowns is 36. This equals the number of scalar
equations.
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de ces déplacement considerés indépendamment des causes qui peuvent les
produire. J. Math. Pures et Appl., s. 1:380–440

68. Routh EJ (1905) Dynamics of a system of rigid bodies (Elementary part).
Macmillan, London. German transl. (1898) Die Dynamik der Systeme starrer
Körper. Die Elemente. Teubner, Leipzig

69. Rui Xiaoting (1995) Launch dynamics of multibody systems. National De-
fense Industry Press, Beijing

70. Saidov PI (1965) Theory of gyroscopes (Russ.). v.1, Vysshaya Shkola, Moscow
71. Salecker M (1991) Zur Dynamik hybrider Mehrkörpersysteme – Theorie und

symbolische Programmierung. Diss. Univ. Karlsruhe
72. Samin J-C, Fisette P (2003) Symbolic modeling of multibody systems (Solid

Mechanics and its Applications). Kluwer, Dordrecht
73. Schiehlen W (ed) (1990) Multibody systems handbook. Springer
74. Schiehlen W (ed) (1993) Advanced multibody system dynamics: Simulation

and Software tools. Kluwer, Dordrecht
75. Schiehlen W, Ambrósio J A C (eds) Journal Multibody System Dynamics.

Springer, Dordrecht
76. Schwertassek R, Wallrapp O (1999) Dynamik flexibler Mehrkörpersysteme.

Vieweg, Braunschweig
77. Shabana AA (2005) Dynamics of multibody systems. Cambridge Univ. Press
78. Stuelpnagel J (1964) On the parametrization of the three-dimensional rota-

tion group. Siam Rev. 6, No 4:422–430
79. Tan Zheng (2000) Compressive method for multibody systems. Science Press,

Beijing
80. Tölke F (1967) Praktische Funtionenlehre. v. 3, 4. Springer Berlin Heidelberg

New York
81. Truesdell C (1964) Die Entwicklung des Drallsatzes. ZAMM 44:149–158
82. Uicker JJ (1968) Dynamic behavior of spatial linkages. Trans. of the ASME

68, Mech.:1–15
83. Velman JR (1967) Simulation results for a dual-spin spacecraft. Aerosp. Corp.

Rep. TR–0158 (3307–01)–16, El Segundo
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85. Vukobratović M, Kircanski N (1985) Real-time dynamics of manipulation

robots. Series: Scientific fundamentals of robotis 4, Springer, Berlin
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angular acceleration 25
angular momentum 39, 154
angular momentum ellipsoid 50, 78
angular momentum theorem 44, 48,
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angular orientation 9
angular velocity 25
angular velocity increment 195
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sense of direction 95
articulation point 110
augmented body 118, 119, 121, 154,

159, 163
inertia tensor 155, 160, 172

barycenter 120, 161, 162, 181
base vector 1
Bryan angles 12, 33

canonical reference frame 29
cantilever beam 181
car crash 127
Cardan angles 12
carrier body 92
centrode 31
chord 99, 123
circuit 99
circuit matrix 99, 124
closed kinematic chain 93, 129, 131
coefficient of restitution 196
collision

between multibody systems 198
between point mass and chain 203
point of 193

within one multibody system 198
connected system 93
constraint equation see kinematic

constraint
constraint force 124, 135
constraint torque 124, 135
controlled joint variables 132
coordinate matrix

of a tensor 4
of a vector 3

cutset 99
cutset matrix 99

d’Alembert’s principle 47
direction cosine 2
direction cosine matrix 2, 3, 9, 10, 13,
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distribution parameter 30
duplication of bodies 131

eigenvalue 15, 17, 42, 51
energy ellipsoid 50, 59, 78
Euler angles 10, 19, 33, 55, 62
Euler’s equations 46, 49, 53, 58, 60
Euler–Rodrigues parameters 18, 19,
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corrected 36

