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Preface

Friction permeates every aspect of our life. It accompanies us when we walk and
our fingers when they slide on the display of a tablet. Friction produces very annoy-
ing results when a chalk is rubbed against a blackboard and may cause tremendous
damage when it fails to hold two tectonic plates together and a powerful earthquake
is suddenly generated. Friction can also be very useful, when a cat suddenly jumps
in front of our car and the brake pedal avoids serious consequences; and even pleas-
ant, when a talented violinist takes up a bow and starts playing his Stradivarius. In
any case, friction is certainly not a boring subject, and writing a book about friction
is definitely not an easy task.

In spite of an immense amount of experimental data, a general theory of slid-
ing friction between two solid surfaces is still missing. The simple Amontons’
law, stating that the friction is proportional to the normal force, has been found to
work exceptionally well in a variety of situations. Based on this law, theoretical
models with different degrees of complexity have been derived and successfully
applied to reproduce real situations. Even if Amontons’ law is universally accepted
as empirical evidence rather than as a consequence of first principles, the attitude
is rapidly changing and it is now possible to prove by analytical means that the
friction between two rough elastic surfaces has to be almost proportional to the
loading force. A different situation is encountered when studying the drag force
accompanying the motion of a solid object in a viscous liquid. Here, the Navier–
Stokes law works usually quite well, which made hydrodynamic lubrication an
established subject a long time ago. Still, problems arise when the lubricants are
confined and the friction can only be investigated, theoretically, using atomic-scale
models.

In the past 25 years, significant progress has been achieved in the understand-
ing of the basic principles of sliding friction. This progress was essentially caused
by the invention of the atomic force microscope (AFM) and the tremendous
growth of computational power. The AFM has allowed us to investigate the motion

xi



xii Preface

of nano-asperities driven on solid surfaces with unprecedented space and force
resolution. The atomic-scale friction features so measured are found to be in good
agreement with a model developed by Ludwig Prandtl sixty years before the AFM
was developed. On the other hand, molecular dynamics simulations involving a few
hundred thousand atoms can be run nowadays in a reasonable time scale, although
the duration of the processes reproduced by these virtual experiments is too short
compared to the real measurements. Much more difficult is to explain the different
wear processes which usually accompany the sliding. A detailed atomistic descrip-
tion of these phenomena is not feasible even with the fastest supercomputers. At
the same time, it is not possible to visualize the structure of a wear scar on the
atomic scale, although good progress is being made using transmission electron
microscopy and, again, AFM.

Having this in mind, we believe that a ‘modern’ approach needs to be adopted
to explain the fundamental friction theories, as we understand them nowadays, to
undergraduate and graduate students in physics or engineering, and to anyone inter-
ested in this multidisciplinary and fascinating subject. In this book we have made
a rather simple choice, and limited the discussion to theoretical results based on
well-posed analytical derivations and numerical calculations, and to experiments
aimed to shed light on nanoscale friction and performed in well-defined environ-
mental conditions such as ultra-high vacuum. It was in no way our intention to
present long tables of friction coefficients or to introduce purely phenomenolog-
ical models. For this reason, no attempts to discuss abrasive, adhesive and other
forms of wear have been made, with the exception of a few focused investigations
on the nanoscale. Similarly, we have not included technical details regarding the
chemical composition of contacting surfaces or lubricants, which would have led
us too far from our goal.

Classifying and ordering the material is also not easy. A problem that we had
to face was unifying the notation, since the same physical quantities are often
addressed in different ways by physicists and engineers. Having in mind the var-
ious backgrounds of our readers, we have divided the book into four parts. In the
first part, the basic theory of elastic contacts is discussed. The influence of fric-
tion on normal contacts, partial slips, sliding and rolling of elastic objects with
simple geometric shapes is introduced with the minimal assumption that Amon-
tons’ law is applicable. The second part of the book focuses on more advanced
and not always independent topics such as rough, viscoelastic, adhesive and plastic
contacts, thermal and electric effects at the interface between two surfaces, frac-
ture and macroscopic stick–slip. In all these frames, the connection to friction is
rather obvious. A particular emphasis is given to the theory recently developed by
Bo Persson, which, in our opinion, can explain several phenomena more elegantly
than any alternative finite element model. In the third part theoretical models and
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representative experiments at the basis of modern nanotribology are presented in
more detail. Besides atomic-scale sliding friction, we will also discuss manipula-
tion, wear and non-contact friction experiments and the Prandtl–Tomlinson model
for atomic-scale stick–slip. The last part of the book is dedicated to the dynamics
of viscous fluids and its application to lubrication. This part ends with an overview
of important phenomena observed in tiny ‘spots’ such as capillary condensation,
fluid flow between rough surfaces and spreading of liquid droplets on a solid
surface. Friction force microscopy, gas viscosity and slip boundary conditions in
the Navier–Stokes equation are briefly discussed in separated appendices. In this
way, we hope that the main message conveyed by our book is that investigating
friction is not a messy task but a rather elegant exercise.

Before starting, we would like to thank all the people who accompanied us in
the study of friction and related phenomena. Even if it is not possible to cite all of
them, special acknowledgment goes to Hans-Joachim Güntherodt, Alexis Baratoff,
Roland Bennewitz, Shigeki Kawai, Marcin Kisiel, Anisoara Socoliuc, Sabine
Maier, Karine Mougin, Raphael Roth, Pascal Steiner, Thilo Glatzel, Tibor Gyalog,
Martin Bammerlin, Rodolfo Miranda, Carlos Pina, Johannes Gierschner, Reinhold
Wannemacher, Pawel Nita, Santiago Casado, Patricia Pedraz, Carlos Pimentel,
Robert Szoszkiewicz, Pasqualantonio Pingue, Ruben Perez, Juanjo Mazo, Renato
Buzio, Ugo Vibusa and Stefano Brizzolari. We also thank Karyn Bailey, Emily Tre-
bilcock, Roisin Munnelly, Bronte Rawlings and Simon Capelin from Cambridge
University Press for assisting us in the publishing process, and Frances Lex for
critical comments and improvements to the manuscript. Last but not least, E.G. is
immensely grateful to his wife Tatiana and his son Valerio. Without their infinite
patience in the uncountable hours spent in front of the screen, this book would have
never reached its conclusion.





1

Introduction

The study of friction, wear and lubrication between two surfaces in relative motion
is called tribology. This term is derived from the Greek verb ‘tribos’, which means
‘to rub’. On one hand tribology aims at a scientific foundation of these phenom-
ena. On the other hand it aims at a better design, manufacture and maintenance of
devices which are affected by these ‘annoyances’. Tribology has a very important
economical outcome. According to one of the first reports on this issue, tribolog-
ical problems accounted for 6% of the Gross Domestic Product in industrialized
countries in the 1960s [160]. This percentage may have increased by now. Tri-
bological problems are found in pinions, pulleys, rollers and continuous tracks,
in pin joints and electric connectors, and may cause more failure than fracture,
fatigue and plastic deformation. On the other hand, friction is highly desirable, or
even essential, in power transmission systems like belt drives, automobile brakes
and clutches. Friction can also reduce road slipperiness and increase rail adhesion.
Before starting our rather theoretical description of tribology, it is important to
recall the milestones that have marked the progress in this subject from the dawn
of civilization.

1.1 Historical notes

More than 40 000 years ago a complex process such as the generation of frictional
heat from the lighting of fire was already well known. Nowadays the same pro-
cess is studied by a branch of tribology, which is known as ‘tribochemistry’ and is
focusing, more generally, on friction-induced chemical reactions. The early use of
surface lubricants to reduce friction is unambiguously proven by a famous painting
from ancient Egypt, in which a ‘prototribologist’ supports the work of a few dozen
slaves by pouring oil in front of the heavy sled that they are pulling (Fig. 1.1). More
than four thousand years later Leonardo da Vinci (1452–1519) started a systematic
investigation of tribology, as documented by his drawings (Fig. 1.2). Leonardo’s
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2 Introduction

Figure 1.1 Transportation of an Egyptian colossus from the gravestone of Tehuti-
Hetep (ca. 1880 B.C.). Note the officer at the feet of the statue lubricating the
ground in front of the sled.

Figure 1.2 Original sketches of the friction experiments performed by Leonardo.

intuition and perseverance resulted in the formulation of the first friction law, which
states the proportionality between friction and normal force. Nevertheless, this key
observation quickly sank into oblivion until the French physicist Guillaume Amon-
tons rediscovered it in 1699. The Swiss Leonhard Euler, possibly the greatest
mathematician of the eighteenth century, was the first person who clearly distin-
guished between static and kinetic friction. Euler also made an attempt to relate
friction to microscopic processes by speculating that friction is ultimately caused
by the interlocking of rigid irregularities. A few years later, Charles de Coulomb,
best known for his work on electricity and magnetism, observed that the kinetic
friction is almost independent of the sliding velocity, whereas the static friction
may vary depending on the time of stationary contact of the surfaces.

A turning point in the history of tribology was the theory of frictionless contact
of non-conformal elastic solids. This theory was developed by the German physi-
cist Heinrich Hertz in 1882 when he was only 23 years old, and forms the basis
of modern contact mechanics. The Hertz theory was extended to include the con-
tribution of adhesive forces by Kenneth Johnson and coworkers almost 90 years
later. The difference between apparent and real contact areas was pointed out only
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in 1942 by Frank Bowden and David Tabor. They also proposed that the friction
between two clean metal surfaces originates from the formation and rupture of cold
weld junctions and concluded that, if the deformation of the junctions were entirely
plastic, the coefficient of friction should be around 0.33, as indeed is measured
in many metal pairings. The relation between friction and roughness was further
investigated, among others, by John Archard (1957), Greenwood and Williamson
(1966) and Bo Persson (2002), who proved, under more and more realistic condi-
tions, that the real contact area is approximately proportional to the normal force.

A key process, when two surfaces slide past each other, is the so-called stick–
slip. Stick–slip is caused by elastic instabilities and, in the context of atomic-size
contacts, it was first modeled by Ludwig Prandtl in 1928, and experimentally sub-
stantiated sixty years later by atomic force microscopy (AFM). The slip can be
thermally activated, which leads to characteristic variations of friction with tem-
perature and driving velocity. Thermal activation is also important in capillary
condensation and plastic flow, and may lead to various ‘ageing’ effects which
are the focus of numerous theoretical and experimental investigations nowadays.
On geological scales, stick–slip is also a key mechanism in earthquakes, as first
recognized by Brace and Byerlee in 1966.

The advent of experimental techniques allowing one to measure friction down
to the nanoscale and of fast computers allowing one to simulate the atomic
interactions between two sliding surfaces resulted in the rise of the so-called
‘nanotribology’. While the stick–slip motion of nanometer sized asperities can be
readily investigated by AFM, other techniques such as the quartz crystal microbal-
ance and the surface force apparatus have allowed researchers to measure the
friction between adsorbate films and substrates or, respectively, between two atom-
ically flat surfaces with intercalated lubricant films. On the other hand, molecular
dynamics simulations are throwing light, more and more accurately, on the atomic
origins of friction.

Without lubricants, almost no machine made of metal would work, and the
Industrial Revolution would not have occurred. The theory of hydrodynamic lubri-
cation was pioneered by Euler, Bernoulli, Poiseuille, Navier and Stokes between
1730 and 1845. It was the last mentioned who discovered that the frictional drag on
a spherical particle slowly moving in a fluid is proportional to the velocity of the
sphere. A series of key experiments was conducted by Gustave Hirn, who observed
that the friction in a bearing is proportional to the sliding velocity and to the vis-
cosity of the lubricant oil. An interpretation of his results, based on hydrodynamic
lubrication and not on the more established concept of interlocking asperities,
was first given by Nikolai Petrov in 1883, whereas the theory of fluid mechan-
ics was fully established by Osborne Reynolds. Even if the Reynolds theory is still
widely used in the design of modern lubricated machinery, this theory breaks down
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when the separation between the two sliding surfaces becomes comparable to their
roughness. Systematic investigations of this problem were performed by Richard
Stribeck, who introduced a curve which still holds his name (1902). The concept of
boundary lubrication was introduced in 1922 by the biologist William Hardy while
studying friction on solid surfaces covered by fatty molecules with hydrocarbon
chains of different lengths.

As mentioned above, plastic flow plays an important role in contact ageing. The
theory of plasticity, from the Greek verb ‘plassein’, meaning ‘to shape’, is also
important in determining the stability of soils. Criteria for the yielding of these
materials were proposed in early works by Coulomb and the Scottish engineer
William Rankine, whereas the first scientific studies of plasticity in metals started
only in 1864, when the French engineer Henri Tresca (whose name is also asso-
ciated with the construction of the Eiffel Tower) published his famous criterion
for yielding. This criterion was improved by Richard von Mises in 1913 and fun-
damental investigations of plasticity flourished in Germany in the early twentieth
century under the leadership of Prandtl, who introduced the concept of plastic flow.
The theory of plasticity is supported nowadays by powerful computer simulations,
which are essential to control technological processes such as the rolling of strips
or the extrusion of rods and tubes.

Our overview would not be complete without mentioning wear processes. Wear
was well known to our ancestors, who exploited it to create artistic sculptures
and useful tools by rubbing dense stones against softer ones in different ways.
In spite of its importance, the variety and complexity of wear phenomena make the
development of general physics laws interpreting wear processes quite challeng-
ing. Related to wear (and to friction) is the study of fracture mechanics, which was
initiated by the British engineer Alan Griffith during World War I. The Griffith’s
criterion, which is based on simple energetic considerations, can elegantly explain
the failure of brittle materials. Fracture dynamics is not fully understood and is
nowadays a subject of beautiful theoretical and experimental investigations.
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Dry friction and damped oscillators

In this chapter we introduce the two categories of friction forces experienced by a
rigid object sliding on a solid surface or moving in a viscous fluid. These forces
have a different nature. Sliding friction increases with the normal force and is usu-
ally independent of the velocity. Viscous friction depends on the shape of the object
and is proportional to the velocity, provided that this is low enough. Furthermore,
while an object in a fluid can be set into motion by an arbitrarily low force, this is
not the case if the same object lies on a solid surface, since a static friction force
needs to be overcome in this case. Static friction allows us to join objects together
using screws. It also has a key role in the propulsion and braking of vehicles and
in transmission belts. Sliding (or kinetic) friction is important in pivots and collar
bearings, not to mention uncountable situations in everyday life. Viscous friction
can be exploited in mechanical dampers to mitigate the effects of forced oscilla-
tions. Since the theory of these oscillations is of pivotal importance in physics and
engineering, it will be recalled in this chapter, whereas a detailed description of
various situation involving viscous drag is provided in the last part of the book.

2.1 Amontons’ law

In order to start and to keep moving a solid block on a solid surface, different
friction forces Ffric have to be overcome and opposed. The static friction Fs cor-
responds to the minimum tangential force required to initiate sliding. The kinetic
friction Fk perfectly balances the tangential force needed to maintain the sliding at
a given (average) speed. These forces are intrinsically different. The static friction
does not do any work, while the kinetic friction equals the dissipative work done at
the interface divided by the distance covered by the block.

According to Amontons’ law [5], the friction force is proportional to the normal
force FN acting on the block:

Ffric = μFN. (2.1)

5



6 Dry friction and damped oscillators

Table 2.1 Typical coefficients of static and kinetic friction.

Physical situation μs μk

Rubber on concrete 1.0 0.8
Steel on steel 0.74 0.57
Aluminum on steel 0.61 0.47
Glass on glass 0.94 0.4
Copper on steel 0.53 0.36
Wood on wood 0.25–0.5 0.2
Wood on wet snow 0.14 0.1
Metal on metal (lubricated) 0.15 0.06
Wood on dry snow – 0.04
Teflon on teflon 0.04 0.04
Ice on ice 0.1 0.03
Synovial joints in humans 0.01 0.003

Furthermore, it is independent of the nominal area of contact. The ratio between
Ffric and FN is the coefficient of friction μ, and it is usually different for static and
kinetic friction. The static friction coefficient depends on the time of stationary
contact (so-called contact history), on the elastic and geometric properties of the
contacting surfaces and on the way in which the driving forces are applied. On
the other hand, the kinetic friction coefficient is much better defined once the tem-
perature, humidity, velocity and surface properties are reproducible. The values of
the friction coefficient are usually lower than one, and the static coefficient μs is
always equal to or larger than the kinetic coefficient μk.

As far as we are concerned with macroscopic contacts, we will also accept the
validity of Coulomb’s law and assume that, under dry conditions, Fk is independent
of the sliding velocity. This is not the case at very low or very high velocities, where
thermal effects or, respectively, inertial effects become important.

A representative list of friction coefficients is given in Table 2.1. For lubricated
metal surfaces typical values of μs are in the range of 0.1–0.3. Higher values are
observed after prolonged sliding if the lubricant film is worn off. For common
engineering surfaces the friction coefficient does not depend significantly on the
surface roughness, unless the surfaces are extremely smooth or rough. Amontons’
law is also modified in the presence of strong adhesive forces.

Suppose now that a block rests on a plane inclined by an angle α, as in Fig. 2.1.
If α is slowly increased, the block will start moving when

tanα = μs. (2.2)

This value defines the angle of friction (or angle of repose) αc. If μs = 0.1 the
angle of friction is about 6◦. Thus, the coefficient of static friction can be simply
estimated by measuring αc.
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FN

mg

Ffric

Figure 2.1 Forces on a solid block of mass m resting on an inclined plane (g =
9.8 m/s2 is the acceleration due to gravity).

2.2 Applications to representative mechanical systems

Amontons’ law is essential to understand the operation of machines and common
mechanical parts. Here, we will discuss a few examples to illustrate its usefulness.
We will not distinguish between static and kinetic friction coefficients since the
values to be used are clear from the context.

Screws

A screw is able to convert a torque into a linear force. A square-thread screw with
a mean radius R and pitch1 b can be seen as a plane inclined by an angle α such
that tanα = (b/2πR), and wrapped around a cylinder. Thus, the screw will be
self-locking if α < αc, where αc is defined by Eq. (2.2). Due to this possibility, the
applications of screws for holding objects together are uncountable.

Screws can in principle also be used in power transmission, although they are
not very efficient in this case. Exploiting the analogy with the inclined plane, it
can be indeed demonstrated that the efficiency of a screw, i.e. the ratio between the
useful work done and the energy transferred to a mechanism, is

η = tanα

tan(α + αc)
.

The maximum efficiency ηmax is achieved when α = 45◦ − αc/2 and is equal to

ηmax = 1 − sinαc

1 + sinαc
.

If μ = 0.1, a value of ηmax ≈ 0.82 is reached when α ≈ 42◦. If α = αc(≈ 6◦),
the efficiency drops to 0.49. These low values, compared to other transmission
mechanisms such as belt drives (see below), explain why ‘lead screws’ are rarely
used for transferring large amounts of power.

1 The pitch of a screw is the rise corresponding to a rotation of 360◦.
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L

Figure 2.2 A jackscrew.

Jackscrews

If a screw is used as a lifting machine, we can define its mechanical advantage MA
as the ratio between the load which can be lifted by the screw and the horizontal
force Fext applied on it. It is not difficult to see that

MA = 1

tan(α + αc)
.

The mechanical advantage can be increased by one or two orders of magnitude if
the force is applied to the end of a long horizontal bar connected to the screw, as in
Fig. 2.2. In this case

MA = L/R

tan(α + αc)
, (2.3)

where L is the length of the bar. If L = 20R, α = αc and μ = 0.1, the ‘jackscrew’
will be able to lift a weight almost 100 times larger than the applied force.

If a V -thread with angle of inclination β is used, the previous formulas are still
valid, provided that the coefficient of friction μ in the definition (2.2) is replaced
by μ/ cosβ. In this case the value of αc increases, and the mechanical advantage
is reduced. Nevertheless, V -threads are easier to manufacture and for this reason
they are much more common than square-threads.

Pivots, collars and clutches

Pivots and collar bearings are commonly used to support an axial load acting on
a rotating shaft. Pivots are placed at the end of the shaft, whereas collars can be
located at any position (Fig. 2.3). If the pressure is uniform it is easy to see that the
frictional torque acting on a flat pivot of radius R (Fig. 2.3(a)) is

Mfric = 2

3
μFN R. (2.4)
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FN

R

(a) (c)(b) FN

2

R1 R2

FN

R2 R1

Figure 2.3 (a) A flat pivot, (b) a conical pivot and (c) a collar bearing.

For a truncated conical pivot:

Mfric = 2μFN

3 sinα

(R3
2 − R3

1)

(R2
2 − R2

1)
, (2.5)

where R1 and R2 are, respectively, the inner and outer radii of the pivot, and α is
the half-angle of the cone (Fig. 2.3(b)). Equation (2.5), with α = 90◦, can be also
applied to collar bearings (Fig. 2.3(c)).

However, since the wear rate at a given pressure is proportional to the sliding
velocity and hence to the distance r from the axis of the shaft, a bearing will be
more and more damaged at increasing values of r and the pressure distribution will
consequently change with time. This means that the formulas (2.4) and (2.5) are
strictly valid only for brand new elements. A good agreement with observations is
found assuming that the wear rate becomes uniform. Since the wear rate is pro-
portional to pr , where p is the pressure, it can be proven that, in this case, the
frictional torque is

Mfric = 1

2
μFN R

for a flat pivot, and

Mfric = μFN

2 sinα
(R1 + R2) (2.6)

for a truncated conical pivot. Equations (2.5) and (2.6) can be also applied to plate
clutches (with α = 0) and to conical clutches connecting two shafts rotating at
different speed.

Belt drives

Consider two pulleys with radius R connected by a flexible elastic belt (Fig. 2.4).
The initial tension in the belt is T0. If a torque Mext is applied to one of the pulleys, it
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Figure 2.4 Belt transmission.

will be transmitted to the second one. This causes a difference between the tensions
T1 and T2 on the tight side and slack side of the belt, which is given by

T1 − T2 = Mext/R.

The tension increases over an arc Rθ around the driving pulley, where the belt
slips. The length of this arc is determined by the capstan equation

eμθ = T1/T2,

which is obtained by integrating the tension variation over an infinitesimal arc dθ :

dT/T = μ dθ

(μ is the coefficient of friction between belt and pulley). The slip arc is located next
to the point where the belt runs out of the driving pulley. A corresponding arc is
located around the driven pulley, and this pulley runs slower than the driving pulley
in proportion to the transmitted torque. If v is the mean speed acquired by the belt,
the transmitted power is

P = (T1 − T2)v = 2T0v
eμθ − 1

eμθ + 1
.

Note that the efficiency of a belt is typically very high (∼0.9). Since transmis-
sion belts do not require lubrication and are relatively cheap, they have found
numerous applications ranging from automotive engines to transportation of heavy
materials.

The previous formulas are also valid for a V -grooved belt, provided that μ is
replaced by μ/ sinβ, where β is the half-angle of the groove profile. In this case
the length of the slip arc can be reduced significantly. For this reason V -grooved
belts are the most common choice for applications to power transmission.
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Figure 2.5 Accelerating car on a level road.

Propulsion and braking of vehicles

The processes of accelerating and braking a car of mass m are schematically rep-
resented in Fig. 2.5. Suppose that the car is accelerated by a driving couple applied
to the rear axle. In this case, the forward acceleration a is determined by the
equations

FN1 + FN2 = mg, Fx1 = ma,

Fx1h = FN1(L − b)− FN2b,

where b and h are the horizontal and vertical distances of the center of mass of
the car from the point of contact between the front wheels and the road, L is the
distance between the front axle and the rear axle (so-called ‘wheelbase’) and g =
9.8 m/s2 is the acceleration due to gravity. Slip (‘wheelspin’) will be avoided if the
static friction on the rear wheels Fx1 < μFN1. The previous equations imply that
the maximum forward acceleration is [325, section 4.12]

amax = μbg

L − μh
. (2.7)

For instance, if L = 2.5 m, b = 1.1 m, h = 0.5 m and μ = 1, the accelera-
tion amax ≈ 0.55g, meaning that the car will reach a speed of 100 km/h in about
five seconds. Note that the acceleration increases the load on the rear wheels and
decreases the load on the front wheels according to the relations

FN1 = m

L
(gb + ah), FN2 = m

L

[
g(L − b)− ah

]
.

If the car is front-wheel driven, the maximum acceleration is lower.
On the other hand, if the car is braked, it can be proven in a similar way that the

maximum retardation

|amax| = μ(L − b)g

L − μh

is reached if the braking couple is applied to the front axle.
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Figure 2.6 Pressure distribution in a container filled with sand.

The hourglass

Friction also explains why the pressure p at the bottom of a cylindrical container
of radius R filled with sand is almost independent of the filling height (so that the
flow velocity from an hourglass is constant). If the sand has a constant density ρ,
the total force F acting on a slice of thickness �z at a depth z (Fig. 2.6) is equal to
the difference between the weight of the slice, ρgπR2�z, and the friction force at
the wall. The friction force is given by

Ffric = μπR2�z · p(z).

Since F = πR2�p, a simple integration leads to the conclusion that the pressure
increases with z as

p(z) = ρgR

2μ

(
1 − e−2μz/R

)
.

Thus, the pressure approaches a constant value at a depth z ∼ R.

2.3 Viscous friction

The friction experienced by a solid object sliding on a rigid surface is usually inde-
pendent of its velocity v. This is not the case if the same object moves in a fluid.
In this case a resistive force (drag) proportional to v appears, provided that v is not
too high. Drag forces can be exploited in mechanical dampers (‘dashpots’) to slow
down other moving components. If a block of mass m is connected to a dashpot,
the friction force acting on the block can be written as

Ffric = −mγ v, (2.8)

where γ is the damping coefficient. On much smaller scales Eq. (2.8) also applies
to the motion of molecules diffusing on a solid surface. In this case γ can be related
to electronic and phononic dissipation mechanisms, as discussed in Section 15.8.
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Dissipative processes in viscoelastic materials are also governed by Eq. (2.8), as
seen in Chapter 9. In several occasions in this book we will be interested in the
influence of viscous forces on small oscillations. For this reason it is important to
review the fundamental formulas describing the damping of harmonic oscillators.2

Since we are not concerned with internal degrees of freedom, we can represent the
oscillators as point masses.

Damped harmonic oscillators

In a first approximation the motion of a point mass m connected by a spring to a
pinning center is described by the equation3

mẍ + kx = 0,

where k is the spring constant. The particle executes harmonic oscillations with a
characteristic resonance frequency

ω0 = √k/m,

a certain amplitude A and an arbitrary phase α:

x(t) = A cos(ω0t + α).

The total energy of the oscillator is simply related to the amplitude as E = k A2/2.
If, in addition to the spring force, a periodic external force Fexc(t) = F0 cosωt

is applied to the particle, a second oscillatory motion is superimposed:

x(t) = A cos(ω0t + α)+ B(ω) cosωt,

where B(ω) = F0/m(ω2
0 −ω2). If ω → ω0 the amplitude of the driven oscillations

becomes very large. If the excitation frequency ω = ω0 the amplitude B(ω0) will
increase linearly with time till the oscillations cease to be small and non-linear
effects appear.

Suppose now that, instead of the periodic force Fexc, a friction force Ffric =
−mγ ẋ acts on the oscillator. In this case, two different behaviors can be observed.
If γ /2 < ω0 the point mass oscillates with a frequency

ω1 =
√
ω2

0 − (γ /2)2.

2 The derivations of these formulas can be found in any textbook of classical mechanics, e.g. [175] or [114].
3 A single dot denotes the first derivative of a physical quantity with respect to time, and a double dot the

second derivative.
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Most importantly, the amplitude of the oscillations is not constant anymore, but
decays exponentially with a decay constant γ /2:

x(t) = Ae−γ t/2 cos(ω1t + α).

The total energy of the system, averaged over the period of the oscillations, also
decays exponentially (with a decay constant γ ):

E(t) = E0e−γ t .

If γ /2 > ω0 the point mass asymptotically approaches the equilibrium posi-
tion x = 0 without oscillating and with two different decay constants γ /2 ±√
(γ /2)2 − ω2

0.
Finally, suppose that the periodic force Fexc and the friction force Ffric act simul-

taneously on the point mass. If ω ≈ ω0, after a transient with a decay constant γ /2,
the system oscillates with an amplitude

)b()a(

0 0
0

0

π/2

B(ω) (ω)

ω
ω ω

ω

ϕ

π

Figure 2.7 Frequency response of a driven damped harmonic oscillator: (a) oscil-
lation amplitude and (b) phase lag.

0
0

I

ω
ω

Figure 2.8 Resonance peak of a damped harmonic oscillator.
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B(ω) = F0

2mω0

√
(ω − ω0)2 + (γ /2)2

and a phase lag

ϕ(ω) = arctan
γ

2(ω0 − ω)
.

The frequency dependencies of B and ϕ are shown in Fig. 2.7. If ω = ω0 the
amplitude has a maximum, but remains finite. The phase lag varies from 0 to π ,
passing through π/2 when ω = ω0. The intensity of the oscillations, defined as the
mean energy adsorbed in the oscillation period, depends on the frequency as

I (ω) ∝ (γ /2)2

(ω − ω0)2 + (γ /2)2
. (2.9)

The curve represented by Eq. (2.9) is a Lorentzian with width γ (Fig. 2.8) and the
ratio ω0/γ is the quality factor Q of the oscillator.





Part I
Elastic Contacts





3

Elements of the theory of elasticity

The distribution of the friction forces at the interface between two contacting bod-
ies is significantly influenced by the elastic properties of the two materials. The
goal of this chapter is to recall the basic concepts of the theory of elasticity. Here
we will first show how the elastic moduli describing the response to simple com-
pressive and shear deformations can be used to relate the stress and strain occurring
in an arbitrary deformation of a body. The elastic moduli also define the velocity of
the longitudinal and shear sound waves propagated in the bulk and of the Rayleigh
waves propagated on the surface of the body. General expressions for the strain
energy will be introduced also. If the distribution of the forces on the surface of
an elastic body is known, the stress and strain distribution in the bulk are unequiv-
ocally determined by the Navier–Cauchy equations. These equations are greatly
simplified in plane stress or plane strain problems.

3.1 Strain

When a solid object is deformed, each point in it is subjected to a displacement

u(r) = r′ − r,

where r ≡ (x, y, z) and r′ ≡ (x ′, y′, z′) are the vectors defining the position of the
point (in a fixed frame of reference) before and after the deformation. The strain
tensor is defined as

εi j = 1

2

(
∂ui

∂x j
+ ∂u j

∂xi

)
, (3.1)

where xi and ui (i = 1, 2, 3) are the components of the vectors r and u, respec-
tively. In engineering, the notation γi j = 2εi j is frequently used when i 
= j , and
the diagonal components of εi j are simply denoted by εi . Note that the definition
(3.1) implicitly assumes that the displacement vector u is small. If this is not the

19
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case, additional quadratic terms in the gradients ∂ui/∂x j need to be included. This
situation may occur in the deformation of thin rods (Section 7.1).

The sum of the diagonal components of the strain tensor gives the relative
variation of the volume V in the deformation:

εkk = �V/V,

where εkk ≡ ε11 + ε22 + ε33.
The strain tensor can be separated as

εi j = 1

3
δi jεkk +

(
εi j − 1

3
δi jεkk

)
, (3.2)

where δi j ≡ 1 if i = j and δi j ≡ 0 if i 
= j . The first term on the right hand
side of Eq. (3.2) corresponds to a hydrostatic compression which does not change
the shape of the body. The second term corresponds to a pure shear modifying the
shape, but not the volume of the body. This term is called deviatoric strain.

3.2 Stress

Consider an arbitrary surface element with unit normal n inside a deformed body
(Fig. 3.1). The components of the surface force T acting on this element (the so-
called stress vector or traction vector) can be written as

Ti = σi j n j , (3.3)

where σi j is the stress tensor. The projections of T perpendicular and parallel
to the surface element define the normal stress σn = T · n and the shear stress
τ = √

T 2 − σ 2
n , respectively. In this way the component σxy of the stress tensor

represents the shear in the x direction caused by a traction in the y direction (and
similarly for the other combinations of Cartesian coordinates).

If n is oriented along one of the three mutually perpendicular principal axes
of stress, the shear stress along the corresponding principal plane must be zero.

x

y

z

0

n

T

Figure 3.1 Traction vector on an arbitrarily oriented surface.
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The principal normal stresses are obtained as the solutions σi (i = 1, 2, 3) of the
characteristic equation

det(σi j − σδi j ) = 0. (3.4)

They are usually ordered so that σ1 ≥ σ2 ≥ σ3. The average value of the normal
stresses

p = 1

3
(σ1 + σ2 + σ3)

is the hydrostatic pressure at the given point. Furthermore, it can be proven that the
shear stress reaches its maximum value

τmax = 1

2
(σ1 − σ3)

along the planes oriented at ±45◦ with respect to the principal axes 1 and 3. If τmax

exceeds a certain threshold value at any location in the deformed solid the theory
of elasticity breaks down and, as will be discussed in Section 12.1, the response of
the material becomes plastic.

Strain energy

The definition (3.3) implies that the components of the force f acting on the unit
volume of an elastically deformed body are [177, section 2]

fi = ∂σi j

∂x j
.

From the work done by f during mechanical loading it is easy to see that the density
of the strain (or elastic) energy in the body is [177, section 3]

Uel = 1

2
σi jεi j . (3.5)

Thus, the components of the strain tensor εi j and the components of the stress
tensor σi j are the first derivatives of the energy density (3.5) with respect to σi j or
εi j :

εi j = ∂Uel

∂σi j
, σi j = ∂Uel

∂εi j
.

3.3 Isotropic elastic materials

If a solid is elastic the relation between the stress tensor σi j and the strain tensor εi j

is linear:

σi j = Ci jklεkl .
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The stiffness tensor Ci jkl has in general 21 independent components, which become
only two if the body is isotropic. Anisotropic materials include single crystals,
which are commonly used in microelectromechanical systems (MEMS), but also
wood, fiber reinforced composite materials and even polycrystalline metals, if
specific textures are formed during manufacture.

