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1Introduction

When did we actually start to subject everything around us and not least ourselves to
continuous optimization? The idea behind optimization has been around for as long as
human existence. To reduce physical labor, to increase the speed of an action in order to
shorten its duration or to increase yield and thus the efficiency of an action is a sign of
intelligence that is deeply anchored in our thought processes. In the eighteenth century, the
agricultural revolution arose out of a necessity to feed the growing population of Western
Europe. As a result, innovative processes had to be developed to increase the fertility of
the soil and increase the yield of harvest. Evolutionary breeding behaviors helped to raise
more powerful farm animals to support agriculture or to breed animals with a higher meat
content for consumption. This era went hand in hand with the industrial revolution of the
nineteenth and twentieth centuries. The development of power machines and drives changed
the attitude toward physical labor. New working communities, as created by industries, as
well as new and closer societies emerged, which promoted social networking. This led to
the rise of the proletariat for the first time, which in a broader sense was also motivated by
the optimization of social structures.

Our natural drive for development has taken us to a highly efficient and highly technolo-
gical level in which we live today. Once a system has reached higher orders of optimization,
it is inevitable to switch to alternative systems in order to conquer new business areas and
reposition in the highly dynamic and competitive market. Does this perhaps explain why
the combustion engine is experiencing a renaissance?

Drive concepts of the future will have to meet the granular demands of society as well as
the strict requirements of politics. Based on demanding expectations, the entire automotive
industry is collectively preparing to set the right course at an early stage for a visionary
future landscape. Recent publications show that by 2040, a variety of hybrid variants, with a
share of 53%− 65%, should cover the new registration market. The concepts can primarily
be divided into mild 48V hybrids with different powertrain variants (P0 − P4 topology),
conventional serial or parallel hybrids and plug-in hybrids up to range extenders, where the
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2 1 Introduction

engine takes over a passive role of the drive. The range 11%− 15% of the market share is
to be covered by pure electric vehicles, and the remaining 22%− 29% will be split between
pure internal combustion engines, which will be powered to a higher degree by synthetic
fuels (e-fuels) and bio-fuels, as well as gas and hydrogen-powered vehicles.

As a result of the targeted and versatile drive variants, the development costs of auto-
mobile manufacturers will increase dramatically in the coming years. Combustion engines
have already reached an almost maximum potential regarding their efficiency and thus a
minimum of CO2 emissions. Further optimization attempts are now only bringing marginal
improvements at the same or even higher investment volume. This, however, does not mean
that it can be replaced so easily. Yet, one thing is certain: investment trends for the develop-
ment of internal combustion engines will no longer be sustained in this form, as they have
been in recent decades. An investment basis resulting from more versatile drive concepts
will only be profitable in the future if significant leaner development processes and more
efficient methods replace the current ones.

For this purpose, the right tools are available at the right time: Artificial intelligence (AI).
AI is the science of intelligent agents combined with the power of neural networks that
primarily computer scientists have dealt with over the past decades. Their versatile fields of
application have settled in the world of IT and have significantly advanced the digitization
process since the 1970s. In the meantime, the concepts of AI have become versatile, reliable
and highly efficient. How can the topics of a digital IT sector be transferred to industrial
fields?

The term artificial intelligence is used in an inflationary way in the vernacular and mean-
while rather conveys an image or a feeling that a certain process can be carried out cleverly,
mechanically and by self-learning. This book is intended as a concept book and serves to
consolidate the possible uses of AI for industrial applications. It aims to present AI topics
in all its complexity and to provide conceptual and creative ideas on how it can be used in
powertrain development. Engineers with a focus on drive development who want to get to
know more about the possibilities and levels of AI should benefit from this. This book is
also aimed at AI users and IT experts who do not have a classical engineering background
and would like to gain a clear impression of how their techniques can be applied to specific
powertrain development topics.

Aras Mirfendreski



2The Combustion Engine at the Turn
of Industrialization

2.1 The Prehistory

Industrialization changed the world. It began in the late eighteenth century and brought
about a revolutionary change through technology. The abrupt change challenged centuries-
old structures at various levels that were unprepared. It seemed to possess extraordinary
power and revolutionized agriculture, trade, transport, textile production, housing, politics,
cultures and last but not least the entire society.

The need for industrialization was first determined by the agricultural revolution. This
took place between 1760 and 1815 and enabled farmers to achieve significant growth in food
production through the modernization of technologies in agriculture and animal husbandry.
WesternEurope and especiallyGreat Britainwere traditional trading regions at that time. The
combination of ever-increasing population density and poor arable land forced farmers and
peasants to becomemore efficient and to develop newmethods to increase their productivity.
In arable farming, grazing livestock was used as a fertilizer supplier for pasture land, which
increased the fertility of cereal fields. Great successes in the efficient management of fields
were achieved by growing new crops that simultaneously served the food cycle between
humans and livestock, and by cultivating new and more robust grass varieties that not only
grew faster but also extracted fewer nutrients from the soil.

In the field of agricultural technologies, the seed drill was invented at the beginning
of the eighteenth century, replacing the plowing and sowing by human labor. This machine
not only saved a considerable amount of time when sowing fields but also made it easier
to harvest with the precision of evenly spaced seeds and hence increased efficiency. Other
technical innovations included a horse-drawn hoe, introduced by Jethro Tull around 1708,
which was used for weeding, and a lathe by Andrew Meikle around 1760, which separated
the grain from its husk.

In the livestock sector, Robert Bakewell introduced groundbreaking innovations. For
grassland management, he worked close to the river, diverting waterways and canals to
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4 2 The Combustion Engine at the Turn of Industrialization

irrigate the land. This enabled him to ensure that crops did not fail even in dry periods and to
eliminate the dependence on rain. He experimented with different animal fertilizers on trial
fields and promoted the fertility of the soil. And in the field of animal breeding, he moved
away from uncontrolled breeding of cattle on free pasture. He deliberately brought together
healthy and strong sheep, cattle and cows, and, through evolutionary breeding behavior,
from generation to generation, was able to raise more breed animals with a higher portion
of meat.

The agricultural revolution of the seventeenth century and the subsequent industrial revo-
lution in the late eighteenth and nineteenth centurieswere pioneered byBritain, which served
as a model for Western Europe, the United States and, in the late nineteenth century, Japan.
Britain’s rapidly growing population, high supply of labor, involvement in world trade and
availability of raw materials were important prerequisites—all of which arrived at the same
time, making technological change both necessary and possible.

The driving raw material of industrialization was coal, not only because it has an energy
density up to four times higher than wood, but also because it burns much more slowly
and thus releases its energy more moderately. Great Britain had large coal deposits. Unlike
in many other countries, its coal was not deep, so it was accessible without the need for
technologies for deep mining. This and the lack of alternatives to coal, as the country had
only a small amount of forested land to supply wood for industries with high energy needs,
catapulted Britain forward and gave it a great developmental advantage over other countries.

Toward the end of the eighteenth century, Scottish engineer James Watt developed an
efficient version of the steam engine. In the subsequent decades, it found its way intomining,
metal and textile industries as a reliable machine. This technology enabled mechanized
mining of coal lay in deeper layers of the earth such as coal fields found in the northern
France Walloon region, the German Ruhr and Saar areas, as well as Silesia and Ukraine.
The industrial revolution followed in its wake.

The favorable position of Great Britain and its lead in both agriculture and industry ena-
bled the country to develop national and international trade quickly. As a result, a large
fortune in the form of capital was built up, and new business areas were created through
lucrative investments. The concept of monetizability through capital investments was under-
stood early on. Investments resulted in the financing of industrial enterprises, which led to
the development of a well-functioning banking system. In the late eighteenth century, banks
were founded, and increasingly loans, bills of exchange and bonds developed into a newfield
of business for traders. Central European countries did not follow to establish joint-stock
banks until half a century later. From the past, it is clear that England still plays a dominant
role in the financial and banking sectors.

The technological advantages afforded by coal-fired railroad and industrialization conso-
lidated Great Britain’s lead on world trade. The aforementioned technological limitations in
mining and thus in steel production for rail transport delayed the industrial development of
the United States of America and German Reich by 30–40 years. In the meantime, England
had become the undisputed center of the world in international capital transfer.
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Until that time, Great Britain had not been exposed to any competition, and determined
the market price solely through imports of raw materials and exports of products. It was
only with the competitiveness of other countries, which had caught up with the market over
the following decades, that price regulation through supply and demand began.

The leading sectors in German industrial development were coal mining, iron produc-
tion and mechanical engineering. The dominant demand and thus the breakthrough of the
industrial structures enabled the railroad and the expansion of the railroad network. Around
1840, the length of the railways in the later German Empire was less than 500km. Ten years
later, it was 6000km and, at the foundation of the Empire in 1871, 19000km.

The United States, but especially the Northern States, benefited enormously on their
first steps toward industrialization through their common history and language and the
predominant origin ofmany immigrants and settlers fromGreatBritain.Various technologies
were also brought and transmitted to the states by British settlers during the industrialization
process. Due to the large area of land, it was recognized early on that an expansion of the
railroad networkwould be of crucial importance in order to rapidly advance industrialization.
Around 1840, the expansion of the network began drastically in the Northern States and was
pushed forward at the same time as Germany.

The southern states, on the other hand, hardly took part in industrialization until 1880.
Many regions here had concentrated on the agricultural cultivation of cotton. The sale of
raw products played the main role in trade, so that for a long time industrial machines were
not necessary. Slavery offered large landowners the opportunity to run their fields at a low
cost. The need for efficiency and cost optimization through mechanization was no longer
necessary.

Industrialization brought a fundamental change and a reversal of social orders. On the one
hand, it brought far-reaching opportunities and a financially rapid rise of the middle class;
on the other hand, it brought a loss of position and significance for the nobles and elites due
to the changes in modern economic practices. From a political point of view in particular,
companies became more prominent and exerted an increasingly strong influence. Improved
transportation facilities allowed the population to leave their habitats and settle in urban
agglomerations in the industrialized regions. When the population density in industrialized
regions increased, this often resulted in desolate working and living conditions. On the
other hand, the living conditions such as nutrition, health care and education improved
considerably. In its many forms, industrialization was a creeping and peaceful process that
gradually changed the world [1].

2.2 TheTechnological Revolution

Formore than two centuries, mankind has benefited frommachines. It has helped tomultiply
the yield of the soil and to transport people over the barriers of space and time. It is not only
a mechanical substitute for the human hand, but through the speed of its work, it changed
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the nature of its products and the lifestyle of generations. Although machines had existed for
centuries, the engine provided mechanical power for the first time. Power derived fromwind
and water was bound to place and opportunity. This problem was overcome by the engine.
When JamesWatt developed the steam engine in 1769, he opened up an inexhaustible source
ofenergy formankindand thereby triggered the industrial revolution.The lordshipoverpower
wasoncepreservedfor themostpowerfulof thisworld.Horses,slaves,servantsandwarriors—
for thousands of years, influence was driven by animal and human labor [1, 2].

The eighteenth century was initially reserved for the development of the steam engine
and not the internal combustion engine. Its rapid development is not a coincidence. Steam
can be generated in a heated boiler, and it is then continuously available as long as water
is in the boiler. In contrast, fuel, at that time in the form of powder, had to be put back into
the cylinder of the engine after each working cycle. The pressures were higher, the control
more difficult. This explains why the steam engine was brought to life earlier.

The awareness of having a mechanical force available at all times gradually changed
the population’s attitude to physical labor. If a process required the performance of heavy
physical work, from then on it was an obvious thought to find ways to replace its load with
power machines. In addition to agricultural and other activities, as well as textile production,
trade and transport, new and industrial professions for the production of machines and other
technological products were developed. The production of machines was not the work of
a single person. Large enterprises and working communities as well as new forms of life
emerged in the industrial boom. It was during this period that the idea of socially linked
living and working emerged.

The door to early mobility was opened by the steam locomotive, the beginnings of which
were in the1820s. Itwas thefirstmeans of transport available for everyone that revolutionized
the perception of space and time. The history of the American Civil War shows that four
decades after the invention of the steam locomotive, railroad played a decisive role in both
political and strategic change. The industrial, social and political revolutions since the second
half of the eighteenth century were closely related both intellectually and materially.

In themiddle of the nineteenth century, the Belgian inventor Etienne Lenoir undertook the
development of the two-stroke gas engine. In 1862, the principle was improved by Nicolaus
August Otto through the four-stroke process which was named after him. By this time, these
new forms of propulsion were large and heavy and were mainly suitable as power engines
for industrial purposes. In the middle of 1869, the construction of a factory was started. In
Cologne, where the world’s first engine factory was built, the center of the large company
still stands today. At that time, there were only 40 workers who produced 87 engines under
Otto’s management in 1869. With the development of the combustion engine, power was
available anywhere. It was brought into the hands of the proletariat, and with the revolution
of power their rise gradually began [3].

The locomotive only marked the beginning of a new era of mobility. It could not, in the
long run, satisfy people’s aspiration for freedom as it was tied to rails, stations and railroad
networks. In 1878, Amédée Bollée reconsidered the technology of steam power in terms of
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individual forms of transport and adopted it in the serial production of steam-powered cars.
The first models were created by integrating the drives into already existing carriages. The
main advantages were that the steam cycle was a closed process and water was available to
everyone at all times. Coal and firewood were also cheap fuels that were used to heat the
water in the steam boiler. However, the concept also had a major disadvantage: preheating
the water until it had reached its operating temperature, which could take up to half an hour
before the journey began.

After the steam engine, the electric motor was the second type of mechanical drive that
was used as a standard for vehicles. The Flocken electric car, which was developed and
presented by Andreas Flocken in Coburg in 1888, was considered the first four-wheeled
electric vehicle. The limited range and the long time it took to recharge the battery posed
major challenges for this type of drive back then.

At the same time, the first pioneers were working on combustion engines as alternative
drive concepts. In 1886, Carl Friedrich Benz applied for a patent for his motor vehicle in
Mannheim. In 1889, he presented his Motor Car Number 3 to a broad public at the World
Exhibition in Paris. This marked the birth of the internal combustion engine as a standard
drive concept, and from then on it took its course. At the same time, Gottlieb Daimler and
Wilhelm Maybach presented their version of the first four-wheeled automobile in Stuttgart
in 1886. The Daimler-Maybach engine of 1885 was small and light and used a carburetor
with fuel injection.

Two decades after the development and series production of the driving concepts—steam,
electricity and combustion—it was unclear which of these three would prevail on themarket.
All of them brought their individual advantages and disadvantages. In 1900, about 4200 cars
were built in the USA. Of these, 1600 were steam-powered, 1572 were electrically powered
and 1028 had a combustion engine or other drive concept. Only a handful of about 200
manufacturers who had a more or less mature concept to offer survived until 1920. The
development of the starter for an internal combustion engine in 1909 was groundbreaking
and simplified the cumbersome starting of the engine by means of a hand crank. The higher
efficiency and improved driving range, cheap price of oil and the gradual establishment of
a network of filling stations were all factors that spoke in favor of the internal combustion
engine and gave reason to believe that it would win the race over its competitors [2].



3Revolution through Simulation for the
Development of Powertrains

The computer-aided use of simulation tools for the development of powertrains has become
more and more established over the last decades and is indispensable today. For this pur-
pose, simulations are divided into the areas of flow dynamics (3D-CFD), concept simulation
(1D/0D), elastohydrodynamics (EHD), kinematics, structure dynamics and reliability (finite
element method (FEM) and multi-body simulation (MBS)) and acoustics. Different simu-
lation products are provided for different development phases of powertrains. These mesh
with each other throughout the entire development process chain with a strong interaction
accordingly. Beginning with the concept phase up to the application of electronic control
units, software products contribute their individual strengths and hence allow to benefit from
a technologically efficient and targeted application.

Figure3.1 gives a general overview as to which simulation products are used in the
respective phases of powertrain development. In today’s modern development units of car
manufacturers, development processes are all model-based and in a strong interaction with
each other, which makes the use of the complete chain inevitable. The following chapters
aim to elaborate the theoretical foundations of the simulation levels and to introduce the
fundamental physics behind them.

3.1 Flow Calculation

3D-, 1D- and 0D-CFD tools are generally used to predict the flow path of fluids and to
conclude on thermal and thermodynamic behaviors. The selection of a suitable method is
made according to the required level of detail. A higher level of detail is always accompanied
by a higher computational effort.

The time required for 3D-CFD applications is so high that they are not suitable for overall
process calculations. Instead, they are used for the calculation of individual components.
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Fig. 3.1 Application areas of simulation for powertrain development

For 1D calculations, the time factor is playing an increasingly important role today. The
combination of the increasing performance of computational processors and more efficient
algorithms of computational solvers are leading to a new agewhich allows a complete engine
run to be solved within real time. This results in the possibility of coupling simulation tools
with real components from the field of electronics. Especially for engine control units,
completely new application possibilities open up, which bring significant advantages for the
development chain.

A 0D application does not resolve for the location of dependent effects. It predicts iden-
tical thermodynamic states for mass, pressure and temperature independent of the spatial
coordinate. This level is especially useful if complex overall systems have to be calculated
in a short time (vehicle + drive + electronics) or if the effects of a higher resolution are not
desired.

3.1.1 3D-CFD

3D-CFD allows gaining differentiated insights into complex flow phenomena. Through
its application, fluid-flowing components can be optimized with regard to their design. The
following list enumerates some common powertrain areas that are calculated using 3D-CFD:

• Fuel cells: Flow, heat transfer, electrochemical reactions, transport of species in PEM
fuel cells,1 etc.

• Electric drives: thermal management of the electric motor, battery cooling, electroche-
mical modeling of the battery, aerodynamics, etc.

• Components for the cooling circuit: oil and water circuit (pump, inflow, thermostat, etc.).

1 PEM: Proton Exchange Membrane.
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• Internal combustion engine cylinder intake: airflow, compressor, intercooler (IC), mani-
fold system, port design, valve design (chargemovement for tumble and swirl generation),
etc.

• Internal combustion engine cylinder: injector position, injection jet (nozzle holes, injec-
tion angle, etc.), piston geometry (compression ratio, bowl, cooling channels, etc.).

• Combustion engine cylinder outlet: port design, valve design (charge movement), mani-
fold, EGR path, EGR cooler, turbine inlet and internal flow, VTG, wastegate, aftertreat-
ment, muffler, etc.

The conservation laws for mass, momentum and energy, which are collectively known as
the Navier-Stokes equations are the underlying equations forming the basis of numerical
fluid mechanics. A flow field is completely characterized by its velocity vector and the
state variables pressure, density and temperature as a function of coordinate and time. The
conservation law of mass is described as follows [4]:

dm

dt
= 0 (3.1)

The equation expresses that the temporal change of mass within a fixed control volume
corresponds to the masses added or removed over the boundaries of the volume element.
The absolute mass can only increase or decrease if the density of the fluid changes. For
incompressible fluids, the conservation equation for the mass in integral form is expressed
as follows:

Integral : ∂

∂t

∫

V

ρdV +
∫

S

ρu · ndS = 0 (3.2)

V denotes the control volume, S its surface, n the unit vector perpendicular to S (directed
outwards), u the fluid velocity and ρ its density. A corresponding coordinate-free differential
form of the continuity equation can be derived by applying the Gauss theorem [4].

Vector : ∂ρ

∂t
+ ∇ · ρu = 0 (3.3)

Another, often used representation notation is the Cartesian tensor:

Cartesian : ∂ρ

∂t
+ ∂ρux

∂x
+ ∂ρuy

∂ y
+ ∂ρuz

∂z
= 0 (3.4)

Here, (ux , uy, uz) describe the Cartesian components of the velocity vector u. Newton’s
second equation of motion describes the conservation of momentum. It expresses that the
momentum of a control volume can be influenced by external forces f [4].

m · u
∂t

=
∑

f (3.5)
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The momentum conservation in integral form is described as follows:

Integral : ∂

∂t

∫

V

ρudV + ∂

∂t

∫

S

ρuu · ndS =
∫

S

T · ndS +
∫

V

ρbdV (3.6)

The left side of the equation describes the momentum of a fluid within a control volume.
Its change over time corresponds to the sum of acting surface forces (shear and normal
forces) and external forces. These may consist of gravitational, centrifugal, Coriolis or
electromagnetic forces. These are summarized in the variable b [4].

The stress tensor T for a Newtonian fluid describes the molecular transport rate of a
momentum and can be represented in the Cartesian coordinate system as follows [4]:

Ti j = −
(
p + 2

3
μ

∂u j

∂xi

)
δi j + 2μDi j (3.7)

D represents the tensor of the deformation rate, δi j the Kronecker symbol (δi j = 1 for i = j ,
δi j = 0 for i �= j), and p and μ represent the pressure and the dynamic viscosity of the
fluid, respectively [4].

For the description of the viscous part of the stress tensor, the following notation is also
used in the literature:

τi j = 2μDi j − 2

3
μδi j∇u (3.8)

with

Di j = 1

2

(
∂ui
∂x j

+ ∂u j

∂xi

)
(3.9)

The coordinate-free vector representation of the conservation of momentum is

Vector : ∇uiρu = ui∇ · (ρu) + ρu · ∇ui (3.10)

If the viscous part of the stress tensor τi j is used in Eq.3.6 and gravity is considered the only
external force, the shape is obtained in Cartesian tensor notation:

Cartesian : ∂ρui
∂t

+ ∂ρu jui
∂x j

+ ∂τi j

∂x j
− ∂ p

∂xi
+ ρgi = 0 (3.11)

The energy conservation equation can be represented in different forms, depending on
which physical quantity is considered as variable (temperature, internal energy, thermal
enthalpy, total enthalpy, etc.). A common representation for a flow can be described using
the enthalpy h and the thermal conductivity k [4]:
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Integral : ∂

∂t

∫

V

ρhdV+
∫

S

ρhu · ndS =
∫

S

k∇T · ndS

+
∫

V

(u · ∇ p + S′ · ∇u)dV + ∂

∂t

∫

V

pdV (3.12)

S′ corresponds to the viscous part of the stress tensor. For the coordinate-free vector repre-
sentation of the conservation of energy theorem, the following results:

Vector : ∂(ρφ)

∂t
+ ∇ · (ρφu) = ∇ · (�∇ρ) + qφ (3.13)

For the conservation of a scalar, φ represents the amount of the scalar per unit mass, e.g. the
specific enthalpy or the internal energy. The differential form of the generic conservation
equation in Cartesian coordinates and tensor notation is

Cartesian : ∂(ρφ)

∂t
+ ∂(ρuiφ)

∂x j
= ∂

∂x j

(
�

∂φ

x j

)
+ qφ (3.14)

The variable � here describes the diffusion coefficient for the quantity φ, and qφ designates
sources and sinks of φ, which are supplied or discharged to the control system. By the con-
servation laws for mass, momentum and energy, a system is completely described together
with the thermal equation state for ideal gases and the relations between the specific gas
constant R, the isentropic exponent κ and the specific heat capacities cp as well as cv [5]:

p · v = m · R · T , κ = cp
cv

, R = cp − cv (3.15)

All in all, a system of equations consisting of nonlinear, partial differential equations (PDE)
results. For a 3D-CFD calculation process, these are iteratively calculated at each point of
the discretized structure (mesh) at each individual time step.

3.1.2 1D-CFD

If a complete engine process including an existing air path system is the objective of inves-
tigation, a 1D approach is a good choice. In a 1D simulation, the fluid flow is considered
exclusively along the main flow direction, which results in a moderate computational effort
in relation to the 3D-CFD. In addition to the calculation of an air path, 1D flowmodels using
the example of an engine are suitable for the calculation of charge exchange, exhaust gas
turbocharger design, geometry optimization, and the design and dimensioning of cooling
and oil circuits.
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1Dmodels are also based on the conservation equations of mass, momentum and energy.
As a result of the reduced dimensions, a 1D flow calculation can be expressed in a much
simpler way compared to 3D-CFD. The following basic equations are presented in [5].

With regard to mass conservation, the following simplification is made for the 1D,
starting from the 3D, view, by omitting the local coordinate resolution in y- and z-directions:

∂

∂t
+ ∂mx

∂x
+

�
�
��
0

∂my

∂ y
+

�
�
��
0

∂mz

∂z
= 0 (3.16)

→ ∂

∂t
+ ∂mx

∂x
= 0 (3.17)

By applying the continuity equation, the mass can be replaced. This results in the vectorial
notation:

∂

∂t
+ ∂mx

∂x
= ∂

∂t
+ ∂(ρxux Ax )

∂x
(3.18)

Ax corresponds to the flow area of a pipe transverse to the flow direction. Due to the 1D
approach, the x-component of the flow velocity corresponds to the entire flow vector ux = u.
Hence, the conservation of mass for 1D leads to

∂ρ

∂t
+ ρ

∂u

∂x
+ u

∂ρ

∂x
+ ρu

A

∂A

∂x
= 0 (3.19)

For the conservation of momentum, the reduction of the single terms below can be per-
formed based on the 3D view. The surface forces and the external forces are combined and
represented by a friction coefficient fR :

∂ρui
∂t

+ ∂ρu jui
∂x j

+ ∂τi j

∂x j
− ∂ p

∂xi
+ ρgi = 0 (3.20)

→∂ρu

∂t
+ u

∂u

∂x
+ ∂ p

∂x
+ fR = 0 (3.21)

If one follows the same scheme and tries to get from the 3D view of energy conservation
to the 1D one, Eq.3.22 can take different forms depending on which scalar is chosen. By
inserting the equations for continuity fromEq.3.17 and the conservation of momentum from
Eq.3.21, the energy equation can be represented in a generic form as a function of the total
pressure differential, see Eq.3.23, [5, 6]:

∂(ρφ)

∂t
+ ∂(ρuiφ)

∂x j
= ∂

∂x j

(
�

∂φ

x j

)
+ qφ (3.22)

→∂ p

∂t
+ u

∂ p

∂x
+ (qφ + u · fR)ρ = 0 (3.23)
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3.1.3 0D-CFD

A much simpler description of an air path is based on zero-dimensional (0D) models. By
decoupling a system from its path and time, the flow process is detached from a path and can
be represented solely by a time dependency. In a considered subsystem, the thermodynamic
state is spatially constant at any discrete time.

Even in a 1D flow modeling, parts of the air path in the form of air volumes can be
considered dimensionless. In this case, the reflection is calculated with a characteristic and
representative length of a volume. Additionally, other subsystems of the engine as well as the
combustion chamber, exhaust turbocharger, etc. are modeled on the basis of a 0D approach.

Filling and emptying models
Thefilling and emptyingmethod is a concept commonly used in practice for calculatingfluid-
flowpipe systems.Here, pipelines of the air path system are combined to spherical containers
with corresponding volumes, which is why this type of model is also called “container
model”. These are separated from each other by means of orifices or valves with fixed
or variable cross-sections. Changes of state within a container are calculated considering
transient filling and emptying processes.A positive volumeflowbetween adjacent containers
is generated by filling the front container and emptying the rear one.

A crucial assumption is that pressure and temperature within the containers are balanced
without delay. For each discrete calculation step, a complete mixing of the tank contents
takes place. The flow thus moves through the air path system at an infinitely high speed of
sound.

For a calculation of transient processes, it is assumed that the flow can be treated sta-
tionary for small time intervals, which leads to deviations in the result. Gas dynamic flow
effects cannot be reproduced with an R&D method, since the latter is not suitable for the
investigation of concepts such as resonance charging at the cylinder inlet and shock charging
at the exhaust turbocharger [5].

A system is described by the average values of pressure, temperature, mass, internal
energy and the heat flow across the system boundaries.