force element 91, 121

Gauss principle 47
graph 95

arc 95
chord 96



222 Index

circuit 99
circuit matrix 99
connected 95
coordinate graph 186
cutset 99
cutset matrix 99
damper graph 185
directed 95
inboard arc of a vertex 102
inboard vertex of a vertex 102
incidence matrix 96, 187
integer functions 96
path between two vertices 95
path matrix 97
regularly directed 102
regularly labeled 102
spanning tree 95, 129
spring graph 185
subgraph 99
terminal vertex 97
tree-structured 95
unconnected 99, 185
vertex 95
weak ordering relationships 101

gravity gradient torque 166, 170
gyrostat 72, 77, 167

human body 93, 127, 179
Huygens–Steiner formulas 41

impact 193
constraint impulse 197, 203
constraint impulse couple 197, 203
frictionless 195
fully elastic 196
impulse 197
law of Maxwell and Betti 199
partially elastic 196
phase of compression 195
phase of decompression 196
plastic 195
velocity increment 197

impact normal 195
impulse 194
impulse couple 194
impulsive force 194
inboard arc 102
inboard vertex 102
incidence matrix 96, 114, 187

weighted 115
inertia tensor 38, 40
instantaneous center of rotation 31
instantaneous screw axis 27
interconnection structure 94
invariable plane 52
invariants 43
inverse motion 26
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joint 91
cylindrical 111
Hooke 111
Hooke’s 111
kinematics 109
revolute 110, 117, 122, 138, 181
six-degree-of-freedom 92
spherical 110, 111, 150, 163
variables 110

Jourdain’s principle 47

Kepler’s third law 166
kinematic constraint 91, 129

holonomic 129
nonholonomic 129, 135
rheonomic 130
skleronomic 130

kinematic differential equations 32, 55
kinematics 9
kinetic energy 37

Lagrange 62
Lagrange equations 90
linear vibrations 184
loxodrome 58

Mathieu equation 184
Maxwell and Betti 199
moment of inertia 38
moment of momentum 39
motor control torque 133
multibody satellite 165
multibody system 89

coupled to a carrier body 152, 176
impact problems 193
not coupled to a carrier body 105,

158, 179, 188
plane motion 175
with closed kinematic chains 129
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with revolute joints 117
with spherical joints 150
with tree structure 109

Newton’s law 45, 48
nutation 59, 65, 68

orbital angular velocity 166
orthogonal Bricard mechanism 137
orthogonal matrix 2, 36
orthonormality condition 1, 24

Painlevé’s theorem 28
path matrix 97, 114
permanent rotation 50, 65, 78, 163

stability 57, 84
phase of compression 195
phase of decompression 196
phase portrait 39
pitch 27
planar fourbar 136
plane motion 175, 179, 181, 182, 204
Poinsot 52, 59
Poisson’s equations 32
polhode 50, 53, 59, 78, 85, 87
principal axes 42
principal moments of inertia 42
principle of virtual power 47, 105, 129,

144, 151, 189
product of inertia 38
pseudo-regular precession 68

quaternion 20
conjugate 20
of a rotation 21
of resultant rotation 22
unit 20

raccording axodes 28, 31
reduced mass 189, 191
regular labeling 102
regular precession 64
relative equilibrium 167, 171
removal of joints 129
resultant rotation 22
robot 117
rotation

inverse 21
rotation tensor 14
rotation vector 22
ruled surface 27

self-excited symmetric rigid body 60
separatrix 52, 55, 85
similarity transformation 5, 41
spanning tree 129
stabilized multibody pendulum 182
Stewart platform 142
striction line 31
striction point 28
symmetric body in cardan suspension

70
symmetric heavy top 62
symmetric torque-free rigid body 58
system graph see graph

table on wheels 147
tensor 4

conjugate 4
coordinate matrix 4
unit 5

transformation
of tensor coordinates 5
of vector coordinates 3

transmission ratio 39
tree structure 93

unconnected 99
unsymmetric torque-free rigid body

49

vector
bij 120
component 1
coordinate 1
ci+(a),a 110
ci−(a),a 110
dij 118
kaℓ 110
paℓ 111
rC 105
ri 105
Ri 105
time derivative of 25

vector base 1
velocity increment 195
vertex 95

inboard arc 102
inboard vertex 102
terminal 97

Volterra 80

Wangerin 80