Bulk and shear moduli

Taking into account the separability of the strain tensor expressed by Eq. (3.2), the
stress–strain relation in an isotropic elastic material can be written as

σi j = K δi jεkk + 2G

(
εi j − 1

3
δi jεkk

)
, (3.6)

where K and G are the bulk modulus and the shear modulus of the material,
respectively. Vice versa:

εi j = 1

9K
δi jσkk + 1

2G

(
σi j − 1

3
δi jσkk

)
. (3.7)

The meaning of K and G becomes clear if the body undergoes a hydrostatic com-
pression or a pure shear. In the first case σi j = −pδi j and the relative variation in
volume is

�V/V = −p/K .

In the second case εkk = 0 so that

τi j = Gγi j . (3.8)

Substituting the stress–strain relation (3.6) into the expression (3.5) for the
density of strain energy, the latter can be written as

Uel = G

(
εi j − 1

3
δi jεkk

)2

+ 1

2
Kε2

kk . (3.9)

The requirement that the elastic energy Uel has a minimum in the undeformed
equilibrium state of the body implies that the moduli K and G must be positive.

Young’s modulus and Poisson’s ratio

Consider now an elastic beam undergoing a simple compression along its long-
itudinal (z) direction. In this case the relations between the applied pressure p,
the transverse elongation εx and the longitudinal compression εz of the beam can
be written introducing the Young’s modulus E and the Poisson’s ratio ν of the
material:
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p = Eεz, εx = −νεz. (3.10)

The first of the relations (3.10) corresponds to the famous Hooke’s law, and dates
back to 1678. Equation (3.8) can be considered as the equivalent of Hooke’s law
for shear deformations. For most metals Young’s modulus is of the order of 100
GPa. For instance, E = 210 GPa for steel. However, E can be as low as 2 MPa
in the case of rubber. Poisson’s ratio is dimensionless, and takes values around 0.3
for most metals.

Note that the shear modulus can be expressed as a function of E and ν as

G = E

2(1 + ν)
. (3.11)

Other relations among the elastic moduli are

K = E

3(1 − 2ν)
, E = 9K G

3K + G
, ν = 3K − 2G

2(3K + G)
. (3.12)

Using the first of the equations (3.12) the stress–strain relations (3.6) and (3.7) can
be written as

σi j = E

1 + ν

(
εi j + ν

1 − 2ν
δi jεkk

)
(3.13)

and

εi j = 1

E

(
(1 + ν)σi j − νδi jσkk

)
. (3.14)

Since K > 0 and G > 0 the second of the equations (3.12) implies that E is
also positive. From the third equation it follows that ν can only vary between −1
and 1/2. The limit value ν = 1/2 is approached by incompressible materials like
rubber. In these materials G ≈ E/3 and K � G, meaning that a rubber block is
easy to bend but difficult to compress. Negative values of ν are not found in nature,
although they have been reported in artificial polymer foams (so-called auxetic
materials [172]). In this case, the material expands transversally when stretched
longitudinally.

Introducing Young’s modulus and Poisson’s ratio, the strain energy density (3.9)
can also be written as

Uel = E

2(1 + ν)

(
ε2

i j + ν

1 − 2ν
ε2

kk

)
. (3.15)

Constrained modulus

If the sides of an elastic beam under compression are constrained, only the com-
ponent εz of the strain tensor εi j is different from zero. In this case the relation
between the applied pressure p and the longitudinal compression becomes
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p = Mεz,

where

M = (1 − ν)E

(1 + ν)(1 − 2ν)
(3.16)

is the constrained modulus of the material. For incompressible materials M ≈
K � E . This explains why a piece of rubber which cannot expand freely is much
stiffer than if it were not constrained.

3.4 Equilibrium of elastic bodies

If bulk forces are negligible, as we assumed so far, the equilibrium of an elastically
deformed body can be described by substituting the relation (3.13) into the general
equation fi ≡ ∂σi j/∂x j = 0. As a result the displacement vector u is found to
satisfy the Navier–Cauchy equations:

(1 − 2ν)∇2u + ∇(∇ · u) = 0, (3.17)

where ∇ is the gradient and ∇2 is the Laplacian operator. In the two common
situations presented below, Equations (3.17) can be reduced to two dimensions
(2D) and greatly simplified.

Plane strain

If a body is deformed perpendicularly to the z direction, the components τxz and
τyz of the stress tensor and the components εz , εxz and εyz of the strain tensor are
zero. In this case, we can introduce a stress function ϕ(x, y) such that [2]

σx = ∂2ϕ

∂y2
, τxy = − ∂2ϕ

∂x∂y
, σy = ∂2ϕ

∂x2
. (3.18)

The stress function satisfies the biharmonic equation

∇2(∇2ϕ) = 0. (3.19)

Once the components σx and σy of the stress tensor are determined from Equations
(3.18) and (3.19) with appropriate boundary conditions, the third component σz

can be calculated as σz = ν(σx + σy).

Plane stress

If an elastic plate is stretched along its plane perpendicular to the z axis, the stress
components σz , τxz , τyz and the strain components εxz , εyz are zero. Again, we
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TT

Figure 3.2 Maximum shear stress distribution around a circular hole in an infinite
elastic plate under tension.

can introduce a stress function ϕ(x, y) defined by Eq. (3.18) and satisfying the
biharmonic equation. Note that in this case the stress distribution is independent of
the material constants of the plate.

As an example, consider an infinite plate with a circular hole of radius R, which
is subjected to a uniform tension T along the x direction (Fig. 3.2). The resulting
stress is distributed at the edge of the hole as σθ = T (1 − 2 cos 2θ), where θ
is referred to the direction of the applied force [177, section 13]. The maximum
stress σmax corresponds to θ = ±π/2 and it is three times the stress at infinity. The
ratio σmax/T defines the so-called stress concentration factor S. More generally, if
the hole has an elliptical shape with semi-axes a and b, the ratio is [145]

Sellipse = 1 + 2a/b,

and tends to infinity if b/a → 0. To reduce this value it is common practice to drill
a hole at the tip of a linear slit. For a spherical cavity, the stress concentration factor
depends on Poisson’s ratio as [177, section 7]

Ssphere = 27 − 15ν

2(7 − 5ν)
.

We will come back to these problems in the context of fracture mechanics
(Section 13).

3.5 Elastic waves

Elastic waves can propagate in an isotropic solid in the form of longitudinal waves
or shear waves. The velocity of propagation is given, in the two cases, by the
formulas

cl = √M/ρ, cs = √G/ρ,
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where M is the constrained modulus, G is the shear modulus and ρ is the density
of the material. Note that the ratio cl/cs depends only on Poisson’s ratio and varies
between 0 and 1/

√
2. In the seismological literature, longitudinal and shear waves

are called primary (P) and secondary (S) waves respectively. Typical values for
P-wave velocities in earthquakes are in the range of 5–8 km/s, whereas S-waves
are slower. On the surface of a solid the so-called Rayleigh waves can also propa-
gate. Their velocity, cR, is slightly less than cs by a factor depending on the elastic
constants of the material [177, section 24].
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Normal contacts

The formulas introduced in Chapter 3 can be applied to study the deformation and
the stress distribution in two elastic bodies in contact. In this chapter we will first
assume that a normal force is concentrated in a single point on the free surface
of an elastic half-space, or uniformly distributed on a straight line, an infinitely
long strip and also on circular or rectangular areas. The half-space will be also
indented by a rigid punch or a rigid cylinder. The normal contact between two
elastic spheres or cylinders is discussed within the general theory developed by
Hertz. Even if this theory is not applicable if geometric singularities appear, as for
a wedge or a cone penetrating into a half-space or in the non-conforming contact
formed by a pin in a hole, analytical solutions can be derived also in these cases.
Finally, we will show how the pressure distribution in a normal contact is modified
by the interfacial friction, which results in the appearance of slip areas. To keep
the discussion as short as possible, the derivations of the analytical expressions are
not carried out. The interested reader will find them in Johnson’s book [156] and
references therein.

4.1 Pressure on an elastic half-space

Point loading

The problem of a concentrated force FN acting normally to the free surface of an
elastic half-space (Fig. 4.1) was first solved by Boussinesq [30]. The normal and
radial deformations at the surface are inversely proportional to the distance ρ from
the point of application of the force:

uz = −(1 − ν)FN

2πGρ
, ur = −(1 − 2ν)FN

4πGρ
, (4.1)

where G and ν are the shear modulus and Poisson’s ratio of the material. The
normal stress and the component of the shear stress parallel to the free surface
(inside the solid) do not depend on the elastic properties of the material:

27
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FN

r

z

Figure 4.1 Maximum shear stress distribution (logarithmic scale) in an elastic
half-space deformed by a concentrated normal force.

σz = −3FN

2π

z3

ρ5
, τr z = −3FN

π

r z2

ρ5
, (4.2)

where r is the projection of the position vector onto the free surface. However, this
is not the case for the other components of the stress tensor:

σr = FN

2π

[
(1 − 2ν)

(
1

r2
− z

ρr 2

)
− 3zr2

ρ5

]
,

σϕ = − FN

2π
(1 − 2ν)

(
1

r 2
− z

ρr2
− z

ρ3

)
,

where ϕ is the azimuthal angle around the z axis. In Fig. 4.1 the contours of
constant maximum shear stress τmax (Section 3.2) are also plotted, assuming that
ν = 0.33.

Line loading

The stress field and the deformation resulting from a given force distribution can
be obtained by superposition from the results for a concentrated force. If a line load
(force per unit length) fN is uniformly applied along an infinite straight line on the
free surface of an infinite half-space, as in Fig. 4.2, the stress in the solid is radially
distributed and decreases in intensity as 1/ρ:

σρ = −2 fN

π

cos θ

ρ
.

Both σρ and the maximum shear stress τmax = σρ/2 are constant on a family of cir-
cles passing through the point of application of the force. The normal displacement
varies logarithmically, and is determined up to an additive constant [93]:
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fN

x

z

Figure 4.2 Maximum shear stress distribution (logarithmic scale) in an elastic
half-space deformed by a normal force distributed along a line (perpendicular to
the plane of the figure).

uz = (1 − ν) fN

πG
ln |x | + const. (4.3)

Note that the logarithmic divergence is typical of infinite problems in 2D and is
removed if the sample has a finite size. The lateral displacement is constant and
given by

ux = ∓ (1 − 2ν) fN

4G
. (4.4)

Strip loading

If a uniform pressure p acts on a strip of half-width a the maximum shear
stress τmax is constant on a family of circles passing through the edges of the
loaded area [156, section 2.5] (Fig. 4.3). The maximum shear stress τmax peaks
on the semi-circle with diameter 2a, where it reaches the value p/π . The normal
displacement uz can be evaluated from the equation of equilibrium for the gradient

∂uz

∂x
= −(1 − ν)

πG

∫ a

−a

p(s) ds

x − s
, (4.5)

which is obtained by integrating the first of the equations (4.1) on the loaded area
and differentiating with respect to z. As a result:

uz = (1 − ν)

2πG
p

[
(a + x) ln

(
1 + x

a

)2 + (a − x) ln
(

1 − x

a

)2
]

+ const. (4.6)

Inside the strip the tangential displacement ux is proportional to the distance x from
the axis. Outside the strip ux is constant and equal to
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p
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z

Figure 4.3 Maximum shear stress distribution in an elastic half-space deformed
by a normal force uniformly distributed on a strip.

ux = ∓ (1 − 2ν)

2G
pa. (4.7)

Again, these conclusions change if the 2D system is finite.

Circular loading

If a uniform pressure p is applied to a circular region of radius a on an elastic
half-space, the normal displacement is distributed as in Fig. 4.4. Inside the loaded
circle uz can be expressed in terms of the complete elliptic integrals of the first and
second kind,1 K and E , as

uz = −2(1 − ν)pa

πG
E
( r

a

)
(r < a)

[156, section 3.4]. Outside the circle:

uz = −2(1 − ν)pr

πG

[
E
(a

r

)
−
(

1 − a2

r2

)
K
(a

r

)]
(r > a).

The radial displacement inside the circle is proportional to r :

ur = −(1 − 2ν)pr

4G
(r < a).

1 The functions K and E are defined as

K (k) =
∫ π/2

0

dθ√
1 − k2 sin2 θ

, E(k) =
∫ π/2

0

√
1 − k2 sin2 θ dθ.
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Figure 4.4 Maximum shear stress distribution in an elastic half-space deformed
by a normal force uniformly distributed on a circular region.

Outside this circle ur decreases as if the whole load were concentrated in the center:

ur = − (1 − 2ν)pa2

4Gr
(r > a).

Analytical expressions for the stress components in the solid were derived by
Love [194]. Along the z axis the normal stress does not depend on the elastic
properties and decreases with z as

σz = p

(
1 − z3

(a2 + z2)3/2

)
.

Rectangular loading

The stress distribution resulting from a uniform pressure applied on a rectangular
region a×b is of utmost importance in soil mechanics and foundation engineering.
The normal stress below a corner of the rectangle can be found by superposition
from Eq. (4.2) [62, section 5.6]:

σz = p

4π

[
2abz

√
f (z)

z2 f (z)+ a2b2

f (z)+ z2

f (z)
+ arctan

(
2abz

√
f (z)

z2 f (z)− a2b2

)]
, (4.8)

where f (z) = a2 + b2 + z2 and the arctangent takes values between 0 and π .
Equation (4.8) can be also used to determine the normal stress below any point P
in the rectangle, observing that P can be seen as the common corner point of four
rectangular subregions.

4.2 Indentation of an elastic half-space

Instead of considering a localized force or a uniform pressure distribution, we will
now assume that an elastic half-space is indented by a rigid object pushed by a
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(b) FNFN(a)

Figure 4.5 Maximum shear stress distribution (logarithmic scale) and deforma-
tion in an elastic half-space indented (a) by a rigid flat punch and (b) by a rigid
cylinder.

normal force FN over a finite distance δ. This problem can be solved in a closed
form if the indenter is shaped as a punch or a cylinder.

If the indentation is made with a rigid punch of half-width a (Fig. 4.5a) the
pressure distribution at the interface is

p(x) = p0√
1 − x2/a2

, (4.9)

where p0 = FN/πa. The normal displacement outside the contact strip is given by
the expression

uz(x) = δ − (1 − ν)FN

πG
ln

(
x

a
+
√

x2

a2
− 1

)
(|x | > a)

which, as usual, is not applicable to a finite sample. Note that the pressure p
becomes infinite at the edges of the strip, where the deformation has an infinite
gradient. The maximum shear stress varies as

τmax = − FN

2π
√

2aρ
sin θ,

where ρ and θ are polar coordinates centered around the lines x = ±a. If the
material is compressible (ν < 0.5) the surface tends also to move towards the
center of the strip according to the expression

ux (x) = − (1 − 2ν)(1 + ν)FN

πE
arcsin

x

a
.

If the half-space is indented by a rigid cylinder with its axis perpendicular to the
surface, as in Fig. 4.5b, the pressure distribution in the contact circle is
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p(r) = p0√
1 − r 2/a2

, (4.10)

where p0 = FN/2πa2. In this case the penetration depth is related to FN as

δ = (1 − ν)FN

4aG
. (4.11)

Outside the circle the normal displacement is

uz(r) = (1 − ν)FN

2πaG
arcsin

a

r
(r > a).

Again, the pressure (4.10) becomes infinite at the edge of the contact area, where
the deformation has an infinite gradient. The stress distribution in the solid was
calculated by Sneddon [309].

4.3 The Hertz theory

In the problems discussed so far the area of contact does not change with the normal
force FN. This is not the case if an elastic sphere is pressed against a half-space.
Here, it can be seen by interference techniques that the contact area is a circle, the
radius of which increases as F1/3

N [156, section 4.1]. A general solution to these
problems was found by Hertz [136].

Contact between elastic bodies

Consider two solid objects whose surfaces touch at a point (Fig. 4.6). If this point is
not a singularity for the surface geometries, we can define the radii of curvature R′

1,
R′

2 and R′′
1 , R′′

2 of the two surfaces, and a common tangent plane passing through
the point of contact. With a proper choice of the x and y axes along this plane, it
is always possible to write the gap between the two surfaces (outside the contact
area) as

h(x, y) = Ax2 + By2.

The quantities A and B are related to the radii of curvature by the expressions

A + B = 1

2

(
1

R′
1

+ 1

R′
2

+ 1

R′′
1

+ 1

R′′
2

)

and

B − A =1

2

[(
1

R1
− 1

R2

)2

+
(

1

R′
1

− 1

R′
2

)2

+ 2

(
1

R1
− 1

R2

)(
1

R′
1

− 1

R′
2

)
cos 2α

]1/2

,
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x1

y2

x2

y1

Figure 4.6 Geometry of two elastic bodies with convex surfaces in contact at a
point.

where α is the angle formed by the normal sections with radii of curvature R1

and R′
1. Note that we have implicitly assumed that the two surfaces are not con-

forming, i.e. they are not likely to form a contact of a size comparable to their
dimensions.

If the two bodies are pressed against each other by a force FN perpendicular to
the tangent plane, they will deform and touch over a finite area of contact which,
in a first approximation, is an ellipse with semi-axes a and b. Furthermore, the
bodies will approach each other over a distance δ. The expressions relating these
quantities are not trivial. The elastic properties of the two materials appear only in
the combination

1

E∗ = 1 − ν2
1

E1
+ 1 − ν2

2

E2
, (4.12)

where Ei and νi (i = 1, 2) are the Young’s modulus and Poisson’s ratio of the two
materials. The semi-axes a and b are implicitly determined by the relations

A = p0

E∗
b

ε2a2
(K (ε)− E(ε))

and

B = p0

E∗
b

ε2a2

(
a2

b2
E(ε)− K (ε)

)
,

where E and K are the complete elliptic integrals introduced in Section 4.1, ε =√
1 − b2/a2 is the eccentricity of the ellipse and p0 = 3FN/2πab is the maximum

pressure in the contact. Once a and b are known, the penetration depth can be
calculated as
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δ = p0

E∗ bK (ε).

In spite of the complexity of the problem, two simple relations are valid in
general. First, δ increases with FN as

δ ∝ F2/3
N . (4.13)

Second, the pressure distribution in the contact ellipse is related to a and b by

p(x, y) = p0

√
1 − x2

a2
− y2

b2
. (4.14)

Note that the pressure drops continuously to zero towards the edge of the contact
area and its maximum value, which is reached at the center of the contact area, is
3/2 the average pressure. Useful approximations for a, b and δ have been derived
by Hamrock and Dowson using the least squares method [131].

Contact between two spheres

In the case of two elastic spheres with radii R1 and R2, the previous expressions
are considerably simplified. The quantities A and B are both equal to 1/2R, where
the equivalent radius R of the spheres is defined as

1

R
= 1

R1
+ 1

R2
. (4.15)

In this way the problem can be seen to be completely equivalent to that of a rigid
sphere of radius R pressed against an elastic half-space with Young’s modulus E∗

(Fig. 4.7). The contact area is a circle with radius

FN

Figure 4.7 Maximum shear stress distribution in an elastic half-space indented by
a rigid sphere.
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a =
(

3FN R

4E∗

)1/3

(4.16)

and the pressure distribution is

p(r) = p0

√
1 − r2

a2
, (4.17)

where p0 = 3FN/2πa2. The penetration depth is

δ =
(

3

4E∗√R

)2/3

F2/3
N , (4.18)

and is related to the contact radius a by the simple expression

δ = a2/R. (4.19)

According to the previous formulas, if two steel balls with radius of 10 mm are
pressed against each other by a force of 1 N, they will approach up to a distance of
about 0.2 µm.

The pressure (4.17) causes a vertical displacement

uz,i(r) = (1 − ν2
i )

Ei

πp0

4a
(2a2 − r 2) (4.20)

of the surface of each sphere inside the loaded circle, and

uz,i (r) = −(1 − ν2
i )

Ei

p0

2a

(
(2a2 − r2) arcsin

a

r
+ ar

√
1 − a2

r2

)

out of it. Apart from the normal compression, the mutual contact pressure produces
a tangential displacement which, inside the contact circle, is given by

ur,i(r) = − (1 − 2νi)(1 + νi)

3Ei

a2

r
p0

[
1 −

(
1 − r2

a2

)3/2
]
.

Outside this circle the tangential displacement takes the same values as if the load
were concentrated in the center of the circle.

Finally, the stress distribution is

σr = − E

1 + ν

ur

r
− p(r), σθ = − E

1 + ν

ur

r
− 2νp(r) (4.21)

inside the loaded circle and

σr = σθ = −p0(1 + ν)

(
1 − z

a
arctan

a

z

)
+ p0

2(1 + z2/a2)
, (4.22)

σz = − p0√
1 + z2/a2

(4.23)
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Figure 4.8 Stress distribution accompanying the deformation of two elastic
spheres pressed against each other: (a) in the contact area and (b) along the axis
of symmetry of the problem (for one sphere only).

along the z axis. The relations (4.21) and (4.22) are plotted in Fig. 4.8 together
with the variation of the maximum shear stress τmax along the z axis. Note that τmax

peaks beneath the contact area. If ν = 0.3 the peak value is 0.31p0. In the contact
circle the stress components are compressive, except for the radial component σr at
the edge, which tends to (1 − 2ν)p0/3. This tensile stress may cause cracks when
a sphere is pressed into contact.

Collision between elastic spheres

The elastic potential energy Uel of two spheres in contact can be determined by
observing that the normal force FN is the first derivative of Uel with respect to the
penetration depth δ. Using Eq. (4.18) we easily get

Uel(δ) = 8

15
E∗√Rδ5/2. (4.24)

The expression (4.24) allows us to solve an interesting problem: how long is the
time of contact tc when the spheres are launched against each other with a relative
speed v0? In the frame of reference of the center of mass, the spheres have a kinetic
energy Ekin = mv2

0/2, where m = m1m2/(m1 + m2) is the reduced mass of the
system. If v0 is small compared to the velocity of sound, the time tc can be estimated
by the law of conservation of energy. As a result [70]:

tc = 2.87

(
m2

RE∗2v0

)1/5

.

The maximum penetration depth can be also estimated as

δmax =
(

15mv2
0

16
√

RE∗

)2/5

.
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If v0 = 1 m/s, the two steel balls considered before would remain in contact for a
time tc ≈ 70 µs with penetration depth δmax ≈ 23 µm.

Contact between two cylinders

If two cylinders are pressed against each other along a generator by a line load
FN, the contact area is a strip.2 The half-width a of this strip and the pressure
distribution in it can be determined by taking the limit b → ∞ in the general
equations of the Hertz theory. As a result:

a =
√

4RFN

πE∗ , (4.25)

where the equivalent R is defined by Eq. (4.15), and

p(x) = p0

√
1 − x2

a2
, (4.26)

with p0 = 2FN/πa. In this case the penetration depth δ does not follow the general
relation (4.13) and cannot be derived from the Hertz theory. The maximum shear
stress τmax is distributed as shown in Fig. 4.9. Along the z axis it varies as

τmax = p0a

(
z − z2

√
a2 − z2

)
,

independently of Poisson’s ratio, and peaks at 0.30p0 at z = 0.78a.

FN

Figure 4.9 Maximum shear stress distribution in an elastic half-space indented by
a rigid cylinder.

2 If two cylinders cross each other perpendicularly, the problem is equivalent to that of a sphere in contact with
a plane.
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However, real cylinders have a finite size, and the contact stress concentrates at
their ends. This problem can be reduced if the cylinders are reshaped in the form
of barrels.

Axisymmetric indenters

Suppose now that a rigid indenter with an axisymmetric profile z(r) = Arβ is
pressed against an elastic half-space. The resulting deformation was calculated by
Sneddon, who derived the load – displacement relation [310]

FN = 2E∗

(
√
π A)1/β

β

β + 1

(
�(β/2 + 1/2)

�(β/2 + 1)

)1/β

δ1+1/β . (4.27)

In Eq. (4.27) � is the gamma function defined as

�(x) =
∫ ∞

0
t x−1e−x dx .

The Sneddon theory is applied in the Oliver–Pharr model for nanoindentation,
discussed in Section 12.8.

4.4 Beyond the Hertz theory

Contact between a wedge or a cone and a half-space

If a wedge or a cone is pressed against a half-space, the contact has a singularity
and the Hertz theory cannot be applied. However, the surface deformation can still
be determined using the relation (4.5) for the displacement gradients (in the case of
a wedge, and a similar relation for a cone). Note that, in order for the deformation
to be small, the half-angle α of the indenter has to be sufficiently large. In other
words, the formulas introduced below are only valid if the wedge or the cone is
blunt. In this case the contact area between a wedge and a half-space turns out to
be a strip with half-width [156, section 5.2]

a = FN

E∗ tan α,

where FN is the normal force per unit length. The pressure distribution in the
contact area is

p(x) = p0 cosh−1(a/x), (4.28)

where

p0 = E∗

π tanα
.
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x

z

Figure 4.10 Maximum shear stress distribution in an elastic half-space indented
by a rigid blunt wedge.

The distribution (4.28) has a logarithmic singularity when x → 0. In spite of that,
the maximum shear stress τmax remains finite and peaks at p0, independently of the
applied load, at the apex of the wedge (Fig. 4.10).

Similarly, the contact area between a blunt cone and a half-space [195] is a circle
with radius

a =
√

2FN

πE∗ tanα,

where FN is the normal force. The pressure distribution p(r) is given again by the
relation (4.28), with

p0 = E∗

2 tanα
.

As for a rigid wedge, p0 coincides with the peak value of the maximum shear stress
τmax, which is reached at the apex of the cone.

Conforming surfaces

Conforming surfaces behave quite differently from the predictions of the Hertz
theory. This is due to the fact that the application of a light load can dramatically
vary the size of the contact area.

An important example is the problem of a pin in a hole (Fig. 4.11a). This problem
was first solved for elastically similar materials by A. Persson [241] and general-
ized to dissimilar materials by Ciavarella and Decuzzi [57]. For similar materials
the contact arc length, 2α, depends on the ratio between the difference�R between
the radii of the pin and the hole and the normal force FN according to the relation
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Figure 4.11 (a) Contact of a pin with a conforming hole. (b) The solution for
the contact arc according to Eq. (4.29) (continuous curve) and the Hertzian
approximation at low load (dashed curve).

E∗�R

FN
= 2

π

1 − x2

x2
− 1

π2x2(1 + x2)

∫ x

−x
log

√
x2 + 1 + √

x2 − s2

√
x2 + 1 − √

x2 − s2

ds

1 + s2
(4.29)

with x = tan(α/2). Equation (4.29) is plotted in Fig. 4.11b together with the
Hertzian expression, which is recovered at low load or at large clearance. Note
that the contact is stiffer than expected from the Hertz theory. This is also the case
for an elastic sphere in a conforming cavity [116].

A pin in a hole is an example of receding contact. If the unloaded pin perfectly
fits the hole, a gap suddenly appears when the pin is loaded, and the contact area
shrinks down.

4.5 Influence of friction on normal contact

We discuss now the influence of the interfacial friction in the contact of two objects
pressed normally against each other.

Indentation of an elastic body

Consider a rigid punch (with base width 2a) indenting an elastic half-space. If the
static friction were capable of preventing slip completely (see also section 5.2),
the pressure distribution would not differ significantly from (4.9) and a tangential
traction τ = μp would appear in the contact area, where μ is the coefficient of fric-
tion between the punch and the half-space. However, this traction would become
infinite at the edges of the contact, a situation which cannot be sustained in prac-
tice. As a result, slip must occur. The slip considerably changes the distribution of
the traction τ , but not that of the pressure p, in the contact area. The ratio τ/p is
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Figure 4.12 Ratio between tangential traction and normal pressure for a rigid flat
punch indenting an elastic half-space with no slip (continuous curve) and with
slip (dashed curve). Parameter values: ν = 0.3 and μ = 0.237. Adapted from
[315] with permission from Cambridge University Press.

plotted in Fig. 4.12 as a function of the distance x from the axis of the strip. Slip
occurs out of a thinner strip, the half-width c of which can be implicitly determined
using a relation derived by Spence [315]:

E
(√

1 − c2/a2
)

E(c/a)
= 1 − 2ν

2(1 − ν)μ
(4.30)

(E is the complete elliptic integral of the second kind introduced in Section 4.1).
Similarly, if a rigid cylinder pressed against an elastic half-space completely

adhered to it, the pressure distribution would not differ significantly from (4.10),
but the friction would become infinite at the edge, meaning that slip must occur out
of a circular area.

Hertzian contacts

Interfacial friction plays a role in the contact of two non-conforming surfaces only
if the elastic constants of the two materials are different. In this case the influence
of the tangential traction on the normal pressure is usually not negligible. If two
cylinders are pressed against each other along a generator, a relation similar to
(4.30) holds, with the factor multiplying (1/μ) replaced by the Dundurs parameter
[156, section 5.4]

β = (1 − 2ν1)/G1 − (1 − 2ν2)/G2

2(1 − ν1)/G1 + 2(1 − ν2)/G2
. (4.31)
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Figure 4.13 Extension of the no-slip area in the contact between two dissimi-
lar cylinders (continuous curve) and two dissimilar spheres (dashed curve) as a
function of the ratio μ/β defined in the text.

The half-width c of the contact area is plotted in Fig. 4.13 as a function of μ/β .
If two dissimilar spheres are pressed against each other, the radius c of the no-slip
circle is given by the relation [115]

a

2c
ln

(
a + c

a − c

)
= β

μ
E
(√

1 − c2/a2
)
,

which is also plotted in Fig. 4.13.
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Tangential contacts

In this chapter we consider the deformation of elastic bodies under the influence
of tangential forces. Again we will first assume that the force is concentrated on a
single point on the free surface of an elastic half-space, or uniformly distributed on
a straight line or a long strip. If the force is applied to a cylinder or a sphere pushed
against the half-space, an infinite traction appears at the edge of the contact area,
resulting in the appearance of slip. The slip areas becomes larger at increasing val-
ues of the force, till the body is set into motion when the static friction is overcome.
The deformation resulting from an object pressed against an elastic half-space and
sliding over it will be discussed in the case of rigid spheres or cylinders. Finally,
we will briefly mention how oscillating tangential forces and oscillating torques
may affect the contact between two elastic materials.

5.1 Traction on an elastic half-space

Point traction

The problem of a concentrated tangential force Fx acting on the free surface of an
elastic half-space was solved by Cerruti [50]. The three components of the resulting
surface displacement are [177, par. 8]

ux = Fx

4πGr

(
2(1 − ν)+ 2νx2

r2

)
,

uy = ν

2πG

xy

r3
Fx , uz = 1 − 2ν

4πG

x

r 2
Fx ,

where G and ν are the shear modulus and Poisson’s ratio of the material, and r is
the distance from the point of application of the force. The non-zero components
of the stress distribution on the free surface are:

σx = −3x

r3

[
1 + 2ν

(
x2

r2
− 1

)]
Fx

2π
, σy = −6νxy2

r 5

Fx

2π
,

44
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τxy = y

r 3

[
−1 + 2ν

(
3x2

r2
− 1

)]
Fx

2π
.

As for the normal forces, the deformation resulting from a distribution of tangential
forces can be found by superposition.

Line traction

If a tangential line force Fx is uniformly distributed along the y axis, as in Fig. 5.1,
the tangential displacement varies logarithmically with the distance x from this
axis:

ux (x) = − (1 − ν)Fx

2πG
ln |x | + const. (5.1)

The surface ahead of the force is depressed by an amount proportional to Fx

whereas the surface behind it rises by the same amount:

uz(x) = ± (1 − 2ν)Fx

4G
.

The stress in the solid is radially distributed and its contour lines are semicircles
passing through the traction line:

σr = −2Fx

π

cos θ

ρ
. (5.2)

Note that in Eq. (5.2) the angle θ is measured clockwise from the line of action of
the force, so that the stress is compressive if x > 0 and tractive if x < 0.

If the tangential force is oriented parallel to the y axis, the x dependence
of the displacement in the force direction does not differ qualitatively from the
previous case:

Figure 5.1 Maximum shear stress distribution (logarithmic scale) in an elastic
half-space deformed by a tangential force uniformly distributed along a line.
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τ

Figure 5.2 Maximum shear stress distribution in an elastic half-space deformed
by a tangential force uniformly distributed on a strip.

uy(x) = − Fy

πG
ln |x | + const.

However, there is no displacement in the normal direction.

Strip traction

If a tangential stress τ(x) is applied to an infinite strip of half-width a, as in Fig. 5.2,
the displacement ux is obtained from a relation which is completely analogous to
Eq. (4.5):

∂ux

∂x
= −1 − ν

πG

∫ a

−a

τ(s) ds

x − s
. (5.3)

If τ is uniform, the formulas for the resulting surface displacement are similar to
those obtained when a uniform pressure p is applied to the strip, with uz replaced
by ux , and ux replaced by −uz: see Eq. (4.6) and (4.7). However, the stress always
remains finite when a uniform pressure is applied, whereas the stress component
σx becomes infinite, and respectively compressive or tensile, at the edges of a strip
which is loaded tangentially (Fig. 5.3):

σx = 2τ

π
ln

x − a

x + a
.

This may cause fretting fatigue if the traction oscillates with time.

5.2 Partial slip

When two elastic objects are pressed against each other and, at the same time,
they are moved laterally, the large traction at the edges of the contact area causes
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Figure 5.3 Tangential shear stress distribution on the free surface of the half-
space.

a partial slip which reduces the size of the contact. A similar phenomenon is
observed if the objects are twisted about an axis passing through the area of contact.

Cylinder

Suppose that a tangential force (per unit length) Fx is applied to an elastic cylin-
der, which is pressed along a generator against an elastic half-space by a normal
force FN. The ratio Fx/FN is supposed to be lower than the coefficient of friction
μ, so that the cylinder cannot start sliding. If the cylinder adhered completely to
the substrate, the tangential displacement in the contact area would be constant,
corresponding to a tangential stress

τ(x) = τ0√
1 − x2/a2

,

where a is given by (4.25) and τ0 = Fx/πa. However, an infinite value of τ at the
edges of the contact cannot be sustained and, in practice, slip must occur out of a
strip of half-width c.