For the calculation of container models, the conservation laws for mass and energy are
calculated, the consideration of the conservation of momentum is omitted due to the absence
of a local resolution. Thus, the system is greatly simplified compared to a 1D approach.
The conservation of mass leads to the following differential form from a simplified 3D
consideration:

∂ρ

∂t
+

�
�
��

0
∂ρux
∂x

+
�

�
��

0
∂ρuy

∂ y
+

�
���

0
∂ρuz
∂z

= 0 (3.24)

→ ∂ρ

∂t
= 0 (3.25)
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From this, a temporally solvable representation can be derived:

d

dt
m(t) = ṁin(t) − ṁout(t) = 0 (3.26)

The conservation law for energy, based on the 3D view, can be reduced accordingly to the
following form:

∂(ρφ)

∂t
+

�
�

�
���

0
∂(ρuiφ)

∂x j
=

������	0
∂

∂x j

(
�

∂φ

x j

)
+ qφ (3.27)

→ ∂ρφ

∂t
= qφ (3.28)

If, for example, for the scalar φ the internal energy of a system is considered, the temporal
change takes the following form:

dU

dt
= dQW

dt
+ dHzu

dt
− dHab

dt
(3.29)

Using the thermal equation of state for ideal gases, the internal energy can also be expressed
as a function of pressure, temperature and the isentropic exponent κ:

∂U

∂t
= ∂

∂t
· p · V
κ − 1

= 1

κ − 1
· ∂ p

∂t
· V + 1

κ − 1
· p · ∂V

∂t
(3.30)

Together with the caloric correlations

U = m · cv · T , H = m · cp · T (3.31)

and Eqs. 3.29 and 3.31while disregarding the heat flows over thewalls result in the following
derivations for p and T :

dT

dt
= T · R

cv · p · V
[(

Ḣzu(t) − Ḣab(t)
) (

1 − cv

cp

)]
(3.32)

dp

dt
= κ · R

V · cp
[
Ḣzu(t) − Ḣab(t)

]
(3.33)

To determine themass flowover the throttling points (see Fig. 3.2), a flow equation according
to de Saint-Venant is used for stationary, adiabatic flows. A detailed derivation can be read in
[5]:

ṁ = αK · Azu · √
p0 · ρ0 · ψ, ψ =

√√√√ 2κ

κ − 1

((
p1
p2

) 2
κ −

(
p1
p2

) κ+1
κ

)
(3.34)

Here, Ain is the geometric cross-section, p0 and ρ0 the pressure and density in the tank in
front of the orifice, αK the flow coefficient and p1 the pressure in the cross-section. The term
ψ is also called outflow function.
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Fig. 3.2 State variables, fluid and energy flow of a container model

By means of the flow coefficients, real effects on the flow through a valve, such as
constriction, are taken into account, whereby the actual flow cross-section is smaller than the
geometric one. This coefficient describes the ratio of the actual mass flow to the theoretically
possible mass flow.

The maximum of the outflow function results from an extreme value determination. At
the point ψmax, the critical pressure ratio

(
p1
p0

)
krit

is just reached, as the following equation

results:
∂ψ

∂
(
p1
p0

) = 0,

(
p1
p0

)
krit

=
(

2

κ + 1

) κ
κ−1

(3.35)

As can be seen in Fig. 3.3, the value of the function increases up to the critical pressure ratio.
At this point, the speed of sound and thus the maximum possible mass flow is reached in
the narrowest cross-section. To the left, the mass flow can be increased by increasing p0 or
decreasing p1 [5, 7].

Fig. 3.3 Flow function as a
function of isentropic exponent
and pressure ratio [5]
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Mean value models
A mean value model (MVM) is a subordinate and compressed form of the filling and
emptying models. The difference lies in the fact that, in contrast to a conventional engine
process calculation, theworking process is not crank angle-resolved but considered averaged
over a cycle.

Such models are used when a crank angle-resolved view of the engine can be dispen-
sed with, or when even shorter computing times are required in contrast to the filling and
emptying method. This can be the case, for example, for fast parameter studies, integration
of the engine model into a complete vehicle environment (longitudinal dynamics) or for the
coupling of electronic control units, where real-time capability is mandatory.

3.2 Elastohydrodynamics (EHD) andTribology

Tribology dealswith the science of interactions of surfaces in relativemotion,which includes
the principles of friction, lubrication andwear. Its application is interdisciplinary and is based
on physics, chemistry, materials science and engineering (Fig. 3.4).

One of the most important applications of tribology in the field of engineering can be
found in the design and layout of bearings. In sliding roller contacts, such as rolling bearings,
gears and cam followers, the treads are elastically deformed due to high contact pressures.
For plastics such as seals, deformation can even occur at low pressure. This results in a much
larger surface area for carrying the load force than would be the case without deformation.
During operation, material stresses can hence be kept within specified limits despite high
forces [8].

Lubrication under consideration of deformations has been increasingly understood in the
last decades as a describable phenomenonand transferred intomathematicalmodels. This has
led to the development of simulation tools that help to carry out sensitivity studies, influence
processes, understand effects more precisely and ultimately transfer studied knowledge to
implement it into the design.

Elastohydrodynamic lubrication is generally referred to when the elastic deformation of
two contact bodies is equal to or approximately greater than the thickness of the lubricant
film. If the deformation is negligible, on the other hand, the lubrication is referred to as purely
hydrodynamic. If the contact bodies are stiff, as is the case with metals, this is referred to
as hard EHD lubrication. Soft EHD lubrication, on the other hand, occurs when one or both
contact bodies have a low modulus of elasticity. In the case of endurance runs, it is a matter
of stationary EHD lubrication. If, on the other hand, a time-discrete behavior is of interest,
such as during a warm-up or dynamic load on contact bodies, this is referred to as transiently
loaded EHD lubrication.
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Fig. 3.4 Examples of EHD-lubricated contacts [8]

In general, a contact between any two bodies locally forms an elliptical pressure surface.
In one extreme case, the load state can reach a circular contact, i.e. a point contact, or
approximately a bath-shaped contact or line contact in the other extreme case. In a line
contact, the bodies are in a plane deformation state.

To describe a tribological system, it is necessary to know important parameters such as
lubricant film thickness and pressure, load capacity, friction and material stresses. Problems
of the EHD can generally be divided into stationary hard EHD, stationary soft EHD, thermal
EHD and transient EHD.

The course of the friction force as a function of the friction velocity in the case of hydro-
dynamic friction is typically described by the so-called Stribeck curve (see Fig. 3.5). This
curve gives insight into the effect of the lubricant film thickness on the friction coefficient
as a function of oil viscosity, relative speed of the material pairings and the normal force.

If there is no relative movement between two pairs of materials, this is called dry friction.
If a force greater than the static friction force is applied, a relative movement is initiated.
In the first phase, the lubricant separates the material pairings from each other only at the
molecular level—this phase is called boundary lubrication.
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Fig. 3.5 Stribeck curve: Effect of the lubricant film on the friction coefficient of two materials [9]

If a thin lubricating film forms between the bodies so that they are only separated by
slight material roughness, the bodies can slide off on the lubricant—this phase is known as
mixed lubrication.

When mixed friction is overcome, the material pairs are completely separated by the
lubricating film in the next phase. This phase, which is called liquid friction, can be divided
into an elastohydrodynamic and a hydrodynamic phase, where material wear is lowest. As
more andmore layers of the lubricant slide on top of each otherwith increasing relative speed,
the frictional force increases again in the hydrodynamic phase. In general, it is desirable
to achieve a coefficient of friction in the range of the minimum for any design of material
pairings and oil [8].

In its simplest form, the entire problem of elastic hydrodynamic lubrication (EHL) is
described by five equations as follows.

1. The Reynolds equation describes the flow of a Newtonian fluid in a narrow gap.

It was derived from the Navier-Stokes equation to express the character of a slow and
viscous flow. Inertial forces as well as external forces versus viscous forces are neglected
for simplification. A second simplification is done based on the geometrical conditions of
a narrow gap: The dimensions in z-direction are much smaller than in x- and y-directions,
see Fig. 3.6. Applying the condition of slip resistance along the wall, the velocity profile is
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Fig. 3.6 Coordinate system in
the contact point of two bodies

obtained as a function of the z-coordinate. The continuity of the mass flow in a narrow gap,
extending from one surface to the other, results as follows:

∂

∂x

(
ρh3

12η

∂ p

∂x

)
∂

∂ y

(
ρh3

12η

∂ p

∂ y

)
− ∂ (umρh)

∂x
− ∂(ρh)

∂t
= 0 (3.36)

In the case of a line contact, the contact dimensions in the y-direction are very large compared
to those in the x-direction, so that the following simplified equation applies:

∂

∂x

(
ρh3

12η

∂ p

∂x

)
− um

∂h

∂x
= 0 (3.37)

Here p is the pressure, h the film thickness, um the average surface speed, η the viscosity
and ρ the density of the oil.

2. The elastic deformation equation describes the influence on the deformation of the oil
gap.

To approximate the elastic deformations of real bodies, two assumptions aremade:Thedefor-
mation is linearly elastic and the two contact bodies have uniform and isotropic properties.
The contact dimensions a are small compared to the dimensions of the body (a << Rx ),
so that the additional assumption of an approximation of the bodies by two semi-infinite
half-spaces can be made.

Both hypotheses are generally valid and the obtained approximate values agree very well
with experimental results. Thereby, the elastic deformation h(x, y) according the pressure
distribution p(x, y) can be approximated by

h(x, y) = h0 + x2

2Rx
+ y2

2Ry
+ 2

πE ′

∫∫ ∞

−∞
p(x ′, y′)dx ′dy′√

(x − x ′)2 + (y − y′)2
(3.38)
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For a line contact with a large contact length in the y-direction compared to that one in the
x-direction, the equation can be simplified to

h(x) = h0 + x2

2Rx
+ 2

πE ′

∫∫ ∞

−∞
p(x ′) ln

(
x − x ′

x0

)2

dx ′ (3.39)

3. The viscosity-pressure relationship describes viscosity as a function of pressure. The
simplest form is known under the exponential approach of Barus:

η(p) = η0 · e(α·p) (3.40)

Here, η0 is referred to as the atmospheric viscosity andα as the pressure viscosity coefficient.

4. The density-pressure relationship expresses the density as a function of pressure accor-
ding to the approach of Dowson and Higginson:

ρ(p) = ρ0
5.9 · 108 + 1.34p

5.9 · 108 + p
(3.41)

5. The principle of interaction means that the integral of the pressure distribution from the
Reynolds equations must balance the externally applied load w in order to establish a
balance of forces. For the 2D problem, this condition is

w =
∫∫ ∞

−∞
p(x ′, y′) dx ′dy′ (3.42)

w stands for the applied load in the 2D case. For the one-dimensional load case (line contact),
the applied load is

w =
∫∫ ∞

−∞
p(x ′) dx ′ (3.43)

For both the 1D and the 2D problem, the local equations for describing pressure and film
thickness distributions p(x, y) and h(x, y) are supplemented by the global Eqs. 3.42 and
3.43, so that the film thickness h0 can be determined using the Eqs. 3.38 and 3.39 [10].

3.3 Combustion Chamber (Combustion andThermodynamics)

The Science of Combustion is a discipline that deals with the physical and chemical pro-
cesses of combustion and the different characteristics of flames. Its complexity results from
the contact and interaction of many other fields of physics. Examples mentioned are fluid
dynamics, thermodynamics, calorics, reaction kinetics, mechanics and more. If the aim is
to simulate combustion, a chain of consecutive calculations and thus boundary conditions
must be well predicted in order to make further reliable calculations.
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Figure 3.7 illustrated the chamber of a cylinder. It is geometrically limited by the cylinder
walls to the sides, the piston to the bottom and the valves (cylinder head) to the top. The
complexity of the combustion process from the viewpoint of multiple physical and chemical
processes all taking place in the cylinder gets very clear from this picture.

According to the law of conservation of mass, the change of mass in a control volume is
always constant, which corresponds to the sum of all mass flows entering and leaving the
volume:

dm = dmin − dmout + dmFuel − dmBlowby (3.44)

In their entirety, all the processes mentioned generate incoming and outgoing energy flows
that can be summarized in an overall energy balance according to the first law of thermo-
dynamics. Putting them into equilibrium results in the following differential function over
time:

dU = dH + dQB − dQW − dW (3.45)

Fig. 3.7 Physical/chemical process sequences in a cylinder
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U stands for the internal energy within the system boundaries, H for the supplied and
removed enthalpy flows, QB for the released combustion energy, QW for the heat losses and
W for themechanical power output. If the enthalpy flow in the system boundary “combustion
chamber” shown in the figure are resolved, the following results are obtained:

dU = dHin − dHout − dHblowby + dHFuel + dQB − dQW − dW (3.46)

For the temporal change of the internal energy during aworking cycle, usually the differential
from U is solved according to the crank angle, which results in the following term:

dU

dϕ
= hin

dmin

dϕ
− hout

mout

dϕ
− hout

dmBlowby

dϕ
+ hFuel

dmFuel

dϕ
+ dQFuel

dϕ
− dQW

dϕ
− dW

dϕ
(3.47)

In the following sections, all six physical processes are discussed in sequence according to
Fig. 3.7 and their theoretical foundations are presented.

1. Fluid dynamics (dH): During the charge exchange, the calculation basis of fluid dyna-
mics is used to determine the mass flow of fresh air (in case of direct injection) or fuel-air
mixture (in the case of mixture intake) into the cylinder. In addition to the pressure gra-
dient between the inlet channel and the cylinder chamber, it is crucial that the pulsations
of the inlet pressure are composed in such a way that there is a pressure peak during the
opening phase of the inlet valve, thus promoting better filling. The basics of fluid dynamics
for this were presented in Chap.3.1. A change of enthalpy dH that is fed to or discharged
from a system is basically obtained from the specific heat capacity cp, the mass m and the
temperature difference dT = (Tout − Tin) [5].

dH = cp · m · dT (3.48)

2. Chemical processes (dQB): The introduction of a fuel into the combustion chamber
and the conversion of its bound chemical energy into heat follows in this process step. The
ignition of the fuel-air mixture can be effected externally by a spark plug (petrol engine)
or self-ignition (diesel engine) or by one of many alternative combustion processes such as
compressed auto ignition (CAI) or homogeneous charge compressed ignition (HCCI).

The burning speed and thus the time needed to convert the chemical energy of the fuel
are very decisive. Typically, one tries to make it as quick as possible, since the highest
thermodynamic efficiency can be achieved with an early center of combustion (∼ 6◦ − 8◦
crank angle). To achieve this, a high level of turbulence is required by the end of the gas
exchange phase.

Engine power, efficiency and emissions are controlled by the combustion of the fuel-air
mixture. In order to understand the engine operation in its entirety, many individual building
blocks are required for relevant combustion phenomena. The phenomena differ for the main
engine type spark ignition and diesel. In gasoline engines, the fuel is either mixed with air
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in the engine intake system or injected directly into the cylinder. After compression of the
fuel-air mixture, an electrical discharge of the spark plug triggers the combustion process.
The ignition spark develops into a flamewhich spreads into the cylinder space until it reaches
the walls of the combustion chamber on the sides or the piston downwards and extinguishes.
An undesirable phenomenon that occurs is the spontaneous or uncontrolled self-ignition of
a significant portion of the fuel-air mass before it is ignited by the flame. The explosive
phenomenon is the cause of engine knocking, which can lead to engine damage due to the
high pressures generated.

In diesel engines, the fuel is injected into the cylinder at high pressure and high tempera-
ture. The self-ignition of parts of the developing mixture of already injected and vaporized
fuel with the hot air initiates the combustion process. Unlike the gasoline engine, this process
is turbulent. The composition of the fuel-air mixture therefore plays a decisive role in diesel
combustion.

The composition of fuel and air is called stoichiometry and describes the reactants of a
combustible mixture and the composition of the products. Since the relationships depend
on the conservation of the mass of each chemical element of the reactants, the relative
compositions of the fuel and the fuel/air ratio are used as the basis for calculation. If sufficient
oxygen is available, a hydrocarbon fuel can completely oxidize. The carbon in the fuel is
then converted into carbon dioxide CO and the hydrogen H2 into water H2O [5].

For a fuel with the composition CxHySqOz , the following reaction takes place in the case
of complete conversion:

CxHySqOz +
(
x + 1

4
y + q − 1

2
z

)
· O2 = xCO2 + y

2
· H2O + qSO2 (3.49)

with the stoichiometric coefficients and themass fractions of the elements carbon c, hydrogen
h, sulfur s and oxygen o contained in the fuel:

x = MB

MC
c, y = MB

MH
h, q = MB

MS
s, z = MB

MO
o (3.50)

The stoichiometric air requirement leads to

Lst = 1

x O2,L

· mO2,st

mB
= 1

x O2,L

(
MO2

MC
· 1
4

MO2

MH
· h + MO2

MS
· s − o

)
(3.51)

= 1

0.232
· (2.664 · c + 7.937 · h + 0.998 · s − o)

For an engine combustion, the ratio of actual air mass mL is related to the stoichiometric air
mass mL,st and expressed the air ratio λ:

λ = mL

mL,st
= mL

mB
· Lst (3.52)
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The mixing heating value HG of air and fuel is composed of the fuel mass mB . In case of
external mixture formation (naturally aspirated engine), the lower fuel heating value Hu and
the mixture volume VG are applied in the following equation:

HG = mB · Hu

VG
= ρG · Hu

λ · Lst + 1
(3.53)

For engines with internal mixture formation (diesel engines, DI gasoline engines), the fuel
mass and the lower heating value are related to the air volume VL :

HG = mB · Hu

VL
= ρL Hu

λLst
(3.54)

3. Caloric processes (dU ): After the flow-relevant processes of the gas exchange and the
chemical processes of the fuel have been discussed, the next sequence according to Fig.
3.7 is followed by the determination of the caloric content. This deals with the material
properties of the working gas and is ultimately used to determine the internal energy U
within the system boundaries of the combustion chamber and to calculate the term dU from
the energy balance according to Eq.3.45 [5].

A possible approach to the calculation of the internal energy U lies in the description of
the individual components of a gas mixture and can be described as

dU =
∑
i

midui =
∑
i

mid(hi − RTi ) (3.55)

The best known approaches to describing the specific internal energy of flue gas, i.e. the
combustion products, were developed by Justi in 1938 and Zach-arias in 1968 [11, 12].
Neglecting dissociation effects, i.e. backward reactions of already formed species, and the
pressure dependence of reactions, Justi presented a polynomial approach, which represents
the specific internal energy as a function of temperature and air ratio. Zacharias’ approach
made it possible to determine the flue gas more precisely by breaking it down into its
components, an approach that could only be overcome with the use of the first mainframe
computers.

The internal energy of each gas component can be calculated separately, since its stan-
dard enthalpies of formation, reaction enthalpies and the respective molar heat are given in
tables as in NIST JANAF [13]. By knowing the respective proportions of these individual
components, the total internal energy of a gas can be calculated.

Typical gases emitted by an internal combustion engine such as oxygen, nitrogen, fuel
vapor, carbon dioxide and water vapor may be considered ideal, described by the following
equation:

pV = mRT = n R̃T (3.56)
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where p is pressure, V volume, m gas mass, R̃ universal gas constant, T temperature and n
molar mass.

Considering the cylinder charge, an ideal gas, the specific heat capacity, and enthalpy
and entropy for any reaction can be determined according to the following formulas:

c̃

R̃
= a1 + a2T + a3T

2 + a4T
3 + a5T

4 (3.57)

h̃

R̃T
= a1 + a2

2
T + a3

3
T 2 + a4

4
T 3 + a5

6
T 4 + a6

T
(3.58)

s̃

R̃
= a1 · lnT + a2T + a3

2
T 2 + a4

3
T 3 + a5

4
T 4 + a7 (3.59)

4. Kinetic processes (dCi ): Kinetics is a subarea of physical chemistry and deals with
the time sequence of chemical reactions or physical-chemical processes. It can generally
be divided into the subareas of micro- and macrokinetics. While microkinetics is mainly
concerned with the time sequence of chemical reactions and their mathematical description,
macrokinetics takes global influences of thermodynamics as well as heat and mass transport
processes (diffusion) into account.

In the application for the internal combustion engine and the area of simulation, reaction
kinetics is particularly relevant, since it ensures the calculation basis for many fundamental
processes. These include influences of different fuel types on the chemical processes in the
combustion chamber (including combustion speed and knock resistance), the generation of
raw emissions and catalytic processes of exhaust gas aftertreatment [5].

Reaction speed
A chemical reaction with the educts A and B, which form the products C and D, is described
according to the following formalism:

αA + βB + γC
k1,v−−⇀↽−−
k1,r

δD + εD (3.60)

α, β, γ , δ and ε represent the stoichiometric coefficients of the reaction, and k f and kr
describe the reaction rate of the forward and backward reactions, respectively. The temporal
change of a species concentration (taking component A as an example) can be determined
for the given chemical reaction equation with the following empirical approach:

dCA

dt
= α

(
k f [A]α · [B]β · [C]γ − kr [D]δ · [E]ε) (3.61)
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The reaction rate k f and kr are experimentally determined quantities, which are summarized
in extensive tables for all chemical reactions. The measurements originate from experiments
in shock wave reactors or similar. Since they are also strongly temperature-dependent, they
are corrected using an Arrhenius approach:

k = A · T b · e− EA
R·T (3.62)

In particular, the speed of the reaction depends on the activation energy EA, which must be
applied to initiate the reaction, and the absolute temperature T . For very high temperatures,
the term converges against the pre-exponential factor AT b. In this case, the velocity is
described by the shock kinetics of themolecules. The constant A, the temperature coefficient
b and the activation energy EA can also be taken from tables.

Reaction equilibrium
At the molecular level, a chemical reaction always takes place in two directions. From the
difference between the forward and backward reactions, it is possible to draw conclusions
about the direction of the reaction. The chemical equilibrium is therefore only a special
case in which the forward and backward reactions take place at the same speed, so that
macroscopically no visible conversion of substances occurs. On the molecular level, howe-
ver, reactions continue to take place. Although the macroscopic reaction rate always aims at
the chemical equilibrium, equilibrium analysis does not provide information about the time
required to reach this state. Information on this is provided by the reaction kinetics.

If one takes into account that in the special case of a chemical equilibrium the reaction
proceeds equally fast in both directions, the conversion rate of the concentrations of the
individual species becomes zero. Eq.3.61 results in

0 = α
(
k f · [A]α · [B]β · [C]γ − kr · [D]δ · [E]ε) (3.63)

When transforming the equation as the ratio between forward and backward speed,

→ k f

kr
= [D]δ · [E]δ

[A]α · [B]β · [C]γ = Kc (3.64)

Kc is a function of the molar concentration of all involved species and is called equilibrium
constant.

In order to get an idea of the equilibrium composition of a combustion, an example of
octane with the chemical formula C8H18 is given next. According to Burcat, the equili-
brium composition of the combustion products and their dependence on the air ratio λ, the
temperature and the process pressure is shown (Fig. 3.8).
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Fig. 3.8 Exhaust gas equilibrium composition for C8H18 fuel according to Burcat. Representation
of the dependencies of air/fuel ratio, temperature and pressure

Reaction order
Looking at the reaction equation from 3.65–3.67, this literally means that on the reactant
side a number α of A particles collide with β numbers of particles B and γ number of
particles C to form D and E on the product side. The probability that the three particles A,
B and C collide at the same time and with sufficiently high kinetic energy is very low. It
is more likely that two particles first collide, forming an intermediate product and then, if
necessary, forming further intermediates to finally form the products D and E . If the overall
reaction is broken down into individual steps, their elementary reactions result as follows:

αA + βB → AαBβ (3.65)

AαBβ + γC → D (3.66)

AαBβ + D → E (3.67)

Experimentally, it can be determined how the reaction rates of the elementary reactions
depend on the respective concentrations of the components A, B, C and D. The dependence
of the reaction rate on the exponent, with which the concentration of a certain reactant enters
into the law of rates, is called reaction order of the respective reactant. The overall order of
a reaction is the sum of the reaction orders of all reactants involved in it. The reaction rate
of the individual elementary reactions are multiplied together to give the rate of the total
reaction.
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Partial balance
In a complex reaction system, it can happen that a large number of reactions take place
simultaneously, only some of which proceed so quickly that one can speak of a partial
equilibrium of this particular species. The reaction as a whole does not necessarily have to
be in chemical equilibrium.

In 1946, Y.B. Zeldovich presented the elementary reaction of nitrogen oxide production
for the first time. These describe the formation of thermal nitrogen oxide (NO), which
in combustion engines accounts for the largest proportion of all total nitrogen oxides
(∼ 90–95% of all NOx).

N2 + Ȯ
k1,v−−⇀↽−−
k1,r

NO + Ṅ (3.68)

Ṅ + O2
k2,v−−⇀↽−−
k2,r

NO + Ȯ (3.69)

Ṅ + OH
k3,v−−⇀↽−−
k3,r

NO + Ḣ (3.70)

Using a gasoline engine combustion process at stoichiometric condition (λ = 1), the species
concentrations over time are examplarily shown below. After the ignition timing and the
corresponding increase of the process temperature T > 2500K, the reactions get activated.
The graph shows that the componentsO andOHare intermediate products that are formed for
a short time and then suddenly decomposed again. The partial equilibrium can be represented
to determine the species concentration: dCO/dt = 0, dCOH/dt = 0 (Fig. 3.9).

Fig.3.9 Partial equilibrium using the example of the extended Zeldovich mechanism (nitrogen oxide
formation) for the components O and OH
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5. Thermodynamics dQW : The description of the heat transfer in the cylinder is subject
to complex interrelationships. Due to the relatively large proportion and losses that occur
on the thermal processes, it is of constant interest to reproduce them with high accuracy
on the basis of models in order to identify potential for improvement. The additional dif-
ficulty in modeling the thermal process is that a number of consecutive processes as for
the charge exchange (fluid dynamic processes), combustion process (chemical processes),
internal energy (caloric processes) and kinematics, each introduces an individual error which
adds up to an exponential error (looking back to Fig. 3.7). Finally, the summed error has a
decisive influence on the calculation of the thermal behavior, so that an accurate prediction
becomes a great challenge.

In principle, the heat transfer through the walls Qw is composed of a convective compo-
nent Qe and a radiation component Qε:

dQw = dQe + dQε (3.71)

Usually, the radiation part is added to the convective part and is found in the heat transfer
coefficient α. The combustion chamber is usually divided at least into three different areas:
1. piston, 2. liner and 3. cylinder head. To achieve a higher quality of resolution, theoretically
more sections up to infinitesimal elements can be selected. The valves are usually added to the
cylinder head. The description of the heat flow through the cylinder walls follows Newton’s
equation using the heat transfer coefficient αi , the transfer area Ai and the temperature
difference between the cylinder wall Tw and the gas Tgas :

dQw =
∑
i

αi Ai
(
Tw,i − Tgas,i

)
(3.72)

The determination of a suitable heat transfer coefficient presupposes that the gas temperature
in the combustion chamber as well as the wall temperatures are very well represented. For
3D-CFD simulations, it is usual to determine temperature distributions of the burned and
unburned gas to different cells i (Tgas,i ) over the entire combustion chamber. In 1D, however,
the combustion is determined quasi-dimensionally, so that the mean gas temperature is
calculated from the local averaging of the gas temperature in the combustion chamber and
the index i is omitted (Tgas) [5].