In the slip region the tangential stress is

τ1(x) = μp0

√
1 − x2/a2, (5.4)

where p0 = 2FN/πa. In the stick region, a contribution

τ2(x) = − c

a
μp0

√
1 − x2

c2
(5.5)

must be added to (5.4) in order to have equal tangential displacements in the
two surfaces. The resulting stress distribution τ(x) in the two regions is shown
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Figure 5.4 Tangential stress distribution in the elastic contact between a cylin-
der and a half-space (dashed area) in the presence of a normal force FN and a
tangential force Fx < μFN.

in Fig. 5.4. Integrating τ(x) and equating the result to Fx , c can be precisely
determined, as first done by Cattaneo [49]:

c = a

√
1 − Fx

μFN
. (5.6)

Sphere

If a tangential force Fx is applied to an elastic sphere pressed against an elastic
half-space the tangential stress in the contact area is

τ(x) = τ0√
a2 − r 2

,

where a is given by (4.16) and τ0 = Fx/2πa2. The corresponding displacement is
proportional to Fx :

δx = π(2 − ν)

4G∗ τ0a, (5.7)

where
1

G∗ = 2 − ν1

G1
+ 2 − ν1

G2
(5.8)

is the effective shear modulus of the materials in contact. As for a cylindrical
contact, slip is unavoidable. The radius of the circular stick region is

c = a

(
1 − Fx

μFN

)1/3

, (5.9)

and the expression for the lateral displacement becomes

δx = δ0
(
1 − c2/a2

)
, (5.10)
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Figure 5.5 Tangential displacement of the contact between a sphere and a half-
space in the presence of a normal force FN and a tangential force Fx < μFN:
without slip (continuous curve) and with slip (dashed curve).

where δ0 = 3μFN/16aG∗. The quantity δx is plotted in Fig. 5.5 as a function of Fx .
Note that at low values of Fx Eq. (5.10) is well approximated by the linear relation
(5.7) for no slip.

Torsional traction

Suppose now that a rigid cylinder with radius a adheres to the surface of an elastic
half-space and is twisted about its axis by a torque Mz . In this case the contact area
turns by an angle [156, section 3.9]

β = 3Mz

16Ga3
. (5.11)

The azimuthal displacement in this area is uϕ = βr and the circumferential stress is

τϕ(r) = 3Mzr

4πa4
√

1 − r2/a2
. (5.12)

Since the normal displacement is zero, the pressure distribution is not modified by
the twist.

If an elastic sphere is pressed against an elastic half-space and twisted about the
normal axis through the center of the contact circle, the twist angle is given, in
principle, by Eq. (5.11). However, the tangential stress would become infinite at
the edge of the contact circle so that, once again, slip must occur. The radius c of
the stick region depends in a non-trivial way on the parameter β [197]:

β = 3μFN

4πa2

(
1 − c2

a2

)(
1

G1
+ 1

G2

)(
K (
√

1 − c2/a2)− E(
√

1 − c2/a2)
)
,
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0
Mz

Mmax

Figure 5.6 Twist angle of a circular region subjected to a torque: without slip
(continuous curve) and with slip (dashed curve).

where K and E are the complete elliptic integrals of the first and second kind (see
Section 4.1). The corresponding relation between β and Mz is plotted in Fig. 5.6.
The maximum value that Mz can reach, before the stick region shrinks to only one
point and complete slip occurs, is

Mmax = (3π/16)μFNa.

5.3 Sliding of elastic objects

Sliding cylinder

If a cylinder slides on an elastic half-space, with its axis parallel to the free surface,
the tangential stress caused by the kinetic friction is

τ(x) = τ0

√
1 − x2/a2. (5.13)

In Eq. (5.13) a is the half-width of the contact strip and τ0 = 2μFN/πa, where μ
is the friction coefficient (see Section 4.3). The maximum shear stress distribution
produced by the combined effect of the normal pressure and the tangential traction
is shown in Fig. 5.7 for the case μ = 0.2 and ν = 0.33. Compared to the results
without friction (Fig. 4.9), τmax peaks at a point which is closer to the contact
area. If μ exceeds a critical value, the peak is located on this area. Note that we
have implicitly assumed that the influence of friction on the shape and size of the
contact area and on the pressure distribution can be neglected. This hypothesis can
be rigorously verified [37].

Sliding sphere

Similarly to a cylinder, if a rigid sphere slides on an elastic half-space a tangential
stress

τ(x) = τ0

√
1 − r2/a2
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FN

Fx

v

Figure 5.7 Maximum shear stress distribution in an elastic half-space under the
combined pressure and tangential traction of a rigid cylinder sliding on it (friction
coefficient: μ = 0.2).

appears, where a is the radius of the contact circle and τ0 = 3μFN/2πa3. This
traction causes a lateral displacement

ux = πτ0

32Ga

[
4(2 − ν)a2 − (4 − 3ν)x2 − (4 − ν)y2] , uy = πτ0

32Ga
2νxy

inside the circle. Expressions for the surface displacement and the stress dis-
tribution have been derived [153, 130]. Again, the maximum shear stress τmax

peaks at a point on the contact area if μ exceeds a critical value depending on
Poisson’s ratio ν.

Sliding punch

If a rigid punch of half-width a slides on an elastic half-space, the influence of the
interfacial friction on the pressure distribution is quantified by a relatively simple
formula [156, section 2.8]:

p(x) = p0 cos(πγ )√
1 − x2/a2

(
a + x

a − x

)γ
,

where p0 = FN/πa and the parameter γ is related to the friction coefficient by

tan(πγ ) = −μ(1 − 2ν)

2(1 − ν)
. (5.14)

Comparing with the formula (4.9) obtained in the static case, the pressure is
reduced on the front half of the punch and increased on the rear, although the
variation is very small (Fig. 5.8).
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Figure 5.8 Pressure at the interface between an elastic half-space and a rigid
punch sliding on it: without friction (dashed curve) and with friction (μ =
0.5, ν = 0.3, continuous curve).

5.4 Influence of oscillating forces

Suppose that two elastic spheres in contact are subjected to a tangential force Fx

oscillating with an amplitude F0, in addition to a steady normal force FN. In this
case, the lateral displacement of the spheres depends on the contact history, as
shown in Fig. 5.9. The first application of Fx causes a micro-slip out of a circle
with a radius c defined by Eq. (5.9) with Fx = F0, whereas in the subsequent
unloading phase a reversed slip penetrates more and more into the contact. When
Fx = 0 the reversed slip extends on a circle of radius c′ (> c) given by [156,
section 7.4]

c′ = a

[
1

2

(
1 + c3

a3

)]1/3

.

0

F0

F0

0

Fx

δ δ
δ

Figure 5.9 Force–displacement cycle in a circular contact subjected to a steady
normal force FN and an oscillating tangential force of amplitude F0.
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When the tangential motion is completely reversed (Fx = −F0) the radius of the
no-slip area is again equal to c, and so on. The energy dissipated in a full cycle
corresponds to the area of the loop in Fig. 5.9 and can be precisely calculated
[221]. If the oscillations are small, it is proportional to the cube of the oscillation
amplitude:

Ediss ≈ 1

36aμFNG∗ F3
0 ,

where G∗ is defined by Eq. (5.8). However, a quadratic dependence is usually
observed in the experiments. This result may be attributed to internal damping,
variations of the friction coefficient and surface roughness [154]. Mindlin and
Deresiewicz have also estimated the energy dissipated when the oscillating force
forms an angle α with the normal direction [220]. As a result, Ediss 
= 0 only if
tanα > μ. If this is not the case, no slip or energy loss occur, as substantiated by
experiments on steel spheres [154].

Hysteresis and energy dissipation are also observed if an oscillating torque of
amplitude M0 is applied to a circular contact [69]. In this case, for small values of
M0 (� μFNa):

Ediss ≈ 3M3
0

16Ga4μFN
.
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Elastic rolling

This chapter is dedicated to the deformation of two elastic bodies rolling over each
other, and the influence of friction on it. We will start by discussing the contact
between two cylinders and distinguish between elastically similar and dissimi-
lar materials. The complex problem of rolling contact between three-dimensional
objects can be addressed, in a first approximation, with the linear theory devel-
oped by Kalker. Specific topics such as the rolling of a sphere in a groove and the
deformation of aircraft and automotive tires will conclude the chapter.

6.1 Steady elastic rolling

Creep ratio

Consider the steady rolling of two elastic cylinders over each other. In the absence
of deformation and reciprocal sliding the contact points move with a common
speed v0 directed along the x axis. However, if a normal force is applied, a fric-
tion force appears, causing a tangential strain εxi (Section 5.1) and partial slip
(Section 5.2) in each cylinder. As a result, the relation between the velocities v1

and v2 of the contact points can be written as [156, section 8.1]

v1 − v2

v0
= ξx + (εx1 − εx2), (6.1)

where ξx is the so-called called creep ratio.

Elastically similar cylinders

The influence of the interfacial friction on the rolling of two cylinders with the
same elastic properties was first investigated by Carter [48]. As an example, one
may think to the wheel of a vehicle which is braked. If the tangential force is less
than the static friction, a slip area is detached from the contact. The semi-width c of

54
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stick slip
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Figure 6.1 Tangential stress distribution accompanying the rolling of elastically
similar cylinders in the presence of friction.

the remaining stick area is given by Eq. (5.6). However, the stick area is now shifted
next to the leading edge, as shown in Fig. 6.1. This is to satisfy the condition that
the direction of slip must oppose the traction in the slip area [156, section 8.3]. The
tangential stress τ(x) is obtained as the sum of the contributions (5.4) and (5.5),
with the distribution τ2(x) centered in (c − a).

In the stick area the tangential strains in each surface have opposite signs and
their moduli are equal to

εx = 2(1 − ν2)

aE
μp0(a − c),

where p0 = 2FN/πa. Since in this area v1 = v2, the creep ratio, as estimated by
Eq. (6.1), is

ξx = μa

R

(
1 − c

a

)
,

where R is the equivalent radius of the two cylinders and we have used the expres-
sion (4.25) for the contact half-width a. The relation between ξx and the tangential
force Fx is plotted in Fig. 6.2. If Fx → 0 the creep ratio is independent of μ and
varies linearly with Fx as

ξx ≈ aFx/2RFN.

Dissimilar materials

Suppose now that the elastic properties of the two cylinders are different. If the fric-
tion were capable of preventing slip entirely, the distribution of tangential stress
τ(x) in the contact could be estimated from the equilibrium equation of the dis-
placement gradient (5.3). Substituting in Eq. (6.1), with the left hand side equal to
zero, we would get:
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Figure 6.2 Creep ratio in the contact between two elastically similar cylinders
rolling over each other as a function of the tangential force.
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Figure 6.3 Tangential stress distribution in the rolling contact of dissimilar
cylinders without slip when β = 0.3 and μ = 0.1.

πβp(x)+
∫ a

−a

τ(s) ds

x − s
= 1

2
πE∗ξx ,

where β is the Dundurs parameter (4.31). Neglecting the effect of τ(x) on the
Hertzian normal pressure (4.26), the creep ratio is given by

ξx = 2βa/πR.

The corresponding traction distribution [156, section 8.2],

τ(x) = β

π
p0

√
1 − x2

a2
ln

(
a + x

a − x

)
, (6.2)

is plotted in Fig. 6.3.
However, since the ratio τ/p → ∞ when x → ±a, slip is once again unavoid-

able. From numerical analysis [19] two stick areas are expected, separating three
areas where slip occurs in alternate directions. The amplitude of the stick areas
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Figure 6.4 Stick and slip areas in the rolling contact of dissimilar cylinders
for different values of the ratio β/μ. Adapted from [19] with permission from
Elsevier.

depends on the ratio β/μ as shown in Fig. 6.4. This means that a rolling resis-
tance, represented by a frictional torque Mfric, appears. Note that Mfric is low not
only when μ is small, but also when μ is large, since in this case slip is prevented.
The maximum value of Mfric is expected when β ≈ 5μ. The corresponding rolling
resistance coefficient

μr = Mfric/FN R (6.3)

is very small (∼ 10−4a/R).
A similar analysis for two spheres with different elastic properties results in the

following expression for the tangential stress in the rolling contact without slip
[156, section 8.2]:

τ(r) = β

π
p0

(
−a

r

√
a2 − r 2 + 1

r

∫ a

r

ρ2√
ρ2 − r 2

ln
ρ + r

ρ − r
dρ

)
.

The corresponding creep ratio would be ξx = βa/πR but, again, slip must occur
at the edge of the contact circle.

6.2 Three-dimensional rolling

The rolling of 3D elastic bodies is complicated by the relative rotation about
the normal axis (spin), which couples to the tangential forces Fx and Fy and
occurs with an angular velocity ��. The contact is formed on an elliptical
region with semi-axes a and b given by the Hertz theory. If the friction is large
enough to prevent slip completely, the tangential forces and the twisting torque
Mz are approximately related to the creep ratios ξx , ξy and the spin parameter
ψ = ��

√
ab/V by linear equations:
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Fx

Gab
= C11ξx ,

Fy

Gab
= C22ξy + C23ψ,

Mz

G(ab)3/2
= C32ξy + C33ψ,

(6.4)

where the non-dimensional coefficients Ci j depend on the eccentricity of the con-
tact ellipse as calculated by Kalker [161]. In the opposite case of complete slip,
the relative motion consists of a rigid rotation about a so-called spin pole with
coordinates

xp = −aξy/ψ, yp = aξx/ψ,

which may lie inside or outside the contact area. The forces Fx and Fy and the
torque Mz can be estimated numerically [161].

The problem of 3D rolling in the case of partial slip can be solved by dividing
the contact area into independent thin strips parallel to the rolling direction. The
2D theory is then applied to each of the strips. If only a longitudinal force Fx is
present, the stick zone is expected to have a lemon shape (see the shaded region in
Fig. 6.5) obtained from the reflection of the leading edge in the straight line [162]

x = G

2(1 − ν)

a

μp0
ξx ,

(p0 is the maximum contact pressure value as given by the Hertz theory). The creep
ratio can be estimated from the tangential force using a non-trivial relation, which
reduces to the first of the equations (6.4) with

Fx

b

a

stick slip

x

y

Figure 6.5 Stick and slip areas in an elliptical rolling contact in the presence of a
longitudinal force.
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C11 = π2

4(1 − ν)

if μ → ∞. However, the strip model works well only if b � a. If this is not
the case, the interaction between strips cannot be neglected and numerical methods
must be used [161].

6.3 Sphere in a groove

The problem of a sphere with radius R rolling in a conforming groove is very
important in bearing technology. The contact area is an elongated ellipse, the semi-
axes a and b of which are determined by the Hertz theory. The points on the sphere
surface have different linear velocities, and the creep ratio depends on the dis-
tance y from the axis of the groove as ξ(y) = ξ0 − y2/2R2 [156, section 8.5].
The Carter theory discussed in Section 6.1 predicts that slip occurs backwards
if y < R

√
2ξ0 and forwards in the opposite case. The value of ξ0 is deter-

mined by the condition that the total traction force is zero. As a result, the
resisting torque Mfric can be calculated as a function of the ‘conformity param-
eter’ � = b2 E∗/4μp0 R. The result is showed in Fig. 6.6. In the case of
close conformity (� � 1) a limit value corresponding to a rolling resistance
coefficient [134]

μr = 0.08(b/R)2μ (6.5)

is approached. Since the ratio b/R is not negligible, the value of μr can be
relatively high.

r [ ]b R/ )2×

0
100

0.08

1.0

μ μ

Figure 6.6 Resisting torque on a sphere rolling in a conforming groove as a func-
tion of the conformity parameter defined in the text. Adapted from [134] with
permission from SAGE Publications.
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6.4 Tire mechanics

Aircraft tires

The tire of an airplane is well approximated by a toroidal thin membrane with
internal pressure. If the tire is pressed against a rigid plane, the contact area is an
ellipse with semi-axes

a = √(2R − δ)δ, b = √(w − δ)δ,

where R and w are the radius and the width of the tire and δ is the vertical deflec-
tion (Fig. 6.7). The pressure distribution in the contact is uniform and equal to the
inflation pressure. The creep ratio can be estimated as the difference between the
length of the chord AB and the arc AB

�
:

ξx = −δ/3R. (6.6)

Although the strain out of the contact region has been neglected, the relation (6.6)
is in good agreement with experimental observations.

Automotive tires

A car tire, due to its stiffer tread and its cross-section shape, forms a roughly rect-
angular contact area of length 2a. In this case the pressure is concentrated in the
center of the contact.

If the car turns around a corner or its wheels are slightly skewed, a transverse
surface traction τ(x) appears in the contact region, where x is the direction of
motion. Considering only the carcass deformation, the lateral displacement u(x)
satisfies in both cases the equilibrium equation

u(x)− λ2 d2u

dx2
= τ(x)

kc
,

where kc is the carcass stiffness per unit length [340].

R

A B

a b

w

Figure 6.7 Contact between a thin inflated membrane and a rigid plane.
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Figure 6.8 Transverse deformation of a car tire slightly skewed with respect to
the plane of rolling.

When the wheels are slightly skewed the lateral displacement in the contact
region is simply given by

u(x) = const.− ξx, (6.7)

where ξ is the creep ratio. Outside this area there is no traction and u(x) decays
exponentially with a characteristic length λ = √

T/kc, where T is the uniform
tension carried by the carcass (Fig. 6.8). From the continuity of the displacement
gradient du/dx it follows that the constant in Eq. (6.7) is equal to −λξ . The traction
distribution τ(x) can be integrated over the contact area to give the total cornering
force

Fy = −2kcξa2

(
λ

a
+ 1

)2

and the self-aligning torque

M = −2kcξa3

(
1

3
+ λ

a
+ λ2

a2

)
.

Note that the discontinuity in du/dx at the trailing edge (x = a) corresponds to a
concentrated traction, which causes a sideslip.

When the car turns around the corner, the deflected shape in the stick region is
parabolic:

u = const.+ ψx2/a

and the transverse force (so-called camber thrust) is

Fy = −2kcψa2

(
1

3
+ λ

a
+ λ2

a2

)
.

In this case no self-aligning torque is present.
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Beams, plates and layered materials

Our brief review of the theory of elasticity would not be complete without dis-
cussing the deformation of beams, plates and thin overlayers. Cantilever beams are
key components in atomic force microscopy, where they are used to detect forces
in the nanonewton range. Beams and curved plates present characteristic elastic
instabilities when compressed beyond a well-defined threshold. A related phe-
nomenon is also observed in the theory of stick–slip which is described elsewhere.
The vibrations of beams and plates will be also discussed briefly.

7.1 Elastic deformation of beams

Bending of beams

Consider a solid beam (oriented along the x direction) which is slightly bent around
the y axis by a linear force distribution p(x) as in Fig. 7.1. The deflection u(x) of
the beam is described by the Euler–Bernoulli equation [177, section 20]:

E I
d4u

dx4
− p(x) = 0, (7.1)

where I is the area moment of the beam’s cross-section with respect to the z axis,

I =
∫

y2 dy dz,

and E is the Young’s modulus of the material. If the beam has a rectangular section
with widthw and thickness d , I = wd3/12. For a circular cross-section with radius
R, I = πR4/4.

The bending moment and the shear force in the beam are simply given by the
second and third derivatives of u(x):

My = −E I u′′(x), Fz = −E I u′′′(x). (7.2)

62
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z

x
u x( )

Figure 7.1 Bending of an Euler–Bernoulli beam. The y axis is oriented perpen-
dicularly to the plane in the figure.

The equations (7.2) allow us to write the boundary conditions on the beam in a very
simple form. If one end of the beam is clamped, both the deflection u and the slope
u′ are zero. If the end is supported, the deflection u and the bending moment are
zero, and the last condition implies that u ′′ = 0. Finally, at a free end, both force
and bending moment are zero: u ′′′ = 0 and u ′′ = 0.

Using Eq. (7.1) the deformation of a cantilever beam of length L , clamped at
one end and bent by a force F concentrated at the other end, turns out to be

u(x) = F

6E I
x2(3L − x).

If the beam is bent by a uniform force distribution p such as its own weight:

u(x) = p

24E I
x2(x2 − 4Lx + 6l2).

Note that Eq. (7.1) dates back to the 1750s, but it was not applied on a large
scale till the construction of the Tour Eiffel and the first Ferris wheel in Chicago
in the late nineteenth century. After that, the Euler–Bernoulli equation has quickly
become a cornerstone of structural and mechanical engineering.

Torsion of beams

Suppose now that one end of a straight beam with arbitrary cross-section, oriented
along the z axis, is fixed and a torque M is applied to the other end of the beam. In
this case the twist angle per unit length is [177, section 16]

θ = M/C, (7.3)

where C is the torsional rigidity of the beam. The torsional rigidity can be
determined using the relation [275]

C = 4G
∫
ψ dx dy, (7.4)

where G is the shear modulus of the material and the function ψ(x, y) is the solu-
tion of the Poisson equation ∇2ψ = −1 with the boundary condition ψ = 0. Note
that in this way the problem becomes formally identical to the bending of a uni-
formly loaded membrane, Eq. (7.8), and also to the viscous flow through a pipe,
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Figure 7.2 A multiply connected cross-section of a beam undergoing torsion.

Eq. (22.6). The function ψ(x, y) corresponds to the vertical deformation of the
membrane or, respectively, to the fluid velocity. Using this analogy, it can be
easily seen that a cylinder with circular cross-section has a torsional rigidity
C = GπR4/2, while a long thin plate with width w and thickness d � w has
a torsional rigidity C = Gwd3/3.

However, Eq. (7.4) is only valid for singly connected cross-sections. If the cross-
section of the beam is multiply connected, one has to add the quantity 4G�kψk Ak

to the right hand side of Eq. (7.4), where Ak are the areas enclosed by the curves
limiting the cross-section (Fig. 7.2) and ψk are the constant values taken by the
function ψ on these curves. In this way, it can be proven that a cylindrical pipe has
a torsional rigidity

C = πG

2
(R4

ext − R4
int).

Dynamic beam equation

The dynamics of a vibrating beam is governed by the time-dependent Euler–
Bernoulli equation:

E I
∂4u

∂x4
+ ρ

∂2u

∂t2
− p(x) = 0, (7.5)

where ρ is the mass density per unit length of the beam. In view of applications to
AFM (Section 18.2) we present the solution of Eq. (7.5) for the deformed shape of
a cantilever beam of length L with a clamped end:

un(x) ∝ cosh knx − cos knx + cos kn L + cosh kn L

sin kn L + sinh kn L
(sin kn x − sinh knx),

where the wave numbers kn (n = 1, 2, . . .) are the solutions of the characteristic
equation

cosh kn L cos kn L + 1 = 0.
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The corresponding resonance frequencies are

ωn = k2
n

√
E I/ρ.

The first three modes of vibration of the cantilever beam are shown in Fig. 7.3.
Suppose now that a vertical spring k∗ is added to the free end of the cantilever,

coupling it to a rigid surface. In this case the boundary conditions at x = L are

u′′(L) = 0, u′′′(L) = k∗

E I
u(L)

and the equation for kn becomes

sinh kn L cos kn L − sin kn L cosh kn L = (kn L)3kN

3k∗ (1 + cos kn L cosh kn L),

where kN = Ewd3/4L3 is the normal spring constant of the beam; kN is the ratio
between a concentrated force applied at x = L and the deflection u(L) of the free
beam [279]. The effect of the spring on the shape of the first mode is shown in
Fig. 7.4 for increasing values of the stiffness k∗.

Figure 7.3 Mode shapes for the first three modes of vibration of a cantilever beam
(the clamped end is the one on the left).

(a) (b)

(d)(c)

Figure 7.4 Shape of the first vibration mode of a clamped cantilever beam
coupled to a rigid surface by a spring with stiffness k∗ = 0, 10, 100,∞ (a to d).
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7.2 Plate theory

A plate has a thickness d which is much smaller than its planar dimensions. In this
case the problem of elastic deformation is reduced to 2D.

Bending of plates

The equilibrium of a plate deformed by a force distribution p(x, y) perpendicular
to its surface is described by the equation [193]

D∇2(∇2u)− p(x, y) = 0, (7.6)

where ∇2 ≡ ∂2/∂x2 + ∂2/∂y2 is the 2D Laplacian,

D = Ed3

12(1 − ν2)

is the bending stiffness of the plate and ν is the Poisson’s ratio of the material.
Equation (7.6) can be obtained by minimizing the expression for the elastic energy
of the plate, which follows from Eq. (3.15) after equating to zero the components
of the displacement vector in the xy plane and all components of the stress tensor
except σx , τxy and σy [177, sections 11 and 12].

The boundary conditions for Eq. (7.6) are very complicated unless the edges of
the plate are clamped or supported (Fig. 7.5(a)). A clamped edge remains hori-
zontal, so that the vertical displacement u and the slope ∂u/∂n along the direction
n which is normal to the contour of the plate are both zero (Fig. 7.5(b)). If the
edge is supported the deflection and the bending moment are zero. This condition
translates into the relations

u = 0,
∂2u

∂n2
+ ν

dθ

dl

du

dn
= 0,

where l is the unit vector tangent to the plate edge, and θ is the angle between the
x axis and n.

x

y

nl

(a) (b)

Figure 7.5 (a) Clamped and supported edges. (b) Top view of the edge of a plate.
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As an example, if a concentrated force FN is applied to the center of a circular
plate of radius R, the vertical deformation of the plate is

u(r) = FN

16πD

(
f (ν)(R2 − r2)− 2r2 ln

R

r

)
, (7.7)

where f (ν) = 1 if the edges are clamped, and f (ν) = (3 + ν)/(1 + ν) if the edges
are supported. If the plate is deformed by a uniform pressure p such as its own
weight, the solution of Eq. (7.6) is

u(r) = − p

64D
(R2 − r2)r2

if the edges are clampled, and

u(r) = − p

64D

(
(5 + ν)R2

1 + ν
− r 2

)
(R2 − r 2)

if the edges are supported.

Membranes

The equilibrium of a membrane, i.e. of a thin plate subjected to large stretching
forces applied at its edges, is described by a simple equation. If the stretching is
isotropic,

T ∇2u + p = 0, (7.8)

where T is the tension per unit length of the edge. Solving Eq. (7.8), we can easily
see that a circular membrane of radius R bent by a uniform pressure p undergoes
a parabolic deformation:

u(r) = − p(R2 − r2)

4T
.

Vibrations of plates and membranes

The equation for the free oscillations of a plate is

ρ
∂2u

∂t2
+ D

d
∇2(∇2u) = 0, (7.9)

where ρ is the mass density of the material. An exact solution of Eq. (7.9), and
an estimation of the resonance frequencies in a closed form is possible only in
few cases. For instance, a rectangular plate with supported edges resonates at the
(angular) frequencies

ωmn =
√

D

ρd
π2

(
m2

a2
+ n2

b2

)
,
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Figure 7.6 Shapes of the first three modes of vibration of a circular plate.

where m and n are integers. The corresponding mode shapes are:

umn(x, y) ∝ sin
mπx

a

nπy

b
.

For a circular plate of radius R with clamped edges,

ωn = √D/ρdk2
n,

where the wave numbers kn are the solutions of the characteristic equation

J0(k R)I1(k R)+ I0(k R)J1(k R) = 0

(Jα and Iα are, respectively, the Bessel function of order α of the first kind and the
modified Bessel function of order α of the second kind). The corresponding mode
shapes,

un(r) ∝ J0(knr)− J0(kn R)

I0(kn R)
I0(knr),

are shown in Fig. 7.6 for n = 1, 2, 3.
The resonance frequencies of a circular membrane with radius R are the

solutions of the equation

Jn(ωmn R
√
ρd/T ) = 0

and the mode shapes are

umn(r, ϕ) ∝ Jn(ωmnr
√
ρd/T ) sin(nϕ + const.).

7.3 Elastic instabilities

The deformation of a beam subject to a longitudinal compression is stable only if
the applied force remains below a certain threshold [177, par. 21]. For instance,
if both ends of a slender column with length L and area moment of inertia I are
clamped, the value of the critical force is

Fc = 4π2 E I/L2. (7.10)
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Figure 7.7 Examples of (a) Euler buckling and (b) limit point instability.

This value becomes four times smaller if the ends are hinged, and 16 times smaller
if one end of the column is free and the other end is clamped. Once the threshold
is exceeded, the column will bend significantly (buckling). However, we should
note that, if the compression is applied for a very short time τ < L/c, where c is
the velocity of sound, the column can sustain much higher loads before buckling
(so-called dynamic buckling).

Since the values of Fc are proportional to the moment of inertia, a tubular section
will be much more efficient than a solid one. Under its own weight, a vertical col-
umn will be stable only if L < Lc = 1.98(E I/λg)1/3, where λ is the mass density
per unit length [163]. Elastic instabilities also occur when a beam is subjected to
torsion. If the beam has a circular cross-section, the critical torsion angle per unit
length is θc = 8.98E I/C , where C is the torsional rigidity of the beam. Buckling
can be also observed in bicycle wheels, if the spoke tension is increased beyond a
safe level, or in rail tracks excessively heated by the Sun.

The phenomenon of elastic instability was discovered by Leonhard Euler in
1757 and is due to a bifurcation appearing in the solution of the equation of static
equilibrium. In the cases discussed above the buckled configuration is adjacent to
the original one (Fig. 7.7(a)). This is not the case in structures experiencing ‘limit
point instabilities’, and suddenly jumping into very different stable configurations
(Fig. 7.7(b)). This second type of instability also occurs in atomic-scale stick–slip,
as discussed in Section 15.1.

7.4 Shells

In contrast to thin plates, shells have a curved shape in their undeformed state.
If a shell has a thickness d and a radius of curvature R, the range of action of a
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FN

Figure 7.8 Buckling of a thin shell indented by a concentrated force.

Figure 7.9 Four AFM images (9.6 nm in size) acquired with increasing normal
force on the Moiré pattern formed by a graphene monolayer on Ru(0001).

concentrated force FN is an area ∼ d R. This result follows from the condition that
the sum of the stretching energy and the bending energy of the shell has a minimum
[177, section 15]. The corresponding deflection is in the order of FN R/Ed2. If the
normal force is too large, a shell can buckle (Fig. 7.8). The depth of the bulge so
formed is ∼ F2

N R2/E2d5.
An example of shell deformation on the nanoscale is shown in Fig. 7.9 [167].

Here, a regular array of ultrathin ‘domes’ formed by a graphene monolayer grown
on a Ru(0001) surface have been imaged by AFM with increasing normal forces.
When the probing tip is retracted, the deformation is fully reversed and no buckling
is observed.

7.5 Indentation of elastic plates

The problem of the contact between a rigid object and a thin elastic plate has
received only limited attention so far. If a rigid cylinder of radius R is pressed
against a plate of length 2L with a force FN per unit length, as in Fig. 7.10, the
half-width of the contact strip is [156, section 5.8]
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d

Figure 7.10 Indentation of a thin elastic plate by a rigid cylinder.

a = L − 128D

RFN
, (7.11)

where D is the bending stiffness of the plate. The pressure is concentrated at the
edges of the strip and is zero elsewhere. However, these conclusions are only valid
if the plate thickness d � a � R.

In a similar way, if a plate is indented by a sphere, the pressure is concentrated
on a ring corresponding to the edges of the contact circle. In this case, in order to
get realistic distributions, the shear stiffness of the plate cannot be ignored.

7.6 Indentation of thin elastic layers

Suppose that a rigid substrate covered by a thin elastic layer of thickness d is
indented by a rigid cylinder of radius R with its axis parallel to the surface of
the substrate. For instance we may think of a roller covered by rubber, widely
used in processing machinery. The contact strip has a half-width a, which is sup-
posed to be much smaller than d , and we will distinguish between compressible
and incompressible layers.

In the first case (Fig. 7.11a) the indentation depth is δ = a2/2R and the pressure
distribution is [156, par. 5.8]

p(x) = p0(1 − x2/a2),

with p0 = 3FN/2a. The length a is obtained from the normal force FN as

a =
(
α(1 − βν)Rd FN

G

)1/3

.
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Figure 7.11 Indentation of (a) a compressible and (b) an incompressible elastic
layer by a rigid cylinder.

FN

a

d

Figure 7.12 Elastic layer lifted off by a concentrated force.

where α = 3 and β = 1 if the layer can slip on the substrate without friction,
whereas α = 6 and β = 2 if the layer is bound to the substrate. If the layer is
incompressible, part of it is necessarily squeezed out, as shown in Fig. 7.11(b). In
this case:

a =
(

45Rd3 FN

2E

)1/5

, p(x) = 48FN

45a

(
1 − x2

a2

)2

and the indentation depth is δ = a2/6R.
If the layer is free to lift off the substrate under the action of a concentrated force

(Fig. 7.12), the receding contact strip has a half-width [103]

a = d

(
1.845

(1 − ν2
s )El

(1 − ν2
l )Es

)1/3

,

where the indices s and l refer to the substrate and the layer respectively. Note that,
in this case, a is independent of the normal force.
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Rough contacts

In this chapter we discuss the influence of surface roughness in contact problems.
After introducing the basic definitions and analyzing early contact models, the
theory developed by Bo Persson is presented in more detail. This theory correctly
describes the linear dependence of the contact area on the normal force at low loads,
and makes important predictions on the load dependence of the average separation
between two rough surfaces in contact. Other popular early models are discussed
for comparison. The chapter ends with a brief discussion of the contact between
wavy surfaces, where simple analytical expressions can be derived.

8.1 Surface roughness

Atomically flat surfaces are very rare. Examples include graphite and mica cleaved
along atomic planes. Soft rubber can also be made flat elastically by a contact pres-
sure. Apart from these cases, we can reasonably assume that the contact between
two solid surfaces at normal operating loads is discontinuous and the real contact
area is only a small fraction of the apparent contact area (Fig. 8.1).