For this purpose, usually semi-physical approaches are used, which provide a fast predic-
tion and, at the same time, take into account a sufficiently high degree of boundary conditions.
In the literature, there is a large number of presented approaches for the calculation of the
heat transfer through the walls [14–17].
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Fig. 3.10 Geometry of the
crank mechanism

6. Kinematic processes dW : The mechanism of an engine converts the oscillating motion
of the pistons into a rotating motion of the crankshaft (Fig. 3.10). The work dW converted
at the piston can be determined through the cylinder pressure and the volume change [5]:

dW = −pdV (3.73)

Resolving for the crank angle, thework can be derived from the following term. This requires
additional inputs as the angular frequency ω, the cylinder bore diameter D and the piston
stroke s:

dW

dϕ
= −pω

dV

dϕ
= −pωD2π

4

ds

dϕ
(3.74)

The piston stroke is directly related to the crank angle. The term ds
dϕ

can be calculated as a
function of the crank radius r and the conrod ratio λs = r

l :

s(ϕ) = r · [[1 − cosϕ] + 1

λ
· [1 −

√
1 − λs · sin2(ϕ)]] (3.75)

ds

dϕ
= rω · [sinϕ + λs

2
sin(2ϕ)] (3.76)

3.4 Material Strength and Structure

Multi-body simulation
Multi-body simulation (MBS) is amethodof numerical simulation, inwhich simple aswell as
complexmulti-body systems are considered, which are composed of individual components.
The composition is realized by simple, rigid or elastic bodies, which are connected by joints,
springs, dampers or other contact connections. The MBS is a very useful tool for motion
analysis with special focus on the interactions between single components. This enables the
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determination of loads that result as a consequence of superimposed loads and mass inertia
of a system. These loads are used for the early detection of deformations and stresses. New
and fast designs of modified kinematics finally help to find optimized solutions. Frequently,
MBS tools are used during product development to evaluate the characteristics of safety,
comfort, durability and performance.

Basically, the MBS is divided into kinematic and dynamic calculations. In a kinematic
view, the systems have no dynamic degrees of freedom. Since the change over time is insi-
gnificant here, stationary observations are sufficient to evaluate these. For more complex
problems, on the other hand, it is often not sufficient to regard bodies as rigid in order to meet
higher accuracy requirements. In this respect, the structural elasticity of the components is
included, so that additional, deformation-induced stresses are taken into account. A more
detailed representation of a rigid MBS can be realized by integrating additional simulation
methods such as the finite element method (FEM), flow simulation (CFD) and thermodyna-
mics. Along with minor additional modeling effort and corresponding higher computational
effort, the predictions are much more accurate over deformations, dynamics and stresses of
components.

Finite Elemente
Finite Element Analysis (FEM) is a numerical calculation method for the investigation of
the strength and deformation of bodies with static and dynamic load conditions. FEM has
become widely accepted in the development of mechanical components for industrial appli-
cations over the last decades and is indispensable today. In the application of Finite Element
Analysis (FEA) software, CAD-manufactured components are imported and divided into a
multitude of small finite units (mesh). If the investigation of a load on critical zones of a
body is of high interest, these selected areas are resolved higher than others, so that detailed
results can be obtained. Depending on the choice of the resolution (shape function) of the
smallest volume elements (tetrahedron, hexahedron, octahedron, etc.), deeper insights into
the structural behavior can be obtained at the expense of more computational time.

The application possibilities of FEM have expanded massively, especially in the last few
years, thanks to the availability of high-performance computers. This allows to increasingly
investigate coupled problems, such as the combination with multi-body systems and the
interaction between structures and fluids from (CFD), acoustics, thermomechanics, thermo-
chemistry, ferroelectrics, electromagnetics and other relevant areas. FEM applications are
basically divided into static, dynamic and modal problems. With the help of static analyses,
linear static and nonlinear quasi-static structures can be analyzed. With a dynamic analysis,
however, oscillating or unsteady loads of components can be analyzed with respect to their
structure. Modal analysis is used when the focus is on determining the eigenfrequencies of
a structure through vibration excitation and the prevention of undesired interference.
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Fig. 3.11 2D and 3D finite
elements with linear, quadratic
and cubic deformation

In order to examine bodies of any kind with corresponding materials and arbitrary fields
of application for load, deformation and durability, they are divided into finite elements for
an FEM investigation. This results in a so-called “mesh” of the body. The finer the mesh is
divided into finite (finitely small) elements, the higher the resolution of the results, which
is directly related to a higher calculation effort. Due to their effectiveness, triangular and
quadrangular elements have become widespread for conventional software for 2D surfaces.
For 3D bodies, on the other hand, tetrahedral, pentahedral and hexahedral elements as shown
in Fig. 3.11 are used. If the deformation of bodies is to be calculated in addition to the load,
quadratic or cubic volumes can be selected.

Figure 3.12 shows on a 2D connection beamwhat a possible transformation of a body into
finite elements can look like. The element is fixed to the left and the bottom side. A meshing
is exemplarily done with triangular elements (quadratic) with a coarse mesh (center) and a
finer mesh (right).

Fig. 3.12 Finite element for a
2D surface with a large and a
small mesh size
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FEM mainly deals with the solution of boundary value problems. Boundary value pro-
blems are problems for which solutions are sought for a given differential equation so that
certain conditions arise at the boundaries of the corresponding defined range. Basically,
two different methods can be chosen, the application of a force balance or the that of an
energy balance. In conventional FEM simulation tools, both methods are provided. Hence,
the plausibility of the boundary conditions of an approach selected at the beginning can be
checked afterwards by means of an energy balance approach.

In principle, FEM methods can be used to analyze mechanical stress, thermal stress or
examine electrical and magnetic flux over solids. The process of an FEM analysis always
follows one scheme:

• Definition of a boundary value problem (2D, 3D boundary conditions);
• Creating a model (importing a CAD file);
• Definition of all loads (static or dynamic load);
• Meshing of the model (resolution of the cells, linear, quadratic or cubic deformation);
• Definition of the analysis method (force balance, energy balance).

After a component has been divided into small finite elements, the balances of forces are
established at each element and the equations of elasticity theory are applied.

3.4.1 Theory of Elasticity

Using a section of a cubic volume, which in its deformed state corresponds to a hexahedron,
all relevant forces and stresses are shown. The normal stresses, which are perpendicular
to the squared surfaces, are called σx , σy, σz . The shear stresses pointing in the surface
direction are called τxy, τyz, τxz . Together with the acting forces fx , fy, fz on the volume,
the system can be defined and set up as a boundary value problem.

As a result of the elasticity of a body, the forces acting on a volume element lead to
deformation and thus to a displacement of the geometry. The determination of the displa-
cement of the individual volumes and hence of the sum of all volume elements forming a
body is the actual focus of each FEA calculation. Four steps of the theory of elasticity can
be summarized to determine deformations:

1. The force and momentum balance;
2. The strain-displacement relation ε − u and the material constancy;
3. The stress-strain relation σ − ε;
4. Boundary value problem and displacement function u(x);
5. Determining the stiffness matrix [k] and displacement vector {d}.
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Fig. 3.13 Force balance on a
body

1. Force and momentum balance
If one sets up the equations for the equilibrium of forces andmoments according to Fig. 3.13,
a total of 6 differential equations and 9 unknown quantities (τxy, τyzτxz, τzxτyx , τzy, σx ,

σy, σz) are obtained. The boundary value problem assumes that the forces fx , fy, fz acting
on the volume are known. Balance of power:

0 = fx + ∂σx

∂x
+ ∂τyx

∂ y
+ ∂τzx

∂z
(1)

0 = fy + ∂σy

∂ y
+ ∂τxy

∂x
+ ∂τzy

∂z
(2)

0 = fz + ∂σz

∂z
+ ∂τxz

∂x
+ ∂τyz

∂ y
(3)

Equilibrium of moments:

τxy = τyx (4)

τyz = τzy (5)

τxz = τzx (6)

Equations (4), (5) and (6) ensure that 3 of the stress variables are eliminated, leaving 3
differential equations (1), (2), (3) and the 6 unknown variables (τxy, τyz, τxz, σx , σy, σz).
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Fig. 3.14 Deformation of a
body

2. The strain-displacement relation ε − u and material constancy
If forces act on a body, a deformation occurs in the direction of the applied force. The
deformation is approximately defined as the ratio between the deformation length δu and
the total length δx , as shown in Fig. 3.14. Looking at an infinitesimal volume element, the
strain can be represented as a partial derivative. This results in 3 new differential equations
with 6 unknown quantities, namely the 3 strain quantities (εx , εy, εz) and the 3 deformation
variables (u, v, w).

εx = ∂u

∂x
(7)

εy = ∂v

∂ y
(8)

εz = ∂w

∂z
(9)

In addition to the deformation, there is also an angular deformation of the volume element
as a result of the acting forces, if the volume is not fixed at the edges. In Fig. 3.15, a volume
element is fixed at the lower left edge (A-B). If the normal stress σx , σy, σz act on the body,
the body deforms with the angle ϕ1 due to σy , with ϕ2 due to σx and ϕ3 due to σz . From
this, 3 differential equations for the shear deformations γxy, γyz, γxz can be set up, which
result from the forces in the plane.

γxy = ϕ1 + ϕ2 + ∂v

∂x
+ ∂u

∂ y
(10)

γyz = ϕ2 + ϕ3 + ∂u

∂ y
+ ∂w

∂ y
(11)

γxz = ϕ1 + ϕ3 + ∂v

∂x
+ ∂w

∂ y
(12)
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Fig.3.15 Shear deformation of
a body

For practical reasons, the strain variables and shear stresses are combined in a strain
vector as shown in Eq.3.77. The partial derivatives of the deformations are separated from
each other on the right side of the equation and divided into a partial derivative operator
matrix and deformation vector.

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

εx

εy

εz

γxy

γyz

γxz

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
strain vector

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∂
∂x 0 0
0 ∂

∂ y 0

0 0 ∂
∂z

∂
∂ y

∂
∂x 0

0 ∂
∂z

∂
∂ y

∂
∂z 0 ∂

∂x

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
operator matri x

·
⎛
⎝u

v

w

⎞
⎠

︸ ︷︷ ︸
de f ormation vektor

(3.77)

The relationship between strain and displacement can be summarized in the vectorial nota-
tion ε = [∂] · u. In total, this relationship results in 9 unknown quantities (εx , εy, εz,
γxy, γyz, γxz, u, v, w) and 6 differential equations.

3. The stress-strain relation σ − ε

The stress-strain behavior is represented by Hooke’s law, which describes a linear relati-
onship between the stress σ and the strain ε by the modulus of elasticity E . By definition,
the law applies to materials only in the linear elastic range. As soon as plastic deformation
occurs, the physical phenomena behind this follow much more complex laws:

σ = E · ε (3.78)

Another importantmaterial constant comes into play through the Poisson number ν, which is
a measure of lateral contraction. The Poisson effect follows the law of material continuity, as
it describes the tendency of a material to expand perpendicular to the compression direction.
On the other hand, when a material is stretched, it tends to contract transversely to the
stretched direction.
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Fig. 3.16 Transversal contraction of a body

Figure 3.79 shows how a body expands in the linear-elastic range under consideration
of the transverse contractions when it is exposed to a normal stress. When force is applied
in the x-direction, the body expands by the strain ratio ε′

x = σx
E , when force is applied in

the y-direction, it contracts by ε′′
x = −ν

σy
E and when force is applied in the z-direction, it

contracts by ε′′′
x = −ν

σz
E . The total contraction of a body in the x-direction is composed of

the individual strains (Fig. 3.16):

εx = ε′
x + ε′′

x + ε′′′
x (3.79)

If one proceeds equally for the coordinates y and z, the transverse contraction can be des-
cribed as follows:

εx = 1

E

[
σx − ν

[
σy + σz

]]
(13)

εy = 1

E

[
σy − ν

[
σx + σz

]]
(14)

εz = 1

E

[
σz − ν

[
σx + σy

]]
(15)

Similarly, the shear deformations γ can be related to the shear stresses τ , which results in 3
further equations:

γxy = τxy · 2 (1 + ν)

E
(16)

γyz = τyz · 2 (1 + ν)

E
(17)

γxz = τxz · 2 (1 + ν)

E
(18)

For practical reasons, the vectorial notation is often used here as well:
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⎛
⎜⎜⎜⎜⎜⎜⎜⎝

σx

σy

σz

τxy

τyz

τxz

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1−ν
1−2ν

ν
1−2ν

ν
1−2ν 0 0 0

0 1−ν
1−2ν 0 0 0 0

0 0 1−ν
1−2ν 0 0 0

0 0 0 1
2 0 0

0 0 0 0 1
2 0

0 0 0 0 0 1
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

εx

εy

εz

γxy

γyz

γxz

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(3.80)

The stress-strain ratio can be represented in the vectorial notation: {σ } = [D]{ε}. Thematrix
[D] is a characteristical material matrix or also called the elasticity matrix.

By the laws of stress-strain relations, 6 further equations without additional unknowns
are created. Together with the equilibrium of forces and momentums from (1.) and the ratio
between strain and deformation from (2.), a total of 18 equations with 18 unknown variables
are combined, so that a solvable system of equations results and finally the displacement
vector {d} can be solved.

4. Boundary value problem and displacement function u(x)
To solve the differential equation, an assumption about the displacement field has to be
made. Typically, linear displacement fields are assumed for beam elements with a function
u(x) = a0+a1 ·x , see Fig. 3.17. In amesh, common FEA software offer several possibilities
for selection. Using a hexahedron as an example, it is shown that a linear approach, a
quadratic, a cubic or a function of a higher order is possible in principle. However, when
the order increases, the operations and thus the calculation time increase exponentially as a
resulting effect.

5. Determination of the stiffness matrix [k] and displacement vector {d}
After having defined boundary values for the deformation of all cells in (4.), the last step
is to determine the displacement of the nodes for a finite element and, in summary, the
displacement of all nodes of an overall system consisting of many finite elements.

If we consider a 2D finite element with a rectangular profile and a linear displacement
function (see Fig. 3.17), which is loaded with the forces Fx and Fy , all nodes are shifted by
the displacement vector {di }.

Fig. 3.17 Number of nodes per body edge by a displacement function
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Fig. 3.18 Displacement of all
nodes of a body represented by
the displacement vector {di }

Together with the stiffness matrix [k], the system of linear equations represents a simpli-
fied relationship between loads and displacements in each element for a node i , which must
be solved to obtain an approximate solution of the differential equations (1)–(18):

{ f }i = [k]i · {d}i (3.81)

Finally, the law of continuity is applied to the entire system. This ensures that loads and
displacements are connected between all elements and that there is nomaterial gap or overlap
within a system:

{F} = [K ] · {D} (3.82)

The solution of the nodal displacement is found by inverting the matrix solving the equation
for {D}:

{D} = [K ]−1 · {F} (3.83)

Once the displacement vector {D} has been determined, all stresses (normal stresses and
shear stresses) as well as strains and shear deformations can be determined in each element
node by means of the equations presented above [18].

3.4.2 Alternative Methods

In addition to the presented method of solving a boundary value problem by means of the
balance of forces, alternative possibilities are also available. The most popular ones are the
energy method (Minimal Potential Theory), the principle of virtual work or the Rayleigh-
Ritz approximation. In the following, the example of the minimal potential theory is used
to show how an identical problem can be solved by applying an energy balance [19].
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Minimal Potential Theory
If a body is applied with one or more loads, internal tensions arise in the body. In its entirety,
the potential energy πp of the body can be described as the sum of the internal energy U
and the potential of internal and external forces �:

πp = U + � (3.84)

The deformation of a body corresponds to the internal energy and, according to the law of
conservation of energy, this must be in balance with the external energy. In this respect, the
system of equations can be solved by an extreme value problem.

Of all possible deformations of a body, the equilibrium deformation has the lowest total
potential energy, or in other words: The total potential energy of a system is stationary when
the system is in equilibrium and the change in potential energy becomesminimal (δπp = 0).
Since the total potential energy depends on the individual deformations of the body, i.e. on
the deformations of all nodes, it can be described as a function of the degrees of freedom
(node displacements):

πp = {d1, d2 . . . dn} (3.85)

Using the chain rule for the derivation of nested functions, the derivation of πp results in

δπp = ∂πp

∂d1
δd1 + ∂πp

∂d2
δd2 + . . . + ∂πp

∂dn
δdn (3.86)

This means that for the condition delta δπp = 0, all individual partial derivations must be
zero:

∂πp

∂d1
= 0,

∂πp

∂d2
= 0, . . . ,

∂πp

∂dn
= 0 (3.87)

The following presentation summarizes the conditions:

∂πp

∂{d} = 0 (3.88)

This forms a system of n equations, with which the displacement of the nodes must be
determined. The internal energy U of a stressed body is calculated from the integral of the
internal stress and the strain of the volume:

U = 1

2

∫
V
{σ }T {ε}dV (3.89)

Compared to Eq.3.78, an energetic consideration of the stress σ requires an additional stress
σ0, which describes the energetic condition at time 0.

{σ } = {σ0} + [D] ({ε} − {ε0}) (3.90)
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According to the product rule for matrices, the transposed equation is obtained after dissol-
ving the bracket:

{σ }T = {σ0}T︸ ︷︷ ︸
initial stresses

+ {εT }[D]T︸ ︷︷ ︸
strains from loads

− {ε0}T [D]T︸ ︷︷ ︸
thermal strains

(3.91)

Using Eq.3.89, the inner energy U results in

U = 1

2

∫
V

{σ0}T {ε}dV
︸ ︷︷ ︸

initial stresses

+ 1

2

∫
V

{ε}T [D]T {ε}dV
︸ ︷︷ ︸

strains from loads

− 1

2

∫
V

{ε0}T [D]T {ε}dV
︸ ︷︷ ︸

thermal strains

(3.92)

If we draw up the energy balance for the potential of the forces �, which is applied on the
system from outside, 3 terms have to be considered—1. forces acting on the body, 2. surface
tractions and 3. loads acting on the nodes:

� = −
∫
V
{u}T { fB}dV

︸ ︷︷ ︸
body f orce

−
∫
S
{uS}T { fS}dS

︸ ︷︷ ︸
surface tractions

− {d}T { f p}︸ ︷︷ ︸
nodal point loads

(3.93)

In summary, the total potential energy is obtained by inserting the termsU and� in Eq.3.84:

πp = 1

2

∫
V

{σ0}T {ε}dV
︸ ︷︷ ︸

initial stresses

+ 1

2

∫
V

{ε}T [D]{ε}dV
︸ ︷︷ ︸

strains from loads

− 1

2

∫
V

{ε0}T [D]{ε}dV
︸ ︷︷ ︸

thermal strains

−
∫
V

{u}T { fB}dV
︸ ︷︷ ︸

body force

−
∫
S
{uS}T { fS}dS

︸ ︷︷ ︸
surface tractions

− {d}T { f p}︸ ︷︷ ︸
nodal point loads

(3.94)

According to Fig. 3.18, the deformation {u} can be projected by the node matrix [N ] onto
the displacement vector {d} of the nodes by the equation {u} = [N ]{d}.

{ε} = [∂]{u} = [∂][N ]{d} = [B]{d} (3.95)

By introducing the partial derivative of the nodal matrix [∂][N ] = [B], the following
simplified notation for the potential energy results:

πp = 1

2

∫
V

{σ0}T [B]{d}dV + 1

2

∫
V

{d}T [B]T [D][B]{d}dV − 1

2

∫
V

{ε0}T [D][B]{d}dV

−
∫
V

{d}T [N ]T { fB}dV −
∫
S
{d}T [NS]T { fS}dS − {d}T { f p} (3.96)

If one excludes the vector {d} from the integral and applies the equation ∂πp
∂{d} = {0} from

3.88 to determine the extremum problem, the result is
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{0} =
(
1

2

∫
V

{σ0}T [B]dV
)

{d} + 1

2
{d}T

(∫
V

[B]T [D][B]dV
)

{d} −
(
1

2

∫
V

{ε0}[D][B]dV
)

{d}

− {d}T
(∫

V
[N ]T { fB }dV

)
− {d}T

(∫
S
[NS ]T { fS }dS

)
− {d}T { f p } (3.97)

When applying some basic rules of linear algebra for the multiplication of vectors and
matrices and summarizing the displacement vector {d}, the following final form of the
equation is obtained, which now has the same characteristics as the equation for the stiffness
matrix from 3.81 from the elasticity theorem. Finally, the displacement vector for a finite
element or the displacement vector {d} for a body in the sum of many finite elements can
be determined as

1

2

∫
V

{σ0}T [B]dV − 1

2

∫
V

{ε0}[D][B]dV −
∫
V

[N ]T { fB}dV −
∫
S
[NS]T { fS}dS − { f p}

︸ ︷︷ ︸
{ f }

=
(∫

V
[B]T [D][B]dV

)

︸ ︷︷ ︸
[k]

· {d}︸︷︷︸
{d}

(3.98)

3.5 Acoustics

In recent years, numerical acoustics has developed rapidly in parallel with the increasing
performance of computers and permeates almost all fields of acoustics. Among the most
widespread wave-theoretical methods of numerical acoustics are the boundary element
method, the finite element method and the beam tracing method.

Generally, a distinction is made between problems of acoustics in gases and solid-state
sound. It is obvious that the acoustics of gases are based on the fundamentals of fluid
dynamics. In contrast, the theory of solid-state sound refers to the calculation principles that
are also used for material structures [20].

A common method used in acoustics is the Fourier analysis. This method is mainly
applied to perform spectral analyses of a sound wave, especially to generate or reproduce
synthetic signals.

According to the Fourier theorem, a periodic signal f (t) with the period T can be repre-
sented by a constant component and an infinite sum of harmonic signals hi (t) with different
angular frequencies ωi , which differ in their amplitudes ci and phases ϕi . The angular fre-
quencies of the suborders formmultiples of the basic angular frequencyω0 = 2π

T . For special
periodic functions, the sum representation, also called trigonometric series or Fourier series,
can be represented as follows:
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f (t) = c0 +
∞∑
i=1

[ai cos (iω0 · t) + bi sin (iω0 · t)] (3.99)

The quantities c0, ai and bi are called Fourier coefficients. c0 represents the mean value
(direct component) of the signal f (t). If f (t) stands for a pressure p(t) oscillating in time,
c0 corresponds to the mean value of the pressure signal. The representation of the Fourier
series can be simplified if the following relationship is used:

aicos (iω0 · t) + bi sin (iω0 · t) = cicos (iω0 · t + ϕi ) (3.100)

ci =
√
a2i + b2i (3.101)

ϕi = arctan

(
ai
bi

)
(3.102)

Herewith, Eq.3.99 becomes the so-called spectral representation of the Fourier series:

f (t) = c0 +
∞∑
i=1

ci cos (iω0 · t + ϕi ) (3.103)

A periodic signal f (t) can thus be represented by a Fourier analysis with the following
quantities [21]:

c0 : Constant component (mean value of the signal f (t));
ci : Amplitude of order i ;
ϕi : Phase of order i .

For a periodic signal, the transformation from the time domain into its spectral domain uses
both an integral and a complex notation:

F(ω) =
T
2∫

− T
2

f (t)e−iωtdt (3.104)

The back transformation from the spectral to the time domain is

f (t) =
T
2∫

− T
2

f (ω)e+iωtdω (3.105)

The function f (t) to be transformed is often not known, but can only be tapped at N discrete
times with tk = (N − 1) · �t . In such cases the discrete Fourier transformation (DFT) is
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used. DFT assumes that f (t) uses a periodical continuation outside the interval. The Fourier
coefficients are calculated according to the definition as follows:

F(n) = 1

N

N−1∑
n=0

fne
−2π i
N (3.106)

The inverse discrete Fourier transform (IDFT) is used for the reverse transformation from
the spectral to the time domain is

f (n) = 1

N

N−1∑
n=0

Fne
+2π i
N (3.107)

Based on Cooley et al., an algorithm was developed to reduce the number of complex
arithmetic operations to calculate the spectral lines of the DFT by the factor N

ln N [22]. Due to
the lower computational effort and the resulting shorter calculation process, the numerically
favorable execution rule of the DFT is called Fast Fourier Transformation (FFT) in this
context [23].

Figure 3.19 shows signals of different amplitudes and orders of a fundamental frequency
feigen (here the orders 1, 3, 5, 7) and projects them on the time domain, where the superposi-
tion of all single orders can be recognized. At the same time, a projection onto the frequency
domain takes place, which provides a breakdown of all involved signals.

Fig. 3.19 Time and frequency spectrum by superposition of harmonic signals
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4.1 The Future of Powertrain Concepts

Tighter CO2 limits as a result of climate targets, the Germany-wide diesel emission scandal,
Brexit and, last but not the least, the trade conflict between theUSAandChina have paralyzed
the automotive industry worldwide. All the signs are suddenly pointing to a new era and
a colossal reshuffle. Manufacturers, suppliers and service providers are asking themselves
what is the right strategy to get out of the situation as smoothly as possible.

Basically, the automotive industry reflects the transformation turn of digitization in all its
far-reaching facets. As a pioneer of digitization and all the opportunities that this offers, the
U.S. has taken on a brilliant role and demonstrated to the world the power behind modern
corporate development and lean management style. Horizontal value creation chains are
getting ever more popular and inexorably permeating today’s corporate structures. Not only
for modern companies but even more so for conservative ones it has become inevitable
to overhaul old structures and adapt highly effective ones in order to remain viable in the
highly competitive market. It is now the turn of the automotive industry to be put to the test,
because it currently seems as if the cards are being reshuffled. The right positioning on the
market today can prove to be very successful in a few years and a wrong positioning will
lead companies to even greater problems.

Which positioning is the right one?
Digitization begins primarily in the mind. This means a change of thought patterns and, as
a consequence, a change of an entire society. Ever-increasing personalization has led to a
greater characterization of individuals. In this context, the term “granularity” of humanity is
often used. Opinions can be expressed more easily than ever through social media. Collec-
tively, they are able to influence and manipulate the opinions of others, even overshadowing
expert opinions despite the lack of knowledge, thanks to media forces. As a result, never
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before has there been such a large discrepancy of opinions among experts, society and, at
the same time, politics.

Change means that there will be winners, just as there must be losers. For the sake of
debate, let’s say the combustion engine seems to have becomeobsolete because its potential is
coming to an end and is damaging the climate. However, there are no short-term alternatives
available, onlymedium-term visions. Is it possible to produce a high proportion of electricity
from renewable sources worldwide to justify electric mobility through green driving? Are
there sufficient lithium and cobalt deposits to cover the global battery demand? And can
these rawmaterials be mined and sustainably disposed of in a resource-oriented manner and
under fair working conditions? Doesn’t it make more sense to leave the entire transportation
infrastructure as it is and switch to synthetic and biologically produced fuels in order to
continue to operate our valuable combustion engines? These are questions that every car
manufacturer must answer for itself in order to set the strategic course for its future.

Where are we heading?
The world sales for automobiles had reached an interim peak of 85 million in 2018. The EU
commission has passed very challenging CO2 limits by 2030, with great consequences for
all car manufacturers and their employees. Compared to the current level of 118gCO2/km,
newly registered vehicles may only emit 95gCO2/km from 2021 and 59gCO2/km from
2030 onwards. In addition to the agreed CO2 values of the EU Commission, Fig. 4.1 shows
the CO2 emission limits of other countries, which were passed in June 2019 and published
by the International Council on Clean Transportation (ICCT) [24].

Fig. 4.1 Emission limits according to the European exhaust standard [25]
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Despite the ambitious climate protection laws and efficiency targets set by the German
government, mobility will stay important for all social classes and remain an expression of
personal freedom. Climate protection will inevitably entail higher costs for the population,
so it is important to carefully examine and weigh up the advantages and disadvantages of all
types of powertrains and energy sources. Today, a large number of renowned studies provide
possible scenarios of tomorrow’s mobility, which serve as important guidelines supporting
understanding which CO2 targets can realistically be achieved. Which driving concepts can
make a significant contribution to this and how do political decisions affect the new car fleet
for vehicle customers?

All presented scenarios show that even assuming a value of 95gCO2/km as the EU limit
in 2020, it is possible to halve the CO2 emissions of the car fleet down to 45gCO2/km
without switching to new forms of transport. High-quality fuels (including synthetic fuels
and biofuels) in combinationwith innovative combustion engines enable efficiency improve-
ments in the fleet, both by conventional powertrain systems and by the wide range of hybrid
variants. The increasing proportion of electric driving, the growing shares of alternative
powertrain systems such as the fuel cell, should help to achieve the defined targets. A major
requirement for a growing share of electric mobility on the market is the provision of low-
CO2 electricity, i.e. an electricity mix with a steadily increasing portion of regeneratively
generated energy.

The renowned studies selected in the following are intended to serve as guides showing
where the automotive landscape is heading in the future: 1. “The Passenger Car Market
until 2040” by the German Aerospace Center (DLR), 2013, a study from the perspective
of a mineral oil company; 2. “Passenger Car Scenarios until 2040” by Shell from 2014;
and 3. “Climate Protection Contribution of Transport until 2050” by the German Federal
Environment Agency (UBA), 2016.

New registrations
For new registrations, DLR proposes a moderate “trend”-scenario with a target value of
70gCO2/km by 2040, in which conventional engines will hold higher market shares in the
long term. The assumptionsmade here are stable environmental conditions,moderate change
in consumer preferences, steady technological progress, a gradually changing fuel mix and
a further decreasing emissions target path. Access to automobility in terms of affordability
remains an important criterion for this scenario.

In contrast to this, there is an ambitious “alternative scenario”, which, starting from
the CO2 target of the currently valid EU regulation of 95 CO2/km in 2020, aims for an
extrapolation to 70 CO2/km in 2030 and to 45 CO2/km in 2040. This scenario expects a
massive change in environmental conditions, social and political upheavals of past trends, a
noticeable change in consumer preferences, a rapid change in technological development, a
significant shift in the fuelmix and a drastic reduction in the emissions target path. Achieving
climates under this scenario comes with a higher cost to consumers.

In accordance to the DLR studies, Shell as well proposes a moderate “trend”-scenario
with a CO2 target of 70gCO2/km by 2040 and an ambitious “alternative”-scenario with
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Fig. 4.2 Trend of new passenger car registrations along powertrain concepts in Germany until
2040 2[26–28]

a target of 50gCO2/km in 2040. This makes them suitable for a one-to-one comparison
(Fig. 4.2).

The “Climate Protection Contribution of Transport until 2050” by the Federal Envi-
ronment Agency is the third study used here for comparison reasons. It argues over the
commitment of the Federal Government to reduce greenhouse gases (GHG) across all sec-
tors by 80%–95% by the year 2050. If this target is projected to the transport sector, it means
a reduction in GHG in the range 60%–98%must be achieved. Transport in 2050 hence must
be almost greenhouse gas neutral. Only higher cross-sectoral targets there will give more
flexibility to the transportation sector [26–28].

In both alternative scenarios of DLR and Shell as well as the UBA scenarios, hybrid
concepts (HEVs) bring about significant changes representing a combination of electric and
conventional propulsion. Due to the relatively simple convertibility of conventional drives
to 48Vmild hybrids, these concepts will be a good option for an interim solution in the short
term until 2025. The possibilities of P0 − P4 topologies allow a high degree of flexibility
depending on the base engine concept [29].

In 2030, hybrid vehicles (mild hybrids and full hybrids) alone will no longer be sufficient
to reduce the fleet’s average CO2 emissions sufficiently. This means that the proportion of
the distance traveled with electricity will have to increase, which can be achieved by plug-in
hybrids (PHEVs) and Range Extender Electric Vehicles (REEV).

2 LPG=liquified petroleum gas, HEV=hybrid electric vehicle, CNG=compressed natural gas,
PHEV=plug-in hybrid electric vehicle, BEV=battery electric vehicle, FCV=fuel cell vehicle,
GHG=green house gas.
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Fig. 4.3 Trend of the combustion engine as a proportion of all new car registrations [26–28]

The process of electrification will continue to be expanded until 2040. The PHEV share
and the REEV share will clearly gain the upper hand compared to fully hybrid concepts. Pure
battery-powered vehicles (BEVs) will continue to grow. At this point in time, the hydrogen
fuel cell (FCV) continues to play a subordinate role in the market.

One question that still needs to be answered when it comes to the future of drive concepts
is the role that the combustion engine will play. From the three ambitious scenarios of the
presented new car fleet, a distinction is made between concepts relevant to the combustion
engine and those not relevant to the engine; see Fig. 4.3. According to the DLR study, 86.5%
of all powertrains will still have a combustion engine in 2040. The Shell study forecasts this
proportion at 80.5% and theUBA study at 81.8%.What emerges from all three studies is that
even with a drastic change in technology as a result of the climate targets, the combustion
engine will keep significantly the upper hand even in 2040.

Vehicle stock
The new vehicles that are added in Germany every year make up about 7% of the total
vehicle stock. According to the Federal Motor Vehicle and Transport Authority of Germany,
the average age of all registered passenger cars in January 1st, 2019, was 9.5years. The
development of the vehicle stock is therefore lagging behind new registrations by thismargin.

The car stock is derived from demographic and socio-economic developments and is
determined by age- and gender-specific motorization concepts and age-specific car perfor-
mance requirements. Socio-demographic factors and spatial settlement structures will also
affect the demand for mobility as in motorization performance. Hence, these factors will
have a great influence on fuel demand and the trend for the car stock. In addition, income
and subsidizing effects of specific driving concepts and fuels can have a considerable impact
on the automotive landscape [27].

According to the presented studies, the following graph shows the stock development
until 2040. In the year 2040, according to the DLR study, 94.5% of combustion engines
will still be operating on German roads. Shell and UBA both forecast this value at 89.5%
(Fig. 4.4).
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Fig. 4.4 Trend of passenger car stock along driving concepts in Germany until 2040 [26–28]

How do we prepare for these scenarios?
Asa result of the targeted andversatile driving concepts, the development costs of automobile
manufacturers will increase dramatically over the next years. Combustion engines have
already reached a high potential regarding their efficiency and thus a minimum of CO2

emissions. Further attempts at optimization are now only bringing marginal improvements
at the same or even higher investment volume—but this does not mean that they are so easily
replaceable. One thing, however, is certain—major investment trends for the development of
internal combustion engines cannot continue as they have in the past decades. An investment
basis resulting from more versatile driving concepts will only be profitable in the future if
significantly leaner development processes and more efficient methods replace the current
ones.

The right tools are available at the right time: artificial intelligence (AI). AI is the science
of intelligent agents combined with the power of neural networks that primarily computer
scientists have dealt with over the past decades. Their versatile fields of application have
accordingly settled in theworld of IT and have significantly advanced the digitization process
since the1970s. In the meantime, the concepts of AI have become versatile, reliable and
highly efficient. How the topics of a digital IT sector can be transferred to industrial fields
will be presented in the following chapters by means of work processes, concepts, methods
and application examples.

4.2 The History of Simulation

Simulation as a development tool has significantly influenced the progress of technology
since the1970s. Irrespective of its field of application, it has been able to identify new
optimization potentials, to compare and evaluate various system variants in a cost-effective
and time-efficient way. It has also helped to define uniform development processes in a new
way.

Only a few decades ago, powertrain development was test-based or prototype-based. This
form of development was purely hardware-oriented and caused high costs over long periods.
Each individual and new development stage that consists of compound systems (such as the
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powertrain, which is a compound of numerous subsystems) could only be evaluated in its
entirety once a finished prototype was designed. On the basis of this working principle,
further development steps or improving measures could only be achieved on the basis of
intensive observations, combined with a high level of experience and sound knowledge of
theoretical fundamentals.

Nowadays, the manufacturing of industrial products, especially such as powertrains, is
almost entirely virtual and model-based. From the first concept paper to the completion of a
prototype, powertrains can be developed entirely virtually, so that development costs today
have shifted almost entirely from a hardware-based to a software-based process. Almost
50years ago, it would have been impossible to foresee this progress and today’s development
structures. Likewise, it is not easy for us to estimate how things will work 50years from now.
However, one thing is beyond question: What helps to anticipate the future is to understand
the past and the present. According to this principle, it becomes interesting to deal with the
historical aspect of simulation, to what extent it has taken not only the automotive industry
forward but also the world.

Figure4.5 shows the result of a study in which all simulation software products (tools)
developed on the market since the1970s are listed numerically. The focus of the study rests
on the product levels that are equally relevant for the automotive area, here subdivided
into 3D-CFD, 1D-CFD/0D-CFD, elastohydrodynamics (EHD), chemistry/kinetics, FEM,
multi-body simulation (MBS), acoustics/NVH and kinematics/chassis. Only conventionally
available products are included in this illustration. The market entry of a software product
is rated +1 and a market exit is rated −1. The graphic shows how the trend of the respective
product level has developed since the beginning of the conventionalization of simulation
from the early1970s until today.

Fig. 4.5 History of conventional simulation tools for general applications
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Until the end of the seventies, there are only a few products available. In the early
eighties, software vendors had understood the potential of simulation-based development
and correctly assessed a progressive increase in market demand, which led to a steep rise in
supply. It is interesting to observe that despite individual delays, all product levels increased
homogeneously, which indicates that a uniform implementation of all products into the
complete value creation chain was recognized by customers and strived early.

In the 1990s and 2000s, the rapid increase took on. While software tools for che-
mistry/kinetics or EHD reached saturation early on, from the fact that a basic complexity
could be achieved with very high predictive power, doors opened up for a deeper develop-
ment potential for CFD (3D/1D/0D), FEM and MBS, so that product developers remained
committed to satisfying the continuing demand for tools with higher precision and more
complex requirements.

Around the year 2010, all product levels of the simulation were running into saturation
and in the period between 2010 and 2015 a clear backward trend can be seen in all product
levels. Fig. 4.6 allows a closer look at the simulation tools that are exclusively intended for
the automotive market or at least target their core business there. The overall trend is almost
identical. On a closer look, differences can be seen on the different levels between FEM and
CFD (0D/1D/3D) as they grew closer together, which also underlines their capability for
interactions.

Fig. 4.6 History of conventional simulation tools for the automotive industry
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Since 2013, the trend has been declining at all levels for which the following reasons are
comprised.

1. Centralization of development units and standardization of software tools
Model-based development costs have increased significantly over the last decade. On the one
hand, simulation software in general gains in complexity through continuous development,
which leads to an increase in license costs. On the other hand, car manufacturers tend to use
a high variety of software products, which is because usually different departments within
a company often use different software products for historical reasons, which in principle
cover the same product level. For this reason especially in recent years, it has been observed
that companies have gradually centralized their pre-development units and standardized
their software in order to save costs at this level. Nevertheless, the high performance of tools
generates secondary costs, as they require centralized computing architectures and cluster
systems. Last but not the least, there are high personnel costs for experts who have to bring
or learn specific skills for the application of these software products.

2. Change in the market
Another reason why conventional simulation software is becoming less attractive for devel-
opers is that a declining salesmarket is expected in the future. The potential of the combustion
engine with regard to improving efficiency is now largely saturated. The transition to elec-
tromobility and fuel cells does not demand the current variety of tools. As an example,
structural calculation software (FEM/MBS) for a purely electric or fuel-cell-powered drive
concept is losing relevance, as material stresses and loads play a much smaller role than
before.

3. A highly competitive situation
The competition on the market for simulation software products has increased massively
over the last three decades. Some products are well established within their level, others less.
This has caused a strong economic gap, so that market-dominant suppliers repeatedly took
over smaller and weaker products. Nowadays, it is almost impossible for small software
suppliers to bring new products to the market, as they are under enormous competition and
once established process chains in development units of car manufacturers can hardly be
broken through advertising and marketing measures even at a great expense. These facts
additionally contribute to the fact that the absolute number of products is decreasing.

Figure4.7 summarizes the cumulated numbers of software products for general applica-
tions and specifically for the automotive sector. Looking at the emission limits according
to the Euro legislation, from the introduction of the Euro 1 standard in 1992 until the
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Fig. 4.7 Development trend of
all simulation software
products

introduction of the Euro 6 standard in 2014, the permitted CO content was reduced from
2.72 g/km to 1 g/km and the HC − NOx limits from a total of 0.97 g/km to 0.1 g/km HC
and 0.06 g/km NOx. Including the Euro 5 standard, vehicle registrations were based on the
NEDC driving cycle. Since then, the new WLTP3 is being used as the basis for legislation;
see Fig. 4.8 (left). China, which has the highest population density in the world, follows the
EU’s measures with its emission regulations. Eight years later in 2000, the first China 1
standard was announced. Since then, the country has caught up considerably with Europe
and is now taking the lead with the early definition for the China 6b standard, which is
comparable with the Euro 7 standard. Compared to the current China 5 standard, the CO
and HC content of 1 g/km and 0.1 g/km, respectively, will be reduced by a further 50%
and nitrogen oxides by a further 42%.

Fig. 4.8 Development trend of emission limits since the introduction of emission standards for the
EU (left) and China (right) [30]

3 Worldwide Harmonized Light Vehicles Test Procedure.
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Fig.4.9 Specific CO2 (left) and NOx (right) fleet development trend since the introduction of emis-
sion standards

When putting the market trend of the simulation tools in relation to the emission limits
(here for CO and NOx), one obtains a specific representation according to Fig. 4.9. The
units [CO/number of tools] (left) and [NOx/number of tools] (right) give an indication of
the extent towhich simulation tools have helped us to reduce emissions using computer-aided
andmodel-basedmethods in the context of powertrain development since the introduction of
emission limits. Both graphs showhow the specific value has been on a downward trend since
the early1990s. For all three legislations (Euro, US Ulev4 and China), an absolute minimum
is reached around 2013. After that, the specific emission values have started rising again.

To show the same specific trend for the CO2 development, the number of the simulation
tools is put into relation with the CO2 limits in Fig. 4.10. Also here, it is evident that the
specific CO2 value reaches its minimum between 2014 and 2015 and has been increasing
again since then.

Fig. 4.10 Specific CO2 fleet
development trend since the
introduction of CO2 limits

4 Ultra low emission vehicle.
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4.3 Development Processes and Scenarios of Simulation with Big
Data

As a result of the rapid development of data storages, starting with the simple floppy disk
from themid-1970swith a capacity of about 80 kilobytes and themarket launch of recordable
compact disks in the early 80swith several hundredmegabytes suitable for series production,
in the early phase of the digitization process it was well understood that the technological
possibilities of storage and the availability of complex data volumes would strike new ways
with inconceivable potentials. The term “Big Data” was first popularized in this context in
1990 by a US-American computer scientist named John Mashey.

Today, big data no longer stands for technological progress in handling large amounts
of data solely, but for a breakthrough in new development methods for modern companies.
It does not matter in which segment a company is positioned—the methods are universally
valid and can be used in any field. However, the preparation (pre-processing) can vary greatly
and play a decisive role in a successful implementation (Fig. 4.11).

From the possibility of generating large and indefinable amounts of data and making
them storable, the real challenge arises, namely the systematic handling of these data. Big
data is a far-reaching term and can be characterized by four properties for every conceivable
amount of data:

• Data Volume describes the size of a data set.
• Velocity describes the speed at which data characteristics or the amount of data itself

changes.
• Variety describes the expandability of a data set and the variability of a data source.
• Veracity describes a degree of average noise that naturally comes with real data.

Fig. 4.11 Characteristics of
data (Big Data) [31]
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How can data be generated?
Until about the end of the1960s, when simulation tools were not yet firmly anchored in
the processes of powertrain development, decisions for any development were purely taken
based on testing results. Every development step was under close observation and without
modern tools, as they are used today, directions and progress could only be achieved through
a solid experience and a constant elaboration of theoretical foundations. The design unit,
production and test bench operation were in a much closer interaction than today. This was
necessary since the purely test-based development of systems and subsystemswere requiring
the production of new prototypes for every single development step. Only a validation of a
manufactured system could provide a statement as to whether and what qualitative gain this
development step brought about.

Figure4.12 shows a general process chain for the development of a powertrain in a
simplified form, as it was done before the age of simulation. A reference motor with the
prototype designation P0 is at the beginning of a new development stage. On the basis of
defined targets (specifications), subsystems (component level) are optimized (R), adapted in
terms of design (D) andmanufactured (M). This can relate to cylinder and piston geometries,
manifold inlet and outlet geometries, materials for higher load capacity, better thermal
management or for weight reduction of mechanical components, ignition devices, the crank
mechanism, valve train or any other form of system. The next step is to produce a modified

Fig. 4.12 Prototype-oriented/test-based development process of powertrains up to the1970s
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system with the prototype designation P1. In a closing loop, the new prototype is now tested
(T)—a qualitative evaluation can be made according to a new validation loop (V). This
process loop is repeated many times until the target of the specification sheet is reached
by the prototype variant PX and all subsystems are merged into a complete system (system
level).

Nowadays, development departments of all automotive manufacturers strongly integrate
simulation into their development routines. The theoretical foundations of some of the topics
were presented in Chapter3.

Since the beginning of the commercialization of simulation tools and their use in cor-
responding development phases of powertrains, such as concept design, material selection,
construction, pre-application and application (see Fig. 3.1), development processes have
changed dramatically. First and foremost, simulation had produced serious potentials that
could not have been localized and implemented at comparable speed on a purely test-based
approach. In addition, the avoidance of permanent production of prototypes resulted in
significant cost savings of hardware.

A new process chain allows the virtual development of complete systems (system level)
along continuous development phases (level) in a purelymodel-based approach.On the com-
ponent level, the development comprises the chain of virtual calibration (C), optimization
(O) and computer-aided design (D) of model levels (M1,M2, . . . ,Mn) and the subsequent
data generation (DG) for the calibration of electronic control units. Only after the entire
process has been completed the first prototype P1 is produced, which immediately fulfills
a large part of all the required specifications. Manufacturing is thus shifted to the very last
step of the process chain (see Fig. 4.13).

Simulation is stronger than ever
Over the past decades, university research institutes, research and development units of
automobile manufacturers as well as suppliers and external service providers have been
intensively engaged in the field of simulation worldwide. This has resulted in a large num-
ber of publications that have gradually continued the success of virtual development. What
can be designed surprisingly well with simulation approaches are methods and methodo-
logies for advanced processes. Methods are single solution concepts, methodologies are
the composition and process sequence of many single methods in a closed development
framework.

Methodologies have now become overarching sub-disciplines in the field of virtual
driving concept development, holding structures and strategies inside development units
together representing the uniqueness of corporate cultures or evenmicrocultures on a depart-
ment level. Since all automotive manufacturers use the same or similar simulation tools by
today, it is even more important to distinguish oneself by individual methodologies and
create a unique development DNA.
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Fig. 4.13 Simulation-oriented development process of powertrains today5

Figure 4.14 (left) shows schematically how the quality and reliability of simulation tools
have changed over time. As a result of the continuous development of model approaches,
simulation tools are extremely reliable in terms of predictability and are close to reality, at
least as far as qualitative trends are concerned.

In the past, simulation tools were used independent from each other on an individual
demand. Therefore, it was essential to have realistic boundary conditions in order to make
predictions of high quality. The graph on the right shows how simulation among powertrain
development has evolved from an initially processless to a process-integrated tool since the
1970s. Accordingly, the trend of test-based methodologies has declined. Today, test-based
methodology plays a higher role at the end of the development process chain in the context
of system validation.

As explained at the beginning of this chapter, big data provides the basis for the develop-
ment of models that make use of concepts of artificial intelligence. Without the existence
of large and, above all, diverse data sets, the highly effective algorithms of AI cannot be
used. In order to make use of AI, the idea of generating data sets on real test benches would
be an obvious one. However, this process would be extremely cost-intensive and not target-

5 ECU=Electronic control unit, GCU=Gearbox control unit, PCU=Power electronic control unit.
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Fig. 4.14 Reliability of simulation (left), Historical change of development processes (right)

oriented, since real systems only generate datawithin the boundaries of systemic plausibility.
An algorithm based on this data would be strongly restricted in its freedom and generate
solutions which from the point of complexity cannot go beyond already known. What we
expect from AI is not only new results, but above all new solution paths that leave the limits
of systemic and human plausibility to create unexpected and unlimited solutions.

If we now try to implement a resource-oriented thought based on what is available to us,
we would use simulation tools and models to generate massive amounts of data on a purely
virtual basis in a short time. A possible basis for data generation is provided by the Design
of Experiment (DoE). Fig. 4.15 compares both approaches, namely measurement-related
data and simulation-related data generation. In principle, it is possible to use any simulation
software as a data generator.

Fig. 4.15 Generating big data through real data (left) or through simulation software (right)
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Advantages of AI-based powertrain development
The advantages that AI-based concepts can provide for the development of powertrains are
obvious. While calculation in conventional computing systems are ordered serially, and lead
to a lower data processing speed, an AI architecture processes in parallel and therefore gains
an exponential speed advantage. Especially the associative operation allows finding creative
and complex solutions to problems, which a normal computer code would not be able to
solve due to its address-based principles. This results in many types of problems that could
not, or only with great effort, be converted into an algorithmic form so that they could be
solved by a computer. Also, unlike the processes of an AI system, conventional algorithms
do not undergo a learning process and are not adaptive for recurring problems.

Figure4.16 shows how AI calculation processes can be classified in terms of accuracy
and computing time compared to classical methods of simulation. In general, the levels of
simulation can be divided into differential equation methods and signal-based methods.

3D-CFD (see Sect. 3.1) presents the highest level of detail using the method of partial dif-
ferential equations (PDE) for solving a problem. Solvers are computing both time discretely
and space discretely for each individual node of a grid (mesh), and this is done several times
per time step, depending on the order of the solver. 0D represents the lowest PDE-based
level for which a spatial resolution is not executed (see Sect. 3.1.3).

The signal-based level is divided into white-box, grey-box and black-boxmodels.White-
box models are physical models that represent inputs and outputs based on theoretical (phy-
sical) relationships and are comprehensible for the user. Gray-boxmodels, on the other hand,
are hybrid models and known to combine a partial physical representation with additional

Fig.4.16 Trade-off between level of detail and model accuracy: AI simulation compared to conven-
tional simulation
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Fig. 4.17 Serial tasks versus
parallel tasks

real data, which substitutes missing physical correlations through mathematical regressions.
If no physical relations are known at all, so that correlations of inputs and outputs only have
to be described by mathematical formulas, this can only be achieved by using large amounts
of real data. The correlations remain intransparent for the user, which can be attributed to
black-box models (Fig. 4.17).

While common central processing unit (CPU) chipsets in computers use multiple cores
that focus on sequential processing of computational processes, a graphical processing unit
(GPU) is suited for parallel processing. In contrast, it provides hundreds to thousands of
smaller cores to process threads (or instructions) simultaneously. In combination with artifi-
cial intelligence and the parallel processing of neural networks, it becomes clear that GPUs
are ideally suited for this purpose. The following graphic shows the result of a study in which
the calculation speed of a CPU and a GPU are compared. For the benchmark, 4 neural net-
works were put to the test, with the increasing complexity of the architecture (Fig. 4.18).
More details about network architectures are given in Sect. 5.5.4.

All PDE-based as well as signal-based layers can be simulated by AI. Hence, an AI level
positions itself flexibly and, depending on the requirements, from simple to complex. When
following the directions of the arrows, it becomes clear that even 3D problems at the highest
detail level of simulation can be captured with AI, with a massive advantage in computing
time.
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Fig. 4.18 Speed advantage GPU versus CPU

Exploiting the current trend toward new value creation processes
Operating speed is always directly related to costs. By applying AI model approaches, not
only previous calculations but also methods and full methodologies can be integrated into
existing development processes. This should enable not only a drastic increase in develop-
ment speed but also a significantly leaner and more efficient process. In Sect. 4.2, the trend
of the developed simulation tools until the1970s was presented and discussed. The rapidly
increasing demand for software until 2013/2014 (see Fig. 4.7), many of which are in compe-
tition with each other, has also confronted users with the difficult task of finding out which
tools meet their requirements best and are integratable into their individual workflow. The
consequences are clear. On the one hand, this leads to time-consuming and cost-intensive
benchmarks. On the other hand, to high investment volumes such as for multiple licenses
within identical application areas and high IT maintenance and network cost due to the
diversity of softwares.

Following the idea, it becomes clear that the current trend together with the promising
concepts of the AI interlocks ideally. A possible scenario that is presented here is that there
will be a regression and reassortment of the software varieties. It is to be expected that
software in the future will be limited to a core product that meets the requirements of the
users in the broadest sense. In each discipline, whether 3D, 1D/0D, EHD, chemistry/kinetics,
FEM, MBS, kinematics or acoustics, cost-saving measures can be taken by selecting the
most efficient tool among a large variety for the respective needs and using it as a data
generator from thereon. The development landscape will thus be composed of harmonious
interaction of the strongest tool in its discipline (as a data generator), surrounded by many
AI applications (AI gadgets) that use the input of virtual data. This rationalization process
is referred to as gadgeting in the following (Fig. 4.19).
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Fig.4.19 Gadgeting process: Rationalization and reassortment of all simulation tools to the strongest
tool in its respective discipline, extension of the development landscape with AI gadgets

In principle, this results in two interesting concept possibilities:

1. Partial concept: AI gadgets to support the calibration
A first concept possibility is to keep simulation tools as result- delivering systems. Additio-
nally, they are used as data generators. The AI gadgets integrated into the structure have the
function to set parameters of desired submodels in correlation with their initial results. In
addition, the calibration effort (C) of models is automated so that a time-consuming para-

Fig. 4.20 Gadgeting sub-concept: AI gadgets to support the calibration
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Fig. 4.21 Typical procedure of a model calibration (left) and applying a model as a data generator
(right)

meter calibration to existing real data will not be necessary anymore. From there on, the
correct parameterization is provided by AI gadgets. Fig. 4.20 shows how all systems interact
in such a constellation.

To concretize the concept a bit more, it is shown in Fig. 4.21 how AI gadgets can be
created to support model calibration. A typical two-step process chain is illustrated that is
used to calibrate simulation models. In the first step (left), target values (T1,T2, . . . ,Tn)

are specified, which usually originate from measured real data. By using optimizers, model
parameters (MP1,MP2, . . . ,MPn) are adjusted until the best combination is found which
fulfills the target values at given input values (I1, I2, . . . , In). In the second step, the results of
the optimization (right graph) are used in the model, whereby it is now considered calibrated
for the prediction of desired applications. After a tuning process, the resulting outputs should
approximately match the target variables (O1 ∼ T1, O2 ∼ T2, . . . ,On ∼ Tn).

The adaptation of a gadgeting process can be realized by a three-step procedure, (see
Fig. 4.22). In the first step, parameters of the model (MP1,MP2, . . . ,MPn) are varied cross-

Fig. 4.22 Method for big data generation and creation of AI gadgets
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wise over a DoE test space. The simulation tool acts as a data generator and generates
result variables (O1,O2, . . . ,On) for each variation. In the second step, these variables are
correlated with the physical input variables (Ph1, Ph2, . . . , Phn), which are relevant for the
considered model, and further input variables (I1, I2, . . . , In), which are required by the
model. By the approach of a suitable AI model, the aim is to generate the same target varia-
bles that corresponded to the model output in the first step. In the future, the AI model can
be applied. Instead of performing a complete calibration again, the AI gadget is used, which
initiates a reliable and fast prediction of the respective model parameters.