Height distribution

The height profile h(r) of a surface at a point r ≡ (x, y) above a flat reference plane
can be routinely measured by optical and stylus techniques or, on the nanoscale,
by AFM. Many surfaces, e.g. those prepared by fracture or by bombardment with
small particles, have an approximately Gaussian height distribution

P(h) = 1√
2πhrms

exp

(
− h2

2h2
rms

)
. (8.1)

In this case the root mean square hrms =
√〈

h2
〉

coincides with the half-width of
the distribution. However, if the surface is polished, the height distribution deviates

75
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Figure 8.1 Contact between two rough surfaces.

rapidly from (8.1) since the protruding asperities are smoothed out more than the
deeper regions of the surface.

Surface roughness power spectrum

The surface roughness can be characterized by the height–height correlation
function:

C(r) = 〈h(r)h(0)〉 , (8.2)

where the angular bracket 〈. . .〉 stands for ensemble averaging.1 Note that in the
definition (8.2) it is implicitly assumed that the statistical properties of the surface
are translationally invariant. The ratio between the height–height correlation func-
tions in the x and y directions (the so-called Peklenik number) is a measure of the
anisotropy degree of the surface.

The Fourier transform of the height–height correlation function is the surface
roughness power spectrum [231]:

S(k) = 1

(2π)2

∫
C(r)e−ikr d2r.

Vice versa:

C(r) =
∫

S(k)eikr d2k,

and it is not difficult to see that

h2
rms = 2π

∫ ∞

0
kS(k) dk.

As an example, the surfaces prepared by cooling a glassy material from a tem-
perature above Tg (see Section 11.1) have a minimum roughness in the nanometer
range, which is caused by thermally excited capillary waves. In this case, it can be
proven that [213]

S(k) = 1

4π 2

kBTg

ρg + γ k2 + Dk4
, (8.3)

1 The definition (8.2) is not unique and other expressions can be found in the literature.
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where ρ is the mass density, g is the acceleration of gravity, γ is the surface tension,
D is the bending stiffness of the material and kB = 1.38 × 10−23 m2·kg/s2·K
is Boltzmann’s constant. Neglecting the gravity term, the rms roughness of the
surface on an area of linear size L is given by

h2
rms ≈ kBTg

2πγ
ln

√
γ /D

kL
,

where kL = 2π/L .
It is interesting to observe that a randomly rough surface with a given power

spectrum S(k) over an L × L square area can be generated numerically as

h(r) =
∑

k

2π

L

√
S(k)ei(kr+ϕ(k)), (8.4)

where the components of the vectors k are integer multiples of kL and ϕ(k) are
random variables uniformly distributed between 0 and 2π [265].

Self-affinity

Many surfaces of interest are self-affine. This means that the surface looks the
same, independently of the level of magnification ζ which is applied to observe
it. However, the magnification is usually not the same along the xy plane and the
z direction (Fig. 8.2). Assuming that the two levels of magnification are ζ and
ζ H respectively, the (isotropic) height–height correlation function of a self-affine
surface turns out to follow the power law

C(r) ∝ r2H . (8.5)

The Hurst coefficient H has typical values between 0.5 and 0.9 and is related to the
fractal dimension Df of the surface, which ranges from 2 to 3, as H = 3 − Df [10].

Figure 8.2 A self-affine profile does not change its statistical properties if scaled
down by a factor ζ in the lateral direction and ζ H in the normal direction.
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Figure 8.3 Roughness power spectrum of a self-affine surface.

The relation (8.5) breaks down at the linear size L of the surface and, on the other
hand, at a length scale a of the order of the smallest components of the surface
material at which plastic yield occurs. The ultimate values of the cut-off corre-
spond to interatomic distances, but on a clean rubber surface a is usually of the
order of a few µm.

The power spectrum of a perfect self-affine surface follows the power law

S(k) = S0

(
k

k0

)−2(H+1)

(8.6)

between a ‘roll-off’ value k0 and k1 = 2π/a [22]. This means that the slope of
the S(k) curve on a logarithmic scale (Fig. 8.3) can be used to determine the frac-
tal dimension of the surface. Below k0 the spectrum S(k) remains approximately
constant (and equal to S0) down to the value kL = 2π/L , which is the smallest
possible wave vector. The value of S0 depends on the rms of the surface height as

S0 = H

π [1 + H − (kL/k0)2 H ]
(

hrms

k0

)2

.

As an example, asphalt pavements are self-affine surfaces with fractal dimension
Df ≈ 2.2 and λ0 ≡ 2π/k0 ∼ 1 cm [250]. Surfaces prepared by fracture of brittle
materials can be self-affine down to interatomic distances. On the other hand, the
surfaces resulting from a glassy material slowly cooled below the glass transition
temperature Tg are not self-affine on any length scale, as seen from Eq. (8.3). Still,
most surfaces are approximately self-affine in a finite length range.

8.2 Early models of rough contacts

The contact between two rough surfaces with height profiles h1(r) and h2(r) is
equivalent to the contact of a rigid rough substrate with surface profile h = h1 + h2

and a flat elastic block with Young’s modulus E and Poisson’s ratio ν such that
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(a) (b) (c)

Figure 8.4 Contact between two surfaces at different levels of magnification
according to the Archard model.

(1 − ν)/E = 1/E∗, where E∗ is the effective elastic modulus defined in Section
4.3 [156]. For this reason, in the rest of this chapter we will only consider contacts
of the second kind.

The Archard model

In the Archard model a rough surface is approximated by a series of hierarchically
superimposed spheres [6], as shown in Fig. 8.4. Archard proved that the relation
between the real contact area A and the normal force FN for the three geometries
with increasing roughness shown in the figure is A ∝ Fα

N , where α = 4/5, 14/15
and 44/45 respectively. This suggests that, in the case of a complex real surface,
the exponent α ≈ 1. In this way, A is expected to be proportional to the load, in
line with Amonton’s law (2.1).

The Greenwood–Williamson model

A more realistic model, which is also consistent with Amonton’s law, has been
proposed by Greenwood and Williamson [122]. In the GW model a rough surface
is considered as an ensemble of N independent spherical caps with the same radius
R (Fig. 8.5). At a given separation d the real contact area is

A(d) = N
∫ ∞

d
A1(h − d)P(h) dh (8.7)

and the normal force is

FN(d) = N
∫ ∞

d
F1(h − d)P(h) dh, (8.8)

where A1 and F1 are, respectively, the area of the contact formed by each cap and
the normal forces required to compress the cap, and P(h) is the height distribution
of the caps. Since the caps are supposed to be independent, the theory breaks down
when A is no longer smaller than the apparent contact area. If the deformation is
elastic, Eqs. (4.19) and (4.18) imply that
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Figure 8.5 The Greenwood–Williamson model.

A1(h) = πRh, F1(h) = 4

3
E∗√Rh3/2.

In the case of an exponentially decaying height distribution

P(h) ∝ e−λh, (8.9)

where λ is a constant, the integrals (8.7) and (8.8) can be easily calculated. As a
result, the GW model predicts that the real contact area is proportional to FN:

A(FN) =
√
π Rλ

E∗ FN.

A proportionality relation holds also, in a first approximation, in the more real-
istic case of a Gaussian height distribution (8.1), assuming that only the rapidly
decaying part of the distribution is involved in the contact.

If the contact is fully plastic it is not difficult to see that, for each cap, the pen-
etration depth δ and the radius of the contact area a are related by δ ≈ a2/2R, so
that A1(h) ≈ 2π Rh. Since the average pressure p ≈ 3Y (see Section 12.8), we get
F1(h) ≈ 6πRY h and also, in this case, we can solve the integrals (8.7) and (8.8)
and conclude that the area of real contact is proportional to the normal force:

A(FN) ≈ FN

3Y
≈ FN

H
,

where H is the indentation hardness (Section 12.6).

The Bush–Gibson–Thomas theory

In the Bush–Gibson–Thomas (BGT) theory the spheres of the GW model are
replaced by paraboloids with randomly distributed curvatures and heights [40].
This means that the surface roughness occurs on different length scales. Also in
this case the contact area A turns out to be proportional to the normal force FN,
provided that A remains well below the apparent area of contact A0 or, equiva-
lently, that FN is very low. The relation between A and FN can be expressed via the
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surface roughness power spectrum S(k) introduced in Section 8.1 as

A(FN) =
√
π

G1

FN

2
, (8.10)

where

G1 = π

4
E∗2

∫ kL

k0

k3S(k) dk. (8.11)

8.3 The Persson theory

In the models presented in Section 8.2 the asperities are treated as independent. In
other words these models ignore the fact that, when a given asperity is compressed,
the deformation field extends far away and influences the contact of other asper-
ities. Furthermore, the fractal nature of real surfaces is not properly treated. As a
result, these theories are only applicable when the contact area is extremely small.
This is not the case for the contact theory developed by Bo Persson [250], which
takes into account any roughness length scale and is particularly accurate in the
case of complete contact.

The starting point of the Persson theory is the apparent contact area on the length
scale λ, A(λ), which is defined as the projection of the contact area formed when
the original surface is smoothed on all length scales below λ. The ratio ζ ≡ L/λ
can be considered as the ‘magnification’ of the surface (Fig. 8.6). For a self-affine
surface described by the power spectrum in Fig. 8.3 the magnification ζ can also
be defined as the ratio λ0/λ, where λ0 = 2π/k0. For a computer generated surface,
the surface profile at the magnification ζ is obtained by restricting the sum in Eq.
(8.4) to the values k < ζk0.

=1

= /L

ζ

ζ

Figure 8.6 Contact between an elastic sphere and a rough hard substrate at the
magnification ζ = 1 and ζ = L/λ.
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Macroasperity contact

An important parameter in the Persson theory is the critical magnification ζc at
which the contact area breaks up, as shown in Fig. 8.7. This value is approximately
given by the condition

A(ζc) = A0(1 − pc),

where the percolation threshold pc ≈ 0.6 [262]. The islands formed when the
splitting occurs may be called ‘macroasperity’ contact regions.2 The concept of
macroasperity regions will be applied in Section 11.2 and in Section 24.3 in the
context of heat transfer and fluid flow between two rough surfaces in contact.

(a) (b)

(d)(c)

Figure 8.7 Contact region between a rough rigid substrate and an elastic block
at different magnifications ζ = 3, 9, 12, 648 (a–d). When ζ ≈ 12 the non-contact
region percolates. Reproduced from [262] with permission from IOP Publishing.

2 Assumming a Gaussian height distribution, the average radius of the macroasperities is [251]

R = 1

ζck0

√
0.688

∫
x exp[−(d/hrms + x)2/2] dx∫
exp[−(d/hrms + x)2/2] dx

,

where d is the separation between the surfaces and hrms is the rms amplitude of the summit height
fluctuations.
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Diffusion equation for the contact area

Assuming complete contact it can be proven that the stress distribution in the con-
tact area at the magnification ζ , P(σ, ζ ), satisfies a diffusion-like equation of the
form [246]

∂P

∂ζ
= G ′(ζ )

∂2 P

∂σ 2
. (8.12)

In Eq. (8.12) ζ plays the role of time and the stress σ replaces the spatial coordinate.
The ‘diffusion coefficient’ G ′ is not constant but depends on ζ = k/kL , since it is
the derivative of

G(ζ ) = π

4
E∗2

∫ ζkL

k0

k3S(k) dk. (8.13)

A key assumption made by Persson is that Eq. (8.12) remains approximately valid
also in the case of partial contact.

Equation (8.12) must satisfy the boundary conditions

P(0, ζ ) = 0, (8.14)

which simply states that, in the absence of adhesion, the surfaces detach when the
local stress vanishes, and

P(∞, ζ ) = 0, (8.15)

meaning that the stress at the interface cannot become infinitely large. In this way
Eq. (8.12) can be solved and, as a result, one finds that the pressure distribution at
the interface depends on σ and ζ as

P(σ, ζ ) = 1

2
√
πG(ζ )

(
e−(σ−p)2/4G − e−(σ+p)2/4G

)
, (8.16)

where p is the squeezing pressure.
The projected contact area at the magnification ζ is simply obtained as

A(ζ ) = A0 P(ζ ), (8.17)

where

P(ζ ) =
∫

P(σ, ζ ) dσ.

The area A(1) coincides with the nominal contact area A0. A pressure p is uni-
formly distributed on this area, so that3 P(σ, 1) = δ(σ−p), as shown in Fig. 8.8(a).

3 The Dirac delta δ(x) is defined by the conditions δ(x) = ∞ if x = 0 and δ(x) = 0 otherwise. Furthermore,∫ ∞
−∞

δ(x) dx = 1.
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Figure 8.8 Stress distribution in the contact region between a rigid self-affine
surface and an elastic flat substrate at increasing magnification ζ .

At higher magnification non-contact regions appear. Since the stress σ goes contin-
uously to zero at the boundaries between contact and non-contact regions, the stress
distribution extends down to σ = 0, as seen in Fig. 8.8(b). Considering that the
average stress is equal to p, a corresponding tail must appear in the region σ > p.
If the magnification is further increased, the distribution broadens (Fig. 8.8(c)),
similarly to the diffusion of a fluid initially concentrated in a single point.

From Eq. (8.16), after some simplifications we find that the normalized contact
area depends on the pressure as follows:

P(ζ ) = 1√
πG(ζ )

∫ p

0
e−σ 2/4G(ζ ) dσ ≡ erf

(
p

2
√

G(ζ )

)
. (8.18)

The dependence of the projected contact area on ζ is shown in Fig. 8.9(a) on a
logarithmic scale. The function A(ζ ) decreases monotonically, introducing shorter
and shorter roughness wavelength components and, had the short distance cut-off a
not been introduced, it would vanish asymptotically. The dependence of the contact
area on the squeezing pressure p (at the highest magnification ζ = 1), as given by
Eq. (8.18), is plotted in Fig. 8.9(b).
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Figure 8.9 Apparent contact area in the Persson theory as a function (a) of the
logarithm of the magnification ζ and (b) of the squeezing pressure. Adapted from
[250] with permission from Elsevier.

It is interesting to observe that, for high values of p, when the two solids are in
complete contact, the second term on the right hand side of Eq. (8.16) is negligi-
ble and the stress distribution (at an arbitrary magnification) becomes a Gaussian
centered around p with half-width

√
2G:

P(σ, ζ ) = 1

2
√
πG(ζ )

e−(σ−p)2/4G(ζ ).

On the other hand, if p � √
G:

P(ζ ) ≈ p√
πG(ζ )

. (8.19)

In this case the contact area is proportional to the normal force, with a coefficient
of proportionality 2/π smaller than in the BGT theory:

A(FN) ≈ FN√
πG1

,

where G1 ≡ G(ζ = 1), consistently with the definition (8.11).

8.4 Advanced concepts in the Persson theory

The space separating two solid surfaces has a key importance in many physical
processes such as contact resistivity, heat transfer and optical interference. It also
determines the frictional response of the surfaces, for instance when the space is
filled by a lubricant fluid.

Elastic energy and total contact area

Suppose that a rubber block is pressed against a rough hard substrate. If the contact
is complete, it can be proven that the strain energy Uel and the total contact area
Acon depend on the surface roughness power spectrum S(k) as [260]
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Uel = π

2
E∗ A0

∫ k1

k0

k2S(k) dk, (8.20)

and

Acon ≈ A0

(
1 + π

∫ k1

k0

k3S(k) dk

)
, (8.21)

where k0 and k1 are the smallest and largest values of the surface roughness wave
vector.4

Partial contact can be approximately accounted for by ‘weighting’ the integrands
in Eqs. (8.20) and (8.21) with the factor P(k) given by (8.18), with ζ = k/kL . A
multiplicative correction factor of the order of one also appears in the expression
for the strain energy [248].

Average separation between rough surfaces

If the squeezing pressure is not too large, Persson theory predicts an exponential
increase of the normal force with decreasing average separation δ [252]. Indeed,
since

p(δ) = − 1

A0

dUel

dδ
, (8.22)

we can use the expression (8.19) for the dependence of the contact area on the
applied load to conclude that, at low loads,

p(δ) ≈ βE∗ exp

(
− δ

δ0

)
. (8.23)

In Eq. (8.23) the parameter β depends on the surface roughness but not on the
pressure nor on the elastic properties of the solids. The characteristic length δ0 is
of the order of the rms surface roughness hrms and can be approximately estimated
as [344]

δ0 ≈ C
∫ k1

k0

k2S(k)√
I (k)

dk,

where C ≈ 0.4 and

I (k) =
∫ k

k0

k′3S(k′) dk ′ (8.24)

(note that I = 4G/πE∗2). If the dependence δ(p) is known from experiments, Eq.
(8.22) can be used to estimate the strain energy Uel stored in the contact region.

4 We have assumed that kL = k0.
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For a typical self-affine fractal surface (with Df < 2.5) it can be proven that
[252]

β ≈ 0.4k0hrms

and the characteristic length depends on the roughness and the Hurst coefficient as

δ0 ≈
√

2(1 − H )

πH
hrms

[
r(H )−

(
k0

k1

)H
]
, (8.25)

where5 r(H ) ∼ 1. For asphalt pavements Df ≈ 2.2 (see Section 8.1) and, if
k0 � k1, the length δ0 ≈ 0.4hrms. Equation (8.23) is in good agreement with
experiments [20], but it is quite different from the predictions of the BGT and GW
theories. In those cases, it is expected that p(δ) ∝ δ−α exp(−βδ2), where α = 1 or
5/2 respectively [344]. For arbitrary pressure values the average separation can be
estimated with the formula [344]

δ(p) =
∫ k1

k0

k2S(k)√
I (k)

∫ ∞

p

1

p′ [C + 3(1 − C)P2(k)]e−p′2/πE∗2 I (k) dp′ dk. (8.26)

Average separation at different magnifications

In Sections 24.2 and 24.3 we will also make use of the average distance δ(ζ )
between two contacting surfaces at magnification ζ (Fig. 8.10). This quantity is
given by Eq. (8.26) with properly modified lower integration limits [344]. We
will also need the ‘incipient’ distance δinc(ζ ), which is defined as the average

δ(ζ)

Figure 8.10 Apparent separation between two surfaces at magnification ζ .

5 The complete definition is

r(H) = H

2(1 − H)

∫ ∞
1

dx

x1/2(1−H)
√

x − 1
.
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separation between the surfaces which appear to come into contact as a result of an
infinitesimal decrease in the magnification ζ and is obtained from A(ζ ) and δ(ζ ) as

δinc(ζ ) = δ(ζ )+ δ′(ζ )
A(ζ )

A′(ζ )
. (8.27)

Both δ(ζ ) and δinc(ζ ) are monotonically decreasing functions of ζ .

Indentation of thin elastic layers

The Persson theory can also be applied to the indentation of a rigid substrate
coated by a thin elastic layer. This problem has been already considered in
Section 7.6, where the substrate was supposed to be flat. If the substrate is rough
it is expected that, for small magnifications, the contact mechanics is indepen-
dent of the film coating whereas, for very large magnifications, the film can be
seen as infinitely thick [254]. The transition occurs at the magnification where the
roughness wavelength is of the order of the film thickness.

8.5 Contact of wavy surfaces

Consider now the contact between an elastic half-space and a rigid substrate with
a sinusoidal profile of amplitude h0 and periodicity λ. It can be proven that the
contact is complete only if the mean pressure p is larger than pc = πE∗h0/λ,
where E∗ = E/(1 − ν2) [156, section 13.2]. If this is not the case, the contact will
occur on parallel strips of half-width a such that the ratio between the real and the
apparent contact is [341]

A

A0
= 2a

λ
= 2

π
arcsin

√
p

pc
. (8.28)

If p � pc the strips are independent, and Eq. (8.28) is consistent with the Hertz
theory. In the opposite limit p → pc only narrow strips of half-width λ/2 − a
remain out of contact. These strips can be seen as pressurized cracks in an infinite
solid, and it can be shown that Eq. (8.28) is consistent with the theory of fracture
mechanics introduced in Section 13. The dependence of the contact area on the
squeezing pressure is plotted in Fig. 8.11(a).

If the surface is periodic in both the x and y directions, in the case of low pressure
the contact is formed by an array of elliptical areas, and is again described by the
Hertz theory. At high pressure the small areas of separation will be elliptical and
resemble pressurized cracks. If h0 and λ are the same in both directions, the radius
a of the contact circles and the radius b of the penny-shaped cracks in the two limit
cases are given by [158]
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p
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A0
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(a) (b)

Figure 8.11 (a) Extension of the contact area between a 1D wavy surface and
an elastic half-space (continuous curve). The dashed curves represent the depen-
dencies expected from the Hertz theory (p → 0) and from fracture mechanics
(p → pc). (b) The same for a 2D wave surface with equal periodicities. Adapted
from [158] with permission from Elsevier.

a = λ

(
3

8π

p

pc

)1/3

(p � pc), (8.29)

b = λ

π

√
3

2

(
1 − p

pc

)
(p → pc), (8.30)

where pc = 2πE∗h0/λ. In Fig. 8.11(b) Eqs. (8.29) and (8.30) are compared
with a numeric solution of the problem. The theoretical predictions have been
substantiated by experiments on rubber [156, section 13.2].
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Viscoelastic contacts

The contacts formed by viscoelastic bodies present very peculiar features. The
chapter starts examining the stress–strain relations observed in viscoelastic
materials and the ways to model them from first principles. Viscoelastic inden-
tation is discussed in the framework of the Radok correspondence principle,
which is also extended to the Persson theory. This theory is applied to rub-
ber friction, where an important relation between the friction coefficient and the
so-called loss function can be derived. The discussion ends with the rolling resis-
tance of viscoelastic materials and its dependence on a characteristic ‘Deborah
number’.

9.1 Stress–strain relation

In viscoelastic materials like polymers the relation between stress and strain is
time-dependent. Since the value of Poisson’s ratio ν in these materials is usually
larger than 0.4, they can be treated as incompressible. The typical response of a
viscoelastic material, when a finite tensile stress σ0 is applied and suddenly released
after a certain time t1, is shown in Fig. 9.1. The strain ε(t) responds almost instan-
taneously (elastically) to the applied stress, and then keeps growing (viscously) at
an exponentially decreasing rate. If the material is able to flow it will also acquire
a steadily increasing creep strain. When the stress is removed a sudden elastic
response is followed by an exponential decay of ε(t). A non-zero value of strain,
caused by creep, is reached asymptotically.

The response ε(t) to a step function σ(t) of height σ0 defines the creep compli-
ance C(t) of the material: ε(t) = C(t)σ0. More generally, if the function σ(t) has
an arbitrary shape:

ε(t) =
∫ t

−∞
C(t − t ′)

dσ

dt ′ dt ′.

90
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t
t10

ε

Figure 9.1 Strain variation in a viscoelastic material under the action of a constant
stress applied for a period t1.

Similarly, the viscoelastic modulus E(t) is defined by the convolution

σ(t) =
∫ t

−∞
E(t − t ′)

dε

dt ′ dt ′. (9.1)

If ε(t) is a step function of height ε0, the corresponding stress σ(t) = E(t)ε0.
The Fourier transforms of stress and strain,

σ(ω) = 1

2π

∫ ∞

−∞
σ(t)eiωt dt,

and similarly for ε(ω), are related by the equation

σ(ω) = ε(ω)E(ω),

where

E(ω) = −iω
∫ ∞

0
E(t)eiωt dt. (9.2)

Note that E(ω) is not the Fourier transform1 of E(t). The real and imaginary parts
of E(ω) are the storage modulus E ′(ω) and the loss modulus E ′′(ω) respectively.
The meaning of the last quantity can be understood if we calculate the energy �E
dissipated in the deformation of a volume V of the material:

�E =
∫
σi j ε̇i j dt dV = − V

2π

∫
ωE ′′(ω) |ε(ω)|2 dω.

Alternatively, the energy loss can be written as

�E = V

2π

∫
ωIm

(
1

E(ω)

)
|σ(ω)|2 dω. (9.3)

1 The definition (9.2) is motivated by the fact that this quantity, and not the Fourier transform, is directly
accessible in rheological experiments.
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The imaginary part of 1/E(ω) is called the loss function. Similar definitions apply
to the viscoelastic shear modulus G(t) ≈ E(t)/3.

9.2 Constitutive models

As seen in Section 9.1, viscoelastic behavior has elastic and viscous components.
An elastic component can be modeled as a spring following Hooke’s law σ = Eε.
A viscous component can be modeled as a dashpot with a stress–strain rate relation
σ = ηε̇. Based on these assumptions, various models have been proposed.

Maxwell model

In the Maxwell model [209] a viscoelastic material is described by a spring and a
dashpot connected in series as in Fig. 9.2(a). The variations of stress and strain are
related as:

ε̇ = σ

η
+ 1

E
σ̇ . (9.4)

If a step strain ε0 is applied, the stress σ suddenly increases and subsequently
decays exponentially with a relaxation time τ = η/E :

σ(t) = Ee−t/τ ε0.

On the other hand, if a step stress σ0 is applied the strain ε increases linearly with
time (so-called steady creep):

ε(t) = σ0

E

(
1 + t

τ

)
. (9.5)

The relation (9.5) is valid until ε is no longer small and the model breaks down.
The differential equation (9.4) corresponds to the viscoelastic modulus

E(ω) = E iωη

E + iωη
.

E η

η

E1

E2(a) (b)

Figure 9.2 (a) Maxwell model and (b) standard solid model for viscoelastic
materials.
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The storage and loss moduli are, respectively,

E ′(ω) = E
(ωτ)2

1 + (ωτ)2
, E ′′(ω) = E

ωτ

1 + (ωτ)2
.

Standard solid model

The limitations of the Maxwell model can be overcome by adding a second spring
in parallel to the dashpot (Fig. 9.2b). In this case(

1 + E2

E1

)
σ

η
+ 1

E1
σ̇ = E2

η
ε + ε̇.

If a step stress σ0 is applied, the material will immediately deform to the elastic part
of the strain, then gradually approach a final value adding the viscous part (delayed
elasticity):

ε(t) = σ0

E1
+ σ0

E2

(
1 − e−t/τε

)
, (9.6)

where τε = η/E2. If a step strain is applied:

σ(t) = E∞
(

1 + E1

E2
e−t/τσ

)
ε0, (9.7)

where τσ = η/(E1 + E2) and 1/E∞ = 1/E1 + 1/E2.
In the frequency domain:

E(ω) = E∞
1 + iωτε
1 + iωτσ

. (9.8)

The frequency dependence of the real and imaginary parts of E(ω), as described by
Eq. (9.8), is shown in Fig. 9.3. In the ‘rubbery’ region at low frequencies the solid is
soft, whereas it is quite stiff in the ‘glassy’ region at high frequencies. The storage

log

Re E

Im E

transition
region

rubbery
region

glassy
region

ω log ω

Im (1/E)log E(a) (b)

Figure 9.3 (a) Real part (continuous curve) and imaginary part (dashed curve) of
the viscoelastic modulus E(ω) given by (9.8). (b) Loss function Im(1/E(ω)).
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modulus E ′ tends to the two limit values E∞ and E1 respectively at low and high
frequencies. The loss function is quite large in the intermediate region, peaking at
the frequency ωmax = 1/τε (Fig. 9.3(b)).

The scheme presented in Fig. 9.2(b) is know as the Voigt form of the standard
solid model. Alternatively, one can add a spring in parallel to the Maxwell element
in Fig. 9.2(a). In this case the governing equation is

ησ̇ + E1σ = η(E1 + E2)ε̇ + E1 E2ε

corresponding to the storage and loss moduli

E ′(ω) = E1 + E2
(ωτ)2

1 + (ωτ)2
, E ′′(ω) = E2

ωτ

1 + (ωτ)2
.

Maxwell–Wiechert model

The standard solid model is still too simple to reproduce the response of a polymer
over a long time. The creep in Fig. 9.1 can be obtained by adding a second dashpot
with viscosity η2 in series to the spring and the Voigt element in Fig. 9.2(b), which
introduces an additional linear term (σ0/η2)t on the right hand side of Eq. (9.6).
However, in order to reproduce the general response of a real system, a distribution
of stiffness and relaxation times must be introduced. This can be done by connect-
ing a spring and several Maxwell elements in parallel, as shown in Fig. 9.4. In this
case the relaxation modulus is expressed by the Prony series

E(t) = E∞ +
N∑

i=1

Ei e
−t/τi ,

where E∞ is the steady-state stiffness corresponding to the spring, and the
parameters Ei and τi characterize each of the N elements.

E1 E2
E

Ei

1 2 iη η

σ

σ

η

Figure 9.4 Prony series.
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9.3 Viscoelastic indentation

Analytical solutions of viscoelastic contact problems can be derived by means of
the correspondence principle introduced by Radok [280]. According to this prin-
ciple, if the deformation history of the contacting bodies is known, the effective
elastic modulus E∗ appearing in the expressions for the pressure distribution in an
elastic contact can be replaced by an integral operator:

E∗ →
∫

E∗(t − t ′)
d

dt ′ · · · dt ′,

where E∗ is now the effective viscoelastic modulus. However, the replacement is
only possible if the contact area is growing with time.

In this way it is not difficult to prove that, if a rigid sphere of radius R is pressed
into a viscoelastic half-space by a normal force FN, the contact radius will increase
with time as

a(t) =
(

9RFN

16E(t)

)1/3

. (9.9)

If the viscoelastic material is described by the Maxwell model, a will immediately
jump to the value a0 = (9RFN/16E)1/3 and grow continuously as long as a � R.
At the same time, the pressure will first follow an elastic distribution, with the
maximum value in the center of the contact area, and then concentrate more and
more towards the edge of the contact, as shown in Fig. 9.5(a) [156, section 6.5]. If
the material is described by the standard solid model in the Voigt form, the pressure
will keep an approximately elastic distribution all the time, as in Fig. 9.5(b) [346].
Correspondingly, the contact radius will vary from a1 = (9RFN/16E1)

1/3 to a∞ =
(9RFN/16E∞)1/3.

a0
a0

t=0

t=2

t=

0

p

r
a1

a1 0
r

p

t=10τ

(a) (b)

t= 0

Figure 9.5 Variation of pressure distribution when a rigid sphere is pressed by a
step load against a viscoelastic half-space, described by (a) the Maxwell model
and (b) the standard solid model. Adapted from [156] with permission from
Cambridge University Press.



96 Viscoelastic contacts

t

a t( )

tmax

Figure 9.6 Time dependence of the contact radius between a rigid sphere and
a viscoelastic half-space under the action of a sinusoidal normal force. Adapted
from [156] with permission from Cambridge University Press.

If the contact is first loaded and then unloaded according to a sinusoidal law
FN = F0 sinωt , a will keep growing by creep even when FN starts to decrease.
Only at the time tmax = 3π/4ω does the contact area start to decrease (rapidly) to
zero. The time dependence of a in this last phase can be estimated as described in
[156, section 6.5]. The complete result is shown in Fig. 9.6.

Rough substrates

Suppose now that a viscoelastic block with surface roughness power spectrum S(k)
is squeezed against a rough hard substrate. If the block were elastic and the load
were very low, we could write the relation (8.19) between the normalized contact
area P and the squeezing pressure p at the magnification ζ as

E∗ P(ζ ) = 2p

π
√

I (ζ )
, (9.10)

where I (ζ ) is defined by Eq. (8.24). According to the correspondence principle,
we can generalize Eq. (9.10) to a viscoelastic solid as∫ t

−∞
E∗(t − t ′)

∂P

∂t ′ dt ′ = 2p(t)

π
√

I
.

As a result [263]:

P(ζ, t) = 2

π
√

I (ζ )

∫ ∞

−∞
p(ω)

E∗(ω)
e−iωt dω, (9.11)

where p(ω) is the Fourier transform of p(t). For an arbitrary load, a comparison
with Eqs. (8.18) and (8.19) suggests that

P(ζ, t) = erf

(√
π

2
P0(ζ, t)

)
,

where P0 is defined by Eq. (9.11).
If E∗(t) = E∞ + (E1 − E∞)e−t/τ and σ(t) = σ0 for 0 < t < t1 and zero

otherwise, one gets

P0(ζ, t) = 2

π
√

I

σ0

E∞

[
1 +

(
E∞
E1

− 1

)
e−t/τ

]
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Figure 9.7 Relative contact area of a block of tread rubber (upper curve) and rim
rubber (lower curve) squeezed against a steel surface by a pressure p = 0.1 MPa.
Adapted from [265] with permission from IOP Publishing.

and, for an arbitrarily large load:

P(ζ, t) = 2p

π2
√

I (ζ )
Re
∫ ∞

0

1 − e−iωt1

−iω

e−iωt

E∗(ω)
dω. (9.12)

The time dependence of the contact area expected from Eq. (9.12) is shown in
Fig. 9.7 for two types of rubber. Again, these results are only valid as long as the
contact area increases with time.

9.4 Rubber friction

Rubber friction is a complex phenomenon determined by at least four factors: (i)
the viscoelastic energy dissipation caused by the surface asperities while sliding,
(ii) the opening crack tips, (iii) the shearing of possible contamination films and
(iv) wear process. The contribution of adhesion is usually negligible, as shown in
Section 10.4. Here, we will focus on the first of these processes, whereas energy
dissipation at opening cracks (important on smooth surfaces) will be discussed in
Section 13.4.

Suppose first that a rubber block is pressed against a rigid wavy substrate while
sliding with a constant velocity v. In this case a qualitative estimation of the kinetic
friction coefficient μk is possible [259]. The energy dissipation in a contact region
with linear size l occurs in a volume V ∼ l3 (Fig. 9.8). The stress acting in this
volume is σ ∼ p cosω0t , where the frequency ω0 ∼ v/ l and p is the average
pressure. Substituting into Eq. (9.3) we obtain the energy �E dissipated in the
time �t = 2π/ω0:

�E ∼ l3 p2ω0�t Im

(
1

E(ω0)

)
.

Since the product of the friction force Fk = μk FN and the sliding velocity is equal
to the power dissipation �E/�t , and the normal force FN ≈ l2 p,
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rubber

l

hard substrate

l

Figure 9.8 The fluctuating stress acting on a sliding rubber block gives rise to
energy dissipation via the internal friction of the rubber. Most of the dissipation
occurs in the hatched regions.

μ k

2

1

0

log [m/s]v

Figure 9.9 Friction coefficient as a function of the sliding velocity for a rubber
block sliding on an asphalt road surface (continuous curve). The dashed curve
is obtained by introducing the so-called flash temperature (see Section 11.2).
Adapted from [251] with permission from IOP Publishing.

μk ∼ p Im

(
1

E(ω0)

)
. (9.13)

Considering the frequency dependence of the loss function, one can expect a large
asperity-induced contribution to the friction if the frequency ω0 is close to a peak
value in Fig. 9.3(b) or in the Prony series (which is not the case in most practical
applications).

On an arbitrary rough surface, a precise expression for the friction coefficient
can be obtained in the framework of Persson theory [246]:

μk = 1

2p

∫ k1

k0

k3S(k)P(k)
∫ 2π

0
cosϕIm E∗(kv cos ϕ) dϕ dk, (9.14)

where the normalized contact area P(k) is given by the relation (8.18) with

G(k) = 1

8

∫ k

k0

k3S(k)
∫ 2π

0

∣∣E∗(kv cosϕ)
∣∣2 dϕ dk.

The velocity dependence of μk, as predicted by Eq. (9.14), is shown in Fig. 9.9.
As will be discussed in Section 11.2, this relation is significantly modified at high
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velocities by taking into account the frictional heating occurring in the contact
regions.

9.5 Rolling on viscoelastic bodies

The pressure distribution exerted by a rigid cylinder of radius R rolling on a vis-
coelastic overlayer of thickness d , as in Fig. 9.10, was calculated by May et al.
[210]. If the cylinder is pressed against the layer by a normal force FN and the
rolling velocity is v, the contact extends asymmetrically on two strips of width a
and b. If the layer is described by the standard solid model in Fig. 9.2(b), with the
viscoelastic modulus E replaced by the viscoelastic shear modulus G, the pressure
distribution inside the strips is

p(x) = Geqa2

Rd

[
1

2

(
1 − x2

a2

)
− βD

(
1 + x

a

)
+ βD(1 + D)

(
1 − e(1+x/a)/D

)]
.

(9.15)

In Eq. (9.11) G−1
eq = G−1

1 + G−2
2 , β = G1/G2 and the Deborah number 2

D = τσ

a/v

is the ratio between the relaxation time τσ of the material and the time a/v taken
to cross the distance a. The lengths a and b can be determined as a function of the
parameters β and D from the condition p(−a) = p(b) = 0.

a b

FN

d

v

R

p x( )

x

Figure 9.10 Contact formed by a rigid cylinder rolling on a viscoelastic
foundation.

2 This term was introduced by the Israeli engineer Markus Reiner, who was inspired by a biblical song by the
prophetess Deborah.
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Figure 9.11 Rolling resistance coefficient as a function of the Deborah number
for the contact described in Fig. 9.10.

The coefficient of rolling resistance μr, defined by Eq. (6.3), can be estimated
by observing that the resistive torque is

Mfric = −
∫ b

−a
xp(x) dx .

The torque Mfric is plotted in Fig. 9.11 as a function of D0 = τσ /(a0/v), where
a0 is the half-width of the contact in the static case (Section 9.3). Note that the
maximum value of μr is reached when D0 ∼ 1.
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Adhesive contacts

The adhesion between two elastic surfaces can be described within different
frameworks. The JKR model and the DMT models emphasize short-range and
long-range forces respectively, and can be considered as extreme cases of the same
theory. The intermediate regime has been described by Maugis. The Persson the-
ory makes also significant predictions regarding adhesion. Interestingly, adhesion
is expected to play only a minor role in rubber friction. The importance of adhesion
in biological systems will also be briefly mentioned.

10.1 The Johnson–Kendall–Roberts model

In the presence of adhesion, the contact between two elastic spheres has a surface
energy

Usurf = −�γπa2,

where �γ = γ1 + γ2 − γ12 is the local change of surface tension upon contact and
a is the contact radius (γi is the energy of each surface and γ12 is the energy of
the interface). A displacement with the Hertzian form (4.20) is retained if we add
a term

padh(r) = p′
0√

1 − r2/a2

to the pressure distribution p(r) = p0

√
1 − r 2/a2 given by Eq. (4.17) [157].

Correspondingly, the elastic energy stored in the two bodies becomes

Uel = π2a3

E∗

(
2

15
p2

0 + 2

3
p0 p′

0 + p′
0

2
)
,

101



102 Adhesive contacts

FN [×

2

1

4 60 2 82

a a/ c

R]

Figure 10.1 Contact radius as a function of the normal force in the JKR model.

and a term

δadh = πa

E∗ p′
0

is added to the penetration depth δ0 = (πa/2E∗)p0, as proven in [156, section
5.5]. The value of p′

0 is defined by the condition that the total energy Uel + Usurf

has a minimum with respect to a:

p′
0 = −

√
2�γ E∗

πa
.

By integrating the pressure p(r) over the contact area, we can express the contact
radius a as a function of the resulting normal force FN = ∫ 2πr p(r) dr :

a3 = 3R

4E∗
(

FN + 3�γπR +
√

6�γπRFN + (3�γπR)2
)
. (10.1)

The relation (10.1) is plotted in Fig. 10.1. Note that the equilibrium of the contact
becomes unstable when the force FN reaches the critical value

Fc = −3π

2
�γ R. (10.2)

In this situation, corresponding to a finite critical radius

ac =
(

9π�γ R2

8E∗

)1/3

,

the two surfaces separate. The opposite of Fc can be considered as the adhesion
force Fadh of the contact.

In Fig. 10.2 the deformed shape of the spheres is shown. The spheres meet at
90◦ at the edges, where the pressure tends (theoretically) to infinity.

10.2 The Derjaguin–Muller–Toporov model

According to the Derjaguin, Muller and Toporov (DMT) model [71] two elastic
spheres pressed together by a normal force FN are supposed to follow the Hertz



10.3 The Maugis–Dugdale model 103

a

a0

Figure 10.2 Deformation profiles for two elastic spheres in contact without
adhesion (dashed curves) and with adhesion (solid curves).

theory in their area of contact, whereas a long-range attractive force acts outside
this area. The contact radius in this case is given by

a3 = 3R

4E∗ (FN − Fc),

where the pull-off force

Fc = −2π�γ R.

The value of Fc is assumed to be equal to the force required to separate two rigid
spheres with the same radii interacting via a Lennard–Jones (LJ) potential [34]:

F(z) = 8�γπR

3

[
1

4

(
z0

z

)8

−
(

z0

z

)2
]
. (10.3)

The expression (10.3) has indeed a minimum F = Fc at z = z0.
The conditions of applicability of either the DMT or the JKR model were estab-

lished by Tabor [328], who introduced a parameter to quantify the ratio between
the elastic deformation at the point of separation and the range of surface forces:

μT =
(

R(�γ )2

E∗2z3
0

)1/3

.

For small stiff spheres (μT � 1) the elastic deformation is negligible and the DMT
model is applicable. For large compliant spheres (μT � 1) the JKR model is a
better approximation.

10.3 The Maugis–Dugdale model

The DMT model and the JKR model can be seen as limit cases of the theory devel-
oped by Maugis and Dugdale [207]. Here, a constant adhesive force (per unit area)
σadh is supposed to act over a distance h0 between the contacting spheres. The
parameter σadh corresponds, arbitrarily, to the minimum force in the LJ potential
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Figure 10.3 Comparison between a Lennard–Jones force profile (continuous
curve) and the corresponding Dugdale profile (dashed lines).

and the parameter h0 is determined by matching the work of adhesion to that of
LJ: σadhh0 = �γ (Fig. 10.3). This leads to the relation h0 = 0.971z0, where z0 is
the equilibrium distance in LJ. The adhesive force extends up to a radius c > a,
where a is the radius of intimate contact of the two spheres, as determined by the
Hertzian relation (4.16). The radius c is implicitly obtained from the relation

2σadh

π�γ R

((
c2 − 2a2

)
arccos

a

c
+ a
√

c2 − a2
)

+ 16σ 2
adh

π�γ E∗
(√

c2 − a2 arccos
a

c
− c + a

)
= 1.

The normal force

FN = 4E∗a3

3R
− 2σadh

(
c2 arccos

a

c
+ a
√

c2 − a2
)

and the total compression is

δ = δ0 − 2σadh

E∗
√

c2 − a2.

Introducing the Maugis parameter

λ = σadh

(
9R

2π�γ E∗2

)1/3

,

the DMT and the JKR relations are recovered when λ � 1 or λ � 1 respectively.
This is not suprising, since λ = 1.16μT. An empirical fit of the MD model, which
is valid for any value of the parameter λ, has been proposed by Carpick et al. [47].
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10.4 The Persson theory with adhesion

The contact mechanics theory for rough surfaces introduced in Section 8.3 can
be extended to adhesive contacts. As a preliminary step for determining the con-
tact area at different magnifications in the presence of adhesion, the concepts of
effective surface tension and detachment stress must first be introduced.

Effective surface tension

Suppose that a rubber block is squeezed against a rough hard substrate by a pres-
sure p. If the contact is complete, we can define an effective surface tension γeff

satisfying the relation

Uel + Uadh = −γeff A0,

where Uel is the elastic energy stored in the asperity contact regions, Uadh is the
adhesion energy associated with the bonding between the two solids and A0 is the
apparent contact area. The adhesion energy can be written as

Uadh = −�γ Acon,

where �γ is the change of surface tension upon contact, introduced in Sec-
tion 10.1, and Acon is the total contact area (which is larger than A0). The
expressions (8.20) and (8.21) for Uel and Acon allow us to determine γeff for any
surface with a given roughness power spectrum S(k).

Experimentally, the effective surface tension γeff can be estimated from the
pull-off force Fadh required to detach a sphere squeezed against a rough surface.
This force is expected to be the same as in the JKR theory, with �γ replaced
by γeff [248]:

Fadh = 3π

2
γeff R.

A relation between γeff and the rms roughness hrms in good agreement with the
Persson theory has been measured by Peressadko et al. using rubber balls [240].

More generally, we can define the effective surface tension γeff(ζ ) at the
magnification ζ with the relation

Uel(ζ )+ Uadh = −γeff(ζ )Acon(ζ ),

where Uel(ζ ) is the elastic energy stored in the asperity contact regions and Acon(ζ )

is the real contact area at the magnification ζ . A possible relation between γeff and
ζ , estimated numerically, is shown in Fig. 10.4. At low magnification γeff is smaller
than �γ due to the contribution of the roughness-induced elastic deformation
energy [248]. As ζ increases, the limit value �γ is approached.
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Figure 10.4 Dependence of the effective surface tension γeff on the magnifica-
tion ζ . Parameter values: k0 = 0.17/hrms, k1 = 100, Df = 2.2, p = 0.05E∗,
�γ = 2.5k0 E∗. Adapted from [248] with permission from The European
Physical Journal (EPJ).

h

Figure 10.5 Contact formed by a rubber surface completely squeezed against a
rough hard substrate. The dashed region corresponds to high stress.

Detachment stress

In the presence of adhesion the first boundary condition for the diffusion equation
(8.12) becomes

P(−σa(ζ ), ζ ) = 0, (10.4)

where σa is the largest possible tensile stress at a given magnification ζ . The detach-
ment stress σa(ζ ) can be related to the effective surface tension γeff as follows. If
the rubber fills a cavity of height h and width λ, as in Fig. 10.5, the strain ε ∼ h/λ
corresponds to the elastic energy Uel ∼ λ3 E(h/λ)2. This quantity is balanced by
the adhesion energy Uadh ∼ γeffλ

2. Thus, σa(ζ ) ∼ E(h/λ) ∼ √
γeff(ζ )E/λ. A

precise relation is obtained using the Griffith criterion, Eq. (13.7):

σa(ζ ) =
√

2γeff(ζ )E∗k

π 2
. (10.5)

Area of contact

The Persson equation (8.12) can also be solved with the boundary condition (10.4).
As a result, one gets the following relation between the normal force FN and the
contact area [250]:
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Figure 10.6 Dependence of the projected area of contact on the magnification ζ
with and without adhesion. The parameter values are the same as in Fig. 10.4.
Adapted from [248] with permission from The European Physical Journal (EPJ).

dFN

dζ
= −σa(ζ )

dA

dζ
. (10.6)

If σa did not depend on the magnification, Eq. (10.6) would imply that the normal
force is the sum of the applied load and the adhesion load, as in the DMT model
(Section 10.2):

FN ≈ (p + σa)A0. (10.7)

However, since σa usually depends on ζ , the relation (10.7) has no general
applicability.

The dependence of the contact area on ζ can be estimated numerically with an
iterative procedure, as described in [248]. The result is shown in Fig. 10.6. In the
presence of adhesion the apparent contact area equals the real contact area (i.e. the
rubber is in complete contact with the substrate) already at a small magnification
ζ ≈ 10. However, this is the case only if the fractal dimension Df ∼ 2. For larger
values of Df the area A decreases continuously with increasing ζ .

Adhesion and rubber friction

For rough surfaces, the contribution of adhesion to rubber friction is usually neg-
ligible. This can be seen by comparing the detachment stress σa at a given length
scale λ to the pressure p (which is usually ∼ 1 MPa). If a tire tread rubber is
squeezed against a road surface, the effective elastic modulus E∗ ∼ 1 MPa and the
interfacial surface tension γ ∼ 1 meV/A2 [263], so that, according to Eq. (10.5),
adhesion is important only on length scales λ < 10 nm. These values are well
below the typical cut-off length scales, which, as mentioned in Section 8.1, are in
the order of 1 µm.
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10.5 Adhesion in biological systems

An elastic object can adhere to a rigid rough substrate only if the strain energy of
the deformed material is larger than the interfacial binding energy. This means that
the Young’s modulus E of the solid must be low enough. A possible way to reduce
E , which is exploited in many biological adhesive systems, is to form foam-like
or fiber-like structures. Foam-like structures are adopted in the adhesion pads of
cicadas whereas hierarchical fiber structures are observed in other animals. Even
if the Young’s modulus of the keratin-like proteins forming these systems is in
principle quite large (of the order of 1 GPa, i.e. three orders of magnitude more
than in rubber), the effective modulus resulting from the non-compact shape is
quite small [249], which makes adhesion possible even on very rough surfaces.
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Thermal and electric effects

Heat transfer has a key importance in friction and wear phenomena. For instance,
when a rubber tire slides on an asphalt road, the friction coefficient depends signif-
icantly on the temperature increase in the contacting asperities. If such an increase
is ignored, the friction can be overestimated, especially at high velocities. In this
chapter, we will first discuss the glass transition and introduce the concept of flash
temperature in viscoelastic materials. After that, we will move to the contact of
elastic materials and discuss simple expressions for the heat transfer and the elec-
tric conductivity at the interface. We will also show that, in both cases, friction has
a negligible influence on the contact resistance.

11.1 Thermal effects in polymers

The existence of rubbery and glassy regions in polymers (Section 9.2) has a simple
physical explanation. At low frequencies the molecular chains forming the polymer
have enough time to flip betwen different configurations and rearrange, while this
is not possible at high frequencies. This causes a soft response in the first case, and
significant hardening in the second one. The flipping process is thermally activated
and a strong temperature dependence of the viscoelastic modulus E(t) is expected.
Indeed, the characteristic relaxation time τ changes dramatically around a so-called
glass transition temperature Tg. Below Tg, τ is quite long and the material behaves
like a glass. Above Tg, τ is very short and the polymer presents a rubbery behav-
ior. All polymers show this general trend, but the extent of each regime, and the
detailed response within each regime, depend on the molecular structure of the
material. The glass transition temperature is 70–100 ◦C for most polymers. Heav-
ily cross-linked polymers (so-called elastomers) are the most likely to behave as
ideal rubber.

The time dependence and the temperature dependence of the viscoelastic mod-
ulus have a remarkable analogy. In fact, it is experimentally well established that

E(t, T ) = E(aTt, T0),
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Figure 11.1 Temperature dependence of the viscoelastic modulus.

where T0 is a reference temperature (conventionally set equal to the glass transi-
tion temperature Tg) and the shift factor aT is a function of the temperature T .
The dependence aT(T ) is well approximated by the Williams–Landel–Ferry (WLF)
equation [342]:

log aT = C1(T − T0)

C2 + T − T0
. (11.1)

In this empirical relation the constants C1 ≈ −17.44 and C2 ≈ 51.6 K are approx-
imately the same for all amorphous polymers. In this way the curves E(t) recorded
at different temperatures can be overlapped, on a logarithmic scale, onto a single
master curve by simply shifting them by the distance aT, as shown in Fig. 11.1.
Similarly, for the frequency dependence,

E(ω, T ) = E(ω/aT, T0).

Note that in practice, a temperature increase of 10 ◦C may shift any curve repre-
senting a function of E(ω) (and specifically the loss function) to higher frequencies
by one decade.

The WLF equation can be recovered by assuming that the viscosity η of the poly-
mer follows the semi-empirical Doolittle equation η = A exp(Bv0/vf), where v0 is
the volume of closest packing of the molecules and the ‘free’ volume vf accessible
to a molecule is supposed to depend linearly on the temperature [77].

11.2 Flash temperature

Consider again a rubber block sliding on a rough hard substrate, as in Section 9.4.
The viscoelastic energy dissipation heats the rubber locally in the same regions
where the energy is dissipated. The resulting temperature increase �T (so-called
flash temperature) is larger in the smaller asperity contact regions. If the sliding
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velocity v > 1 mm/s the flash temperature is usually not negligible since, in this
case, the heat has not enough time to flow away from the contact.

On a wavy surface, with periodicity λ0, we can refer to Fig. 9.8 and observe that
the heat dissipated in the unit volume of an asperity with linear size l , pressed by a
normal force FN, is Q ≈ μk FNl/ l3 = μk p, where p is the average pressure in the
contact area. According to Hertz theory, p ≈ k0hrms|E(ω0, T )|, where k0 = 2π/λ0

and hrms is the rms roughness amplitude. If v is high enough, the heat diffusion
becomes negligible. In this case a temperature increase�T ≈ Q/ρcV is expected,
where ρ is the mass density and cV is the specific heat capacity of the material.
Taking into account the relation (9.13):

�T ≈ (k0hrms)
2 Im E(ω0, T )

ρcV
. (11.2)

Since in most applications the perturbing frequencies ω0 are below the frequency
ωmax at which the loss function has a maximum (Section 9.2) and the temperature
increase �T shifts the viscoelastic spectrum to higher frequencies (Section 11.1),
Eq. (11.2) implies that the flash temperature will reduce the friction force.

If the block is sliding on an arbitrarily rough surface, an implicit expression for
the flash temperature at a depth λ = 2π/k inside the block can be derived in the
framework of Persson theory [251]:

Tk = T0 + 1

π

∫∫
4k2

q2 + 4k2

4k ′

q2 + 4k ′2
(

1 − e−αk2 R/v
)

dq dk ′, (11.3)

where T0 is the background temperature, α is the thermal diffusivity,1 and R is the
average radius of the ‘macroasperity’ contact regions (Section 8.3). As a result,
the temperature of a tire tread rubber on an asphalt road is expected to increase by
80 ◦C at a depth of 10 µm, but only by few degrees at a depth of few mm.

The friction coefficient μk can still be expressed by Eq. (9.14), where the flash
temperature Tk, as defined by Eq. (11.3), enters the definition of the effective elas-
tic modulus E∗. The velocity dependence of μk, including the flash temperature, is
compared to the dependence μk(v) without thermal effects in Fig. 9.9. Neglecting
the flash temperature, μk increases monotonically with v. Taking the flash temper-
ature into account, μk reaches a maximum at v ≈ 1 cm/s. Beyond this value, the
shift of the viscoelastic module E(ω) makes the rubber less viscous and results in
less energy dissipation.

Nowadays, the distribution of flash temperature on the macroasperity contacts
of an automotive tire can be easily visualized with infrared cameras; see Fig. 11.2.
Note that, even if the background temperature T0 does vary slowly with time, this
quantity is very important in rubber friction. In this context, we remark that the full

1 The thermal diffusivity depends on the thermal conductivity κ as α = κ/ρcV.
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Figure 11.2 Infrared photograph of a tyre rolling on an asphalt road. The
temperature of the rubber is higher in the darkest spots, arising from macro-
asperity contacts with the road. Reproduced from [251] with permission from
IOP Publishing.

tire temperature is usually reached on a time scale of half an hour from the start of
driving.

11.3 Heat transfer between rough surfaces

Consider the contact between two rough elastic blocks with thickness d1 and d2

(Fig. 11.3) and suppose that the temperature at the outer surfaces is kept fixed at T1

and T2, respectively, with T2 > T1. Introducing the average distance δ between the
macroasperity contact regions (Section 8.3), we can write the heat transfer at the
interface as

q = α�T ′,

where �T ′ is the temperature variation through the distance δ and α is the heat
transfer coefficient.2 Since the heat transfer in each block is

q = ±κi

di
�Ti ,

where �Ti = T ′
i − Ti is the temperature variation with respect to the outer surface

and κi is the thermal conductivity,

q = �T0

d1/κ1 + d2/κ2 + 1/α
.

It follows immediately from dimensional considerations that

α ∼ κp

E∗δ0
, (11.4)

2 Not to be confused with the thermal diffusivity!
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Figure 11.3 Heat transfer between two rough elastic surfaces in contact.

where p is the squeezing pressure and δ0 is the length parameter introduced in
Section 8.4. In the case of rubber in contact with a road surface it is estimated that
α ∼ 10 W/m2K [266]. This value is one order of magnitude smaller than the heat
transfer resulting from forced convection.

In general, the contact resistance can always be neglected if di � κ/α or, equiv-
alently, if di � δ0 E∗/p. This is not the case in MEMS, where the hard and very
flat surfaces and the high-resistivity materials characterizing these devices result in
contact heat transfer coefficients of the order of 104–105 W/m2K. For low loads we
can use Eq. (8.23) and conclude that

α ∼ κ

E∗ kN,

where kN = dp/dδ is the normal stiffness of the contact. For self-affine fractal sur-
faces Eq. (8.25) implies that α is determined by the longest wavelength roughness
components of the surfaces. Thus, the real contact area or, equivalently, the friction
force has no influence on the contact resistance (provided that the Hurst coefficient
H is not too small).

11.4 Electric contact resistance

Measuring the electrical contact conductance G is an efficient method for estimat-
ing the contact area between two metal surfaces. For a macroscopic circular contact
with radius a:

G = 2a/ρ, (11.5)

where ρ is the resistivity of the material. However, Eq. (11.5) cannot be applied on
the nanoscale, where the mean free path l of the electrons is larger than the linear
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size of the contact. In this case, Sharvin noticed that the problem is analogous to
the effusion of gas molecules through a small orifice in the Knudsen regime [306],
so that

G = 3πa2

4ρl
.

This means that in the Sharvin regime the conductance is proportional to the con-
tact area. However, if the contact is only a few atoms wide, quantization effects
appear and the conductance is expressed by a multiple of the quantum unit 2e2/h,
where h is Planck’s constant. This result has been verified by nanoindentation
experiments on atomic-scale gold contacts, where the normal force was measured
simultaneously with the conductance [347, 295].

The problem of the electrical contact resistance between rough surfaces is com-
pletely analogous to that of the thermal contact resistance. Thus, the electric current
crossing a rough interface between two elastic solids depends on the electric
potential drop �V as

J = αel�V,

where

αel ∼ pκel

E∗δ0
, (11.6)

and κel is the electrical conductivity (compare Eq. (11.4)). Also in this case the
influence of friction on the contact resistance is expected to be negligible. However,
we should keep in mind that the variation of electric conductivity between metals
and bad conductors can embrace more than 20 orders of magnitude.3 This makes
the electric contact resistance very sensitive to contamination or oxide layers at the
contacting interface. Still, if the layers are broken in several tiny spots, as often
occurs in practice, the resistance is almost the same as without layers [7], and
Eq. (11.6) remains applicable.

3 Typical values of κel are ∼ 107 S/m in metals and ∼ 10−14 S/m in silicon oxide and rubber.
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Plastic contacts

In this chapter we consider the transition from elastic to plastic behavior (the
yield point). This transition implies that the material undergoes irreversible shape
changes in response to external forces. A simple example is a piece of metal per-
manently bent into a new shape. Several physical mechanisms can cause plastic
deformation. Plasticity in metals is usually associated with the motion of disloca-
tions, while in brittle materials it is caused predominantly by slip at microcracks.
After introducing the most important criteria for yielding, the concept of plastic
flow and the definition of hardness, we will consider various examples of indenta-
tion, sliding and rolling involving plastically deformed objects. These processes are
severely affected by the friction at the contact interfaces, which is also discussed
in the chapter. We will also mention the importance of plasticity in geotechnics,
where it determines the safety of a structure founded on a soil. In this context, a
peculiar role is played by the angle of internal friction of the materials.

12.1 Plasticity

A typical stress–strain curve for a material in simple tension is shown in Fig. 12.1.
The initial part of the curve is a straight line with a slope equal to the Young’s
modulus E of the material. The linear relationship between σ and ε ends at a cer-
tain point, corresponding to the yield strength Y . At this point plastic deformation
occurs. The value of Y depends on the manufacturing process and on the purity of
the material. For metals, it is typically in the range of 10–100 MPa. If the mate-
rial is stressed further in the plastic range and the load is released, the recovery
is elastic, with the same value of E as in the first loading. This key assumption
was carefully verified by Tabor in a series of measurements on soft metals using
spherical and conical indenters [327, 321]. A subsequent loading of the material
results in an increased value of the yield strength, as seen in Fig. 12.1. This effect
is known as work hardening or strain hardening. A different result is obtained if
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Figure 12.1 Stress–strain curve in a metal.

the material is reloaded in simple compression. In this case the new yield strength
is lower than Y (Bauschinger effect) [15]. Experiments with pure shear, such as
the torsion of a tube, result in similar behavior. In this case, the yield strength is
usually denoted by k.

Physical interpretation

Plasticity in metals is ultimately due to the relative motion (slip) along specific
crystallographic planes, which is caused by the shear stress. Slip planes are usually
parallel to the planes of closest packing of atoms, where the resistance to slip has
a minimum. Within each plane there are preferred slip directions corresponding
to the atomic rows with the largest density of atoms. The shear strength required
to produce a slip can be estimated assuming that the slip occurs by uniform dis-
placement of adjacent atomic planes. If the shear stress varies sinusoidally with the
lateral displacement (Fig. 12.2), it is not difficult to prove that the maximum shear
stress

τmax = Gb

2πa
, (12.1)

where a is the interplanar spacing, b is the interatomic spacing in a crystal plane
and G is the shear modulus of the material. In a first approximation τmax should
be of the order of 10 GPa. However, this is in contrast to the experimental results,
where the values of τmax are one to three orders of magnitude lower. This discrep-
ancy is simply explained by the lattice defects (e.g. dislocations) which are always
present in real crystals.

Dislocations are possibly the most important defects in solids. An edge dislo-
cation is generated by an extra half-plane inserted in a crystal lattice as shown in
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Figure 12.2 Slip mechanism on the atomic scale.
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Figure 12.3 (a) An edge dislocation and (b) a shear dislocation in a cubic crystal.

Fig. 12.3(a). A screw dislocation is obtained by cutting the lattice along a half-
plane and shifting the two resulting faces parallel to the cut (Fig. 12.3(b)). After
passing around a dislocation line, the displacement vector u is incremented by a
finite quantity b (Burgers vector), which is equal to one of the lattice periods:∮

du = −b.

When a dislocation moves in a slip plane containing it and b, each atom moves
much less than a lattice constant, which explains why the stress required to move
the dislocation is much smaller than the theoretical shear stress (12.1).

Even if dislocations can be produced at the surface of a crystal, for instance using
a nanoindenter, most of them are generated in the bulk. The most important pro-
cess is the Frank–Read mechanism schematically shown in Fig. 12.4 [94]. In this
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Figure 12.4 The Frank–Read mechanism.

process a segment of dislocation firmly anchored at two points (e.g. two defects)
responds to a perpendicular force by bowing out. If the critical semicircular config-
uration in Fig. 12.4(b) is reached, the dislocation becomes unstable and the process
continues as shown in Fig. 12.4(c). When the two segments come into contact, they
annihilate each other and a dislocation loop propagates under the action of the shear
stress. At the same time a new segment appears and the whole process is repeated.
The final result is a sequence of nested dislocation loops. The phenomenon of work
hardening can be also explained by the repulsive action of the stress field produced
by dislocations which get stuck as the plastic flow proceeds.

12.2 Criteria of yielding

To predict the yielding of ductile materials under stress two criteria are com-
monly adopted. Note that in both cases the material is supposed to be isotropic
and the Bauschinger effect is disregarded. According to the Tresca criterion yield
is achieved when the maximum shear stress τmax in simple tension reaches the value
Y/2 or, equivalently, when

max
(|σi − σ j |

) = Y, (12.2)

where σi (i = 1, 2, 3) are the principal normal stresses of the material. Equa-
tion (12.2) defines a hexagon in the deviatoric plane σ1 + σ2 + σ3 = 0 shown in
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Figure 12.5 Deviatoric yield loci of Tresca and von Mises.

Fig. 12.5. In the von Mises criterion [339] the hexagon is replaced by the circle
circumscribing it, so that

√
(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2

2
= Y. (12.3)

The radius of this circle is
√

2/3Y . Interestingly, while the von Mises criterion was
intended to be an approximation of the Tresca criterion, it is in a better agreement
with the experiments, although the quantitative differences between the two criteria
are very small. More important is the fact that the left hand side of Eq. (12.3), i.e.
the so-called von Mises stress, is proportional to the strain energy associated with
the shear of the deformed material, which corresponds to the first term on the right
hand side of Eq. (3.9). This observation gives a more physical basis to the von
Mises criterion. In pure shear the yield strength is k = Y/2 in the Tresca criterion
and k = Y/

√
3 in the von Mises criterion, as seen from Eq. (12.2) and Eq. (12.3)

with σ1 = −σ2 = k.
From the results of Section 4.3 it follows that the contact between two spheres

and the axial contact between two cylinders enter the plastic regime, according to
the Tresca criterion, when the maximum pressure p0 ≈ 1.61Y and 1.67Y respec-
tively. For two ellipsoidal surfaces in contact, intermediate values of the critical
pressure are expected. If a blunt wedge or a blunt cone is pressed against a flat
surface, yield initiates at the apex of the indenter when the characteristic pressure
p0 (see Section 4.4) reaches the value 0.5Y .
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Figure 12.6 Stress components on an element bound by slip lines.

12.3 Plastic flow

Suppose now that the plastic deformation is so severe that the elastic deformation
can be neglected. In this case the material can be considered incompressible and in
a state of plastic flow with a constant shear stress k = Y/2 (following the Tresca
criterion).

In the case of plane deformation the flow occurs with a variable hydrostatic
pressure p = (σ1 + σ2)/2 and it is possible to introduce a curvilinear net of α and
β slip lines, which are mutually perpendicular and oriented along the directions of
maximum shear stress (Fig. 12.6). At a given position in the material [138, section
VI.3]:

σx = p − k sin 2ϕ, σy = p + k sin 2ϕ, τxy = k cos 2ϕ, (12.4)

where the angle ϕ defines the orientation of the α slip lines. Along the slip lines, it
can be shown that [135]

p ± 2kϕ = const. (12.5)

In this way the variation of p in a region of plastic flow can be determined from
the values of p on a free surface limiting the region.

12.4 Plastic indentation

Consider a rigid wedge with half-angle α indenting a perfectly plastic half-space
as in Fig. 12.7 [139]. The plastic flow occurs in the gray regions in the figure.
Since the half-space is incompressible, the areas of the two striped triangles must
be equal. If the friction is negligible the wedge faces do not sustain any shear stress
and the slip lines meet them at 45◦ (see Section 3.2). The same occurs at the free
surfaces. Using Eqs. (12.5) it can be concluded that the pressure on the half-space
is uniform and equal to
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Figure 12.7 Rigid wedge indenting a perfectly plastic half-space without interfa-
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Figure 12.8 Pressure on the half-space as a function of the half-angle of the
wedge. Adapted from [129] with permission from Elsevier.

p = 2k(1 + ψ0), (12.6)

where ψ0 is the angle of turning of the slip lines. This angle is determined from
geometry considerations leading to the relation

cos(2α − ψ0) = cosψ0

1 + sinψ0
.

The dependence p(α) is represented by the lower curve in Fig. 12.8.
In the presence of friction at the contact area, the slip lines meet the wedge faces

at an angle λ < 45◦. This angle is related to the coefficient of friction μ by the
expression

cos 2λ = μ(1 + 2ψ + sin 2λ),

where the fan angle ψ is again determined by the geometry of the problem. The
indentation pressure becomes

p = k(1 + sin 2λ+ 2ψ)(1 + μ/ tan α),

and its dependence on α is also shown in Fig. 12.8 for different values of μ.
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Figure 12.9 Blunt rigid wedge indenting a perfectly plastic half-space in the pres-
ence of high friction. The ‘false nose’ is highlighted in dark gray. Adapted from
[159] with permission from Elsevier.

However, if the friction is so high that λ becomes zero, the slip at the wedge
faces disappears and the surface of the indented material will adhere to the wedge.
If the wedge is blunt (α > 45◦), as the slip lines at the apex cannot meet at an angle
< 90◦, a 90◦ ‘false nose’ of undeformed material will adhere to the faces of the
wedge (Fig. 12.9) and move rigidly with it [159].

The case of a rigid cone indenting a plastic half-space can be solved with the
method of the slip lines [188], even if the problem is not 2D, provided that the
half-angle α > 52.5◦. In this case the pressure is not uniform, but rises up to
a maximum at the apex. The slip line field does not differ significantly from
that of a wedge, although the slip lines and the deformed surface are no longer
straight. The average pressure p acting on the half-space is slightly larger than for
a wedge.