According to this idea, amodified process loop results. The delivery of results remains the
responsibility of the simulation tools—the parameter calibration of all models, however, is
done by the corresponding AI gadgets. If this procedure is integrated into the development,
the following novel process loop results (Fig. 4.23).

Fig. 4.23 Development of a prototype production: Gadgeting sub-concept
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Fig. 4.24 Gadgeting full concept: AI gadgets as a result supplier

2. Full concept: AI gadgets as result supplier
The second and strongly extended process for using the lean structure of selected simulation
tools is their pure use as data generators as shown in Fig. 4.24. For the generation of further
results, the full concept is exclusively based on AI gadgets. Which powertrain concept is
actually being developed plays a subordinate role.

A corresponding process chain within a development unit is illustrated in Fig. 4.25. In
principle, it is conceivable that multiple AI gadgets can be interlocked and components can

Fig. 4.25 Development process of a prototype production: Gadgeting full concept
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be developed on a subsystem level in a single-step process. On the way to the first prototype
(P1), massive time saving is achieved. Finally, validation of the component level and the
system level completes the development loop.

A number of topics are mentioned here, such as how gadgeting can be used in the
development of combustion engines and so to concretize the novel process loop. Fig. 4.26
shows the most important submodels that are very typically performed using the means
of simulation. Here, a boundary is drawn around the combustion chamber, which contains
relevant submodels for the development of combustion processes. A typical loop within
here encloses the topics (turbulence, charge exchange, ignition delay, combustion, wall heat
losses, cyclic variations, knocking, raw emissions, exhaust aftertreatment and acoustics),
here described as extensive effects. To be able to execute these models, boundary conditions
are needed,which are represented by further submodels. These are characterized by intensive
parameters.

In principle, it is possible to replace any individual submodel or even a group of submo-
dels, which are usually determined physically, by the concepts of AI. Intensive parameters
stand for quantities that have a direct and significant influence on the engine behavior —
extensive effects, on the other hand, express the corresponding influence on a physical level.

Fig. 4.26 Submodels in the development/simulation of combustion engines
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During data generation (big data process), it is crucial which design of experiment (DoE)
is selected to fill the design space. Additionally, each level of AI requires a different DoE
method. There are basically four categories to be differentiated:

1. Space Filling Design
This experimental room design is suitable for both continuous (variable) and discrete (fixed)
input parameters. The space filling design aims at filling the experimental space in such away
that all spaces are evenly covered, i.e. the distance between any two adjacent experimental
points is maximized. In case of measurement outliers or areas of high sensitivity, this method
is suitable to cover the experimental space evenly in the best possible way [32].

2. Robustness Design
This design variant is suitable for test spaces that require high robustness due to the inter-
action between controllable and uncontrollable noise. Control factors are used here, whose
settings are made by the user or automatically and ensure that the noise of the test output is
minimized.

3. Statistical Design
Statistical design of experiments provides an organized approach to generate data and opti-
mize any process with multiple parameters. In a DoE approach, experiments can be run
in random order while changing several variables simultaneously, rather than varying one
parameter at a time while keeping all other parameters constant. The advantage of randomly
selecting experiments is that each of them, as part of an overall population, has the same
chance to contribute to the training of a model.

4. Optimal Design
Statistical designs such as the Full Factorial require an ideal and simple experimental setup,
which is unsuitable for fulfilling multiple experimental objectives. The Optimal Design, on
the other hand, is an approach that tries to take into account the entire observation space and
to fully exploit the accuracy. It focuses on the minimization of a criterion related to either
variance or other statistically relevant quantities. Two of the most common criteria are the
D-criterion and the I-criterion. The D-criterion refers to the variance of factorial influences
and the I-criterion to the accuracy of the prediction (Fig. 4.27).

Integration of AI-based development into lifecycle models
Lifecycle models set important quality and safety standards in the implementation of pro-
ducts within development processes. They serve as guidelines that support project monito-
ring and keep necessary development steps together so that they are not overlooked. Due to
their phase-oriented basic framework, they provide decisive advantages in their application
for the project management of product developments, not only for the project manager but
also for the entire development team.



72 4 Big Data for Powertrains

Fig. 4.27 DoE approaches for the creation of an experimental space

With the introduction of controlled development lifecycles, it could be proven that qualita-
tive standards of product results could be raised in the medium and long terms. They demand
a draft of system and software architectures in an upstream project phase and emphasize that
all requirements for a system must be clearly defined before the start of an implementation.
After the draft phase throughout the operational application, they serve as an orientation and
contribute to realistic time and cost planning.

Especially in the automotive sector, the so-called V-lifecycle, which can be assigned to
the classic lifecycle models, has become generally accepted over the last decades. Primarily
in this sector, it is important to consider different components of products aswell as software,
mechanics, electronics or mechatronics as an integrated unit and not separately. The strict
orientation of V-lifecycle models supports mutual links between different system levels
(such as hardware and software) and emphasizes test, verification and validation phases to
ensure the integrability to each new development stage.

The following diagram shows that the integration of AI can be very sensibly designed in
the entire left half of the V. This includes the feasibility phase, the concept phase, design and
implementation, starting at a system level all the way down to a component level (Fig. 4.28).

Every company has its own historically grown development DNA and individual product
creation processes. In this respect, lifecycle models must be tailored to meet the internal,
project-specific requirements. From a historical perspective, it can generally be seen that
development NDAs between companies were much more different just a few decades ago
than they are today. Due to international and open communication platforms as well as
conferences, where internal development methods are disclosed, lifecycle models that hold
together and standardize the core of complete development processes and, above all, a globa-
lized employment culture where employees transfer professional experience from different
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Fig. 4.28 Integration of AI into the V-development lifecycle for automotive applications [33]

companies to a new company, development cultures in the automotive industry are becoming
more and more similar worldwide. In this respect, the transferability of lifecycle models has
become easier and more flexible than ever.



5Powertrain Development with Artificial
Intelligence

Artificial Intelligence (AI) is the science of transforming human learning, thinking and
decision-making structures into mathematical models. Its goal is to enable machines to
perform tasks intelligently and to detach them from an explicit path of programming a
solution. The word AI was first coined by John McCarthy in 1956, who had the vision
of giving computer systems a kind of decision-making power so that they work according
to the model of human rationality. An intelligent system is defined as one that is able to
perceive its environment and take measures to optimize any given situation on the basis
of cognitive decisions. The variety of applications and imagination in the use of intelligent
systems is great, and initially they did not primarily liewithin the framework of technological
developments but mainly in the medical field, such as neuroscience and psychology, as well
as in disciplines of economics, linguistics and philosophy.

In the last few years, artificial intelligence has gained enormous importance. The availa-
bility of large amounts of data is the key basis for the application of AI. Since companies
have been collecting large amounts of data of their business characteristics since the begin-
ning of digitization, the majority of them are increasingly interested in using AI as a logical
consequence. AI can help to decipher and interpret patterns within data and thus to extend
development processes in an advanced way.

The original version of the chapter has been revised. A correction to this chapter can be found at
https://doi.org/10.1007/978-3-662-63863-7_6
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5.1 Models of Artificial Intelligence

Artificial intelligence is a broad term and offers a wide range of possible applications. AI is
often associated with the idea that machines or algorithms convey human thought patterns.
It is important to realize that human thinking and its correctness can only be measured
subjectively and does not necessarily have to correspond to rational thinking. An additional
difficulty is that thought patterns or the solution of a thought process can trigger a behavior,
whose correctness can only be judged subjectively. In this respect, a behavior as a result of
a thought process can also be differentiated into a human and rational one.

Human thinking
The term thinking refers to all mental processes that combine imagination, memory, expe-
rience and a resulting process of cognition. Only the end product of thinking is consciously
perceived as a result, rarely are the thought processes themselves accessible to one.

Thinking is a process that must generally be strictly separated from perception and intui-
tion. Perception and intuition are not conceptual; in contrast, thoughts are propositional and
tangible. If one examines the process of thinking, it can either be developed constructively
or be triggered by an idea, a spontaneous feeling, a situation or by sensory impressions [34].

Thinking in detail is a current research topic in various disciplines. The complexity
behind this lies in the construction of a thought structure, which can look very different
depending on the discipline. In order to better understand the psychological, neural and
biochemical mechanisms underlying a thought, brain researchers are studying the cellular
level of thinking.

If a machine is attributed the ability to think humanly, then this refers in particular to
the calculation process, which is comparable to the thinking process of a human. Thinking
processes can be investigated and understood if they are related to the solution of a certain
problem. In turn, solution paths can be manifold, which means that they have to be studied
individually depending on the field of expertise and application in order to provide a tailor-
made training for a machine. If a certain input-output pattern corresponds to that of a human,
this is only the first proof that the thinking process could also correspond to that of a human.

A. Newell, J.C. Shaw and H. Simon developed the computer program “General Problem
Solver” (G.P.S.) in 1959, which should be able to represent any form of problem definition
by mathematical formulations. The focus for the developers was not to predict a correct
solution for any given problem, but rather to design the solution path according to human
logic in order to get to the same result. The interdisciplinary field of so-called cognitive
science concentrates on bringing together computer models from AI and experimentally
acquired techniques of psychology in order to determine precise test-oriented theories of
the human mind [35].
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Rational thinking
Making conscious decisions is an ability given to humans, which is only possible with
the presence of imagination. An imagination of the effects of different or successive actions
enables us to choose a preferred action fromvarious options. In order tomake such a decision,
1. a complex imagination in multidimensional levels and 2. target states are required, which
make the effects of an action assessable. If an imagination corresponds to the actual effects
and if, in addition, an effect is correctlymeasurable, it can be assumed that the original action
is directly and functionally related to the solution. Both aspects are called epistemological
and instrumental rationality.

Rational thinking is a skill that is not innate to humans, but must be learned and trained.
Until then, our imagination seems to be afflicted with many shortcomings. It stands in
contrast to irrational thinking. The ability to separate both thought patterns from each other is
subject to a development process in our brain as it forms structures. The art of distinguishing
conclusions that are correct in the majority of cases and therefore provide a good first
estimation from cases that provide false results is called “heuristics”. Since our brain learns
through repetition, correct conclusions remain in our memory and overlay the cases in
which we were wrong. On the other hand, if we reflect superficially, it is easy to overlook
irrational thinking. This situation can lead to a situation in which one sees oneself in the
right even if this is not the case. Human decision criteria are often based on experiences of
many individual decisions from the past. Only the observation of past consequences, which
have arisen from previous decisions, forms a sum of experiences, on the basis of which the
following decision can be made. Thus, it can be said that human decisions are of statistical
nature [36].

To know something means that it has been learned, and this in turn means that neuronal
structures have been formed for it in the knowledge formation process. Knowledge can thus
be directly related to complex functions in the brain. Unlike in an AI system, however,
these functions are not activated by operators, but by biochemical processes and expressed
through thinking. The reliability of biochemical processes can be equated to a probability
thesis. According to this, probability is a property of the brain and a measure of the extent
to which biomechanical processes can represent reality with the ability to abstract. Rational
thinking is therefore also called thinking that is based on observable reality.

If one moves to the system level, systems are interpreted as rational if they deliver results
“expected” by humans. Since the early sixties, programs have been developed in research,
which are able to solve problems, which can be represented by logical notations.

Human and rational behavior
The British mathematician and logician Alan Turing is still considered one of the most
influential theorists in computer science. In conjunction with his Turingmachine, which was
introduced in themid-thirties, he succeeded in proving thatmachines can in principle succeed
in reproducing complex relationships of reality on a mathematical basis. He postulated that
cognitive processes can be reproduced as long as they can be broken down into algorithmic
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relationships. As a result of his considerations, in 1950 he presented the Turing test, which
is still known today and is considered a recognized measuring method for proving artificial
intelligence. The test model was defined in the written communication between a computer
and a test person. The computer tries to confront the tester as a thinking individual. Only
once if a communication is completed and the respondent was unable to determine whether
his communication partner was a human or a machine was the test considered successful.
To achieve this, the machine must be able to fulfill the following levels of abstraction [37]:

1. The processing of a natural language to understand the information it contains;
2. A knowledge compilation to store the exchanged information;
3. The automated inference to formulate appropriate answers from the stored information;
4. Machine learning to determine customized answers from the information.

Developers have succeeded in imitating human behavior over short periods of time, both in
written language via so-called chatbots and speech generators. If the test person is informed,
however, that the communication partner is a computer, they can easily expose it by asking
specific questions. In order to model rational behavior algorithmically, so-called “agents”
are used, which take on a monitoring function in a learning and training phase. The agent is
assigned the task of grasping its environment, understanding input and disturbance variables
in relation to output variables and autonomously adapting changes in the system to achieve
the desired result. Furthermore, it has the task to imitate rationality by means of its control
criteria. But there are situations, where no logical solutions to a problem exist. Especially
in these cases, the agent is required to design reflexive solutions and extend its “rationality”
to arrive at a solution that is not explainable via logic. Thus, the agent acts beyond the laws
of logical thinking, because unlike humans it does not need to prove logical conclusions to
its decisions. The agent is able to present results, which our mind could not achieve due to
its limitation of the human thought structure.

Singularity
In connectionwithmachines that have a certain degree ofmaturity to imitate human thinking
and rational behavior, the term singularity is often used. Technological singularity describes
theories that provide an outlook into the future. It is mainly understood to be a specific
point in time that machines reach, from which they are able to develop autonomously and
rapidly by means of artificial intelligence. This point in time is predicted as a possible,
historical revolutionary event, behind which the future of mankind is no longer foreseeable.
For researchers, the estimation of an exact point in time is currently difficult, but it is possible
that it will come about unexpectedly. This expectation is based on the observation that
technology and science have developed ever more rapidly since the beginning of mankind
and are subject to an exponential speed of development, especially in the last century [38].
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Singularity is often associated with the idea that human-like robots, also known as trans-
humanoids, live next door to us humans and are far superior to us in all our characteristics,
speed, strength, intelligence, availability and efficiency. However, according to the current
state of knowledge, this idea is based more on science fiction than a realistic prognosis. The
initial singularity will rather take place on an algorithmic and a process-optimizing level
than on a robotics level. Already today, state-of-the-art and intelligent algorithms are used in
almost all technological development levels to make a process more efficient. If these pro-
cesses can be made even more reliable and, above all, more autonomous in the future, this
will primarily mean that the working world of technology, economics, finance and banking
and other sectors will continue to be subject to topological change. Accordingly, AI will
creepingly rearrange the interplay between algorithmics and the labor market. The question
of the extent to which jobs are endangered by the takeover of computers has long been under
discussion.While this has not yet been proven to be a case, a reorganization of job topologies
and a change in operative work are already underway. It should be possible to extrapolate
this trend further for the coming decades. The following figure schematically depicts the
point in time of the singularity on the timeline of human intelligence development (Fig. 5.1).

The beginnings of machine learning and the path to artificial intelligence go back to
the 1950s. A multitude of individual achievements has paved the way for AI to become a
powerful tool. The special feature ofAI is now that it is available to all users through software.
Already today, we are experiencing a remarkable increase in the number of new companies
that use AI technologies. This leads us to expect that in the coming decade, economic
and social digitalization processes will face a significant next wave. The timeline Table5.1
provides an overview of the most important milestones of AI from its initial founding to the
present.

AI is identified by economic studies as the key technology of the future. Many of these
studies have already dealt with market potentials and their effects on the most diverse
economic fields. A study commissioned by the German Federal Ministry of Economics and

Fig. 5.1 Singularity [39]
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Tab.5.1 Milestones in artificial intelligence

Energy uses intensive surveys of companies in Germany to determine the extent to which AI
technologies are already being used in the manufacturing sector by small and medium-sized
enterprises (SMEs) and large enterprises (LEs) in their respective value chains. For a total of
nine value-added chains, an average of 15% of SME and 25% of LE stated that they already
use AI technologies at least to a small extent [40] (Fig. 5.2).



5.1 Models of Artificial Intelligence 81

Fig. 5.2 Proportion of SME and LE that already use AI technologies, 2018 [40]

For a more comprehensive picture, the following diagram additionally considers the
proportion of SME and LE cooperating with external service providers (Fig. 5.3).

A further representation permits the insight into the expectations of the SME and LE
as a perspective outlook, specifically, how strongly it can be assumed that AI technologies
will be used in individual processes of their value creation chains in the near future. The
result clearly shows that all companies in the manufacturing or production sector foresee an
increasing use of AI technologies in their processes (Fig. 5.4).

Fig. 5.3 Proportion of SME and LE which work with external AI providers, 2018 [40]
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Fig. 5.4 Proportion of SME and LE that use AI technologies at least to a small extent today and
probably in 5years, 2018 [40]

5.2 Overview: Levels of AI

If models are discussed in general, a distinction is made between deterministic and sto-
chastic models. If a recurring, identical input of parameters is followed exclusively by the
same output, the model is defined and reproducible. This is a characteristic that applies to
deterministic models. Here, the algorithm is clearly defined, i.e. all intermediate results that
are generated are also identical. This is in contrast to non-deterministic models. As a rule,
all realistic processes are not comprehensively tangible due to their complexity. Unpredic-
table disturbance and inaccuracies lead to dynamic input conditions, which have an equally
dynamic effect on the result.

Especially in the simulation, one tries to achieve reproducible results. This is in contra-
diction to the fact that the goal is to reproduce stochastic scenarios. This is only possible if
disturbance effects are neglected or combined in the form of assumptions and simplifications
so that all boundary conditions are always identical.

The term artificial intelligence is popularly used in an inflationary way and meanwhile
conveys the image that a process can be carried out by machine-learning and is therefore
subject to a strong blurring. Even simple algorithms of mathematics, which were previously
referred to as such, now enjoy an upgrading through the categorization ofAI, which is correct
as such, insofar as they follow certain basic principles of intelligent functions. Expectations
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Fig. 5.5 Flowchart: Levels of artificial intelligence
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of an AI model can vary greatly. Therefore, it is relevant to understand that we currently
have various AI levels available, with varying degrees of model creation, individual degrees
of complexity, and suitability for very extensive application fields. Looking ahead to this
chapter, the flowchart shown above provides a detailed overview of the different levels of
AI (Fig. 5.5). The chart also serves as a guideline, on which later contents in this book will
continuously be referring to. Along the flowchart, all levels of AI are discussed in their basic
features and general concept examples are presented, which are intended both to concretize
the techniques and support the reader in stimulating his or her own creativity and to provide
ideas for the development of his or her own application ideas.

5.3 Search Tree

In the field of computer science, search tree functions belong to a long-established and
important method of artificial intelligence. In an optimization process, search trees enable
to transfer associative structures into an algorithm based on human decision-making. Among
the most important are the A* (A-star) algorithms (Fig. 5.6).

A* algorithms are counted among the class of “informed search algorithms”. The search
for an optimum is formulated here in the form of weighted diagrams. From a starting node,
the requirement is to find a path out of many possible ones that represent the lowest cost

Fig. 5.6 Search tree structure
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function. Cost can be any target quantity such as distance, time, efficiency, consumption
and battery state of charge (SOC). If the starting node of the search tree is defined, the path
of least resistance (here cost function) is extended until a termination criterion is met. The
selection of the correct path together with possible and innumerable alternative paths is done
by a heuristic method. In this context, the teaching of heuristics is to use limited knowledge
to draw conclusions about a system by an analytical estimation procedure.

At every iteration of a main loop, A* has to define which of its paths shall be extended.
This is based on the cost of the respective path and an estimate of the necessary cost to
extend the path to the target. In particular, A* chooses the path that minimizes f (n) with

f (n) = g(n) + h(n) (5.1)

Here, the variable n denotes the next node on the path, g(n) the cost of the path from the
start node to n and h(n) a heuristic function which estimates the cost of the most favorable
path from n to the destination [41].

The search depth is limited by the available computing time. On the one hand, this is
proportional to the computational effort of the evaluation function and, on the other hand, it
grows exponentially to the size of the search tree. Fig. 5.7 shows the schematic structure of a
heuristic downward strategy (HDS). Starting from the right, the heuristic search performs as
many investigations until it has optimized a subject into the fifth level. The idea with an HDS
is not to provide the same amount of computing time to each subsequent node in the path
but to investigate promising paths more intensively. For this purpose, all possible successor
nodes x are sorted according to their neural evaluation VN (x). The evaluation function can
take many different forms, which will not be explained in detail here.

Fig. 5.7 Search tree through heuristic downward strategy [42]
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HDS1(x) = x1

HDSk(x) = f (HDSk−1(x1), HDSk−2(x2), · · · , HDS2(xk−2), HDS1(xk−1)) (5.2)

The parameters (x1, x2, x3, · · · , xk) correspond to the successors of a node x in sorted
order.

Similar to the way GPS systems work, such as those on the basis of updated driving data
(weather station, traffic data) according to the heuristic search tree principle, multidimen-
sional search trees can be nested together. Here, the result, i.e. the last node of a search tree
serves as the start node of a new search tree. In GPS systems, this method of operationmakes
sense, since the consideration of all data over a desired route can become extremely large and
the system would require a high computing time due to a massive amount of processes. The
division into many different single stages can significantly reduce the workload, especially
due to the continuous test procedure. Besides navigation systems, where search trees are
used to determine the shortest route, they are also used in search engines. Their goal is to
suggest the highest possible hits from a database when the user enters a search term. Further
applications can be found, for example, in digital dictionaries, in the creation of complex
database structures, for the prioritization of waiting loops or for compression algorithms of
data formats such as JPEG and MP3.

The following are conceptual examples of how the search tree method can be used in the
field of powertrain development (Fig. 5.8).

Example 1: Stationary application lean conceptmotor

This example shows how an ECU application can be performed on a lean concept
motor using a search tree method. An optimization of parameters here is carried out
on a stationary basis, i.e. after each working cycle on a warmed-up motor. There are
a total of seven parameters objected to optimization: 1. air-fuel ratio, 2. valve timing
on the intake side, 3. valve timing on the exhaust side, 4. wastegate position, 5. tumble
position, 6. throttle position and 7. ignition timing.

The optimization by the search tree is done by this order and can go through
several iterations until the result converges. The operating point will be predefined by a
constant engine speed—optionally at controlled boost pressure through the wastegate
position, which takes place in step 4 and/or additionally at controlled load, which
takes place over the throttle position in step 6.

Each parameter is subdivided into 4 categories. The search tree gradually selects
the optimal efficiency solution for each parameter variation and passes the best result
to the next calculation step. In the first iteration loop x=1, the efficiency grows exponen-
tially due to initially unfavorably selected starting conditions. In the second iteration
loop, however, a fine-tuning process takes place, which reveals further potentials.
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Fig. 5.8 Optimizing ECU application parameters for a lean concept engine using search tree

By anchoring the parameter sequence, this optimization method can also lead to
instabilities, so that fluctuations prevent convergence of the calculation. In this case,
it may be advisable to change the order of the parameters or to increase the number
of categories to allow a finer approach to an optimal solution.1

Example 2:Operation strategy hybrid engine: Emission reduction in thewarm-up phase
versus loss of efficiency

The next example shows how the method of the search tree and the A* algorithms
can be used for transient warm-up optimization on a hybrid engine. Usually, low fuel
consumption and low exhaust emissions are contradictory. To realize both at the same
time is not possible, because the reduction of one causes the deterioration of the other.

In a warm-up, for example, after starting an engine, it is import ant to warm up the
exhaust system quickly by means of high exhaust gas temperatures so that the catalyst
reaches its operating temperature (catalyst light-off), which is typically in the range
200◦C–300◦C .Only then does it start to convert pollutants such asCO , HC and NOx

efficiently. An internal measure that typically implements this is late ignition timing.
When the exhaust valves are opened, an enthalpy flux at high temperature (unconverted
energy to the crankshaft) is transferred. The exhaust gas heats the catalytic converter,
and as a consequence, the engine efficiency deteriorates drastically.

1 The smaller the step size of the parameters chosen is, the more precisely not only local minima or
maxima can be localized but also the interactions between the individual parameters can be decoded.
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Fig. 5.9 Systemic representation of a parallel-serial hybrid powertrain

It is precisely here that the transient application of the search tree can provide
efficient insights and suggestions as to how the hybrid strategy, i.e. the interaction bet-
ween the combustion engine and electric motor(s) in a driving cycle, can be designed
to find the best possible relationship between consumption and emissions. Fig.5.9
shows the schematic structure of a parallel-serial hybrid drive [29].

The electrical path can be switched on or off through the parallel connection. The
possibility of decoupling the electric motor results in a purely motorized, a purely elec-
tric or a mixed drive, which brings its individual advantages depending on the driving
condition.Thedifferent torque sources canbeadded togetherbydifferent typesof trans-
mission. In this example, not onlyaplanetarygear is shownbut alsoadirect couplingby
means of spur gear or drive chain or by means of traction addition is conceivable. The
battery can be charged either by increasing the load of the combustion engine (conver-
sion of mechanical energy into electrical energy by the generator) or by recuperation,
i.e. by using the braking energy. In order to use the braking energy, the electric motor
takes on the function of a generator and feeds energy through the conversion chain from
mechanical to electrical and finally to chemical energy and returns it to the battery.



5.3 Search Tree 89

In an experiment, for the first 200s of the WLTC driving cycle, four different appli-
cation strategies are provided to select from a search tree, which can alternate at each
discrete time signal. The first strategy runs in an efficiency mode with an early ignition
timing (SA) at knock limit, a closed wastegate in the acceleration phase and full sup-
port by the electric motor. The second strategy provides two intermediate solutions for
all three parameters. The third strategy operates in a minimum emission mode, where
the ignition timing is late, the wastegate position open and low electrical support to
warm up the exhaust system quickly. The fourth operates in a recuperation mode,
which starts charging the battery in braking and idling phases. During the transient
run, the following integral is calculated using the sum of the effective engine efficiency
and the catalyst efficiency.

ηges =
∫ t

t0

1

2

(
ηeff + ηcat

)
(5.3)

The effective efficiency of the combustion engine is determined by the effective power
Peff, the fuel mass flow ṁB and the lower fuel heating value Hu:

ηeff = Peff
(ṁB Hu)

(5.4)

and the conversion rate of the catalyst from concentrations of the exhaust gas species
at the inlet Ki,in and at the outlet Ki,out by

ηcat =
∑

i=1 Ki,out∑
i=1 Ki,in

(5.5)

According to the heuristic downward strategy, all four application strategies are exe-
cuted in Fig.5.10 at discrete sampling rates. After each new search tree, the variant
with the highest cumulative efficiency ηGes is selected, from where the next search
tree is performed. By means of this, the strategy with the highest efficiency can be
determined along the complete search path with a low computational load. It presents
the best compromise between engine efficiency and fast heating of the exhaust system
to reduce emissions.2

2 The sampling rate can be selected more finely and more diverse parameters can be selected for the
application strategies to ensure a more detailed breakdown for an evaluation than is shown here as
an example.
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Fig. 5.10 Transient application of search tree: Optimization of a hybrid control strategy for
the WLTC

5.4 Machine Learning

Machine Learning is a subarea of artificial intelligence. In contrast to explicit programming,
it aims to enable systems to learn regularities based on data. The focus is on independent
learning and the automated generation of a program code. In order to apply Machine Lear-
ning, large amounts of data are required. In this respect, the era of digitization and the
resulting storage capacity and availability of enormous amounts of data (Big Data) is the
actual driving force behind the development of Machine learning (Fig. 5.11).
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Fig. 5.11 Traditional programming versus machine learning

Machine learning includes many types of algorithms and training methods, all of which
aim to generate statisticalmodels that are able to analyze unknowndata sets andmake predic-
tions based on their training data. Machine learning can basically be divided into three main
learning categories: Supervised Learning, Unsupervised Learning and Reinforcement
Learning, see Fig. 5.12 [43].