In the case of a cylinder indenting a plastic half-space p ≈ 5.69k [82]. If μ >
0.14 a cone of undeformed material sticks to the cylinder, and p increases slightly.
If the indenter has a spherical shape, p is of the order of 6k and almost independent
of the penetration depth [289].

12.5 Compression and traction of a plastic wedge

Consider now a rigid plane pushed by a normal force FN against a wedge undergo-
ing plastic deformation (Fig. 12.10). In the absence of friction the pressure at the
interface is uniform and given again by Eq. (12.6). However, the fan angle ψ0 is
related now to the half-angle α of the wedge by the expression [138, section 8.3]

tanα = (1 + sinψ0)
2

cosψ0(2 + sinψ0)
. (12.7)

Equation (12.7) has a real solution only if α > 26.6◦. In the limit case the displaced
surfaces become vertical and the wedge apex undergoes a simple compression.



12.5 Compression and traction of a plastic wedge 123

FN

a a

ψ

α

Figure 12.10 Perfectly plastic wedge crushed by a rigid half-space.
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Figure 12.11 Deformation of the plastic wedge in the presence of an increasing
tangential force Fx : (a) first stage and (b) second stage. Adapted from [155] with
permission from Elsevier.

If a tangential force Fx is gradually superimposed on FN, we can distinguish two
stages [155]. In the first stage the three triangles highlighted in Fig. 12.11(a) move
as rigid objects. The slip lines meet the plane at the angles 45◦ ± ϕ, where, for a
given ratio Fx/FN, ϕ is defined by the relation

sinϕ cos ϕ

(1 + ψ0)− (ϕ + sin2 ϕ)
= Fx

FN
,

and ψ0 is determined from Eq. (12.7). The contact pressure is

p = k(1 + 2ψ + cos 2ϕ) (12.8)

where the fan angleψ = ψ0 −ϕ. The angle ϕ increases with Fx from 0◦ to 45◦, and
at this point the first stage ends. In the second stage (Fig. 12.11(b)) the pressure is

p = k(1 + 2ψ), (12.9)
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Figure 12.12 Growth of the contact area of a plastic wedge with half-angle
α = 60◦ under the action of a constant load FN and an increasing tangential force
Fx . Adapted from [155] with permission from Elsevier.

where ψ = (FN/Fx − 1)/2. When Fx = FN the angle ψ = 0 and the wedge starts
sliding.

From the previous discussion it follows that the contact area A increases even
if FN remains constant. The dependence of A on Fx is given by A = A0(p0/p),
where the relation p(Fx ) in the two stages is described by Eqs. (12.8) and (12.9)
and the initial value of p = p0 is given by Eq. (12.6). This process is known as
junction growth and its result is illustrated in Fig. 12.12. Note that this growth can
be interrupted by premature sliding caused by contaminants at the interface. In
Section 14.5 we will see how a junction can also grow due to thermally activated
plastic flow even without a tangential force.

12.6 Hardness

The indentation hardness of a material is the ratio between the normal force FN

acting on a rigid tool indenting the material and the area A of the impression left
after the indenter has been completely retracted:

H = FN/A.

Depending on the shape of the indenter, different definitions of hardness have been
proposed. In a Brinell test the indenter is a sphere of radius R, and the hardness is
defined as

HB = FN

2πR2
(

1 −√1 − (a/R)2
) ,

where a is the radius of the impression. In a Vickers test the sphere is replaced
by a square pyramid with half-angle α = 68◦. This value corresponds to the ratio
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a/R = 0.375 in the Brinell test, which is in the middle of the range where the test
was originally supposed to be most reliable. Expressing the impression area as a
function of α and the diagonal length d , it is not difficult to see that the hardness
measured in a Vickers test is

HV = 2FN sinα

d2
.

For nanoindentation experiments (see Section 12.8) the Berkovich test is more
common [21]. In this case, the indenter is a three-sided pyramid. This shape is eas-
ier to grind to a sharp point. The half-angle α of the Berkovich indenter is 65.35◦

in order to get the same projected area-to-depth ratio as a Vickers indenter.
Note that the hardness is not related to the elastic properties of a material. Rubber

is elastically soft but plastically hard while metals behave the other way around.
This can be seen by comparing the indentation hardness of steel (a few GPa) or
rubber (a few hundred MPa) with the values of the Young’s modulus in Section 3.3.

The Bowden–Tabor model

In the 1940s Bowden and Tabor speculated that friction results from shearing the
cold-welded junctions formed between two solids [32]. In this case, assuming that
all the junctions are in a state of incipient plastic flow, the contact area A would be
equal to FN/H , where H is the hardness of the material, and the friction force Ffric

would be equal to YA, where Y is the yield strength. According to the discussion in
section 12.4, this would lead to the relation (2.1) with a coefficient of friction μ =
Y/H ≈ 0.33, which is indeed a typical value for two metal surfaces in contact (see
Table 2.1). Nevertheless, finite-element simulations on typical surface profiles have
shown that only very few junctions are expected to be in a state of incipient plastic
flow [144]. Furthermore, friction is found to vary with the material properties of
the contacting surfaces. Thus, in spite of its popularity, the Bowden–Tabor model
cannot be considered as a ‘proof’ of Amontons’ law.

12.7 Plowing

The plowing of a plastic half-space by a rigid wedge with half-angle α can be
also studied using the slip line theory [156, section 7.6]. If the normal force FN is
constant and the tangential force Fx is gradually increased, the wedge penetrates
deeper and deeper while sliding till Fx = FN tan α. At this point the wedge starts to
ride up. As the plowing goes on, the wedge apex reaches the free surface and enters
a state of steady sliding during which a plastic wave is pushed along the surface
(Fig. 12.13). The width of the contact strip formed between wedge and surface, as
determined from slip line theory, is
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Figure 12.13 Rigid wedge plowing a perfectly plastic half-space.

a = FN

2k(1 + ψ) sinα
,

where k is the yield strength in pure shear and ψ = 2α − 90◦. In the presence of
friction the indentation depth is much deeper and the wedge builds up a larger hill
ahead. The case of a 3D indenter is much more complex since the material is also
displaced sideways.

12.8 Elastic–plastic indentation

If the size of the plastic zone is comparable to the region which remains elastically
deformed, the problem can usually be solved only with finite element methods. Due
to their simple geometry, indentations made with a rigid sphere or axisymmetric
rigid indenters are an exception, and analytical models have succeeded in repro-
ducing experimental results. Here we will briefly discuss the models introduced by
Johnson and by Oliver and Pharr.

The cavity model

Consider a rigid tool indenting a deformable material. If the average contact pres-
sure p is between Y and approximately 3Y , the plastically deformed region is
surrounded by elastic material. The upper limit comes from the results of Section
12.4 (remembering that k = Y/2) and marks the transition to fully plastic uncon-
tained flow. This limit defines the hardness H of the material. The deformation in
the elastic–plastic regime can be estimated numerically and, in general, it is found
that the plastic flow leads to a flattening of the pressure distribution. This can be
seen in Fig. 12.14 for the contact between a rigid sphere and an elastic–plastic half-
space [132]. Furthermore, the subsurface displacements are approximately radial.
This has also been observed experimentally when measuring the strain produced
by blunt indenters [301].
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Figure 12.14 (a) Pressure distribution in the contact between a rigid sphere and
an elastic–plastic half-space, for values of the ratio FN/Y = 1.0, 2.6, 6.4, 16 and
40 (aY is the contact radius at the point of first yield). (b) Corresponding plastic
zones. Adapted from [132] with permission from John Wiley and Sons.

Based on the previous result, Johnson proposed the following ‘cavity model’
[156, section 6.3]. In this model the contact area is supposed to be enclosed in a
hemispherical core of radius a. Inside the core the hydrostatic pressure p is con-
stant. Outside the core we distinguish between a plastic zone with radius c and an
elastic zone beyond it (Fig. 12.15). Stresses and displacements have radial symme-
try and, at the interface between core and plastic zone, the pressure p in the core
equals the radial component σr of the stress immediately outside it. The radial dis-
placement of this interface must accommodate the volume of material. As a result,
the radius c can be estimated from the contact radius a and the half-angle α of the
indenter, which is supposed to be conical, as

c = a

(
E

6Y (1 − ν) tan α
+ 2(1 − 2ν)

3(1 − ν)

)1/3

, (12.10)

and the core pressure takes the value

p = 2Y

(
1

3
+ ln

c

a

)
.

If the material is incompressible (ν = 1/2) the expression (12.10) is considerably
simplified:

c = a

(
E

3Y tanα

)1/3

.
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Figure 12.15 Johnson’s cavity model for an elastic–plastic half-space indented
by a rigid cone.
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Figure 12.16 Loading cycle of a sharp indenter on a ductile material.

When the fully plastic state is reached, E/Y tanα ≈ 40 so that c ≈ 2.3a. This
result justifies a practical rule requiring a spatial distance of at least five times the
indenter diameter between consecutive indentation tests.

The Oliver–Pharr method

Suppose now that a sharp tip is indented into an elastic–plastic half-space and
subsequently retracted from it. The typical response of the material in the cycle is
shown in Fig. 12.16. The precise relation between the normal force FN and the pen-
etration depth δ in the loading phase is not relevant for the rest of the analysis. Upon
unloading, the dependence on FN(δ) is initially linear and a slope k = (dFN/dδ)max

can be defined. A residual depth δr is observed at zero load (Fig. 12.17). The area
enclosed by the loading and unloading curves corresponds to the energy which is
dissipated plastically in the indentation process.
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Figure 12.17 Contact depth as defined by the unloading process.

The unloading curve in Fig. 12.16 can be used to determine the hardness H of
the substrate and the effective elastic modulus E∗ of the contacting materials. In
the widely accepted method introduced by Oliver and Pharr [237]

δr = C
Fmax

k
, (12.11)

where Fmax is the maximum loading force and the constant C depends on the tip
geometry.1 For a conical tip C ≈ 0.72. The projected contact area is

A = π(δmax − δr)
2 tan2 α,

where α is the half-angle of the indenter. The ratio A/Fmax is equal to H whereas

E∗ ≈ k

2

√
π

A
. (12.12)

However, a serious limitation of this model is neglecting the pile-up of material at
the edge of the contact area.

As a result of the loading cycle, the area around the impression ends up in a
state of radial compression and circumferential tension, which can be quantified
by finite element methods. Residual stresses are also left if a surface is hit by round
shaped hard particles (shot peening). This process can considerably increase the
resistance to fatigue of the material, which makes shot peening very important for
aerospace applications.

12.9 Rolling on plastically deformed bodies

Consider an elastic cylinder which repeatedly rolls on an elastic–plastic half-space
and suppose that the elastic limit is exceeded already in the first run. In this case it

1 Equation (12.11), and the precise value of C , can be derived from the Sneddon theory for elastic contacts
mentioned in Section 4.3.
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may happen that the residual stress builds up to such values that subsequent runs
result in entirely elastic deformation. This phenomenon is known as shakedown.
According to Melan’s theorem [215] an elastic–plastic contact will shake down if
a time-independent distribution of residual stress can be found such that, if the dis-
tribution is superimposed on the elastic stress due to the load, the yield point is
not reached. If the cylinder is rolling freely, Melan’s theorem implies that the ratio
between the shakedown limit and the elastic limit load is 1.66 [156, section 9.2].
However, this ratio is reduced in the presence of friction. The case of an elastic
sphere rolling on an elastic–plastic half-space is much more complicated. Neglect-
ing the pressure reduction caused by the formation of a groove, the aforementioned
ratio becomes 4.7.

The case of a rigid cylinder rolling on a perfectly plastic half-space has been
investigated by Mandel using the slip line theory [203]. A remarkable result is
that the surface of the half-space is displaced backwards by the cylinder. An oppo-
site behavior is observed on an elastic–plastic half-space, where the material is
displaced forwards.

12.10 Rough plastic contacts

It is also instructive to study the plastic contact between a periodic surface and a
rigid half-space. This problem has been solved for serrated surfaces (Fig. 12.18)
[54]. For low values of the average pressure p, the asperities are independent and
the deformation occurs as described in Section 12.5. The situation changes when
the deformation fields of adjacent asperities start to overlap. In the case in the figure
(half-angle α = 65◦) this happens when the ratio between the contact length l and
the periodicity λ is 0.36. The deformation ends when p reaches the limit value for
plastic indentation of a wedge (5.14k in the present case, see Section 12.5).

l

l

0.81

5.14k

0.360

α

(b)(a)
p

Figure 12.18 (a) Serrated plastic surface squeezed by a rigid half-space. (b)
Average pressure p as a function of the contact length. Adapted from [54] with
permission from Elsevier.
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Figure 12.19 Normalized plastic contact area vs. logarithm of the magnification
for different values of the yield strength (E = 1011 Pa, ν = 0.3, p = 10 MPa).
Adapted from [250] with permission from Elsevier.

The Persson theory can also be applied to elastic–plastic solids by replacing the
boundary condition (8.15) with P(Y, ζ ) = 0, where Y is the yield strength of the
material [250]. With increasing magnification ζ the contact area ‘flows’ into no-
contact where the stress σ < 0, and into plastic contact where σ > Y . In Fig.
12.19 the ratio between the plastic contact area Apl and the apparent contact area
A0 is plotted as a function of ζ for different values of Y . The asymptotic limit of
this ratio is p/Y .

12.11 Plasticity of geomaterials

Soils are composed by small solid particles (‘grains’) ranging from 1 µm to a few
mm in size, and their shear deformation is accompanied by sliding of the grains
one over another. Furthermore, the voids between particles can be filled by water
and air. In frictional materials, such as gravels, sands and silts, the motion of the
grains is opposed by dry friction. In cohesive solids, such as clays, the grains are
protected by thick water films and they are not worn out when stress is applied.
If a soil is confined laterally and compressed, the void fraction decreases irre-
versibly in a so-called consolidation process. If the load is subsequently released,
the corresponding stress–strain curve resembles that of metals.

However, in contrast to metals, the shear strength τmax of a soil depends sig-
nificantly on the normal stress σ . The failure surface can be described by the
Mohr–Coulomb (MC) criterion:

τmax = σ tanϕ + c, (12.13)

where ϕ is the angle of internal friction (typically around 25–35◦) and the
parameter c is the cohesion of the soil. The angle ϕ corresponds to the slope of
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Figure 12.20 The stabilities (a) of a vertical bank, (b) of a retaining wall and (c)
of an infinite slope depend on the angle of internal friction ϕ and can be assessed
using the MC criterion.

the mound formed when the material is piled onto a horizontal plane. The stress-
independent cohesion parameter is determined by cementation between sand grains
and electrostatic attraction between clay particles.

In dry frictional materials c = 0, whereas saturated clays are described by the
Tresca criterion, which is recovered from (12.13) with ϕ = 0 and c = k. Note that
in terms of the principal stresses σi , the MC criterion takes the form

(σ1 − σ3)+ (σ1 + σ3) sinϕ = 2c cosϕ. (12.14)

The MC criterion has important applications in geotechnical engineering and a
few formulas are worth being mentioned.

1. A vertical bank of height h and density ρ (Fig. 12.20a) will not collapse
provided [79]

h <
2c

ρg

cos ϕ

1 − sinϕ
.

2. In order to determine the thrust on a retaining wall of height h (Fig. 12.20(b))
one has to distinguish two cases depending on whether the wall is free to move
outward (active state) or into the soil (passive state). According to Rankine’s
formulas, the lateral force acting on the wall is

F = 1

2
ρgh2 tan2

(π
4

∓ ϕ

2

)
− 2ch tan

(π
4

∓ ϕ

2

)
,

where the upper and lower signs refer to the active and passive state respec-
tively.

3. An infinite slope of thickness d tilted by an angle α as in Fig. 12.20(c) is stable
if the factor of safety

c

ρgd cosα
+ tan ϕ

tanα
> 1. (12.15)

For the derivation of these formulas and further results the reader is referred to
the textbooks on this subject [62].
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Fracture

Under the action of stress a solid object can separate into two or more pieces.
The failure of the object is called fracture if the load is monotonic, and fatigue
if the load is cyclic. The classical theory of fracture mechanics in elastic materi-
als assumes the pre-existence of cracks and develops criteria for the catastrophic
growth of these cracks. Crack propagation is a difficult topic, and, in spite of sig-
nificant research efforts, a clear picture of this phenomenon is still missing. Crack
propagation is also important for understanding friction in viscoelastic materials.
In fact, when a rubber block slides on a smooth substrate, most energy dissipation
is due to the opening crack propagating at the interface.

13.1 Fracture modes

In an isotropic homogenous material three fundamental fracture modes can be dis-
tinguished, depending on the orientation of the loading direction with respect to the
crack (Fig. 13.1). In the opening mode a tensile stress acts normally to the plane of
the crack. In the sliding mode a shear stress acts parallel to the plane of the crack
and perpendicular to the crack front. In the tearing mode a shear stress acts parallel
to the plane of the crack and to the crack front. In practice, the three modes can
also be combined.

As shown by Westergaard [341] the components of the stress tensor at a distance
r from a crack tip take the form

σi j = K√
2πr

fi j (θ), (13.1)

where the stress intensity factor K and the dimensionless functions fi j depend
on the crack mode, the crack geometry and the loading conditions (the angle θ is
referred to the crack direction). The relation (13.1) breaks down in a process zone

133
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Figure 13.1 The three fracture modes.

2a

y

x

Figure 13.2 Stress distribution (logarithmic scale) around a linear crack in the
opening mode.

very close to the tip, where plastic deformation occurs. The size of this zone can
be very small (comparable to the unit cell of the crystal) if the material is brittle.

For the opening mode of a crack of length 2a in an infinite plate (Fig. 13.2) the
stress intensity factor is

KI = σ
√
πa, (13.2)

where σ is the (uniform) stress at infinity. The stress components near the crack tip
are

σx,y = KI√
2πr

cos
θ

2

(
1 ∓ sin

θ

2
sin

3θ

2

)
, (13.3)

where the polar coordinates are centered around the points x = ±a. The
displacement field is described by the equations

ux = KI

2G

√
r

2π
cos

θ

2
( f (ν)− cos θ) ,

uy = KI

2G

√
r

2π
sin

θ

2
( f (ν)− cos θ) , (13.4)
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where ν is Poisson’s ratio, f (ν) = 3 − 4ν for plane strain, f (ν) = (3 − ν)/(1 + ν)
for plane stress, and G is the shear modulus of the material. If the crack is subjected
to an in-plane stress τ at infinity:

KII = τ
√
πa.

A similar expression applies to the factor KIII in the presence of an out-of-plane
shear stress τ .

A simple relation holds also for the opening mode of a penny-shaped crack of
radius a:

KI = 2σ
√

a/π,

where σ is the stress at infinity. Several formulas for stress intensity factors can
be found in dedicated handbooks [308, 225]. Alternatively, the factors K can be
estimated using finite element methods.

13.2 The Griffith criterion

When the stress intensity factor K reaches a critical value (the so-called fracture
toughness) Kc, a crack becomes unstable and starts to propagate. In the case of
Fig. 13.2 the elastic strain energy (per unit width) released by the opening crack,
as estimated from (3.9) using (13.3) and (13.4), is1

� ≡ dUel

da
= πaσ 2

8G
( f (ν)+ 1), (13.5)

or, using Eq. (3.11),

� = K 2
I /E

for plane stress, and

� = K 2
I (1 − ν2)/E

for plane strain.
If the propagation is very slow, which is the case at the instability onset, the

energy release rate � is equal to the surface energy 2γ per unit length.2 In this way
one gets the following relations for the critical stress, corresponding to the famous
Griffith criterion [123]:

σc =
√

2E ′γ
πa

, (13.6)

1 We use the symbol � instead the more common G to avoid confusion with the shear modulus.
2 The factor 2 comes from the fact that two surfaces are created during crack propagation.
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where E ′ = E for plane stress and

E ′ = E/(1 − ν2) (13.7)

for plane strain. Note that in both cases σc depends on the crack length.
From a comparison with Eq. (13.2) it is possible to relate the fracture toughness

KIc in the opening mode to the surface tension γ :

KIc = √2E ′γ .

In contrast to σc, KIc does not depend on the crack length. The energy release rates
can be also estimated for the sliding mode, where

KIIc =
√

16Gγ

f (ν)+ 1
,

and for the tearing mode:

KIIIc = √4Gγ .

The Griffith criterion is in good agreement with experiments on brittle materials,
but not on ductile materials, where plastic deformation is not negligible. This effect
can be taken into account by adding a term γp (i.e. the plastic dissipation per unit
area of crack growth) to the surface tension γ in Eq. (13.6) [146]. The radius of
the plastic process zone around the crack tip, rp(θ), can be estimated by using the
principal stresses σ1 and σ2 in the von Mises criterion (12.3). For the opening mode
one gets

rp = 1

4π

(
KI

Y

)2 (3

2
sin2 θ + g(ν)(1 + cos θ)

)
, (13.8)

where g(ν) = 1 for plane stress and g(ν) = (1−2ν2) for plane strain. The relation
(13.8) is plotted in Fig. 13.3 for both cases. Note that the process zone is much
larger for plane stress.

13.3 Dynamic fracture

If the driving stress increases beyond σc, a crack in a brittle solid can suddenly start
to propagate at a rate comparable to the velocity of sound. For a crack propagating
in an infinite plate with a steady velocity v, the dynamic stress intensity factor can
be written as [96]

K (v) = 1 − v/cR√
1 − v/cl

K0(a),
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Figure 13.3 Process zones for the opening mode of a crack under plane stress and
plane strain (ν = 1/3).

where cl is the longitudinal wave speed, cR is the Rayleigh wave speed (Section
3.5) and K0(a) is the static stress intensity factor introduced in Section 13.2. The
energy release rate depends on v as

�(v) ≈ 1 − ν2

E
K 2

0 (a)

(
1 − v

cR

)
. (13.9)

If the crack propagates in an infinitely long strip of width 2b under non-steady
conditions [204]:

�(v) ≈ W

(
1 − bv̇/c2

l

(1 − v2/c2
R)

2

)
, (13.10)

where W is the energy (per unit width) stored in the unit length of the strip far
ahead of the crack tip. Note that the energy release rate in Eq. (13.9) depends on the
tip position, whereas in Eq. (13.10) it depends on the tip acceleration v̇. Equation
(13.10) can also be written as F = meffv̇, where the ‘force’ F is proportional to
the difference W − �(v) and the effective mass

meff ∝ b

c2
l (1 − v2/c2

R)
2
.

In order to observe crack propagation on standard brittle materials such as soda-
lime glasses a spatial resolution of the order of 1 µm and an acquisition rate beyond
106 frames/s are required, which is not possible with current imaging techniques.
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b

Figure 13.4 Time evolution of a crack in a finite strip of soft polyacrylamide
gel. Note the transition from an effectively infinite medium accompanied by a
change of the tip shape when the crack length l ∼ b. Reproduced from [113] with
permission from the American Physical Society.

To circumvent this problem Goldman et al. used a soft aqueous gel whose shear
wave speed is about three orders of magnitude less than in glass (Fig. 13.4). An
excellent agreement with both Eqs. (13.9) and (13.10) was found. Furthermore, the
use of gel avoided the formation of branching instabilities, which are commonly
observed in brittle materials beyond a critical velocity vc ≈ 0.4cR [28].

13.4 Fracture in rubber-like materials

In rubber materials it has been observed experimentally that the energy release rate
depends on the tip velocity v and the temperature T as

�(v, T ) = �0[1 + f (v, T )],
where f → 0 as v → 0, and �0 is a threshold value below which no fracture occurs
[264]. Note that, in this case, � includes a contribution of viscoelastic energy dis-
sipation which may occur far away from the crack tip in addition to the energy
required to break the bonds at the tip. The values of �0 are usually of the order of
few tens of J/m2. For simple hydrocarbon elastomers, if the increase of temperature
in the contact area is negligible, f (v, T ) = f (aTv), where aT is the factor in the
WLF equation (Section 11.1).

In the context of the Persson theory it can be proven that, for a given velocity v,
the tip radius atip is implicitly determined from the relation [255]

atip = a0

(
1 − 2

π
E0

∫ 2πv/atip

0

√
1 − (ωatip/2πv)2

ω
Im

1

E(ω)
dω

)−1

,

where E(ω) is the viscoelastic modulus of the material, E0 = E(0) and a0 is the
tip radius for a very slowly propagating crack. Once the relation atip(v) is known,
the energy release rate is obtained as
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Figure 13.5 Energy release rate vs. crack velocity in a viscoelastic material (for
styrene–butadiene at room temperature v0 ∼ 1 nm/s and �0 ≈ 30 J/m2). Adapted
from [264] with permission from IOP Publishing.

�(v) = �0atip(v)/a0.

A possible dependence of �(v), estimated numerically, is shown in Fig. 13.5 [264].
Note that � increases by three orders of magnitude at high crack tip velocities.

The sliding (or rolling) of a rubber block on a smooth substrate can be seen
as the combination of a closing crack at the leading edge of the contact region
and an opening crack at the trailing edge. Associated with the crack propagation,
a frictional stress τfric = �(v)/ l, where l is the linear size of the contact area,
can be observed. In the case of styrene–butadiene rubber filled with carbon black
experiments by Lorenz et al. have shown that the energy dissipation at the opening
crack gives the main contribution to the frictional shear stress in the area of real
contact [192].



14

Stick–slip

The alternation of stick and slip phases in the sliding of two surfaces past each other
is one of the most intriguing aspects of tribology. In this chapter we will discuss
general models for stick–slip and relate this effect to the constitutive relations defin-
ing the kinetic friction force. An important concept, which significantly modifies
the velocity dependence of the friction, is the so-called ‘contact ageing’. Contact
ageing may be due to plastic flow, capillary condensation or the interdiffusion of
polymer chains. On large scales it is also responsible for the generation of seismic
waves, as first recognized by Dieterich and Ruina.

14.1 Stick–slip

Consider a rigid block of mass m, thickness d and width L lying on a flat surface
and connected to a spring with stiffness k, as shown in Fig. 14.1. If the spring is
pulled with a constant velocity v the block will not move till the time tc = Fs/kv,
where Fs is the static friction force. When t = tc the block will suddenly start
sliding, but the motion will be slowed down by the kinetic friction force Fk. When
the block is sliding the coordinate x of its center of mass varies with time as

x(t) = vt − Fk

k
− A sin(ω0t + α),

where ω0 = √
k/m is the resonance frequency of the system. The amplitude A and

the phase shift α can be derived from the conditions x = 0 and ẋ = 0 at t = tc:

A =
√
v2

ω2
0

+ (Fs − Fk)2

k2
, α = arctan

ω0(Fs − Fk)

kv
− ω0 Fs

kv
.

It is not difficult to determine the time tslip after which the body comes to rest:

tslip = 2

ω0
arctan

(
ω(Fs − Fk)

kv

)
.
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Figure 14.1 (a) A block of mass m pulled by a spring over a flat substrate. (b)
Time dependence of the spring force in the quasi-static limit v → 0.

After this time, the block will stick again for a time

tstick = 2(Fs − Fk)

kv

and so on.
If v is very low the previous expressions are simplified. In this case tstick �

tslip ≈ π/ω0 (i.e. half of the period of the free harmonic oscillator) and the spring
force oscillates between the values Fs and 2Fk − Fs with a characteristic sawtooth
profile, as shown in Fig. 14.1(b). The slip length �x is approximately equal to
vtstick or

�x ≈ 2(Fs − Fk)/k. (14.1)

Note that the same behavior would be observed if the block were elastic and
its upper surface were pulled at constant speed [245, section 9.2]. In this case the
spring constant k is replaced by the lateral stiffness Gd of the block, where G is
the shear modulus of the material, and the slip time

tslip ≈ 2πL/cs, (14.2)

where cs = √
G/ρ is the shear velocity of sound.

14.2 Contact ageing

From the simple model discussed in Section 14.1 we expect that the stick–slip
occurs indepedently of the value of the spring constant k. However, it is experi-
mentally well established that the stick–slip disappears if k or the driving velocity v
are high enough. A typical ‘kinetic phase diagram’ is shown in Fig. 14.2(a). The
stick–slip motion corresponds to the gray area, while steady sliding is observed in
the rest of the (k, v)-plane. A diagram with this form can be reproduced assuming
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Figure 14.2 (a) A typical kinetic phase diagram. (b) Time variation of the static
friction force (solid line). If the corresponding variation of the spring force is
described by the dashed line 1, steady sliding will be observed. Otherwise (dashed
line 2) stick–slip is expected.

that the static friction force Fs increases with the time t of stationary contact. If the
initial rate of increase of Fs is lower than k (curve 1 in Fig. 14.2(b)), steady sliding
will be observed. Otherwise, stick–slip must occur.

The increase of the static friction with time can have different origins. The most
common mechanisms are the formation of capillary bridges, the increase of contact
area due to thermally activated plastic flow, chain interdiffusion for polymers or
solids covered by grafted monolayer films, and stress relaxation at the interface.
Capillary bridges are discussed in Section 24.2. The other mechanisms are briefly
described below.

14.3 Lubricated friction

We will consider two types of adsorption system. In the first case the interaction
between the lubricant molecules and the substrate is supposed to be so weak that the
adsorbate layer can fluidize at the onset of sliding (Fig. 14.3(a)). This is a common
situation when saturated hydrocarbons are adsorbed on metal or mica surfaces.
In the second case the interaction is much stronger and fluidization occurs. This
happens in fatty acid–metal oxide systems, where sliding occurs between the tails
of the grafted hydrocarbon chains (see Fig. 14.3(b) and also Section 24.1). In this
case the static friction force increases with the time of stationary contact because
of interdiffusion and other relaxation processes.1 In both cases the friction force is
conveniently described introducing a state variable θ(t), which evolves with time
in a specific way.
1 We assume that the normal force is not too large, see Section 24.1.



14.3 Lubricated friction 143

(a) (b)

Figure 14.3 Schematic representation of lubricating layers with (a) low and (b)
high corrugation of the interaction potential.

Small corrugation

Consider a block of mass m sliding under boundary lubricated conditions. If the
lateral corrugation of the interaction potential is very low, the friction force can be
assumed to depend on the state variable θ as

F = Fk + (Fs − Fk) · θ(t)+ mγ ẋ, (14.3)

where θ evolves according to the equation [44]

θ̇ = θ(1 − θ)

τ
− θ ẋ

D
. (14.4)

In Eq. (14.4) τ is the characteristic time over which the film freezes, and D is the
characteristic length over which the melting transition takes place.

In practice, θ describes the degree of melting of the lubrication layer. The lubri-
cant is in the fluid state if θ = 0 and in the solid state if θ = 1. If the block
is moving and is suddenly stopped at t = 0, the friction force will increase with
time as

F(t) = Fk + (Fs − Fk)
θ0

θ0 + (1 − θ0)e−t/τ
,

Under these assumptions, it can be seen by linear stability analysis that the stick–
slip takes place in the gray area of the (k, v) plane shown in Fig. 14.4(a). Above a
critical velocity vc(k) stick–slip is not possible and the block slides continuously.
The dependence of the critical velocity vc on the spring constant k is described by
the equation [244] (

1 − vc

v0

)(
γ τ + 1 − vc

v0

)
= k

k0
, (14.5)

where v0 ≡ D/τ and

k0 ≡ m

τ 2

(
τ(Fs − Fk)

m Dγ
− 1

)
.
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Figure 14.4 Kinetic phase diagram in the (k, v) plane for boundary lubrica-
tion (a) with small corrugation and (b) with large corrugation. The gray regions
correspond to the values where stick–slip is observed.
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Figure 14.5 Time dependence of the spring force on a lubricated block when
the support velocity v is increased stepwise on a surface potential with (a) small
corrugation and (b) large corrugation. Adapted from [245] with permission from
Springer.

If the driving velocity v increases, the friction peaks and the amplitude of the
stick–slip oscillations is slightly reduced, as shown in Fig. 14.5(a). At the critical
velocity vc, the stick–slip phenomenon disappears all of a sudden. Although the
model above, introduced by Carlson and Batista [44], is rather phenomenological,
it contains all the ingredients of ‘rate and state’ theories, which are quite successful
in describing macroscopic friction phenomena.
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Large corrugation

If the lateral corrugation of the adsorbate–substrate interaction potential is
large, a good assumption for the variation of the friction force is [245, section 12.2]

F = Fk + (Fs − Fk)
(
1 − e−θ/τ )+ mγ ẋ,

where the contact age variable θ satisfies the equation

θ̇ = 1 − ẋθ

D
. (14.6)

Note that for stationary contact (ẋ = 0) the variable θ coincides with the time
t of stationary contact and the friction force increases asymptotically from Fk to
Fs. A possible variation of the friction force with the driving velocity is shown in
Fig. 14.5(b). Here the average friction does not change significantly at increasing
values of v, whereas the friction peaks diminish till they vanish without abrupt
variations.

The boundary line in the (k, v) plane, which separates stick–slip motion from
steady sliding, is now given by

k

k0
=
(

1 + vc

γ D

)(
�F0

mτvc
e−D/vcτ − γ vc

D

)
(14.7)

(Fig. 14.4(b)). Depending on the value of the spring constant k, the transition can be
continuous, as in Fig. 14.5(b), or discontinuous, as in the case of small corrugation.
If the separation between the chains is large enough, stick–slip may also disappear
from the whole (k, v) plane and the boundary lubrication film may be considered
to be in a liquid-like state.

Comparison with the experiments

Experimental results in a certain agreement with the models above have been
obtained with the surface force apparatus (Section 17.3). Figure 14.6(a) shows the
transition from stick–slip to sliding observed with a thick hydrocarbon film. Here,
the corrugation of the adsorbate–substrate interaction is very weak. In this case the
amplitude of the stick–slip spikes is nearly independent of the driving velocity up
to the critical value vc at which the transition occurs. When grafted chain molecules
are used, as in Fig. 14.6(b), the corrugation is much larger and the amplitude of the
spikes is found to decrease continuously when v increases up to a different critical
value.
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Figure 14.6 Spring force F as a function of time (a) for hexadecane and (b)
for mica surfaces coated with DMPE molecules, as measured in a surface force
apparatus. Adapted from [348] with permission from Elsevier.
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Figure 14.7 The Burridge–Knopoff (BK) model.

14.4 The Burridge–Knopoff model

Consider the model in Fig. 14.7 [39]. Each of the N0 small blocks in contact with
the substrate is connected to the (sliding) large block by a spring k1 and to the
neighboring blocks by two springs of stiffness k2. The potential energy stored in
the springs connected to the block i is

U = 1

2
k1(x − ui )

2 + 1

2
k2(ui+1 − ui)

2 + 1

2
k2(ui−1 − ui)

2,

where x is the position of the surface of the big block connecting the block i and ui

is the displacements of the small block. The mean field force acting on the block i is

F = k1(x − ui)+ k2(ui+1 + ui−1 − 2ui ).
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In order to initiate sliding, a critical displacement u(c)i must be reached, at which
F equals the static friction Fs. It is not difficult to see that the energy barrier
�E = U(u(c)i ) − U (ui) preventing the motion of the small block depends on F ,
and vanishes for F = Fs, as

�E = U0
(
1 − (F/Fs)

2
)
,

where

U0 = F2
s

2(k1 + 2k2)
.

The probability p that the block remains pinned changes with the time t according
to the master equation

dp

dt
= − f0 exp

(
−�E

kBT

)
p(t). (14.8)

According to Kramers’ theory for thermally activated processes, the prefactor f0

depends on the resonance frequency ω0 = √
k1/m ∼ cs/D, where D is the average

displacement of the blocks, and on the damping coefficient γ as2 f0 ∼ ω2
0/(2πγ ).

In the next chapter3 we will show that, in most cases, γ ∼ ω0, so that f0 ∼ ω0/2π .
If U0 � kBT and t � 1/ f0 it can be proven that the number N of small blocks

remaining in their original positions at time t is [245, section 11.3]

N (t) ≈ N0

(
1 − kBT

2U0
ln f0t

)
.

When a small block jumps, the force on the big block changes by −Fs/N0. Hence
F(t) ≈ F(0) − Fs(�N/N0), where �N = N − N0. Observing that F(0) is
the kinetic friction force Fk and assuming that Fk ≈ Fs/2 (see section 16.3) we
conclude that F increases logarithmically with the sliding velocity as

F ≈ Fk + kBT

4U0
Fs ln

(
v

v0

)
, (14.9)

where

v0 = Fs f0kBT

2U0k1
.

The distribution of slip events can be studied numerically. As a result, it is found
that, when k2 ∼ k1, the events are very localized. However, this is not the case
when k2 � k1. The time variations of the friction force and of the fraction of
moving blocks expected in this case are shown in Fig. 14.8. When a block rapidly

2 More precisely, f0 = √
κminκmax/2πγ , where κmin (κmax) is the curvature in the vicinity of the energy

minimum (maximum).
3 See Eq. (15.28).
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Figure 14.8 (a) Time variation of the friction force and (b) the fraction of moving
blocks in the BK model when k2 � k1.

slips forwards, it can pull neighboring blocks over their barriers, giving rise to a
wide distribution of avalanche sizes (provided that v is low enough).

14.5 Plastic flow

A logarithmic increase of the contact area with time can be also observed if the
local pressure in the contact exceeds the plastic yield strength.

Creep in metals

The plastic flow in a solid can be seen as the result of ‘melting’ and ‘refreezing’ of
small stress blocks. As in the Burridge–Knopoff model thermal activation plays a
key role and the stress σ and the strain rate ε̇ at a temperature T can be related by
an equation which is analogous to (14.9) [247]:

σ = Y

2

(
1 + kBT

U0
ln
ε̇

ε̇0

)
, (14.10)

where Y is the macroscopic yield strength (during uniaxial tension) and U0 is
the pinning energy of dislocations (for metals, U0 ∼ 1 eV). In Eq. (14.10) the
characteristic strain rate

ε̇0 = 4 f0(1 + ν)Y kBT

3EU0
,

and the attempt frequency f0 depends on the width D of a typical stress block and
on the velocity of sound c as f0 ≈ c/2πD.

Suppose now a cylinder is squeezed against a rigid substrate by applying a nor-
mal force FN. If the yield threshold is reached, the residual stress relaxes slowly.
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Since the volume is constant during plastic flow, it is not difficult to prove that the
strain rate ε̇ and the stress σ depend on the contact area A and its time variation Ȧ as

ε̇ = − Ȧ

A
, σ = − FN

A
.

Introducing the parameter ξ = �A(t)/A0 and the creep law (14.10) we obtain the
differential equation

kBT

U0
ln
ξ̇ /ε̇0

1 + ξ
= − ξ

1 + ξ
. (14.11)

If kBT � U0, Eq. (14.11) can be approximated as

kBT

U0
ln
ξ̇

ε̇0
= −ξ

and, as a result, the contact area is found to increase logarithmically with the time
t of stationary contact as

�A(t)

A0
= kBT

U0
ln

(
1 + t

τ

)
, (14.12)

where the characteristic time τ = kBT/U0ε̇0. For metals at room temperature
ε̇ ∼ 108 s−1 so that τ ∼ 10−10 s and, in practice, �A ∝ ln(t/τ).

Note that, even if the mechanism of thermal activation described above involves
dislocations, a logarithmic increase of the contact area with time is a general
although not completely understood effect. A beautiful demonstration of contact
ageing on an amorphous material is given in Fig. 14.9, where the contact formed
by rough acrylic plastic is visualized using optical techniques. Indentation experi-
ments on ice [31] have also shown that the contact area increases logarithmically
with the time of contact.

Sliding friction

We can combine the previous results with those in Section 14.3 and assume that, if
a block is sliding, the contact area changes with time as

A = A0

(
1 + B⊥ ln

θ

θ0

)
,

where B⊥ = kBT/U0 and the state variable θ is defined by Eq. (14.6). If the shear
stress depends on the sliding velocity v according to Eq. (14.9), the friction force
can be written as

F ≈ Fk

(
1 + B⊥ ln

θ

θ0
+ B‖ ln

ẋ

v0

)
, (14.13)
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Figure 14.9 Time variation of the contact area between rough acrylic plastic and
glass. Adapted from [74] with permission from Springer.
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Figure 14.10 Kinetic phase diagram for plastic flow in a solid. Adapted from
[245] with permission from Springer.

where

B‖ = Fs

Fk

kBT

4U0
.

In this case, the kinetic phase diagram has the form in Fig. 14.10 [245, section
13.3]. At low values of v the critical stiffness separating the regions of stick–slip
and steady sliding is

kc = Fk

D
(B⊥ − B‖). (14.14)



14.6 Earthquakes 151

The nearly vertical boundary corresponds to the value

vmax = Fk

mγ
(B⊥ − B‖)

of v at which the kinetic friction force of steady sliding changes from a velocity
weakening to a velocity strengthening regime. These results are in a certain agree-
ment with experiments by Baumberger et al. on Bristol board surfaces, where wear
effects are negligible and the results are highly reproducible [14].

14.6 Earthquakes

The models discussed in the previous sections have important applications in the
interpretation of earthquakes. For instance, we can use Eq. (14.2) with the velocity
of the shear waves in the Earth’s crust, cs ∼ 1 km/s, to estimate that a large earth-
quake involving a rupture lenght L ∼ 100 km should have a time duration of about
one minute. Equation (14.13) is consistent with the phenomenological Dieterich–
Ruina (DR) law [73, 297] according to which the friction coefficient depends on a
state variable θ as

μ = μ0 + a ln
v

v0
+ b ln

θv0

L
, (14.15)

where L is a characteristic sliding distance, a and b are empirical parameters, and
μ0 and v0 are reference values. The frictional strengthening observed with the time
of contact is well reproduced if θ satisfies an ‘ageing equation’ of the form

dθ

dt
= 1 − θv

L
.

The meaning of the quantities a, b and L can be easily seen if the sliding velocity
is suddenly increased, as shown in Fig. 14.11.

From the results in Section 14.5 we expect that the sliding is stable and no earth-
quakes nucleate if a > b. Vice versa, if a < b nucleation is possible as the result

L

v2 >v1v1

vt

a v vln( / )2 1 b v vln( / )2 1

Figure 14.11 Response of the friction coefficient to a sudden variation of the
sliding velocity in the Dieterich–Ruina model.
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of a velocity perturbation the critical value of which depends on the normal stress
σ . Experimentally, it is found that the difference a − b varies with the tempera-
ture. In the case of granite the difference is positive below 300 ◦C, meaning that
earthquakes cannot nucleate in the upper part of the Earth’s crust, although they
can propagate in that region, where they are strongly damped.

Based on the previous discussions, one would also expect that v and θ evolve in
a cyclic way. However, this in no way means that the earthquake occurrence is peri-
odic. Indeed, faults are often segmented with jogs and steps and every earthquake
perturbs the stress field at the site of future earthquakes. As a result, the timing of
earthquakes can be advanced or delayed, making these processes very difficult to
predict.

Another important quantity is the energy released during the earthquake. This is
usually expressed by the seismic moment

M = G Ad,

where G (∼ 30 GPa) is the shear modulus of the rocks, A is the area of the fracture,
and d is the average displacement along the fracture. According to the famous
Gutenberg–Richter law [126], the probability of an earthquake with ‘magnitude’
M is inversely proportional to M :

p(M) ∝ 1/M.

This empirical law can be recovered with the Burridge–Knopoff model assuming
a velocity weakening friction force [45].

The DR model has been extended to 3D by Rice, who also introduced a char-
acteristic creep length lc [288]. The quantity lc corresponds to the minimum linear
size l of a fault area which must slip simultaneously in order for a stick–slip insta-
bility to develop. Since the volume element is connected to the surrounding solid
by an effective elastic spring keff ∼ ρc2l, the condition keff = kc, with kc defined
by Eq. (14.14), implies that

lc = Dρc2

τ0(B⊥ − B‖)
.

For wet granite at ∼10 km below the Earth’s surface, the creep length lc is the order
of 1 m.

Even if it is now well established that earthquakes result from stick–slip insta-
bilities, since they usually occur by sudden slip along a pre-existing fault in the
Earth’s crust, it is quite remarkable that this conclusion was reached only in the
1960s [33].
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Atomic-scale stick–slip

Our review on nanotribology starts with a description of the Prandtl–Tomlinson
model, which reproduces the stick–slip motion of a particle elastically driven on a
crystal surface. Combined with Kramer’s theory for thermally activated processes,
this model also predicts the temperature and velocity dependence of atomic-scale
friction observed experimentally. Several analytical expressions will be presented
to illustrate these concepts. Stick–slip can be suppressed if the normal force is
reduced statically or by means of mechanical excitations. The length of the jumps
across the surface lattice is also influenced by the normal force, as well as by the
damping coefficient describing the coupling with phonon and electron excitations
in the bulk. Stick–slip is also observed if the particle is pulled with a constant
lateral force rather than using a spring. The motion of a chain of equal particles
on a crystal surface is interpreted by the Frenkel–Kontorova model, which is also
introduced in this chapter.

15.1 The Prandtl–Tomlinson model

The basic features of atomic-scale stick–slip are captured by a model which
was introduced by Prandtl in 1928 [277] to describe plastic deformation in
crystals. The model is often attributed also to Tomlinson [332] and, for this rea-
son, we will follow the common acceptance and call it Prandtl–Tomlinson (PT)
model.

Consider a nano-asperity (‘tip’) of mass m pulled on a corrugated substrate
potential Uint(x) by a spring of stiffness k, which is driven by a solid support at
constant velocity v along the x direction. The equation of motion of the tip is

mẍ + mγ ẋ + k(x − vt)+ U ′
int(x) = 0, (15.1)
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where the damping coefficient γ describes the coupling with phonon and (for metal
surfaces) electron–hole excitations in the substrate,1 as described in Section 15.8.
At finite temperature T a noise term ξ(t) is added to the right hand side of Eq.
(15.1). The force ξ(t) is responsible for the Brownian motion of the tip according
to the fluctuation–dissipation theorem:2〈

ξ(t)ξ(t ′)
〉 = 2mγ kBT δ(t − t ′),

where kB is Boltzmann’s constant. Note that the delta function is justified by the
fact that the characteristic frequencies of the phonon and electron excitations are
much shorter than the hopping rate of the tip between the minima of the interaction
potential (see below).

For sake of simplicity we will consider a sinusoidal potential Uint with amplitude
U0 and periodicity a such that the total potential reads

U (x, t) = −U0 cos
2πx

a
+ 1

2
k(x − vt)2. (15.2)

In this case, it is convenient to introduce a dimensionless parameter

η = 4π 2U0

ka2
. (15.3)

( , )

x
xc x ćxmin xmax x min´

E

slip
E

stick

t=

t=tc

Figure 15.1 The equilibrium of a particle driven by a spring in a sinusoidal
potential is broken at a critical time tc when the particle suddenly hops from the
minimum xc to the next one, x ′

c.

1 A corresponding term, with a different damping coefficient, may be introduced to describe the coupling with
the spring support.

2 The coupling of the point mass to the spring makes the application of this theorem somehow questionable.
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A typical experimental situation, corresponding to the value η = 10, is shown in
Fig. 15.1. We will show below that the motion is continuous if η < 1, whereas
stick–slip is observed if η > 1. More generally, if the potential Uint is not sinu-
soidal, the stick–slip condition is −U ′′(max)

int /k > 1, where U ′′(max)
int is the maximum

value of the second derivative of Uint with respect to x .
If v is low enough, the tip position xmin is determined by the equilibrium

condition ∂U/∂x = 0, which, in our case, becomes

η sin
2πx

a
+ 2πx

a
(x − vt) = 0.

The tip moves slowly when the spring starts to be pulled along the direction x , but
becomes faster and faster when the critical position xc defined by ∂2U/∂x2 = 0 is
approached and the equilibrium of the tip becomes unstable. The critical position
is given by

xc = a

2π
arccos

(
−1

η

)
, (15.4)

and is reached at the time

tc = a

2πv
f (η),

where

f (η) =
√
η2 − 1 + arccos(−1/η). (15.5)

The corresponding spring force

Fs = ka

2π

√
η2 − 1 (15.6)

can be seen as the static friction force acting on the tip. Note that the value of
Fs defined by Eq. (15.6) is lower than the maximum force Fmax = (ka/2π)η.
The maximum is reached slightly before hopping when the tip, which is rapidly
accelerated, overcomes the velocity v of the spring support [312].

When t = tc the tip slips into a new minimum position xmin = x ′
c. If the

damping coefficient γ is high enough, the tip will ‘land’ into the first minimum
of the potential U (x, tc) after the ‘take-off’ position xmin. Longer jumps observed
in underdamped conditions are discussed in Section 15.4. In the limit η � 1 the
landing position is x ′

c = 5a/4 whereas, if η → 1, x ′
c coincides with xc = a/2. At

each jump an energy amount �U = U (xc) − U (x ′
c) is released from the contact

area. The (average) kinetic friction force can be simply estimated from the energy
drop �U as [97]

Fk = �U/a, (15.7)
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Figure 15.2 (a) Theoretical friction loops in the Prandtl–Tomlinson model when
(left to right) η = 5, η = 3 and η = 1. (b) Experimental friction loops on
NaCl(001) (Section 18.3) corresponding to normal force values of (left to right)
4.5, 3.3 and −0.5 nN. Adapted from [312] with permission from the American
Physical Society.

whereas the variation of the spring force in the jump is given by�F = k(x ′
c − xc).

After the jump, the stick–slip process is repeated again and again. If, at a certain
point, the motion of the slider is suddenly inverted, the spring force F , plotted as a
function of the support position X , defines a characteristic ‘friction loop’, as seen
in Fig. 15.2(a). If η is reduced,�F will eventually become larger than Fs, meaning
that the tip overcomes the support during the jump and F becomes negative for a
short period. If η < 1 the equation ∂2U/∂x2 = 0 has no real solutions, and the
motion becomes continuous. In this case, the kinetic friction force Fk = 0 (in the
quasi-static limit that we are considering) and we may say that a state of static
superlubricity has been reached.

The relations above are considerably simplified if η � 1. In this case it is not
difficult to prove that the tip is essentially pinned, most of the time, and the spring
force F = k(vt − x) increases linearly with t as

F(t) ≈ η

1 + η
kvt ≈ kvt, (15.8)

till the first jump occurs when tc = aη/2πv.

Critical positions and kinetic friction

The values of the critical positions xc and x ′
c and of the kinetic friction force Fk can

be approximated by series expansions [112]. If η → 1:
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xc = a

2π

(
π −√2(η − 1)+ 5

6
√

2
(η − 1)3/2 − · · ·

)
, (15.9)

x ′
c = a

2π

(
π + 2

√
(η − 1)− 19

15
√

2
(η − 1)3/2 + · · ·

)
. (15.10)

The energy drop �U can be estimated by substituting the expressions (15.9) and
(15.10) into (15.2), with t = tc, and expanding again. Dividing by the periodicity a,
one gets for the kinetic friction force

Fk = ka

2π

(
9

4π
(η − 1)2 − 9

5π
(η − 1)3 + · · ·

)
, (15.11)

whereas, in a first approximation, the spring force variation in the jump is

�F ≈ 3
√

2(η − 1)
ka

2π
.

If η � 1 the take-off and landing positions of the tip are approximately given by

xc = a

2π

(
π

2
+ 1

η
+ 1

6η3
+ 3

40η5
+ · · ·

)
,

x ′
c = a

2π

(
5π

2
− 2
√
π

η
+ 1

η
− π 3/2

3η3/2
+ · · ·

)
.

Using again (15.2), with t = tc, to estimate the energy drop �U , we obtain for the
kinetic friction force:

Fk = ka

2π

(
η − π + 4

3

√
π

η
− 1

2η
+ · · ·

)
, (15.12)

whereas, in a first approximation, �F ≈ ka independently of η. The relations
(15.11) and (15.12) are plotted in Fig. 15.3(a).

15.2 Energy barrier

In Section 15.3 we will also need analytical expressions for the energy barrier �E
preventing the tip jump in the PT model. This barrier is defined as

�E = U (xmax)− U (xmin), (15.13)

where xmax is the position of the first maximum after the position xmin where the
tip is pinned (see Fig. 15.1). As long as the corrugation of the interaction potential
Uint is large enough, the dependence of �E on the spring force F is given by the
power law (ramped creep)

�E ∝ (const.− F)3/2.
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However, the linear approximation (linear creep)

�E ∝ (const.− F)

is also in good agreement with experimental results at sufficiently low speed. In
both cases, the coefficients of proportionality can be estimated by series expansions
[112].

Ramped creep

If Uint has a sinusoidal shape the general expression for the time variation of�E is

�E(t) ≈ 8U0

η(η2 − 1)1/4

(πv
a

)3/2
(tc − t)3/2. (15.14)

If η � 1 the dependence �E(F) follows the same power law:

�E(F) ≈ 2
√

2

(
1 − F

Fs

)3/2

U0. (15.15)

In Fig. 15.4 the approximated relation (15.15), with η = 10, is plotted with the
exact dependence �E(F). Such a topological variation of the energy landscape,
which is known as fold catastrophe, has been reported in other driven systems, e.g.
superconducting quantum interference devices, mechanically deformed glasses,
and stretched proteins [334].
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Figure 15.3 (a) Kinetic friction force Fk in the Prandtl–Tomlinson model as a
function of the parameter η: the exact solution (continous curve) may be compared
with the approximations (15.11) and (15.12) derived in the text when η → 1 and
η � 1 (dashed curves). (b) The experimental results for NaCl(001). Adapted
from [312] with permission from the American Physical Society.



15.3 Thermal effects 161

100 5

30

15

F

E

Figure 15.4 Ramped approximation (dotted curve) and linear approximation
(dashed line) for the dependence �E(F) of the energy barrier if η = 10.

Linear creep

In the linear creep regime the choice of values of t or F around which the energy
barrier can be approximated is completely arbitrary. Here we choose the symmetric
configuration, where the energy barriers for forward and backward jumps are equal.
If η � 1 it can be proven that

�E ≈
(

2 + 1

2η

)
U0 − a

2
F. (15.16)

The relation (15.16) is represented by the dashed line in Fig. 15.4. Note that the
constant slope of the �E(F) line is equal to a/2.

15.3 Thermal effects

At a finite temperature T , the spring force Fs(T ) inducing a jump is lower than Fs at
0 K. The actual values of Fs(T ) are not unique, and the most probable value taken
by this force can be determined from the Kramers’ theory already used in Section
14.4. In order to do that we introduce the probability p that the tip remains pinned.
Ignoring reverse jumps, p changes with the time t according to the master equation
(14.8). Assuming, as in Section 14.4, that γ ∼ ω0, the attempt rate f0 ∼ ω0/2π ,
where ω0 ≈ √

ηk/m is the natural frequency of vibration of the point mass m
in the variable potential well Uint(x, t). If η � 1 the rate f0 does not change
significantly till the critical point is approached and f0 rapidly drops to zero [302].
Since, according to Eq. (15.8), the force variation rate dF/dt ≈ kv, we can express
the time derivative of p as a function of F . Using the expression (15.16) for the
energy barrier�E(F), the condition that the probability variation has a maximum,
d2 p/dF2 = 0, yields
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Fs(v, T ) ≈ 2Fs

π
+ 2kBT

a
ln
v

v0
, (15.17)

where

v0 = 2 f0kBT

ka
.

If the energy barrier is approximated by the power law (15.15), one gets in a similar
way:

Fs(v, T ) ≈ Fs

[
1 −

(
kBT

2
√

2U0

)2/3 (
ln
v0

v

)2/3
]
, (15.18)

where

v0 = π
√

2

2

f0kBT

ka
.

Similar expressions, with Fs replaced by Fk and approximated by Eq. (15.12), are
expected for the kinetic friction force Fk(v, T ).

At very low velocities or high temperatures the tip can repeatedly jump back and
forth across the energy barrier. In this case it can be proven that the friction force
is proportional to the sliding velocity [171]:

Fs(v, T ) ≈ α(T )v, α(T ) ∝ k

2π f0

2U0

kBT
exp

(
2U0

kBT

)
. (15.19)

Note that the ‘equilibrium damping’ coefficient α(T ) in Eq. (15.19) is independent
of γ . In practice, the regime predicted by Eq. (15.19) can be entered only if the
driving velocity

v � vc ≡ 2π f0a exp

(
− 2U0

kBT

)
. (15.20)

With typical values of f0 ∼ 100 kHz, U0 ∼ 0.25 eV, k ∼ 1 N/m and a ∼ 0.5 nm
(see Section 18.4) such a ‘thermolubric’ regime would be observed, at room tem-
perature, only for unrealistic values of v � 1 pm/s. However, the threshold value
for the onset of thermolubricity increases rapidly with temperature. According to
Eq. (15.20) vc = 1 nm/s at T = 200 ◦C and vc = 10 nm/s at T = 300 ◦C.

The distribution of the actual values of the static friction force at a given
temperature can also be estimated from the expression [302]

P(�E) = 3(�E/(kBT ))1/3

2(v/v0)
exp

(
−�E

kBT
− e−�E/(kBT )

(v/v0)

)
, (15.21)

for the energy barrier, where
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Figure 15.5 Distribution of the friction force in the PT model at room tempera-
ture, according to Eq. (15.21).

v0 = kBT
√
η2 − 1

2γma
.

Inserting the relation (15.15) for the dependence of �E(F) (with F = Fs and
Fs = Fs(0)), the distribution P(Fs) turns out to be left-skewed, as seen in Fig. 15.5.

15.4 Long jumps

Depending on the value of the parameter η, other equilibrium positions can be
observed beyond x ′

c [214]. A jump across κ periodicities into the position x = x ′(κ)
c

is indeed possible if the conditions ∂U/∂x = 0 and ∂2U/∂2x > 0 are satisfied in
at least κ points. It is not difficult to see that a new minimum appears when the
parameter η exceeds one of the values ηk defined by f (ηk) = κπ . Substituting the
expression (15.5) for the function f (η), one gets η1 = 1, η2 = 4.603, and η3 =
7.790 for the conditions of appearance of one, two and three minima respectively.
In the same way as in Section 15.1 it can be proven that, if η � 1,

x ′(κ)
c = a

2π

(
π

2
+ 2κπ − 2

√
κπ

η
+ 1

η
− (κπ)3/2

3η3/2
+ · · ·

)
,

whereas the kinetic friction force Fk is given by averaging the expression (15.12),
with π replaced by κπ , over the distribution of κ-jumps. Still, the problem of
determining which of the available minima will be actually occupied by the tip
goes beyond the quasi-static model discussed so far.

The answer to this question depends on the damping coefficient γ in the equa-
tion of motion (15.1). Numerical solutions show that the η-γ plane can be divided
into different regions, as shown in Fig. 15.6. At zero temperature a jump across κ
periodicities occurs (for a fixed value of η) only if γc,κ (η) < γ < γc,κ−1(η) (when
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Figure 15.6 Depending on the values of the damping coefficient γ in Eq. (15.1)
long jumps of different lengths are possible. Adapted from [112] with permission
from the American Physical Society.
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Figure 15.7 Potential profile U(x) corresponding to a critical position (thick
curve) and variation of the total energy E (thin curve) in the slip phase. Parameter
values: γ = 0.1γc with η = 12.8. Adapted from [112] with permission from the
American Physical Society.

κ > 1) or γ > γc,1(η) (when κ = 1), provided that γ � 1. If γ � 0.3γc the curves
γc,κ (η) start to bifurcate and a chaotic regime is established, in which the landing
position can significantly change with little variations of η and γ . At finite tem-
perature the curves separating the regions corresponding to jumps with different
values of κ are smeared out and shifted towards larger values of η [112].

To get better insight into the ‘landing’ process at zero temperature, the total
energy E = (1/2)mẋ2 +U (x) can be plotted as a function of the actual point mass
position when an underdamped long jump occurs, as done in Fig. 15.7. The particle
bounces back and forth until it is conveyed by the potential profile U (x) into the
second minimum beyond the take-off position, where the particle stops. Had the
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damping coefficient been γ slightly larger, the tip would have ended up in another
minimum.

15.5 Dynamic superlubricity

As seen in Section 15.1, the average kinetic friction Fk (at zero temperature and in
the quasi-static limit) becomes zero if the parameter η ≤ 1. However, low values
of η are difficult to control. Here, we will show how a state of ultralow (average)
friction can be also achieved for larger and in principle arbitrary values of η if the
contact region is mechanically excited while sliding.

Suppose first that the tip oscillates perpendicularly to the plane of sliding at
a given frequency ω. In this case we can assume that the amplitude U0 of the
interaction potential Uint varies with time as U0(1+α) sinωt , where α is the relative
amplitude of the oscillations. If ω is much larger than the ‘washboard’ frequency
2π(v/a), Uint may remain close to the minimum value U0(1 − α) long enough to
observe a thermally activated jump. In this case, one can see that the dependence
of Fk in Fig. 15.3(a) is retained if η is replaced by the effective parameter [313]

ηeff = η(1 − α).

This means that the superlubric state will be reached for any value of η, provided
that α > 1 − 1/η.

To simulate transverse vibrations we add an oscillating term to the support coor-
dinate in the PT model, so that the elastic energy stored in the driving spring
reads

Uel(x, t) = k

2
(vt + βa sinωt − x)2. (15.22)

In this case, if the driving frequency ω � 2πv/a, it can be proven that the average
friction force is approximately given by [88]

Fk(η, β) ≈ ka

2π

[
η − π(1 + 2β)+ 4

3

√
π

η

(
(1 + β)3/2 − β3/2)] . (15.23)

The dependence of Fk on the oscillation amplitude β is plotted in Fig. 15.8 (filled
circles). Introducing the noise term ξ(t) in the equation of motion, the Fk(β) curve
is lowered due to thermally activated jumps, as shown by the empty circles in the
figure.

15.6 Constant driving force

Suppose now that the point mass m in the Prandtl–Tomlinson model is pulled by
a constant force F rather than by an elastic spring driven with constant velocity.
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Figure 15.8 Average friction force Fk at increasing lateral oscillation amplitude.
The results at T = 0 K (filled circles) are well reproduced by the continuous line
defined by Eq. (15.23). The empty circles correspond to T = 300 K. Adapted
from [294] with permission from AIP Publishing.

We first consider the underdamped limit γ � ω0, where ω0 = (2π/a)
√

U0/m.
If F < Fc1, where

Fc1 = 4γ

π

√
mU0, (15.24)

the particle is locked in the minimum of the total potential. The threshold value
(15.24) is determined by equating the work done by the force F over a period a to
the energy loss over the same period, which is obtained by integrating the power
dissipation mγ ẋ2 [36]. If F > Fs, where Fs = 2πU0/a, the particle is in a state
of steady sliding. For intermediate values of the driving force, Fc1 < F < Fs, the
particle can be either locked or running, depending on the initial conditions. In this
sense the system is said to be bistable. However, this conclusion strictly holds only
if the temperature T = 0. Thermal fluctuations can indeed ‘kick’ the particle out of
the locked or the running state. If the fluctuations are infinitesimal, a new threshold
force

Fc2 ≈ 3.4
γ

ω0
Fs

separates the two regimes [35, p. 295]. For larger values of γ , the relation between
the critical forces Fc1, Fc2 and the damping coefficient is shown in Fig. 15.9.

Consider now the stick–slip motion of the particle at finite temperature assuming
that γ is large enough to avoid long jumps. According to Kramers’ theory, if the
energy barrier �E ≈ 2U0 − Fa/2 � kBT , the jump rates are given by [169]

w± = f0 exp

(
−2U0 − Fa/2

kBT

)
,
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Figure 15.9 Phase diagram in the (F, γ ) plane for a particle in an inclined
sinusoidal potential. Reproduced from [35] with permission from Springer.
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Figure 15.10 (a) Relation between drift velocity and driving force corresponding
to Eq. (15.25). (b) The Risken–Vollmer integral (15.27).

where f0 ≈ 2πU0/ma2γ . As a result, the particle will advance with a drift
velocity

vd = a(w+ −w−) = a f0e−2U0/(kBT )
(
eFa/(2kBT ) − e−Fa/(2kBT )

)
. (15.25)

The relation vd(F) is represented by the continuous curve in Fig. 15.10(a). For very
low values of F , the response of the system is linear:

vd ≈ f0a2

kBT
e−2U0/(kBT )F.

This is also the case (with a different slope) if F � 4U0/a:

vd ≈ F

mγ
. (15.26)
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The actual velocity of the particle, neglecting the thermal contribution from
the random force ξ(t), oscillates around the value (15.26) with a frequency ω =
2πvd/a and an amplitude

�v = 2πU0

aω
√

m2ω2 + γ 2
.

A general solution accounting for long jumps was obtained by Risken and
Vollmer using Kramers’ theory again [292]. If the equation of motion is refor-
mulated as a Fokker–Planck equation for the distribution function of the point
coordinate and velocity, the drift velocity and the driving force, in the limit of
low damping, are found to be related by the equation

vd = F

mγ I (U0/(kBT ))
,

where the integral I (x) is defined as

I (x) = 1

4π3/2

∫ 2π
0 ex(1+cos s) ds∫ ∞

0

e−u∫ 2π
0

√
u + x(1 + cos s) ds

du
. (15.27)

The dependence (15.27) is plotted in Fig. 15.10(b).

15.7 The Frenkel–Kontorova model

The Frenkel–Kontorova (FK) model was first introduced to describe dislocations in
solids [95] and subsequently applied in different contexts.3 In surface science, the
FK model is often used to interpret the physical behavior of adsorbed monolayers,
especially in connection to competing incommensurate periodicities.

In the FK model a chain of particles of mass m connected by elastic springs
interacts with a periodic potential, which mimics the structure of a crystal surface,
as in the PT model (Fig. 15.11). The total potential thus reads

Utot =
∑

n

(
−U0 cos

2πxn

a
+ 1

2
k(xn+1 − xn − b)2

)
,

where b is the equilibrium distance between two particles in the chain. Static fric-
tion can be probed by adding an external force Fext adiabatically increasing till
sliding initiates.

The ratio a/b is very important. For any irrational value of a/b there is a critical
value ηc of the parameter η defined by (15.3) such that the static friction force Fs

3 A detailed review of this model is given in the book by Braun and Kivshar [35].
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Figure 15.11 In the FK model, a chain of particles connected by springs moves
over a periodic potential. The quantities a and b are the periodicity of the potential
and the equilibrium distance of the springs respectively.
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Figure 15.12 Adding an extra atom (and spring) in the FK model results in a
so-called kink.

vanishes when η < ηc. The transition to a finite Fs is accompanied by a second-
order phase transition to an incommensurate structure (Aubry transition) [268].
The parameter ηc takes a maximum value (= 1) when the ratio a/b is equal to the
golden mean (1 + √

5)/2 ≈ 1.618 [35]. If the average distance between consecu-
tive particles is close to a and η is low, the position of the particle n in the chain is
given by

xn = na + aξn

2π
,

where ξn is a small number. Considering n as a continuous variable, the motion of
the chain can be described by the sine-Gordon equation [35]

∂2ξ

∂t2
= ∂2ξ

∂x2
+ sin ξ,

which has important applications also in the theory of Josephson junctions and
coupled pendula.

An interesting situation is observed when the chain has one particle more (or
fewer) than the number of minima in the substrate potential. In this case, assum-
ing periodic boundary conditions, a kink (or antikink) appears, as shown in Fig.
15.12. The motion of kinks in the presence of an external force has a key role in
determining the frictional response of the chain. A kink can indeed be interpreted
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as an elementary excitation (soliton) with an effective mass meff = (2m/π2)
√
η

and an energy

E = meffc
2 + 1

2
meffv

2,

where c = a
√

k/m is the velocity of sound in the free chain. The activation energy
for kink motion is called the Peierls–Nabarro barrier and is usually much smaller
than the amplitude U0 of the substrate potential. This means that kinks move much
easier than the particles on the substrate (see also Section 12.1).