Fig. 5.12 Learning methods for machine learning
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Only through the combination ofmachine learning algorithms and the system architecture
of neural networks (see Sect. 5.5), both components combine to form a powerful overall
system, which is today understood under the term artificial intelligence.

5.4.1 Supervised Learning

Supervised learning (SL) is one of the machine learning methods that requires a high level
of interaction from the user during the training phase. For this method, both input data and
output data in the form of target values must be known. Learning starts, as usual, with a
set of training data selected from a larger data set. Part of the data is withheld from the
training phase so that it can be used for a later validation phase. The learning method tries
to recognize patterns between input variables and target variables within the data in order to
transfer them into an analytical context. This can be done on the basis of different functions,
polynomial approximation, Gaussian processes, or similar methods typically used in the
field of powertrain development. These methods have proven to be particularly useful when
real-time data generation is desired. Neural networks form a completely new basis of a
model architecture, which can be used to design application paths with exponentially higher
performance and process speed.

Classification and Regression

In order to analyze the significance of the data fed in, properties are first assigned to them.
If data is discrete and can be categorized, a so-called classification is a suitable method in
terms of the supervised learning method. If, on the other hand, a data set is numerical and
continuous, the solution can be found by a regression. Fig. 5.13 illustrates both application
types of supervised learning.
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Fig. 5.13 Classification and
regression of data for the
supervised learning process

Observer

Machine learning focuses on the ability not only to reproduce results but also to steadily
improve a solution path. The task of a learning system is to develop strategies to optimize
behavior during the training phase. Within the framework of the supervised learning pro-
cedure, a so-called observer is used for this purpose. This observer is assigned the task
to constantly monitor the error between the output of a model and the target. A simple
form of strategic learning is to minimize an error between the target and the actual value.
Fig. 5.14 shows schematically how the logic of such an SL procedure can be constructed in
combination with an artificial neural network (ANN).

Fig. 5.14 Observer for the supervised learning process
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Fig. 5.15 Observer combined with a physical model

Often, it is desired to anchor parts of a calculation process in neural networks while
retaining others on a physical level. This hybrid approach can be exercised by using the
supervised learning method. The interaction of both systems proves to be very powerful,
especially under the aspect that a physical mapping layer is transparent and comprehen-
sible, whereas the ANN layer follows mathematical principles, and its decision-making is
fundamentally unexplainable (Fig. 5.15).

Currently, the supervised learning method is widely used and is applied in economical
sectors, for fraud detection, risk analysis for banking and financial sectors, product and job
recommendation advertisements, Internet commerce, spam detection, speech recognition
and many more.

The following examples are presented for possible applications within the powertrain
development, where supervised learning is well implementable.

Example 3: Engine flow, combustion (classification)

An application from the field of fluid dynamics is the determination of the characte-
ristics of flows. Based on physical evaluation variables, these can be classified either
as laminar or turbulent or in possible subcategories. This is relevant, for example, to
a) calculate heat transfer in the air path of an engine in order to draw conclusions
about heat losses and thermal behavior in general, or b) to determine the transition
from laminar to turbulent flow for fluids. The critical Reynolds number, which marks
the transition between laminar and turbulent flow, depends not only on the geometry
of the application case (tube inner flow, tube outer flow, plate flow, etc.) but also on the
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Fig. 5.16 Classification of thermokinetic data (Reynolds number)

choice of the characteristic length. The decision about laminar or turbulent or about
subcategories (0 < Reynolds number < 200, 201< Reynolds < 400, . . . ) is here
delimited by threshold values in classes and is therefore suitable for a classification
from the category supervised learning (Fig.5.16).

Example 4: Thermokinetics (Regression)

A large part of all simulation tasks in the area of powertrain development deals
with regression problems. Especially when calibrating models, the first step is often
to map real data using models with a high prediction quality. In the following, a
typical application is presented on how the combustion engine can be used as a
combination of several submodels in an ECU system. The engine in Fig.5.17 consists
of the submodels “fuel”, “air path”, “torque” and “ emission”. Since a crank angle-
resolved calculation of the variables is not necessary, the results can be generated
faster than in real time.
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Fig. 5.17 Engine model of a control unit [44]

Fig.5.18presents the result of a regression analysis for the torquemodule (top right)
based on 600 data points. The torque is shown as a function of the input parameters
speed (nEngine), spark timing (tspark), air-fuel ratio (λ), intake manifold pressure
(pboost ), air volumetric efficiency (Vol. Eff) and exhaust gas recirculation rate (EGR).

Fig. 5.18 Regression of thermokinetic data (Reynolds number)
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5.4.2 Unsupervised Learning

Unsupervised learning is a powerful method that is suitable when the amount of data to be
examined is considerably large and, above all, not clearly identified. In principle, it can be
composed of both discrete and continuous entries. The learning procedure is useful if the
user lacks the coherence of data, if it is difficult to label the data or if the data does not
contain any output variables. In contrast to the supervised learning procedure, the focus is
not on forming a correlation between input and output data, but on characterizing features
within the data. The strength of the learning procedure is based on the decoding of hidden
patterns. The type of decryption is divided into two categories: The “clustering” and the
“association”.

Clustering and Association

Clustering is, as the word implies, the grouping of objects that show similarities in their
characteristics. The so-called associative rule learning goes one level deeper and locali-
zes connections between existing parameters within the database. Unsupervised learning
performs an iterative and autonomous analyzation process without any user intervention.
Fig. 5.19 illustrates the processes of clustering and association.

Fig. 5.19 Clustering and association of data for the unsupervised learning procedure
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Interpreter

For the unsupervised learning procedure, an interpreter is generally used to process the Clus-
tering and Association. The following diagram illustrates how the training loop is connected
for such a procedure (Fig. 5.20, 5.21 and 5.22).

Ideally, an unsupervised learning process can also be used as a preliminary stage to
mark unknown and unclassified data and then pass it on to a supervised learning algorithm
(semi-supervised learning). Typical use cases for unsupervised learning can be found in
the analysis and segmentation of customer behavior, market data, and sales data and so to
optimize market activities. In healthcare medicine, the constantly growing volume of patient
data is used to correlate disease findings with individual complaints and symptoms, resulting
in training more reliable models that can be used to detect diseases at an early stage and
provide timely treatment.

Fig. 5.20 Interpreter for the
unsupervised learning process



5.4 Machine Learning 99

Example 5: Pre-processing ofmeasurement data/real data (clustering)

The handling of large amounts of data is one of the core issues that poses great challen-
ges for engineers in many phases of powertrain development. In retrospect, as shown
in Fig.4.13, a model-based development process consists of recurring loops in which
measurement data must be analyzed and post-processed. The process of selecting usa-
ble from unusable data can be very time-consuming and is often subject to the user’s
decision criteria. The clustering method of the unsupervised learning procedure pro-
ves to be extremely powerful for such applications. It is capable of grouping unmarked
data and reliably identifying measurement outliers by a standardized process.

In the first step, data analysis can be carried out after inputting measurement data
(here using the example of 10,000 data points and 10 variables each). The quantization
error (QE) with the value range [0,1] describes the error between a data input and
the value that a neuron outputs as a result after training. According to the error, the
data is first broken down along a normal distribution. Using a threshold value, the
user defines the aggressiveness with which the data selection should be performed. If
a threshold with the value x is defined, the corresponding proportion of (1− x) data
is sorted out of the data set (Fig.5.21).

Fig. 5.21 Normal distribution of measurement outliers (quantization error) of a data set
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Fig. 5.22 Data selection for two different quantization error thresholds

Using the example of two selected threshold values (QE=0.7 and QE=0.9), the
result of the data selection is given in Fig.5.22.

Example 6: Interpretation of parameter studies—fuel cell efficiency (clustering)

The focus of data analysis is always the determination of influencing factors of specific
input variables on one or more target variables. If there are many input variables
that show a nonlinear correlation to a target variable and if these variables show
additional cross effects among each other, the system is highly complex and cannot be
easily interpreted without additional monitoring algorithms. Unsupervised learning
can provide an enormous remedy for such cases. It is able to project data features of
different kinds and especially their combinations to target values. If such a model is
designed for a specific situation, it can provide fast and reliable statements regarding
the data features in the future by entering new data sets.

Using the example of a fuel cell, a parameter study is carried out on the basis of a
measurement series of 50,000 data sets. For this purpose 9 parameters, which deter-
mine the efficiency, are combined with a Latin hypercube DOEmethod (see Fig.4.27).
These are 1. temperature, 2. air mass flow, 3. air pressure, 4. humidity, 5. cathode
resistance, 6. anode resistance, 7. capacitor capacity, 8. cathode stoichiometry and 9.
anode stoichiometry. A self-organizing map (SOM) is trained using the Competitive
Learning Procedure (see Sect.5.5.3). As a solution, this map categorizes all possible
combinations of inputs into three efficiency classes: high efficiency (1), intermediate
efficiency (2) and low efficiency (3) (Fig.5.23).
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Fig. 5.23 Fuel cell: Grouping of efficiency classes

Example 7:Material Load Analysis Method (Clustering)

Another possible application of clustering is for failure analysis in the field ofmaterials
science. By entering a load type of a component (static or dynamic), the load time
until material failure (fracture or deformation) and the fracture type (deformation-
free, low-deformation or high-deformation) or the deformation type (plastic or elastic)
and the characteristics of materials can be transferred into a data matrix. Clustering
enables the introduction of an analysis procedure that allows component failures to
be examined in more detail. For example, when screening a damaged component,
clustering can tell which material with which specific alloys (Fe, Cr, Mo, Ni, Si, C,
etc.) the component consists of (Fig.5.24).

Fig. 5.24 Clustering to investigate a steel with nickel-chromium-molybdenum alloy after
material failure
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5.4.3 Reinforcement Learning

Reinforcement Learning (RL) is a further learning procedure next to supervised and unsu-
pervised learning that is particularly characterized by its high performance and self-learning
properties. RL uses a so-called “agent” as its main feature, which actively interacts with
its environment, which has a set of states, independently searches for strategies (policies)
and executes actions to maximize the accuracy of a model and is rewarded as a result of
correct learning. While the supervised learning and unsupervised learning methods rely on
existing real data during the training phase, the RL is highly dynamic and adapts to con-
stantly changing data inputs. This is achieved through the interaction of the agent with its
environment, which results in a continuous strategy adjustment and efficiency increase. Due
to its self-learning properties, the system requires little to no real data and can still achieve
resilient results.

When talking about artificial intelligence, users often have the idea that a smart algorithm
is able to achieve the same solution faster and more efficiently than humans already achieve.
If the user has a clear idea of what a result should look like, this leads to a strong limitation
of learning. The challenge for AI would then be to find suitable ways to replicate the same
solution. If, on the other hand, there are no concrete expected variables in a given situation
that should be correlated by means of input variables, an additional degree of freedom
results for the algorithm, with which solutions can be explored that go beyond the human
imagination and which the user does not expect. Reinforcement learning is particularly
suitable for this type of case.
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Fig. 5.25 Agent for the
reinforcement learning process

Agent

During data analysis, the algorithm receives feedback after each iteration loop from an agent,
which here takes the function of a teacher. In contrast to the supervised or unsupervised
learning methods, the algorithm does not only learn from the data analysis but also from
an additional trial-and-error method, which gradually reinforces a mapping function for
predicting a result. This has the advantage that a solution to a problem can be found via a
smaller number of iteration loops (Fig. 5.25).

Example 8: Adaptive speed controller

Since September 1, 2019, the real driving emission (RDE) cycle is the certification
basis for all new vehicles. Along with the worldwide harmonized light vehicles test
procedure (WLTP), this should lead to more realistic consumption and emission para-
meters. Unlike previous certification cycles, the RDE cycle will not reflect an average
real-life journey. Both the route and the load as well as driving style are flexible.
This means that the route, speed and elevation profile are not fixed and can be set
individually by any inspector.
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One of the many fields for which reinforcement learning is suitable is the adaptive
design of controllers with static control parameters so that they can always be dynami-
cally adapted to the operating state for transient applications. Especially against the
background of variable cycle profiles, adaptive control is particularly suitable for both
model-based and test-based development of powertrains on the chassis dynamometer.
This allows a wide variety of profiles to be run without the need for time-consuming
and constantly recurring calibration of the control parameters. For a fast and reliable
determination of corresponding consumption and emissions, this can result in a great
time advantage.

The following figure shows a Fig.5.26 simplified scheme of a virtual, static speed
controller. In the first step, the desired driving speed vreq is converted into a desired
torque Treq , taking into account existing gear ratios and existing driving resistances3

of the corresponding vehicle. With the previously calibrated control parameters of a
PI controller (proportional component K p and integral component Ki ), the throttle is
controlled by the accelerator pedal with the goal of minimizing the difference between
(Treq − Tact ).

Fig. 5.26 Static control circuit for the vehicle speed of a cycle

3 The driving resistance is usually divided into rolling resistance, air resistance, rotational acceleration
resistance of all rotating parts and translational acceleration resistance of the total vehicle mass.
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Fig. 5.27 Adaptive control loop through reinforcement learning

Since the control parameters are chosen to be constant, it must be assumed that even
with goodprior calibration, theywill onlyworkwell in the range of the calibration.Due
to the different operating conditions (speed and load) and the general variability of the
RDE profile in testing mode, not all areas can be covered satisfactorily. If it is desired
to use the reinforcement procedure, which automatically transfers an optimal set of
parameters to the powertrain controller for each operating state, it is fundamental to
define and implement the Agent, Policy, State, Reward and Environment functions into
the control loop (Fig.5.27).

In Fig.5.28, the result of the above control loop is shown. The RL method needs
a certain training time until it captures the control logic. From there, it is able to
gradually adjust the given driving speed of the RDE profile with a small deviation
(error ≤ 1km/h). The ratio between the control parameters Ki/Kp is plotted below.
For this purpose, a simple neural network architecture is selected. An increasing
reward function describes the self-learning training effect.
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Fig. 5.28 Adaptive RDE speed control

Example 9: Vehicle chassis

A small company called Hackrod, based in California, is specialized in advanced
chassis manufacturing for sports cars. The focus of their work is to free the limited
design ideas of the human mind and to develop creative concepts based on digital
training data and machine learning algorithms.

Using the RL process, the company succeeded in designing a chassis that is signi-
ficantly more stable than a standard chassis, 30% lighter and therefore more cost-
efficient. The net structure shown in Fig.5.29 is asymmetrical, which is explained by
the fact that the center of gravity of a racing vehicle including the driver does not
necessarily have to lie on the axis of symmetry. The algorithm takes this into account
and builds more heavily loaded regions with a correspondingly denser mesh than
less-loaded ones.

Fig. 5.29 Reinforcement learning applied to chassis design
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5.5 Artificial Neural Networks (ANN)

The elementary processing units of a brain consist of neurons. These are cells that exchange
signals with each other through electrochemical impulses and thereby excite each other. The
brain takes care of the reception, processing and response to stimuli, which are received by
sensory organs and transmitted through signals. These signals are called receptors. They
register all kinds of information such as light, temperature, sounds, thoughts, tastes and
smells and transmit them to the brain via nerve tracts. There are about 100,000 neurons
per square millimeter of the human cerebral cortex. One neuron has an average of 10,000
connections to neighboring neurons, so that a brain can have up to 1014 connections in total.
The sum of these neurons forms a biological neural network (BNN) [45].

The processing and extraction of information in computer systems are different from that
in a human brain. In 1945, the essential works of the mathematician John von Neumann
were published, which formed the basic mode of operation of the computer architecture used
until today. The so-called von Neumann architecture represents the individual components
on which the mainboard of computers is built (Fig. 5.30).

While the calculation basis in computers is serially ordered, which leads to a lower data
processing speed, processes in our brain are handled in parallel. Especially, the associative
mode of operation of the brain allows creative and cross-topic approaches to solving pro-
blems, which is conditionally possible with a computer due to its address-based and 1D
approach (Table5.2).

Fig. 5.30 Functioning of
today’s computer architectures
based on Neumann [46]
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Tab.5.2 Data processing brain versus computer [47]

Brain Computer

Number of data processing
units

∼ 1011 ∼ 109

Type of processing Neurons Transistors

Calculation configuration Parallel Serial

Data storage Associative Address based

Switching time 10−3s 10−9s

Number of possible toggle
operations

1013 1s 1018 1s

Actual toggle operations 1012 1s 1010 1s

This results in many problem genres that cannot be transformed into an algorithmic
form, or only with a great deal of effort, so that a computer can solve them. Unlike humans,
computers do not experience a learning process and are not adaptive to recurring problems.

Based on human thought processes, a neuronal network of the cerebral cortex can be
transformed into a model so that it becomes tangible through a mathematical formalism.
Cell extensions of nerve cells (also called dendrites) emerge from a cell body, which serve
to absorb stimuli and transmit them to neurons. Before they reach the neuron, they are
inhibited or reinforced by synapses. The strength of the synapses can be described by so-
called weights wi, j , which can have any positive value [0, ∞]. A neural network basically
consists of three layers, the input layer, the hidden layer and the output layer. Between the
input values I1, I2, . . . , Ii and the output values O1, O2, . . . , Oo, hidden layers can have
any complex dimensions L1, L2, . . . , LL , which in turn can assume any number of neuron
levels N1,1, N1,2, . . . , N1,N . The weights lie on the connecting line between two neurons,
which is amplified or weakened by wi, j , see Fig. 5.31.

A neuron is a processor that can assume a binary state. Either the state is deactivated
or activated I j,k ∈ [0, 1]. The product of the inputs I j,k with their respective weights wi, j

forms a result that is measured at the threshold value � (bias). A neuron is then activated
for following condition:

∑
I j,k · w j,k > �k (5.6)
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Fig. 5.31 Components of a neural network

Finally, a function sk is introduced, which is the product of the input values I j,k and the
weights w j,k plus the BIAS value:

sk =
∑

I j,k · w j,k + �k (5.7)

5.5.1 Activation Function

Activation functions are transfer functions that are used to calculate the weights. They are
used to design nonlinear functional relations between input and output signals of neurons.
An activation function is designated with F . After a signal sk has been passed to a function
F , zk represents the result of the transfer:

zk = F(sk) (5.8)
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Fig. 5.32 Activation functions

The choice of a suitable activation function for a neural network can strongly influence the
quality of the model. The right choice is subjective and depends on what kind of data is used
and what properties it has. Among the most prominent functions are Hard Limit, ReLU,
Sigmoid and tanh. If, for example, an output value is to be generated in a binary form, Hard
Limit is suitable. If the right term from Eq.5.7 assumes a positive value, then sk is given the
value 1, otherwise sk = 0 [48].

However, due to the step response at x = 0, the system becomes non-differentiable.
This can cause system oscillations depending on the application. If the differentiability of
the transfer function is desired, a ramp function rectified linear unit (ReLU), a sigmoid
function or a tanh function (tangens hyperbolicus) can be used. Furthermore, there are
averted activation functions such as Leaky ReLU, exponential linear unit (ELU) or scaled
variant of ELU (SELU), which can bring individual advantages for particular application
problems.

The architecture of a neural network is composed ofmany parallel running computational
processes. Each unit in the network performs a small part of the overall process. It receives
inputs from neighboring units or external sources, calculates a new output value and passes
it on to other neighboring units. An overview of all internal processes between a set of inputs
and a neuron is shown in Fig. 5.33.
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Fig. 5.33 Schematic representation of internal processes between two connected neurons [48]

5.5.2 Feedforward Networks (ANN) and Recurrent Networks (RNN)

After the structure and function of a neural network were presented in Chap.5.5, this chapter
deals with possible network topologies. Topology means the variety of possible connection
patterns between the individual neurons. A fundamental difference is made between a feed-
forward network and a recurrent network.

In a feedforward network, as the name indicates, the flow of information points in a for-
ward direction from input to output. Single-layer perceptrons belong to a subgroup of feed-
forward networks. These include network structures that, unlike the one shown in Fig. 5.31,
do not have hidden layers. The input layer is thus directly linked to the output layer. Multi-
Layer Perceptrons on the other hand consist of at least one hidden layer. Since this allows
realizing muchmore complex structures and interconnection logics between neurons, multi-
layer perceptrons are one of the most common network types today.

To illustrate possible network topologies, Hinton diagrams are often used in this context,
which show the connections between neurons in a matrix form. Fig. 5.34 (left) shows a
simple three-level network with an input layer Ii , a hidden layer hi and the output layer
ai. As shown here, one often encounters feedforward networks, where each neuron i is
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Fig. 5.34 Feedforward ANN with 3 levels: Hinton diagram with pure feedforward formation (fully
linked network, left) and additional direct connections between an input and an output (short-cut
connection, right) [47]

connected to all neurons of the next layer. This type of network is called a “Fully Linked
Network” (left). Other feedforward networks allow so-called “short-cut connections”, where
connections can skip one or more levels (right).

In contrast to conventional feedforward networks, complex recurrent networks allow
neurons to influence upstream and downstream levels and themselves through connections.
This gives the system an iterative character, so that stability can only be achieved by certain
iteration loops. The number of iteration loops depends on how well the starting conditions
are chosen. The big advantage of RNNs is that they get a kind of memory by their iterative
structure. This makes them particularly suitable for time-dependent data sequences (time
series). Especially in the field of powertrain development, these powerful network structures
allow solving transient problems.

In Fig. 5.35 (left), a network with a “Self-Recurrence” character is shown. This allows
neurons to inhibit each other during the self-training phase until they are strong enough to
exceed the threshold � and thus be activated.

If connections from a hidden layer are established back to the input layer, this is called
“Indirect Recurrence”. Unlike Direct Recurrence, here neurons can train their behavior as a
consequence of downstream neural layers (see right graph).
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Fig. 5.35 Feedforward ANN with self-aligned recurrent loops of the neurons (self-recurrence, left)
and externally aligned recurrent loops (indirect recurrence, right) [47]

To give systems an even higher degree of freedom in training, it is still possible to connect
neurons within a hidden layer. This results in a direct competition between the neurons.
In contrast to self-recurrence training, neurons inhibit others within the hidden layers to
strengthen themselves and achieve an activation. As a result of this direct confrontation, only
the strongest neurons succeed in activating, so that they prevail over the others according
to the “Winner takes it all” principle. This form of topology is called “Lateral Recurrence”
and is shown in Fig. 5.36 (left).

In contrast to the topology options presented, the “Completely Linked Networks” are at
the outermost limit. These allow connections between all neurons. This leads to each neuron
becoming an input variable, which is the reason why self-linking is no longer possible. As
a result, previously defined levels can no longer be clearly separated from each other. In
terms of training, this form of topology requires the highest effort, but depending on the
application, it can quickly lead to a system being overtrained and, as a result, losing its
ability to interpolate and extrapolate into unknown regions of a data set.

Especially at the stock exchange RNNs are widely used, because they are ideal for
forecasting time-dependent sequences based on past scenarios. At the forefront of such
an application is always the choice of a suitable network architecture and training of this
network based on historical data. From now on, the method allows predicting a discrete
time P1 in the future (future prediction) based on the number of past time steps Np of an
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Fig. 5.36 Feedforward ANN with recurrent loops only within the layers (lateral recurrence, left),
completely linked network (right) [47]

experience window (memory window). Starting from the current point in time, this time
lies in the future by N f time steps. The greater the value N f is chosen, the greater is the
probability that the prediction will deviate from reality. The loss can be counteracted by
selecting a larger memory window Np or by increasing the size of the RNN and training it
again (Fig. 5.37).

Fig. 5.37 Prediction of time-dependent variables: Definition of past time step and future time step



5.5 Artificial Neural Networks (ANN) 115

In addition to recurrent networks, there is a large number of other network structures
that have recurring loops and are therefore particularly suitable for data that contains time
sequences. These include the Long Short-TermMemory (LSTM) network or theGate Recur-
rent Unit (GRU) network. Both types of networks are suitable for classifying, processing
and predicting scenarios that lie in the future. Similar to recurrent networks, LSTMs and
GRUs are considered deep learning methods due to their complexity and network depth (see
Chap.5.6).

RNNs can be perfectly applied for time-dependent sequences, for which individual RNN
networks each consisting of a single neuron are combined to form a chain of modules.
This gives them the character of sequential processing. Each module contains two weights,
one anchored in the feedforward direction and one in the recurrent loop, which are usually
activated by a tanh function (Fig. 5.38).

RNNs are capable of learning dependencies from the past and projecting them to a future
point in time. In practice, however, studies byHochreiter et al. [49] have indicated difficulties
thatmayoccur through the simplicity of the network architecture. LSTMnetworks are amore
specialized form of RNNs that are capable of learning and predicting even long-term time
dependencies. They were first introduced by the German computer scientists S. Hochreiter
and J. Schmidhuber. Their applications are today widespread around the world. LSTMs also
have this chain-like structure, but with a more complex processing unit, called LSTM cell.
Instead of a single neural network layer, there are four of them interacting with each other
through different operators: Two successive layers with a sigmoid activation function, a third
layer with a tanh activation and another sigmoid layer (Fig. 5.39).

The key to LSTMs is the cell state c(t−1) (long-term state), which is the horizontal
line that runs down the entire chain of LSTM cells in the upper part of the figure, being
continuously updated through linear interactions. The sigmoid layers describe how much of
each component should be allowed to pass, hence, they are controlling and protecting the
cell state. This is why they are also referred to as gate controllers. Their outputs span values
from 0 to 1, i.e. they close the corresponding gate with an output of 0, and open it with an
output of 1.

Fig. 5.38 Merging sequential RNNs for processing time-based events
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Fig. 5.39 Functionality of an LSTM cell [50]

More precisely, c(t−1) passes through a so-called forget gate f(t). This gate decides which
parts of the long-term state are to be deleted. The input gate i(t), on the other hand, controls
which parts of the tanh function g(t) should be overwritten and added to the long-term state.
Finally, after another operation with the output gate o(t), it is determined which parts of the
long-term state should be transported to the outside as a signal. The result is the short-term
state h(t) which corresponds to the output of the cell at the time O(t).

In summary, an LSTM cell can learn to recognize an important input, store it in its long-
term state, retain it as long as it is necessary and extract it again when needed. This explains
why these cells perform amazingly well in capturing long-term patterns of time series.

The following equations summarize how the long-term state c(t) and the short-term state
h(t) are calculated. Here, wi, f , wi,i and wi,g represent the feedforward weights of the
respective four layers to the input vector i(t). The weights wh, f , wh,i , wh,g and wh,o, on
the other hand, form recurrent loops back to the short time state h(t−1), (see Fig. 5.38). The
terms b f , bi , bg and bo form the associated bias [50]:

f(t) = σ(wi, f · i(t) + wh, f · h(t−1) + b f ) (5.9)

i(t) = σ(wi,i · i(t) + wh,i · h(t−1) + bi )

g(t) = tanh(wi,g · i(t) + wh,g · h(t−1) + bg)

o(t) = σ(wi,o · i(t) + wh,o · h(t−1) + bo)

c(t) = f(t) · c(t−1) + i(t) · g(t)

O(t) = h(t) = o(t) · tanh(c(t))
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Example 10: Predicting Emissions from the Real Driving Emission Cycle (RDE)

Emissions in real driving conditions are described as real driving emissions (RDE),
unlike those measured under non-real test conditions on an exhaust roller dynamome-
ter. Due to the fact that in real driving conditions, passenger cars certainly emit more
exhaust gases than in the new European driving cycle (NEDC) test procedure, which
has been used for vehicle registration in Europe since 1992, the European Union deci-
ded in 2015 to supplement the test procedure by the RDE test. The test procedure has
been effective since September 2017 for cars, trucks and buses in everyday use. The
great challenge of this test method is that, unlike other driving cycles, the distance
and speed as well as the elevation profile are not fixed. The route that is driven during
the RDE test consists of an urban, a rural road and a freeway section. The proporti-
ons are kept flexible within predefined limits, and the driving behavior during the test
operation is not subject to any fixed specifications and can be individually adjusted by
an inspector. These freedoms mean that it is difficult to accurately predict emissions
using common models.

In the following example, a self-recurrent RNN is selected (see Fig.5.35), which
consists of 4 hidden layers and 30 neurons each. An RDE test cycle and associated
measurements of carbon monoxide (CO) and nitrogen oxides (NOx) recorded with a
portable emissionsmeasurement system (PEMS) serve as the basis for the observation.
The first 4300s of the test drive, representing 75% of the total test time, are used to
train the neural network. For the remaining distance, a prediction of emissions shall
be made. Alternatively, it is also possible to use a complete RDE measurement as a
training basis and, based on this, to predict emissions for other RDE measurements
(Fig.5.40).

Fig. 5.40 Training and prediction of CO, NOx emissions of the RDE test procedure
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Fig. 5.41 Prediction of CO and NOx in RDE for different future times steps Nf

When using RNNs, the user has the choice to define the time step size of the predic-
tion. If a prediction lies far in the future (large N f ), it is recommended to counteract
with an equally large Np and/or a larger network architecture; see Sect.5.5.4. The
following graph shows the result of the predicted CO and NOx on the RDE test for
Np=300 and N f = 1 second, N f = 5 seconds, N f = 10 seconds and N f = 20
seconds in the future. The quantities were normalized on the basis of the respective
maximum value [0-1] (Fig.5.41).

5.5.3 Training Procedure

Similar to biological neurons, which are inhibited or reinforced by their upstream synaptic
connections, weights take over this task in artificial neural networks. During the training
phase of an ANN, the weights are always adjusted. For this purpose, different training
algorithms have been developed, of which only a few are suitable for multi-layered neural
networks. Some of them are suitable for feedforward networks where the information flow
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is unidirectional, others for recurrent networks where the information flow is backward, as
presented in Sect. 5.5.2.

Detached from the nature of the network architecture, there are training procedures which
are suitable if the output of the ANN is known (Supervised Learning; see Sect. 5.4.1),
procedures forANNwith unknownoutput variables (UnsupervisedLearning; seeSect. 5.4.2)
and special procedures for self-learning systems (Reinforcement Learning; see Sect. 5.4.3).
Which trainingmethod ultimately is the most suitable depends on the respective application.

In this section, some training procedures are presented. For an overview, please refer to
the flowchart in Fig. 5.5.

Backward Propagation—Supervised Learning

Backward propagation is one of several training methods to train artificial neural networks.
The training is a supervised learning method, i.e. data that are subjected to training must be
classifiable; see more details in Sect. 5.4.1.

At the beginning of a training process, all weights of a neural network are initialized.
A good initialization is of central importance because it determines how many epochs
(iterations) a network has to be trained to achieve stability. In addition, the final result
can differ if the initialization is bad. One of the most important initialization methods are
the ones of G. Xavier and K. He [51, 52].

After this step, the net now generates corresponding output data of the zeroth iteration. A
deviation (error) from the expected output is calculated. The error is propagated backwards
to the previous level. By adjusting the weights on this layer, the error is reduced by a gradient
minimizationmethod (gradient descent method). This process is repeated until the error falls
below a certain limit. Once the smallest gradient is found, which corresponds to a global
minimum, the training is considered to be completed.

The training process can be divided into three steps and is explained in more detail below
using the example of a simple neural network (multi-layer perceptron) with two input signals
(x1, x2), two hidden layers and an output signal y:

1. Forward Propagation
Network training is an iterative process. In each iteration, the weights at each node are
modified using new training data. Each training step starts with a new feed of input
signals from the training set. Afterwards, the output signal values can be determined
in each network layer for each neuron. The following pictures illustrate how a signal
propagates through the network (Fig. 5.42).
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Fig. 5.42 Backward propagation training phase 1: Feedforward and derivation of individual neural
outputs [53]

2. Calculation of the errors
In the second step of the training phase, the output signal y of the network is compared
with the target value, which is part of the training data set. The difference δ = z − y
quantifies the error of the network.

Any cost function C can be selected as a training basis for updating the weights.

C = 1

2
· (z − y)2 (5.10)

The coefficients wi, j of the weights used to retransmit errors are the same as those used
during the calculation of the output value. It is therefore essential to select the same
activation function for both the training process and the subsequent calculation process,
otherwise the quality of the training results could not be reproduced (Fig. 5.43).
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Fig. 5.43 Backward propagation training phase 2: Derivation of errors and gradients [53]

3. Update of the weights
To adjust the weights, the partial derivative of the error function is performed:

δk = dC

dwi, j
= (z − yk)

dyk
dwi, j

(5.11)

yk describes the activation function as shown in Fig. 5.32. For the choice of a sigmoid
activation function, yk is

yk = F(sk) = 1

1 + esk
(5.12)

When inserting Eq.5.12 in Eq.5.11, the result is

δk = dC

dwi, j
= (z − yk) · yk(1 − yk) (5.13)
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After the gradients are calculated, the weights are adjusted:

w∗
i, j = wi, j + �wi, j (5.14)

with
�wi, j = η · δk · yk (5.15)

where η describes the learning rate of the backpropagation process by influencing the
training speed in the network. There are two fundamentally different approaches to
select these parameters. The first one is to give the training process a large starting value.
While the weights are set, the parameter is gradually reduced. The second approach
starts by teaching with a small parameter value. During the training, the parameter is
increased while progressing and decreased again in the final stage. This makes it possible
to determine the signs of the weights faster. This approach takes more time but reacts
more robustly to a convergence criterion (Fig. 5.44).

Fig.5.44 Backward propagation training phase 3: Update of the weights based on the gradients [53]



5.5 Artificial Neural Networks (ANN) 123

Counter-Propagation—Unsupervised Learning

In 1987, the US-American computer scientist Robert Hecht-Nielsen presented a new form
of training method for neural networks called “Counter-Propagation” (CPN). In contrast to
backpropagation, this is an unsupervised learning method (see Sect. 5.4.2 for more details)
and is especially suitable for feedforward networks. The counter-propagation has self-
learning properties and is particularly designed for applications where a database is not
classifiable, especially when input variables are dynamic, i.e. always changing, and output
variables are unknown.

The counter-propagation training is typically combined with a Kohonen hidden layer.
Kohonen networks are also called self-organizing maps (SOM), which are mainly used to
visualize and analyze highly complex data. Each data point is assigned to a network node
according to the similarity theorem and metric evaluation basis. This enables the method to
“map” input variables directly to an output. The output layer is called the Grossberg layer.

In principle, a data mapping, i.e. a direct projection of an input signal onto a possible out-
put can also be solved with the backpropagation method. However, the counter-propagation
method promises a higher prediction and up to 100 times faster computation speed, especi-
ally for dynamic and variable data patterns. Particularly for applications where real-time is
required, CPN is well suited.

Figure 5.45 shows a counter-propagation network with five layers, the input layers 1
and 2, a hidden layer 3 and the output layers 4 and 5. With a given vector pairing {x1, y1},
{x2, y2}, . . . , {xn, ym} the CPN tries to correlate an input vector {xi } with an input vector
{yi } during the training phase. If a correlation can be described with a continuous function
�, so that y = �(x) is true, the CPN learns to classify this solution for each vector {x} of
the training space of the same characteristic. If an inverse correlation is detected such that
the vector {x} is also a function of {y} by x = (� − 1) · y, the CPN learns to map inversely.
In this case, it is a “full counter-propagation network”, otherwise it is a “ forward-only
counter-propagation network”.

The training concept is based on a two-step process. First, an unsupervised learning
method is applied. The Kohonen layer (Hidden Layer) works according to the “Winner takes
it all” principle. According to this principle, the strongest neuron prevails in competition
with the others by exceeding the threshold value (bias) and thus gets activated. The Kohonen
level literally provides a classification. The activated node carries out a “supervised learning”
method in the Grossberg layer (output level) and generates the output signal. In this respect,
the training method is also categorized as semi-supervised learning.
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Fig. 5.45 Neural network for
counter-propagation training
[54]

Competitive Learning—Unsupervised Learning

Among the best known competitive learning concepts are self-organized networks (Self-
Organizing Maps: SOM). SOMs represent another form of artificial neural networks, which
were presented in 1982 by the Finnish engineer Teuvo Kohonen. They are one of the most
prominent unsupervised learningmethods, which aim to reduce and discretize the dimension
of complex data inputs to a 2D output plane (2Dmap). SOMs differ from common ANNs as
the training of the weights is not performed by a gradient descent method (backward propa-
gation), but by competitive learning. Each neuron works “self-organized”, i.e. it competes
independently with its neighboring neurons, which is according to the “Winner takes it all”
principle. The weight of a neuron is rewarded if it produces results that are most similar to
a randomly selected vector.
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Based on common signal processing concepts, a so-called quantization error (QE) provi-
des a measure of the average distance between the data points and the map nodes on which
they are mapped. Kohonen proposed QE as a basic quality measure for the evaluation of
self-organizing maps. The value for a map is calculated using the following equation, where
n represents the number of data points in the training data and � : D → M represents the
projection of the input space D onto the feature map M of the SOM [55]:

QE(M) = 1

n

n∑
i=1

‖�(xi ) − xi‖ (5.16)

Another goal of the SOM algorithm is to preserve the topological features of the input space
in the output space. For this purpose, there is another important measure called topographic
error (TE) that describes how well the structure of an input space is represented by the map.
TE calculates for each input the best and second best matching neurons of the map and based
on this, evaluates its position. If thenodes are adjacent, itmeans that the topology for that input
has been obtained. Otherwise, this is evaluated as an error. The total number of errors divided
by the total number of data points results in the topographic error of the map, where μ(x)
denotes the best matching value for the data point x andμ

′
(x) denotes the second best [55]:

T E(M) = 1

n

n∑
i=1

t(xi ) (5.17)

t(x) =
{
0 ifμ(x) andμ

′
(x) are neighbors

1 otherwise

Fig. 5.46 Projection of data onto a 2D feature map (Self-Organized Maps: SOM) [56]
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Each neuron acquires its own x-y coordinate on the feature map (color map). Through the
simultaneous training of the neighboring neurons, the feature map grows gradually, which
is the result of the clustering process. In this respect, each data point is assigned to a certain
characteristic by representing a color class (Fig. 5.46).

MDP, Q-Learning, SARSA

1. To describe the reaction behavior to environmental influences, so-calledMarkov decision
processes (MDPs) can be used as a general framework for reinforcement learning. An
MDP consists of a set of finite environmental states s, a set of possible actions in each
state a(s) and a reward function r(s). The goal of an MDP is to calculate the optimal
policy π(s, a) so that a corresponding action can be taken for any possible state. This
action is being rewarded, if it brings a success. The goal is to maximize the rewards as
much as possible. However, since real environments can be highly dynamic, it is difficult
to predict their reactions to changing input data. In such cases, the use of model-free RL
methods is more appropriate, since they are better suited to predict unexpected effects.

2. Q-learning and State-Action-Reward-State-Action (SARSA) are two frequently used
model-free RL algorithms. While Q-learning is an off-policy method in which the agent
learns its environment based on a policy, SARSA is an on-policy method that learns it
mainly based on its current action and secondly by the help of additional policies.

The weight for a step from a state t by �t steps into the future is calculated with γ �t , where
for γ (0 ≤ γ ≥ 1) applies. This has the effect that earlier received rewards are valued higher
than rewards received later. γ can also be interpreted as the probability of success after each
time step �t . Before the training begins, Q is initialized to any random value. Then the
agent selects an action at at any time t , observes the reward rt and assigns a new state st +
1. After this, Q is updated [57]. Both Q-learning and SARSA are based on the following
equation:

Q(st , at )︸ ︷︷ ︸
new value

updating
direction← Q(st , at )︸ ︷︷ ︸

old value

+
learning
rate︷︸︸︷
α ·

temporal difference between current and learned value︷ ︸︸ ︷
( rt︸︷︷︸
reward

+ γ︸︷︷︸
discount factor

· max Q(st+1, a)︸ ︷︷ ︸
estimate optimal
future value︸ ︷︷ ︸

new value

− Q(st , at )︸ ︷︷ ︸
old value

)

(5.18)
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The methods are easy to implement but not generally applicable, because they are not able
to estimate values for unknown states. This can be overcome by more advanced algorithms
like deep Q-networks (DQN), which use neural networks to estimate Q-values. However,
DQNs are more suitable for processing discrete and low-dimensional action spaces.

Reinforcement learning is widely used where training is based on variable input data and
unpredictable output data, such as in the area of autonomous driving. The environmental
influences that can occur while driving are complex and cannot be defined finitely. The
situation is similarly complex in the field of “gaming”, where virtual game partners are
developed, or in the field of robotics.

5.5.4 Network Architecture and Performance

The architecture of a neural network describes its composition or dimension and is defined
by the number of hidden layers (HL) and the number of neurons per hidden layer (Hidden
Units: HU) that the network comprises. At the beginning of modeling, a network, searching
for the optimal architecture, is one of the key aspects the user usually has to deal with.

The determination can be very time-consuming, therefore it is recommended to follow
some general guidelines in order to get a possible orientation in advance. In principle, the
optimal architecture is strongly related to the number of input variables of the model and
the size of the data set used for training the network. Fig. 5.47 illustrates the dependency
of the network architecture on its performance according to the amount of training data.
Performance can also be understood as the capability of prediction, which can be expressed
analytically either by the coefficient of determination (R2) or by other standard evaluation
quantities like mean square error (MSE) or root mean square error (RMSE).

Fig. 5.47 Performance of an
ANN as a function of data
volume and network
architecture [58]
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Fig.5.48 Sequential construction of a neural network according to a serial method (left) and parallel
method (right)

There are strategically different approaches to building a network. In the following, two
sequential methods are presented: 1. a serial developing structure of HLs and 2. a parallel
developing structure of HLs. For both methods, a maximum number of HUs must first be
defined. In the serial setup, the HUs are developed one after the other, see Fig. 5.48 (left),
while the performance of the network is always observed. When an HL is fully developed,
the construction of the next HL level begins. In parallel setup (right), however, the number
of HUs per HL is set up anew for each newly added HL. In principle, it is also possible
to variably generate the number of HUs for each HL. This results in a permutative number
of possible combinations, which leads to an exponential increase of arithmetic operations,
which is why it is inadvisable.

Using the example of a set of 45000 training data points, 8 inputs and one output variable,
the performance of a network during its development is shown. For this purpose, 75% of
the data is used for training and 25% for validation. The coefficient of determination R2 is
shown as the evaluation variable, which represents the correlation between the real data and
the results calculated from the model. For this example, a serial network reaches its optimal
performance at about 3 fully trained HLs and 100 HUs. In contrast, the parallel development
method finds an optimum at 4 HLs with 80 HUs. In principle, one can say that both methods
propose similar architectures. Depending on the problem and the existing knowledge of a
system, one or the other method can result in time advantages. In the search for an efficient
network architecture, both methods should be weighed against each other (Fig. 5.49).
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Fig. 5.49 Training of a serial and parallel network

The number of HUs reacts muchmore sensitively than the number of HLs for the increase
in performance. The focus should therefore be more on the development of neurons than
on a large number of HLs. As the number of HLs increases, the additional gain in network
performance becomes smaller and smaller (Fig. 5.50).

Fig. 5.50 shows that the first HL is (are) considered the performance-defining pillar(s). If
further HL levels are added, smaller potentials can be localized for large data sets (improving
pillars). Any further levels from there represent only a slight increase in performance and

Fig. 5.50 Network dimension
versus efficiency
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Fig. 5.51 Number of hidden layers to be selected depending on data volume and number of input
variables

thus are identified as “fine-tuning pillars”. The choice of a network structure is one of the
sensitive issues, as it has an immense influence on the efficiency of amodel. At the same time,
sequentially enlarging the architecture according to Fig. 5.48 and approaching an optimum
can be very time-consuming. In order to help the user to select a suitable architecture,
the following illustration provides a rough orientation for the selection of the HL number.
Depending on the data size and the number of input parameters, it can be described linearly
(Fig. 5.51).

If the HL number was defined in the first step, the number of HUs remains as a further
unknown variable. In the second step, it can be roughly selected for 5, 10 and 20 input
variables using Fig. 5.52.

Fig. 5.52 Number of hidden units to be selected depending on the amount of data
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Hyperparameter
In machine learning applications, there are a number of sensitive parameters that have a
relevant effect on the performance of a neural network. Those that are used to control
training and whose value, unlike other parameters, must be determined before a model is
trained are called hyperparameters. The dimension of an ANN is therefore also counted as
a hyperparameter.

The most important hyperparameters, which in sum have a decisive influence on the
performance of an ANN, are listed as follows:

1. Number of hidden layers and hidden units
As explained in the previous section, the dimension of an ANN plays a crucial role in
the creation of a suitable model. The larger and more complex a data set and the more
input variables it contains, the more likely a performance optimum of the ANNwill shift
toward a higher dimension.

2. Dropout
Dropout is a technique used to increase network performance and avoid overfitting. By
using a trial and error method, individual neurons are canceled out of the architecture,
while the performance of the network is constantly checked. A dropout value of 20%–
50% of neurons is recommended as a guideline. Especially for large networks, this
method promises to uncover considerable potentials, and speed up the simulation time
(Fig. 5.53).

3. Activation Function
Activation functions are used to transfer nonlinear relationships of data into models.
Depending on which characteristics and properties a data set has, it can make qualitative
differences with which activation function a corresponding model is trained. As far as it
has to be selected in advance of training, it is one of the most important hyperparameters.
Further details were discussed in Sect. 5.5.1.

Fig. 5.53 Dropout of neurons
[59]
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4. Weight Initialization
Asensible initialization of theweights at the beginning of a training decides on howmany
epochs a network has to be trained to reach its maximum performance. In addition, a
good initialization can achieve a better training result than an unfavorable initialization.
One of the most important initialization methods is that of G. Xavier and K. He, who
estimate the best possible initial values of the weights based on an upstream analysis of
the respective data [51, 52].

5. Train versus Test Ratio
For a given data set before a training session starts, it is common practice to specify what
proportion of the data set will be used for the training itself and which remaining part
is used for the validation of the model (test). According to different sources, a ratio of
70%–85% is recommended between a training and a test data set. The selection of the
portions shall be random. This value can be sensitive to the performance.

6. Batch Size
If a data set is considerably large, the training process can result in an enormously high
computing load. Especially for studies where a process is recurrent, progress can be
inefficient in terms of time. One method that helps to reduce training time is to segment
a data set into small packages (batches). Instead of feeding the entire data set once, the
batches are then transferred sequentially to the network. The weights are updated after
each input of a new batch. A default value for the batch size is 32, and for larger batches
multiples of this number can be selected (Fig. 5.54).

7. Learning Rate
Learning rate determines how fast the weights of a network should be updated. A low
learning rate slows down the learning process, but is robust with respect to oscillations
and more stable with respect to convergence. A higher learning rate can speed up the
learning process significantly but runs the risk of oscillating. This parameter is typically
chosen depending on the batch size. The higher the data set or the batch size, the more
reasonable it is to choose a higher learning rate to counteract the slow learning process.
It is also common to set a learning rate that degrades during the training. If a plateau
is reached during optimization, the reduction of the learning rate can lead to higher
robustness and initiate a fine-tuning process.

Fig. 5.54 Subdivision of a data
set into batches
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Fig. 5.55 Training/Test versus
epochs

8. Number of Epochs
The iteration of a training step (see Figs. 5.42, 5.43 and 5.44 using the example of the
backward propagation procedure) is called an epoch. As a rule, so many epochs should
be performed until the validation quality of the test data reaches amaximum. The training
process should therefore be terminated by a termination criterion. If the training accuracy
increases during further training while the validation accuracy of the test data remains
the same or even degrades, it is a sign that overfitting is taking place (Fig. 5.55).

A manual determination of optimal hyperparameters by a trial and error method is enor-
mously time-consuming and inefficient. Due to constantly growing challenges, AI users now
havemodern and reliable algorithms calledAutomatedMachine Learning (AutoML) at their
disposal, which highly automates upstream screens and the search for hyperparameters. The
degree of automation promises to adapt the techniques of machine learning on a high level
even to non-experts.

AutoML algorithms support from the input of raw data all the way to the complete
development of predictive models and help users to shift their tasks more and more to
overarching topics rather than having to deal with detailed tasks such as pre-processing
of data, feature extraction and feature selection, algorithm selection and hyperparameter
optimization. AutoML algorithms use optimization methods such as the Manual Search,
Grid Search, Random Search and the Bayesian Optimization, which will not be discussed
in detail here.

5.5.5 Fuzzy Logik

The term fuzzy logic was first published in 1965 by the Azerbaijani mathematician and
computer scientist Lotfi Aliasker Zadeh at the University of California, Berkley. The basis



134 5 Powertrain Development with Artificial Intelligence

for this, however, lay in much earlier studies of the1920s by Jan Łukasiewicz and Alfred
Tarski known through the so-called Łukasiewicz logic.

This topic deals with the handling of data that are subject to a certain fuzziness. In contrast
to the concept of Boolean logic, where quantities are rounded to 0 and 1 to categorize fuzzy
quantities, fuzzy logic allows assigning any value between 0 and 1 to a quantity, which is
the basis of the concept of partial truth.

Fuzzy logic is based on observations of human decision behavior. Often these aremade on
an inaccurate and non-numerical background information. On the one hand, the information
can be strongly founded and validated or it can be based on a conglomerate of unconscious
experience values, which manifest themselves as a so-called “gut feeling”. The intermediate
stages are vague and not differentiable—this is exactly the area that fuzzy logic tries to
represent numerically and quantify on a mathematical basis. The concept of fuzzy logic has
a wide range of applications, especially in the field of control (electronics) and artificial
intelligence.

Using a simple example of the subjective sensation of test persons who feel a liquid
of different temperatures (in this case water) on their skin, the following diagram gives
an example of how statistical sensation can be classified into individual categories using
fuzzy logic. It can be seen from this that when control strategies of this type of subjective
parameters are used, a range is obtained whose weighting is taken into account by fuzzy
logic. In this example, 72% of the test persons perceive a water temperature of 39◦ C as
hot and 28% as warm. In reality, dependencies cannot be represented by simple, linear
relationships, as shown in Fig. 5.56.

Fig. 5.56 Temperature
sensation in a group of test
persons
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Combination of fuzzy logic and artificial neural networks
In the past, intelligent, hybrid systems combining fuzzy logic and neural networks have
proven their high efficiency in a variety of real-world application problems. While neural
networks, for example, are predestined to recognize patterns from a large amount of data
and henceforth to expand their model predictivity in a self-learning manner, their decision-
making is fundamentally inexplicable or incomprehensible. Fuzzy logic, on the other hand,
can argue with the help of inaccurate information and present decisions in a comprehensible
way, but it cannot determine the rules it uses for these decisions. As a result of the two-sided
limitation, themotivation to combine both systems into an intelligent hybrid system becomes
apparent. The computational process intended for fuzzy neural systems can be divided into
the following three steps:

• The first step is the development of a “fuzzy neuron” based on the understanding of
biological neural morphologies and subsequent learning mechanisms.

• This is followed by the integration of fuzzy neural models with synaptic connections,
which include a fuzziness in the neural network.

• Finally, the development of learning algorithms for the adaptation of synaptic weights
follows.

Basically, there are two possible ways to design fuzzy neural systems:

1. A multi-layer neural network controls the fuzzy mechanism; see Fig. 5.57 (left).
2. The fuzzy interface provides an input vector for a multi-layer neural network. The neural

network is adaptive and is trained to calculate desired command outputs or decisions;
see Fig. 5.57 (right).

Fig. 5.57 Combination of fuzzy logic and a neural network as a hybrid system for 1. ANN as data
supplier (left) and 2. fuzzy logic as data supplier (right) [60]



136 5 Powertrain Development with Artificial Intelligence

Example 11: Subjective driving behavior for the calibration of electronic control units

By definition, subjectivity describes the relationship of a subject to its environment.
In a derived sense, a customer’s decision to purchase a vehicle is based on subjective
driving impressions. Particularly noteworthy here is the so-called “drivability”, which
is the sum of many individual technical components at the end of vehicle development.
However, even the application engineer who is responsible for the application of
electronic control units can influence the drivability of a vehicle to a certain extent.

For many years, many central research projects have been dealing with the deve-
lopment of suitable calculation methods for test procedures in order to transform
subjective driving experience patterns into objective evaluation criteria. Finding a
clear match is very complex, especially because a driving experience can vary accor-
ding to country of origin, road conditions, age, gender and other factors. In [61], an
approach is presented where objective parameters for the drivability are divided into
3 categories: 1. suspension comfort, 2. steering response and 3. load change behavior.
They have proven to show a good agreement with subjective parameters. For a mul-
titude of vehicle classes and subjective measurement data of drivers, the parameters
provide information about trigger points in the vehicle, so that optimizing measures
can be initiated concretely.

If the three categories (suspension comfort, steering Response and load change
behavior) are divided into 5 evaluation levels, a very useful application for the hybrid
combination of fuzzy logic results: (Fig.5.58)

Fig. 5.58 Weighting of different load shares of a driving cycle using fuzzy logic
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5.6 Deep Learning

Deep learning is a special learning method for artificial neural networks, which is charac-
terized by a much more complex structure than the networks discussed so far. Basically, an
ANN is also called Deep Neural Network (DNN) by definition, if it has at least two hidden-
layer levels. Besides DNNs, the term deep learning also includes other forms of networks
such as the convolutional neural network (CNN), which is mainly used for image and sound
recognition [62].

For neuronal networks of the category deep learning, multiple learning methods can be
used: Classification and regression of known input and output data (supervised learning
see Sect. 5.4.1), clustering and association of non classified data (unsupervised learning
see Sect. 5.4.2) as well as reinforcement learning, where an agent is in exchange with an
environment as a source of interference (seeSect. 5.4.3). Themethod chosendepends entirely
on the application case and should be carefully considered before starting to create a model.

5.6.1 Convolutional Neural Network (CNN)

ConvolutionalNeuralNetworks (CNNs) belong to an extended formof networks that, similar
to ANNs, are composed of neurons with learnable weights and a bias. The fundamental
difference is the application of these networks:CNNsexplicitly assume that the input consists
of graphics. As a consequence, CNNs are composed of pure feedforward connections, (see
Sect. 5.5.2). For the training of the weights, the backward propagation method is usually
used (see Sect. 5.5.3).

Usual ANNs are unsuitable for scaling single neurons to a full pixel level of images.
A simple graphic with 32X32 pixels and 3 RGB color codes per pixel would have 3072
connections (weights) in the hidden layer if an input neuron was completely connected by
all combinations. If one assumes that a significantly higher number of hidden layers is desired
to increase the performance of themodel and that graphics can havemuch higher resolutions,
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the total number of weights would exceed the computational load of any computer. Hence,
a completely linked connection of all neurons would prove to be inefficient.

CNNs divide the 3D pixel color code of a complex graphic into many small segments
called cascades. From now on, a neural network is divided into subareas—each subarea
represents a cascade and is individually trained. This highly efficient approach allows the
number of connections to be reduced abruptly. This has the further advantage that cascades of
certain image areas can train special image features, which, when all cascades are combined,
provide more detailed information about a graphic.

Image Recognition

Image Recognition is an interdisciplinary field of science that focuses on training algorithms
to examine digital images, videos or video sequences at a high level of detail. This includes
methods for capturing, processing, analyzing and extracting multidimensional visual data
from the real world. Image recognition can be interpreted as the decoding of symbolic
information from image data, which in its inner core can be constructed of geometry, physics
and statistics. In principle, the method of image recognition is comparable to a classification
of the supervised learning process (see Sect. 5.4.1).

From an engineering perspective, this science is used to automate tasks that the human
eye and brain cannot comprehend due to their complexity. A common problem of image
processing is to determine whether image data contain specific objects, features or image
sequences. For this purpose, the process of image recognition is divided into different cas-
cades.

Using the example of image recognition, the transformation chain and the process of a
CNNwill be illustrated. For this purpose, an optical measurement of a 6-hole injector nozzle
of a DI gasoline engine (snapshot of an injection pattern) at 270◦ crank angle before top
dead center is fed into the network.

In Fig. 5.59, the first layer of the CNN recognizes the number of injection nozzles, the
second layer deals with the injection angles, another layer with the geometric limitation
by the combustion chamber walls, another layer focusing on the turbulence decay of the
injection, etc. Furthermore, optical measurements can be post-processed by the application
of filters, for example, by illumination, so that further layers can better interpret characteristic
features of combustion such as temperature distribution, combustion speed, emissions and
soot particles [63].

In the shown cascade, after feeding it with images, the hidden-layer process begins which
consists of a convolution process and a pooling process, taking place in alternating order
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Fig. 5.59 Cascade structure of a CNN process4

to gradually break down desired features. Once this process is completed, the classification
process follows. Here, the results of a matrix are transferred into 1D vectors and transformed
into a softmax.

The Hidden-Layer Process
Convolution is one of the main building blocks of a CNN. The term derives from the mathe-
matical combination of different sets of information to generate a function. By applying
filters, so-called feature maps are generated. Each input node is subjected to matrix multi-
plication and the result is projected or summed up on the feature map. Especially for image
processing, the matrices are composed of the 3D height, width and depth, and the contents
correspond to the red-green-blue (RGB) color codes.

In the following, Fig. 5.60 shows the projection of a pixel-code area, which is projected
through a convolution filter onto a result matrix.

In a hidden-layer process, the input is subjected to numerous convolutions, with each
convolution using different filters. This results in different feature maps. Finally, all feature
maps are combined as the sum of all convolution layers into an output matrix. As in all neural
networks, activation functions are used to design nonlinear functions between inputs and
outputs. A common activation function that is chosen is the ReLU function; see Fig. 5.32 in
retrospect.

Since the size of a feature map becomes smaller than that of its input matrix due to
a convolution, an intermediate step must be initiated to restore the original size. For this
purpose, the padding method is used, and empty spots of the result matrix are filled up with
zeros.

4 BV=Blackening Number or smoke degree.
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Fig. 5.60 Conversion of an RGB pixel code by a convolution filter (convolution process)

After convoluting and padding, the next process called pooling is performed. This has
the function of smoothing the result matrix and removing possible irregularities or outliers.
In addition, this process continuously reduces the dimension of the matrix, which reduces
the computational load of the network. Different approaches for pooling are presented in
the literature. Among the most important ones are Average Pooling (projection of the mean
value), Max Pooling (projection of the maximum value) and RMS Pooling (projection of
the quadratic mean value) as summarized here (Fig. 5.61).

The Classification Process
The main purpose of the classification process is to transform the results of the hidden-
layer process into tangible quantities. According to Fig. 5.59, this section is divided into
Flattening, Connection and Softmax.

Fig. 5.61 Pooling method for
data filtering [64]
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The Softmax function comes from mathematics and has the function of normalizing
absolute numbers of different features and units. The normalization process projects all
numbers onto a range of [0,1] so that they can be interpreted as probabilities. Consequently,
the result of a CNN process is a statistical analysis serving a probability statement. It is
important that through such an intensive learning process, the network is able to decipher
independently which functions have to be optimally placed on which level. In this way, each
layer learns to convert its input data into a more abstract and coordinated representation. If
a statistical analysis is not desired, the value range of the output can also be transformed
back to the original unit.

Image recognitionhas becomea far-reaching term that combines a variety of technologies.
One of the more prominent applications is the principle of Identification. Here, it is of
interest to identify individual features of an object in order to compare them with other
features from a database, for example. The identification by scanning of QR codes, eyes
(iris scan), fingerprints or handwriting is one of the most prominent applications.

Object recognition or object classification belong to the methods that aim to identify
single ormultiple defined objects or object classeswithin an image. Blippar, GoogleGoggles
and LikeThat are examples of independent software products in this segment.

A subcategory of this, called Shape Recognition, deals with the investigation of class
features in the narrow sense. In contrast to object recognition, nested layers are analyzed
and distinguished, such as head, shoulders and arms in an image of a person or animal, to
which the averted form Face recognition also belongs.

GraphicsDetection is amethod that scans images to identify special features. It ismainly
used to analyze parts of interesting image data and to conclude concrete interpretations
regarding the content. In medical applications, for example, this includes the detection of
possible mutated cells or abnormal tissue from high-resolution CT or MRI images.

Content-based image retrieval is based on a fast search algorithm that is able to check
a huge pool of images (example: circulating Internet data) for specific content. The search
criterion can be to search for images with similarity to a reference image or by entering any
search criterion (example: search all images from which animals are found).

In addition to the categories mentioned above, there are a number of other application-
related possibilities such asPose estimation, for estimating the orientation of certain objects
relative to the camera (example: supporting a robot arm when retrieving objects from a
conveyor belt for industrial applications), andMotion analysis, for detectingmoving images
(video recordings) [65, 66].

The following examples will give some ideas on how image recognition techniques can
be applied to powertrain development in a goal-oriented way.
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Example 12: Influence of injection characteristics on combustion and emissions

The image recognition is suitable for breaking down a large number of graphics
into their characteristics in order to draw conclusions about their content. One topic
from the field of powertrain development that is ideally suited for this purpose is
the evaluation and processing of optical measurements using high-resolution low-
and high-speed cameras. In order to use the cascade of the presented example from
Fig.5.59, it is shown here to what extent large data sets of injection cone images can be
used to train neural networks. Three different injectors with the following geometries
are the basis for preceding optical measurements, see Fig.5.62.

The training phase of a CNN is carried out with a total of 750 images. Each injector
is subjected to a series of measurements, with 50 discrete crank angle images. The
operating load is in the range of 0–40% of the maximum possible load. The following
pictures show the result of a measurement series. On the left side, a standard image
is shown, and on the right side a special color filter is applied to emphasize certain
image features in order to simplify later recognition process (Fig.5.63).

Fig. 5.62 Geometries of three different fuel injectors
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The results of combustion from the resulting injection variations are shown here.
Filters are also used here to enhance the visual characteristics, see Fig.5.64.

Finally, for the training phase of the CNN, desired parameters such as turbulence,
mixture and emissions which were determined by means of measuring devices, are put
into relation with the images (Fig.5.65).

Images not involved in the training are always used to validate the model. In
principle, it is possible to reverse the procedure. In this case, the CNN would generate
images of injection features and the corresponding combustion if the desired output
variables are specified. The model is thus able to provide precise suggestions as to
what the geometric characteristics of the injectors should look like in order to meet
desired physical target values.

Fig. 5.63 Optical measurements of injection characteristics for different geometries
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Fig. 5.64 Combustion optics: Application of fluorescence filters to enhance image features:
diffusion flame (left) and soot formation (right)

Fig. 5.65 CNN to predict specific quantities (turbulence, mixture formation, emission, etc.)
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Example 13: Flow simulation

In this example, a CNN is developed to reflect 2D/3D flow calculations. Themain focus
is on the fact that it is in principle feasible to predict transient, i.e. time-dependent
phenomena of Newtonian flows.

As long as a neural network is provided with the necessary inputs, it is in principle
possible to implement shear rates proportional to shear stresses as well as the viscous
behavior that obeys the equations of Navier-Stokes. If a high quality of agreement with
classical 3D-CFD computation can be achieved, massive time and cost savings will
result, particularly since the computational time reflects the bottleneck of development
processes. In retrospect, Fig.4.16 has qualitatively represented the savings of the
calculation time that are possible with AI compared to conventional methods.

Using the example of a plate with variable dimensions in height, length and width,
airflow is examined, which enters the plate at the entrance (top right) and exits on
the bottom left; see Fig.5.66. The state is changed by making a circular or elliptical
incision in the plate. This incision is shifted on the coordinate system within the plate
and, in the case of an ellipse, rotated randomly in order to train all possible effects of
the deflection of the flow.

Fig. 5.66 Training phase of a flow through a plate with variable geometry (variable circular
or elliptical incisions)
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Fig. 5.67 CNN for generating time-discrete outputs of flow results

Then each variant is calculated by 3D-CFD simulation. The results of the calcu-
lation provide time-discrete snapshots, which are used for the training of the CNN
(5000 images in total).

Figure 5.67 shows the principle structure of the model. With 3D-CFD, the CNN
model is trained and time-discrete results for the velocity vector (ux , uy), the tem-
perature vector (Tx , Ty) and the pressure vector (px , py) are determined. The 6D
output vector (ux , uy, Tx , Ty, px , py) reflects the flow state in each coordinate point.

In contrast to the training phase, which consists of the generation of flow patterns
of plates with a single incision, the validation phase also examines plates with two or
more incisions. This helps to understand how flexible the CNN model is and how it is
able to adapt to new and previously unknown planes. In the following, 3 different plates
are presented for the validation, all with the dimensions (x = y = 50mm, z = 10mm)

(Fig. 5.68).

Fig. 5.68 Validation of the CNN model using flow-through plates with different incisions
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Fig. 5.69 Plate flow with central, circular incisions in comparison: CNN versus 3D-CFD

Figure 5.69 compares the result of the CNN model for plate variant 1 and a central
hole incision with the 3D flow calculation (CFD). The CNNmodel generates transient
flow images ranging 0ms–6ms. It is remarkable that it is able to reproduce recurring
flow fluctuations (see 4ms–6ms) that occur in a phase before convergence is reached.

The example of plate variant 2 clearly shows that the interaction of the flow can be
transferred to 2-hole incisions. Realistic images can also be generated here compared
to that of CFD calculations (Fig.5.70).

Finally, the validation on plate variant 3 shows that the flow can be qualitatively
simulated even along complex and asymmetrical incisions (here elliptical shapes), one
of which is adjacent to the plate edge. Here also, the effects of short-circuit currents,
which are reflected in the snapshots ranging 0.5ms–3ms, are remarkable (Figs. 5.71).
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Fig. 5.70 Plate flow with two circular incisions on the transverse axis in comparison: CNN
versus 3D-CFD

Fig. 5.71 Plate flow with asymmetrical incisions in comparison: CNN versus 3D-CFD
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Sound Recognition

For over 120million years, sound recognition has been one of the primitive survival instincts
of all life forms. The sensitivity and performance of the sense of hearing can vary greatly.
Speech and hearing together form the ability to communicate, and depending on lifestyle
and living environment, the sense of hearing is evolutionarily adapted to enable the ability
to communicate within individual species and to allow the auditory recognition of natural
enemies.

The interaction of the ear and the brain as the central processing unit enables sound to be
characterized for different features. The localization of sound combines the recognition of
the sound direction and the sound distance. As an indication for the determination of the
distance, the sound level or level differences of different sound sources relative to each other
play an important role. The frequency spectrum of the sound provides the information
about the sound source itself and can additionally be helpful for determining the distance to
the source. As, for example, a distant sound is perceived as dull, a further characteristic is
themotion of a sound that is perceived while one of the mentioned characteristics changes
relative to the listener.

Sound recognition is a decade-old field of science that traditionally deals with pattern
recognition theories. The underlying analysis methods use algorithms for data processing,
feature extraction and classification of sound. More recently, the field has benefited enor-
mously from the advances in artificial intelligence. Especially the data collection through
the method of Big Data as a statistical analysis tool for real data has proven to be highly
efficient. In combination with the deep learning network type (CNN), Sound Recognition is
now evolving into a modern technology that aims to solve the processing of a sound accor-
ding to human processing concepts. This is done by imitating neuronal and biochemical
mechanisms underlying unconscious thinking. The power of modern computers helps to
exceed the performance of a human brain by far.

Conventional method of sound recognition
Figure 5.72 shows a common sequence of different techniques for the sequential decoding
and classification of sound features from the time domain [67].

Sound
A common sound recognition process starts with a sound being recorded, which is received
by a microphone as a time signal. The higher the quality of the recording, the easier the reco-
gnition process can be designed. Background noises or room reverberation, for example, are
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Fig. 5.72 Conventional Sound
Recognition: Sequential
extraction of individual sound
features

unwanted effects that disturb the sound and make the later recognition process more diffi-
cult. The quality of the transduction unit in the microphone (conversion of a sound pressure
into an electrical signal) can also have a great influence on the quality of the sound recording.

FFT
In a few cases, the information of a sound wave can be sufficient to extract features for
sound recognition. However, the variability and the resulting complexity of sounds usually
require the execution of a Fast Fourier Transformation (FFT) and the transformation of the
wave signal into its spectral components. From this, all relevant frequency orders with the
associated amplitudes and phase information are obtained, by which the characteristics of a
sound signal are established; see retrospectively Sect. 3.5. The FFT is intended for periodic
signals with a fixed periodic length. If a recorded sound is variable (dynamic), a fixed period
length must be cut out of the sound signal.

Pre-processing
Pre-processing plays an important role in eliminating irrelevant sources on the recorded
audio soundtrack, which later facilitates the accuracy of the recognition process. It includes
the filtering of background noise, smoothing of dynamic noise, endpoint detection for peri-
odic closure of a sound signal (for non-periodic signals), determination of a suitable window
function and suppression of reverberation and echo.
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Pitch Detection
Pitch detection is used to characterize dominant tones. This ensures that only frequencies
with a high energy density compared to others in the overall spectrum are sorted out. The
considerationof the cleaned spectrumcanbe important for the classificationof a noise source.

Distance estimation
The distance between the microphone and the sound source, especially with moving sound
sources, can be estimated by the sound pressure level. For this purpose, a relative calculation
is made in relation to existing background noise.

Direction
If a sound source is moving, it may also be of interest to consider the direction of move-
ment relative to the microphone. This can be realized if several microphones (at least 2) are
mounted in opposite directions, so that the relative change of the different sound pressure
levels can be taken as a reference.

Dynamics
In the process phase “FFT”, the problem of the periodicity of a sound signal was mentioned
as a prerequisite for a Fourier synthesis. If a sound is non-periodic, this problem can be
solved in the last phase by stringing together many non-periodic signals of the FFT. The
result is a quasi-continuous picture of a tone, which allows examining and evaluating even
time-dependent signals.

Sound recognition with AI
Sound recognition based on neural networks corresponds in principle to a classification of the
supervised learningmethod (seeSect. 5.4.1).WhileCNNsonly allow images as inputs, sound
recognition is performed using the same principles of image recognition. After an acoustic
sound signal has been transformed into a spectrogram, i.e. into a graphical representation,
using the FFT method, a CNN method can be applied. Fig. 5.73 shows exactly this process
sequence [68].

Fig. 5.73 Sound Recognition: Sequential extraction of individual sound features by CNN
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Noise vibration and harshness (NVH), i.e. the acoustic data acquisition and analysis of
structure-borne and airborne sound, is one of the major topics in the development of motor
vehicles and offers far-reaching application potential for sound recognition. Some important
applications are listed as follows:

• Body and chassis
– NVH and structural dynamics for car body vibrations especially for lightweight com-

ponents in the medium frequency range;
– Eigenvalue analyses of brakes;
– Rolling noise in the passenger compartment and for driving past depending on tire

profile and wheel suspension;
– Aeroacoustics: Audible vibrations in the vehicle interior due to external currents and

sound pressure.
• Powertrain

– Engine acoustics, torsional vibration dampers and injection systems;
– Valve train;
– Transmission and differential gear.

• Electric mobility and vehicle electronics
– Electrical drive, battery and power electronics (PCU);
– Electronic boards and control units (ECU) and GCU.

Voice Recognition has been used for many years in criminal investigations for the automated
comparison of stored data. It is also used for identification monitoring, alarm systems and
personal identification at banks. Acoustic oceanography and the science of animal noises
and communication behavior have provided sound recognition with great insights over the
last decade. More conventional in use are natural speech recognition systems like Siri and
Alexa or music recognition applications like Shazam and Soundhound, which use the same
techniques of artificial intelligence.

Example 14: Powertrain acoustics

Powertrain acoustics offers a wide range of applications for the sound recognition
process. This is due to the fact that acoustic measurement data can be generated
easily, but spectral analyses can only be differentiated at great expense. Depending
on the measurement signal, the data can vary by different levels of uncertainty due
to measurement noises. An acoustic engineer is therefore often faced with the task
of breaking down measured sound signals, which are composed of a superposition
of different noise sources, into their individual components. Along with extensive
experience, components of special frequency spectrums can be assigned to a noise
source—the task becomes more complex when destructive interference causes signal
sources to be canceled out so that they cannot be recovered again.
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Fig. 5.74 Sound recognition applied to the frequency spectrum of an engine to recognize
turbocharger specific noises

As can be seen in the next example, a CNN is fed by the frequency spectrum of
a recorded sound that was measured on a motor. The model is able to separate all
superimposed sounds from each other and assigns them to individual systems. Fur-
thermore, it determines individual noise sources, as in the example of the turbocharger,
and splits these into individual frequency ranges. The sound signal is then completely
characterized, which enables the acoustic engineer to make a detailed pre-diagnosis
of the existing system (Fig.5.74).
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5.6.2 Generative Adversarial Network (GAN)

Generative Adversarial Networks (GAN) are part of a highly advanced group of algorithms
developed in 2014 by a US computer scientist named Ian Goodfellow, which has establis-
hed itself remarkably fast for artificial intelligence applications. The concept, which was
originally based on the supervised learning method, has now also proven to be very power-
ful for unsupervised and reinforcement learning. The special feature of a GAN is that two
neural networks are used simultaneously—a so-called generator and a discriminator. These
networks compete with each other—while the generative network generates synthetic data,
i.e. data that does not originate from reality, and real data is simultaneously fed into the
system. The discriminator faces the challenge of evaluating the incoming data and checking
it for authenticity. The interaction of these neural networks promises a highly efficient and
autonomous training.

While the discriminator divides a given input into a cascade structure in order to perform
a feature characterization on different levels, the way the generator works is contradictory.
In each feature level, it is able to change properties by a reciprocal convolution. The follo-
wing example shows the functioning of a generator and a discriminator by the example of
microscopic fracture structures of a metal material (Fig. 5.75).

TheGAN is interpreted as a competitive process because of theway it works. The training
goal of the generative network is to increase the error rate of the discriminative network, i.e.
to fool the discriminator by generating data that appear realistic so that the discriminator
classifies them as non-synthesized.

If the discriminator is fed with a real and a synthetically generated image, it generates a
function D(x) as an output signal, which corresponds to a probability x that states whether
the input corresponds to a real image or not. The goal is to maximize the function D(x). To
measure a representative result, the cross- entropy function is used.

max
D

V (D) = Ext+1∼pdata (xt+1)[logD(xt+1)] + Ez∼pnoise(z) [log(1 − D(G(z)))] (5.19)

The generator on the other hand also tries to generate images at a maximum possible value
for D(x).

min
G

V (G) = Ez∼pnoise(z) [log(1 − D(G(z)))] (5.20)
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Fig. 5.75 Functioning of the discriminator (top) and the generator (bottom) at microscopic fracture
structures of a metal material

In summary, a GAN is often interpreted as a MinMax game, where the generator G tries to
minimize the function V and the discriminator D tries to maximize it (Fig. 5.76).

min
G

max
D

V (D,G) = Ext+1∼pdata [log D(x)] + Ez∼pnoise(z) [log(1 − D(G(z)))] (5.21)

Monitoring and training are controlled by an agent. For a sample matrix (input matrix) [x]
with m dimensions x1, x2, . . . , xm and a noise matrix [z] with m dimensions z1, z2, . . . , zm ,
an agent transfers the following equation to the discriminator:

∇�D
1

m

m∑
i=1

[logD(xi ) + log(1 − D(G(zi )))] (5.22)

The generator on the other hand is monitored with the following equation:

− ∇�D
1

m

m∑
i=1

[log(1 − D(G(zi )))] (5.23)
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Fig. 5.76 Working process of a GAN

With the gradient descent method, one quickly encounters the problem that the discriminator
defeats the generator early on due to its stronger function weighting, which means that in the
early training stage non-real images can be quickly distinguished from real ones. To solve
this problem, it is a good idea to program the GANwith an alternative function to retransmit
the gradients [69]:

∇�D
1

m

m∑
i=1

[log(D(G(zi )))] (5.24)

GANs are currently still mainly used in the field of image processing and image generation.
Among the best known applications are the realistic generation of photographs of human
faces, manipulation of human poses, and “photo-aging” which is used by many cell phone
applications. In the cartoon area, GANs are used to create new characters, and in the fashion
design area to create suggestions for new patterns, designs and fresh inspirations. On the
Internet, astonishing artworks are circulating that have been synthetically created with the
help of existing works by famous artists and are amazingly similar to them. In the area of
technical design, GANs are used in the modeling of 3D objects to generate new systems of
objects and so to create fresh ideas, such as in the development of sports prostheses.
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Example 15: Application of electronic control units

In the field of powertrain development, the basic idea of synthetic data generation
can be transferred excellently to the base application of ECUs, the application of
hybrid strategies or the power application of GCUs and PCUs. In principle, huge
amounts of data are required to cover different stationary and transient operating
ranges. For an internal combustion engine, a base application usually starts with the
mapping of the air path for the steady state. For this purpose, the air mass flow is
represented as a function of 1. intake valve timing, 2. exhaust valve timing, 3. boost
pressure, 4. wastegate position, 5. throttle position and 6. engine speed. This is also
done for different 7. ambient temperatures and 8. ambient pressures. The strategic
procedure may differ depending on the manufacturer. Due to the 8D system shown
here, a very rough subdivision of all parameters into 5 categories each already results
in 58 = 390.625 combinations. Even modern space-filling methods (see retrospective
Sect.4.3) are easily overstrained by an enormous measuring and simulation effort
when a thorough and error-free application is desired.

These types of problems can be greatly tackled by the concept of GANs. It is able to
provide enormous help in this respect by independently generating a massive amount
of virtual data that imitate real data. This eliminates the need for test-based generation
by test bench measurements or simulation-based data generation, which saves a lot
of time. Fig.5.77 illustrates a flowchart for this.

Fig. 5.77 GAN for an extremely scalable generation of data
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5.7 Software

The science of data is a young and promising field that is developing rapidly, especially in
the provision of data-based application software. This chapter intends to give an overview
of ways for data handling and the underlying possibilities with regard to AI features, in the
midst of numerous options. Which software and library package is the best one is left to the
discretion of the respective application and may vary depending on it.

Many languages are now in use by data scientists and are very useful for individual appli-
cations. Among the most popular and widely used languages are Python, Scala and R, which
have prevailed in the field of machine learning. Their now versatile and powerful libraries
set them apart from individual solutions. Last but not the least, the constant development
of additional package solutions provides the users a high degree of flexibility. Compared
to commercially available simulation software tools for industrial applications, which were
discussed in detail in Sect. 4,machine learning tools presented here are open-source solutions
that can bring about significant cost savings in the value creation of industrial development
processes.

For open-source software solutions, the source code is public and the copyright holder
allows users to modify and adapt it for their own individual purposes. Because of the fle-
xible applicability and the freedom that is offered, open-source solutions enjoy a very high
acceptance.

Especially for students and other academic fields, open-source solutions offer free or low-
cost access and a platform to an open community that is always in exchange to support each
other. This accelerates the development process of the software automatically. Compared
to commercial software, open-source solutions are considered safe to use. Possible errors
in the code that were overlooked by the original developers of a program can be quickly
detected and corrected under their own steam. By informing the community, an otherwise
typical software update and, combined with a new release process is eliminated and hence,
a substantial amount of time can be saved.

In terms of stability and long-term project planning, open-source software offer further
significant advantages over proprietary software. As a rule, they are based on open standards
to ensure flexible integration. Even after development projects have died, tools are available
to users for an indefinite period of time.

In addition to the idea of a community, values and principles such as sustainability, effi-
ciency and cost savings are increasingly becoming the focus of digital corporate structures.
Combined with the idea of lean management and the associated low-process and transparent
development structures, open-source solutions are a revolutionary era. Not only as indivi-
dual solutions for academic institutions and small companies as before, but especially for
medium-sized and large companies, they are becoming more popular than ever.

Python
Python is a language for very general applications with a large number of stored and ela-
borated libraries. It is suitable for computer scientists, mathematicians and especially for
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engineers. It can be used for beginners and advanced machine learning applications as well
as data analysis, operation and visualization.

Scala
Scala offers ideal solutions in dealing with Big Data. The combination of Scala and Spark
allows the computing power of computers or graphic cards to be used optimally through
cluster computing. This balances the high computing load especially with huge amounts
of data, which is unique for Scala. The language has many powerful libraries for machine
learning with close links to engineering. In the area of data analysis and visualization pos-
sibilities, Scala has a disadvantage compared to its competitors.

R
R was initially developed for statistical calculations and analyses and for historical reasons
offers a range of high-quality packages for statistical data acquisition and visualization.
Due to its strong interface and formatting capabilities to different syntax, R is especially
well suited for research purposes due to this flexibility. Compared to its competitors, R is
currently less suitable for applied purposes such as engineering.

Each of these languages is more or less suitable for certain types of tasks. The choice of
a preferred programming language can be very subjective, so the developer should always
choose the tool that is most convenient for him.

After themost suitable programming language has been selected, a further decision has to
bemade on the selection among availableMachineLearning libraries. Depending onwhich
AI application is preferred (Natural Language Processing, Search Tree, Supervised Lear-
ning, Unsupervised Learning, Reinforcement Learning, Deep Learning, etc. (see Fig. 5.5),
a large number of different libraries are available. With the help of visualization packages,
data operations can be post-processed and results visualized. Depending on the visualiza-
tion option, this can lead to a better understanding and interpretation of the corresponding
data. Libraries for mathematics and engineering sciences offer the possibility to make
numerical data manageable and to perform complex mathematical operations and scientific
calculations. These packages are also used to handle data that is difficult to interpret, such
as text content. As the main component of data science, the field of data operation and
analysis provides libraries that can be used to collect, clean and pre-processed data for
subsequent analysis. Finally, packages for research support the idea of combining variable
formats from different sources of syntax in order to provide the user the greatest possible
freedom in handling (Table5.3).

The following figure lists 20 popular libraries for each of the programming languages
presented. This can help to give an overview in which category libraries can be assigned and
which individual strengths and weaknesses have to be taken into account when searching
for the best individual solution. The diagram shows only a brief outline among countless
libraries that are available on the market and are being expanded with continuous growth
[70].
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Tab.5.3 Open-source software and examples of some libraries for the application of AI
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