Combining lateral and normal motion

We will now extend the FK model to an interesting problem. A molecular chain,
approximated by a series of units connected by equivalent springs (with stiffness k
and equilibrium length b) interacting with the substrate via a sinusoidal potential
of amplitude U0 and period a, is pulled up from one of its ends by a weaker spring
perpendicularly to the substrate surface (Fig. 15.13(a)). The interaction potential
between each unit and the substrate can be written as

Uint = U0(z) f (x, y)+ U1(z),

where the first term on the right hand side accounts for the corrugation of the poten-
tial energy parallel to the surface, and U1(z) describes the distance dependence of
the (x, y)-averaged potential perpendicular to the surface.

This problem has been studied theoretically in the case of a polyfluorene chain
on a Au(111) substrate [165], since this system was investigated by AFM at low
temperature (Section 19.4). In this case, the interaction between the molecular
units and the substrate is well described by realistic expressions for U0, U1 and
f introduced by Steele [316]. As a result, the units are found to be sequentially
detached from the surface with periodicity b. The normal force suddenly changes
every time a unit is detached, as shown in Fig. 15.13(b). A small continuous mod-
ulation related to the periodicity of the substrate along the sliding direction is
also observed, as seen in Fig. 15.13(c). This modulation is not periodic but shows
extrema or shoulders which gradually shift with respect to the main variation and
reflect the misfit between the chain structure (b-periodicity) and the atomic lattice
of the Au(111) surface.

15.8 Electronic and phononic friction

To conclude the chapter, we briefly discuss the physical origins of the damping
coefficient γ in Eq. (15.1). This quantity can be estimated using various techniques
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Figure 15.13 (a) Schematic of the interactions experienced during the pulling up
of a molecular chain from a periodic substrate. (b) Simulated normal force gradi-
ent for a realistic choice of parameter values. (c) The zoom shows a small variation
due to the sliding of the molecular chain on the substrate, which demonstrates
practically frictionless motion due to the incommensurability of the substrate peri-
odicity and the molecular spacing. Adapted from [165] with permission from the
National Academy of Sciences, USA.

such as infrared spectroscopy, inelastic helium scattering, quartz crystal microbal-
ance, and surface resistivity measurements.

Phononic friction

Consider an atom or a small molecule of mass m sliding on a substrate with a
characteristic frequency ω0 associated with parallel or perpendicular oscillations
of the adsorbate. If we interpret an oscillation as a collision between adsorbate
and substrate, it is possible to quantify the order of magnitude of the phononic
contribution to γ . During the collision time τ ∼ 1/ω0 the adsorbate transmits an
energy (m/meff)ε to the substrate, where ε is the oscillation energy and the effective
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mass meff of the substrate is easily determined as follows. The displacement field
extends up to a distance ∼ csτ , where cs is the transverse velocity of sound in the
substrate. The corresponding volume is ∼ (csτ)

3 so that meff ∼ ρ(csτ)
3, where ρ

is the substrate density. Since the collisions occur with a frequency f = ω0/2π ,
the energy transfer per unit time is

dε

dt
≈ ω0

2π

m

meff
ε,

which correspond to an energy decay with damping constant4

γphon ∼ mω4
0

ρc3
s

. (15.28)

Smaller values are obtained for a large molecule sliding on the surface. Note that
Eq. (15.28) is expected to remain valid also for liquid adsorbates at low coverage,
but not for solid adsorbate layers.

Electronic friction

Consider now a gas of atoms or small molecules adsorbed on a thin metal film.
In case of covalent bonding (chemisorption) a resonance state appears close to the
Fermi level εF of the metal. If � is the resonance width and ρa is the corresponding
density of states, the contribution to electronic friction is [242]

γ
(cov)
el = 2

me

m
ωF�ρa(εF)

〈
sin2(θ)

〉
,

where ωF = εF/� and the average depends on the symmetry of the adsorbate
orbital. In case of van der Waals bonding (physisorption), the following relation
has been derived by considering the metal as a semi-infinite jellium5 and the
molecule–substrate interaction in the dipole approximation [261]:

γ
(vdW)
el = e2

�a0

(kFα)
2

(kFz)10

me

m

ωF

ωp
kFa0 I (z), (15.29)

where a0 is the Bohr radius, α is the static electric polarizability, ωp is the plasma
frequency, kF is the Fermi wave vector and I is a function of the distance z between
the adsorbate and the jellium edge. Since I is constant except at very low distances
(∼ 0.1 nm) the vdW contribution decreases as z−10. In contrast, the Pauli repul-
sion appearing when the electron clouds of adsorbate and substrate start to overlap

4 According to a more accurate estimation the right hand side of Eq. (15.28) is multiplied by a factor (3/8π)
[256].

5 In the jellium model the crystal structure is ignored and the electrons are supposed to interact with a positive
charge uniformly distributed in the metal.
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results in an exponential decay with the distance z. Equation (15.29) can be applied
to light noble gases and saturated hydrocarbons on metals.

Note that, experimentally, the electronic damping can be simply estimated from
the increase �ρ in the resistivity of a thin film as

γel = n2e2d

mna
�ρ,

where d is the film thickness, n is the density of conduction electrons and na is the
number of adsorbates per unit area. For chemisorbed systems γel ∼ 1010–1012 s−1,
while γel ∼ 108–109 s−1 for physisorbed systems in the low-coverage limit. These
values are lowered if the coverage increases.
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Atomic-scale stick–slip in two dimensions

In this chapter we will discuss how the magnitude of the static and kinetic fric-
tion on a particle elastically driven on a crystal surface is influenced by the pulling
direction. The problem is more complex if, instead of a point mass, we consider
the motion of a 2D crystal. Depending on the size of the sliding system, its stiff-
ness and commensurability with the substrate, significant variations are expected.
An interesting problem is also the motion of an adsorbate film driven by a con-
stant force. In this case the film can solidify in different phases depending on the
coverage and the adsorbate–substrate interaction strength.

16.1 The Prandtl–Tomlinson model in two dimensions

When a nanoasperity (‘tip’) is elastically driven across a 2D crystal lattice, both
the spring force at the slip onset, i.e. the static friction Fs, and the spring force
averaged over long sliding distances, i.e. the kinetic friction Fk, depend on the
pulling direction ϕ (Fig. 16.1(a)). To estimate the dependence of Fs(ϕ), the first
step is to determine the equilibrium position r ≡ (x, y) of the tip as a function of
the position R ≡ (X, Y ) of the spring support. If U (r; R) is the sum of the tip–
surface interaction potential Uint(x, y) and the elastic potential Uel = (1/2)k(r −
R)2, where k is the spring constant, the equilibrium condition is simply

∇U = 0, (16.1)

where the gradient is calculated with respect to the coordinates x, y for a fixed
support position. Assuming that the support moves with time as R = vt , where v
is the (constant) driving velocity, the value Fs is reached when the equilibrium of
the system becomes unstable, i.e. when at least one of the eigenvalues λ1,2 of the
Hessian matrix

174
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Figure 16.1 (a) Surface potential with square symmetry (16.3). (b) Stability
regions (gray areas), trajectories (continuous curve) and equilibrium positions of
a particle elastically driven on it (dashed curve).
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becomes negative.
As an example Fig. 16.1(b) shows the stability regions for a simple potential Uint

obtained by overlapping two plane waves (with periodicity a) rotated by 90◦ with
respect to each other:

Uint = −U0(cos x + cos y) (16.3)

(for the sake of simplicity, we have replaced 2πx/a and 2πy/a with x and y in
the argument of the trigonometric functions). It is straightforward to see that the
stability regions are defined by the conditions 1 + η cos x > 0 and 1 +η cos y > 0,
where η is defined as in Section 15.1. Analytic expressions for Fs(ϕ) can be in
principle found for any shape of the interaction potential Uint(x, y).

As opposed to the static friction, the kinetic friction Fk can in principle be
determined only numerically by solving the equation of motion (15.1) generalized
to 2D:

mr̈ + mγ ṙ + k(r − vt)+ ∇Uint(r) = 0.

The interaction potential (16.5) is a noticeable exception, as outlined below.

Square lattices

If Uint is defined by Eq. (16.3) the condition ∇U = 0 at different times t leads to
the implicit relation
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y + η sin y

x + η sin x
= tan ϕ, (16.4)

which is represented by the continuous curve in Fig. 16.1(b). Inside the stability
regions this curve corresponds to the tip trajectory. When the edges of these regions
are reached, it can be shown that the tip is ejected along a straight line parallel to
the x or the y axis and, if the motion is critically damped, the landing position is
simply determined by the intersection of the line with the curve (16.4) [318].

On a surface potential that has large corrugations (η � 1), simple analytical
expressions can be obtained. In this case Eq. (16.4) simplifies to

sin y

sin x
= tan ϕ (16.5)

and the spring force F ≡ −∇U = ∇Uint or, in components,

Fx = ka

2π
η sin x, Fy = ka

2π
η sin y.

The static friction can be expressed as a function of the pulling direction using Eq.
(16.5):

Fs(ϕ) =
√

F2
x + F2

y

∣∣∣
x=xc

= ka

2π

η

cosϕ
(16.6)

if 0◦ < ϕ < 45◦, or

Fs(ϕ) = ka

2π

η

sin ϕ

if 45◦ < ϕ < 90◦ (see Fig. 16.2). The force Fs has a minimum when ϕ = 0◦ and a
maximum when ϕ = 45◦, which shows up as a cusp.

45° 90°0°

1

1.4

0.7

F ka( /2 )× η

ϕ

Figure 16.2 Angular dependence of the static (continuous curve) and kinetic fric-
tion (dashed curve) corresponding to the potential in Fig. 16.1(a) and evaluated
according to the equations (16.6) and (16.7).
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Due to the absence of cross terms in the potential (16.3), the average values of
the x and y components of the spring force are the same: Fx = Fy (if ϕ 
= 0◦,
90◦). When η � 1, these values are equal to ka/2π . Since the kinetic friction is
given by the projection of the average spring force F along the pulling direction, it
is easy to see that

Fk = ka

2π
η cos(45◦ − ϕ). (16.7)

For both static and kinetic friction forces, the ratio between the extremal values is
Fmax/Fmin = √

2, and a considerable anisotropy is expected.

Hexagonal lattices

The simplest surface lattice with hexagonal periodicity is defined by overlapping
three plane waves, rotated by 60◦ (Fig. 16.3):

Uint = −U0

2

[
cos

(
x − y√

3

)
+ cos

(
x + y√

3

)
+ cos

(
2y√

3

)]
. (16.8)

The same procedure adopted for the square lattice leads to precise analytical
expressions for the angular dependence of the static friction also in this case [106].
In particular, when η � 1:

Fs = ka

2π

η√
3

(
cos2 x + 4 cos x cos

y√
3

+ 7 cos2 y√
3

− 4 cos2 x cos2 y√
3

− 4 cos x cos3 y√
3

− 4 cos4 y√
3

)
, (16.9)

Figure 16.3 Same as Fig. 16.1 for the surface potential with hexagonal symmetry
(16.8).
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Figure 16.4 Angular dependence of the static (continuous curve) and kinetic
friction (dashed curve) corresponding to the surface potential in Fig. 16.3(a).

where, at the critical position,

cos x = cos
y√
3

− 2 cos3 y√
3

±
√

1 − 4 cos4
y√
3

+ 4 cos6
y√
3
. (16.10)

The tip trajectory (when η � 1) is given by

tan ϕ =
sin

y√
3

sin x cos
y√
3

(
cos x + 2 cos

y√
3

)
, (16.11)

and an explicit but cumbersome representation of Fs vs. ϕ is again possible. From
the expressions (16.9)–(16.11), calculated for ϕ = 0◦ and ϕ = 30◦, the ratio
between the extremal values of Fs turns out to be Fmax/Fmin ≈ 1.04. Small vari-
ations of Fs(ϕ) are also estimated for lower values of η. Thus, as opposed to the
case of a square lattice, the static friction force on the hexagonal potential (16.8) is
almost independent of the pulling direction.

In Fig. 16.4 the kinetic friction force Fk has been evaluated numerically and
plotted as a function of ϕ when η = 100. Two singular points appear. The first one,
at ϕ = 0◦, has the same origin as the singularity observed on the square lattice. The
second singularity is associated with the straight path of the tip when ϕ = 30◦. The
anisotropy is more pronounced compared to the static friction.

16.2 Structural lubricity

As shown by Müser et al. in a simple model based on geometrically interlocking
asperities, the contact between two commensurate surfaces results in a finite static
friction force Fs [228]. The value of Fs decreases exponentially with the length of
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Figure 16.5 (a) A rigid flake consisting of N = 24 atoms is connected by two
springs to a support moving in the x direction. The substrate is modeled as an
infinite layer of rigid graphene. (b) Friction as a function of the orientation angle
for symmetric flakes with size N = 6 (continuous curve), 64 (dashed curve),
and 150 (dotted curve). Adapted from [335] with permission from the American
Physical Society.

the common period and is further reduced if the substrates are not rigid. If the con-
tacting surfaces are incommensurate, and the substrates are rigid, the static friction
Fs = 0. If the substrates are not rigid, a transition from stick–slip to a state of neg-
ligible friction is expected when the load decreases or the stiffness increases [226].
In this case the lateral forces on the single atoms cancel out, leading to a dramatic
reduction of friction at finite speed v, and to complete vanishing when v → 0.
Although this situation is often called ‘superlubricity’, following Müser [227] we
prefer to use the term structural lubricity to describe this state of motion and avoid
questionable analogies to superconductivity and superfluidity.

Based on the previous reasoning, it is not surprising that the friction varies sig-
nificantly with the relative orientation of the contacting surfaces and the pulling
direction. As an example, consider a rigid hexagonal flake sliding over a hexago-
nal lattice according to the geometry in Fig. 16.5(a) [335]. The friction force peaks
at the values of the orientation angle � corresponding to a commensurate con-
tact between flake and surface.1 Between two consecutive peaks, ultralow friction
is observed (Fig. 16.5b). Note that the angular width �� of the friction peaks
depends on the size of the flake as tan(��) = a/d , where d is the diameter of a
flake, and a is the lattice constant.

If two amorphous but smooth rigid surfaces slide past each other, numerical
simulations by Müser et al. showed that Fs ∝ √

N , where N is the number of
atoms at the interface [228]. In this way the friction force per atom tends to zero if
the area of contact becomes infinite.

1 Note that � is different from the pulling angle, which is fixed at 0◦.
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Colloidal systems

The kinks and antikinks predicted by the FK model in 1D (Section 15.7) are also
expected in 2D. In an original experiment, Bohlein et al. succeeded in visualizing
these effects in real time on a 2D crystal of charged polystyrene spheres suspended
in water and driven across commensurate and incommensurate static potentials
[27]. The potentials were generated by interfering laser beams, which allowed them
to change the symmetry of the potential at will. The external (lateral) force Fext

was simply accounted for by translating the sample cell at constant velocity. The
frictional response of the colloidal particles was found to depend only on the num-
ber and density of the kinks, which propagated through the monolayer along the
direction of the applied force. Remarkably, these excitations were also observed on
quasi-periodic potentials.

16.3 Sliding of adsorbate layers

At a finite coverage θ , the sliding of an adsorbate layer can only be investigated
(theoretically) by numerical simulations. The goal is to solve the equation of
motion

mr̈i + mγ ṙi = −∂Uint

∂ri
− ∂Uad

∂ri
+ Fext, (16.12)

where m is the mass of an adsorbate particle, Uint is a periodic potential describing
the interaction between adsorbate and substrate, Uad is a potential describing the
interaction of the adsorbate particles (a sum of LJ pair potentials) and Fext is an
external force. At a finite temperature T a stochastically fluctuating force is added
to the right hand side of Eq. (16.12). Depending on Uint, θ and T different ‘phases’
of the adsorbate layer can be distinguished. Two examples of incommensurate and
commensurate solid structures on a square lattice are shown in Fig. 16.6 [243].
Incommensurability is observed if the corrugation of Uint is low. While an incom-
mensurate structure can slide with negligible activation barriers, a commensurate
structure is strongly pinned.

The dependence of the drift velocity vd on the average stress σ = Fext/θ

can have two qualitatively different forms [243]. Figure 16.7(a) shows the rela-
tion vd(σ ) for an adsorbate layer in the fluid state. This is the same response as
that expected in the dilute limit (Fig. 15.10(a)). Note that this behavior is always
observed in some parts of the (θ, T ) phase diagram. The drift velocity is non-zero
for arbitrary small values of σ , which is what is expected for a fluid. Furthermore,
no hysteresis is observed. If the adsorbate layer is in a solid state which is com-
mensurate with the substrate, or at least pinned by it (see below), the behavior in
Fig. 16.7(b) is observed. In this case, a minimum stress σa is required to initiate
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(b)(a)

Figure 16.6 (a) Incommensurate and (b) commensurate solid structures formed
by an adsorbate monolayer on a square lattice. Adapted from [243] with permis-
sion from the American Physical Society.
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Figure 16.7 Drift velocity of an adsorbate layer as a function of the shear stress
σ . The layer is initially (a) in a fluid state or (b) in a pinned state. Adapted from
[243] with permission from the American Physical Society.

sliding. At this point the adsorbate becomes fluid and the drift velocity abruptly
jumps to the value vd = va. If the stress increases, so does the drift velocity. If
the stress decreases, the layer will not return to the pinned state at σ = σa but to
that at a lower value σb. Two different effects contribute to this hysteretic behavior.
A resolidification at σ = σa is prevented (i) by the increased temperature of the
adsorbate while sliding and (ii) by the drag force exerted by the rest of the fluid
on the nucleation islands. Considering only the latter effect, it can be proven that
σb ≈ σa/2 [243].

Role of defects

An incommensurate solid structure can also be pinned by a defect, e.g. by a step
or a foreign chemisorbed atom. It turns out that the pinned structures have a
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characteristic linear size ξ , which may be called the elastic coherence length. This
concept is mediated from the theory of flux line lattices and charge density waves
and, by analogy to those systems, if the 2D solid has a linear size L and the aver-
age distance between two neighboring defects is of the order of l, it can be proven
that [258]

ξ ≈ mc2l

Udef
√

4π ln(L/ξ)
,

where c is the sound velocity in the film and Udef is the strength of the defect
potential. In typical quartz crystal microbalance (QCM) measurements on inert
gas monolayers (Section 17.3), ξ is expected to be of the order of a few tens of mm
[295, section 8.5].
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Instrumental and computational methods in
nanotribology

In this chapter we introduce the methods conventionally used to explore friction on
the nanoscale. The leading position among the instrumental setups is held by the
atomic force microscope. Here we will briefly illustrate the type of forces sensed by
this instrument and its basic modes of application. Other experimental techniques
in nanotribology are the surface force apparatus, the quartz crystal microbalance
and also, to some extent, scanning tunneling microscopy and transmission elec-
tron microscopy. Virtual experiments rely on molecular dynamics simulations. A
short introduction to this method will be followed by a series of numerical results
reproducing friction and wear measurements at the atomic level.

17.1 Atomic force microscopy

In a typical atomic force microscope (AFM) [24] a sharp micro-fabricated tip is
scanned over a surface. Standard AFM tips are made of silicon or silicon nitride,
but tips can be also coated to allow a large variety of material combinations. The
probing tip is attached to a cantilever force sensor, the sensitivity of which can be
well below 1 nN. Images of the surface topography are recorded by controlling the
tip–sample distance in order to maintain a constant (normal) force. This is made
possible by using piezoresistive cantilevers, or, most commonly, by a light beam
reflected from the back side of the cantilever into a photodetector, which allows
one to monitor the cantilever bending (Fig. 17.1). The lateral force between tip
and surface is responsible for the cantilever torsion and can be measured if the
photodetector is equipped with four quadrants. If this is the case the AFM can be
used as a friction force microscope (FFM), see Appendix A. The design of a home-
built AFM, optimized for friction measurements in ultra-high vacuum (UHV), is
shown in Fig. 17.2.

The tip–sample force can be related not only to the static bending or torsion
of the cantilever. In dynamic AFM techniques [217] the cantilever is excited in
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photodetector

sample

cantileverlaser

Figure 17.1 Schematic diagram of a beam-deflection atomic force microscope.

Figure 17.2 UHV-AFM designed and installed at the University of Basel (photo
by Dr. Oliver Pfeiffer).
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the vicinity of a mechanical resonance, and the tip–sample interaction is estimated
from the oscillation amplitude or the shift of the resonance frequency. In this way
sliding contact between tip and sample is avoided, and damage to tip and surface
is considerably reduced.1

The imaging process in AFM takes place continuously above the surface. The
tip is usually scanned at a constant velocity forwards and backwards in the
so-called ‘fast’ scan direction, then the motion is stopped, the tip is displaced
by a short distance along the ‘slow’ scan direction, which is perpendicular to
the fast scan direction, and the process is repeated several times to produce a
two-dimensional topography or force map.

Relevant forces in AFM

The most important interactions in AFM are due to short-range chemical forces.
Chemical forces are sensitive to single atoms and are responsible for atomic reso-
lution. They also define the atomic structure of tip and surface, and cause atomic
displacements when the tip is brought in close proximity to the surface.

The van der Waals (vdW) forces are due to the electromagnetic interaction of
fluctuating dipoles in the atoms forming tip and surface. These forces are extremely
weak on the atomic level. However, they are generally attractive, which can result
in forces of several nanonewtons when the small interactions between individual
atoms of tip and sample are summed up. In this way the vdW forces can exceed the
chemical forces and dominate the tip–surface interaction. Van der Waals forces are
always present independently of the tip and surface conditions or the environmental
conditions of the experiment. In the case of a sphere close to a flat surface, the vdW
force is given by [148]

FvdW(z) = H R

6z2
,

where H is the Hamaker constant (dependent on the materials, and usually of the
order of 10−19 J), R is the tip radius, and z is the distance between tip and surface.
In the case of a conical tip terminated by a spherical cap and a flat surface [124]:

FvdW(z) = − H

6

(
R2

z2
+ tanα2

z + Rα
− Rα

z(z + Rα)

)
,

where α is the half-angle of the cone and Rα = R(1 − sinα).
The cleavage process used to prepare atomically flat surfaces often results in

charges trapped at the sample surface. Other surface preparation techniques such
as ion sputtering in UHV may also lead to charging effects. If localized charges are
present at the tip apex, electrostatic forces are generated, the strength and distance
dependence of which is given by the Coulomb’s law. Electrostatic forces are also

1 This may not be the case if a contact resonance is excited while the sliding is occurring; see Section 18.2.
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acting between charged surfaces and conductive tips. Considering the tip–surface
system as a capacitor with a distance-dependent capacitance C , these forces are
given by

Fel = ∂C

∂z
(Vbias − V0)

2,

where Vbias is the voltage applied between tip and surface and V0 is the contact
potential difference produced by the different work functions of tip and surface.

Other contributions to the tip–surface interaction may come from magnetic
forces and capillary forces.

17.2 Other scanning probe modes

Dynamic-mode AFM

In non-contact (NC) mode the probing tip of an AFM oscillates with an amplitude
of a few nm at the resonance frequency f0 of the cantilever. The oscillation is usu-
ally applied by a piezoactuator mounted at the cantilever base. Silicon cantilevers
with normal spring constants kN of few tens of N/m and resonance frequencies
f0 ∼ 105 Hz are typically used, with corresponding Q factors ∼ 104 (in UHV).

The system formed by cantilever and tip can be represented as a damped
harmonic oscillator:

mz̈ = −kN [z − Aexc cos(ωt + ϕ)] − mγ ż + F(z), (17.1)

where m is the effective mass of the cantilever, z is the vertical position of the
tip, the damping coefficient γ is related to the internal friction of the material, and
F(z) is the force between tip and sample surface. For rectangular cantilevers m
is approximately one fourth of the cantilever mass [125]. The excitation has an
amplitude Aexc and the response has a phase lag ϕ. The (normal) friction force
−mγ ż is compensated by the driving force Fexc = k Aexc cos(ωt + ϕ), so that Eq.
(17.1) simplifies to

mz̈ = −kNz + F(z).

The excitation needed to keep the oscillation amplitude can be seen as the damping
signal of the NC-AFM.

If the tip oscillations are small compared to the characteristic decay length of
F(z), a linear expansion of F(z) is possible, leading to a proportionality relation
between the shift � f of the resonance frequency and the force gradient in the z
direction [3]:

� f

f0
= − 1

2kN

dF

dz
.
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If this is not the case the interaction between tip and sample modifies the har-
monic motion only close to the lower turning point of the tip. Assuming that the tip
oscillations have an amplitude A, and the frequency shift � f is small, Giessibl
derived the following relation between measurable parameters and the force F
averaged over the oscillation cycle [102]:

� f = f0

πkN A

∫ 2π/ω

0
F(z0 + A sinωt) sinωt dt. (17.2)

The integral on the right hand side of Eq. (17.2) can be calculated for large
oscillation amplitudes, assuming different force–distance relations. If the distance
between tip and surface at closest approach is smaller than the tip radius, the long-
range interactions are dominated by the spherical cap of the tip. In this case the
frequency-shift � fel due to the electrostatic interaction and the frequency shift
� fvdW due to the vdW interaction are given by [124]

� fel = − f0

kN A3/2

πε0 R(Vbias − Vcpd)
2

√
2zmin

,

� fvdW = − f0

kN A3/2

H R

12
√

2(zmin A)3/2
, (17.3)

where zmin is the closest distance between the surface and the mesoscopic part of
the tip, R is the tip radius and H is the Hamaker constant. Note that the force
vs. distance curves F(z) can be reconstructed from the measured � f (z) curves
without any assumption about the force law. An iterative method introduced by
Dürig is described in [81].

While the NC mode is commonly adopted in UHV, the preferred technique in
ambient conditions is the tapping mode. In this case the oscillation amplitude A of
the probing tip is used as feedback parameter while the cantilever is vibrated close
to its resonance frequency. The energy dissipated during one oscillation cycle can
be estimated from the driving amplitude Ad and the phase shift ϕ as

�E ≈ πkN

(
AAd sinϕ − A2

Q

)
, (17.4)

where kN is the normal stiffness and Q is the quality factor of the cantilever. Note
that the oscillation amplitude is larger than in the NC mode (of the order of 100
nm) and intermittent contact occurs.

Scanning tunneling microscopy

In a scanning tunneling microscope (STM) piezoelectric transducers bring a sharp
metallic tip down to a distance of a few tenths of a nm from a conducting surface,
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where the wave functions of the electrons of tip and surface overlap [23]. A bias
voltage, Vbias, applied between tip and sample causes electrons to tunnel from the
tip to the surface or vice versa, depending on its sign. The resulting tunneling cur-
rent, It, can range from a fraction of a pA to a few nA depending on the materials,
distance and bias voltage.

As a first approximation, the tunneling current decays exponentially with the
tip–sample distance z:

I (z) ∝ Vbiasρ(εF)e
−2κz.

In this formula ρ(εF) is the local density of states at the Fermi level and κ =√
2m�/�2, where � is the height of the tunneling barrier. If the current It is kept

constant by a feedback loop while scanning, a constant charge density surface can
be mapped. Although STM is not adequate to measure mechanical forces, its res-
olution is usually higher than AFM. For this reason, the two techniques can be
alternated, for instance in nanomanipulation experiments on metals.

17.3 Other experimental techniques in nanotribology

Surface force apparatus

The surface force apparatus (SFA) is based on two curved, molecularly smooth
surfaces immersed in a liquid or in a controlled atmosphere [149]. The material
of choice is usually mica, since it can be easily cleaved into atomically flat sur-
faces over macroscopic areas. When the surfaces are brought into contact, the gap
caused by a thin lubricant film can be measured by optical interferometry. In par-
ticular, when the wavelength of the white light passing through the system matches
the local separation, fringes of color are created and the contact geometry can be
imaged.

The SFA can resolve distances of the order of 0.1 nm and forces of about 10 nN,
and the contact diameter is usually of the order of few tens of µm. If a tangential
force is applied, sliding friction can also be studied. The SFA is ideal for study-
ing molecular-level structural and rheological properties of liquids and tribological
properties of lubricants under compression. The main drawback is the trapping of
impurities in the gap. If the size of the contaminants is below the light wavelength,
the interference fringes are not modified, and the distance measurements become
unreliable.

Quartz crystal microbalance

Consider a quartz disk, the faces of which are covered by two thin metal films.
Since quartz is piezoelectric, transverse vibrations with a characteristic frequency
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Figure 17.3 Schematic of a quartz crystal microbalance for measuring the sliding
friction of adsorbate layers.

ω0 can be excited by applying an ac voltage. If the voltage is suddenly switched
off, the amplitude of the oscillations will decay exponentially with a rate �. The
presence of molecules on the surfaces of the metal films (Fig. 17.3) causes small
shifts, respectively �ω and ��, in the frequency response and decay rate even for
a small fraction of monolayer. If m is the mass of the vibrating crystal, mML is the
mass of an adsorbate monolayer and γ is the damping coefficient for the sliding
adsorbate (considered as a rigid body), it can be proven that [245, section 8.6]

�ω

ω
= −mML

m

γ 2 P1

ω2 + (γ P1)2
, �� = − 2ω

γ P1
�ω,

where P1 is the fraction of adsorbates in the first layer in direct contact with the
substrate. The previous relations allow us to estimate the quantities γ and P1 and,
consequently, the friction force on thin physisorbed layers of simple inert atoms
or molecules, such as Kr, Xe or N2, when they slide on metals such as Au or Ag.
Although the quartz crystal microbalance (QCM) was already a well-established
technique for film thickness measurements, its application to nanotribology was
pioneered by Krim and coworkers [170] in the 1980s.

Electron microscopy

In spite of their versatility, AFM, SFA and QCM do not allow us to visualize the
structure of nanocontacts as they form and slide. This problem can be partially
overcome by the live view of a nanoasperity inside a scanning electron microscope
(SEM) or a transmission electron microscope (TEM). The TEM was first coupled
to nanoindentation measurements by Minor et al. [222] and subsequently used to
characterize abrasive wear with Au, W and Si tips sliding on Si, graphite and dia-
mond respectively [287, 216, 150]. In the last of those studies, lattice resolved
images of the worn tip (Fig. 17.4) did not give any evidence of dislocations or
defects, strongly suggesting that the Si atoms are removed one by one (see also
Section 20.1).
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(b)(a)

Figure 17.4 (a) Successive TEM profiles of an Si tip scraped against a diamond
surface. (b) Lattice resolved image of the worn tip. Reproduced from [150] with
permission from Macmillan Publishers Ltd.

FN

k v

Figure 17.5 Sketch of a molecular dynamics simulation of a boundary lubricated
interface under shear.

17.4 Molecular dynamics and nanotribology: methods

Molecular dynamics (MD) simulations can be considered as ‘computational exper-
iments’, where the dynamics of the atoms in a sliding system is studied numerically
by solving ad-hoc Newton (or Langevin) equations of motion. In such a way fric-
tion, adhesion and wear processes can be explored by a suitable choice of geometry,
boundary conditions and, above all, interaction potentials. A typical ‘setup’ is
shown in Fig. 17.5. Additionally, a thermostat can be introduced to eliminate the
Joule heat and obtain a steady state of motion. As a result, important physical quan-
tities such as the instantaneous and the average friction forces, the mean velocity
of the slider, the heat flow and different correlation functions can be calculated.

A major problem in MD simulations is the fact that the total energy U of the
system depends on the states of the electrons. The Car–Parrinello method [43]
is not applicable, since it only handles few hundreds of atoms on time scales well
below 1 ns. For this reason the interactions are described by empirical ‘force-fields’
and, as a result, the description remains rather qualitative. This is especially the
case for wear processes, where atoms may suddenly change their coordination,
chemistry and even charge. At the time of writing, it is estimated that a simulation
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involving 105 atoms can reproduce a sliding process lasting 1 µs in approximately
one day [334].

If the simulations aim to predict the response of generic atoms, one can adopt
the Lennard–Jones (LJ) potential:

VLJ = 4ε

[(σ
r

)12 −
(σ

r

)6
]
, (17.5)

where the first term on the right reproduces the Pauli repulsion at very short dis-
tances and the second one describes the vdW attraction. In Eq. (17.5) ε is the depth
of the potential well and σ is the finite distance at which the potential is zero. Met-
als are better described by taking into account the interaction between each atom
and its surrounding free electrons, as done in the ‘embedded atom method’ [63].
This method is computationally efficient and has been successfully applied to study
various phenomena related to atomic friction. Covalent bonds can be accounted for
by the Stillinger–Weber model [320], which was originally conceived for diamond
structured silicon. In this case, the potential is determined by the stretching and
bending of the bonds and sometimes also by their torsion. The disadvantage is that
only one equilibrium configuration is captured. This is not the case for the so-called
‘bond order potentials’, which introduce a bond order parameter and can simulta-
neously describe different stable states. Even if computationally very expensive,
several MD simulations of friction have been performed in this way. Ionic bonds
are reproduced with long-range Coulomb forces, which significantly increases the
computational time. Among the few attempts to simulate friction on ionic materi-
als, it is worth mentioning the work by Wyder et al. [343], who used a combination
of short range Buckingham and Coulomb potentials with each ion modeled as a
spring-coupled system of positively charged core and negatively charged shell (the
so-called ‘shell model’).

If tip and surface are made of the same material, which is the case if some sub-
strate atoms are picked up during initial contact, MD simulations are considerably
simplified since all the interactions in the sliding system are modeled by the same
potential. If this is not the case, cross potentials describing the interaction between
dissimilar species need to be introduced. If the frictional response is dominated by
vdW forces and no wear occurs, the LJ model can be an adequate choice.

17.5 Molecular dynamics and nanotribology: results

Friction on the atomic scale

Atomistic simulations of friction were pionereed by Landman et al. [178]. The
authors were able to reproduce the stick–slip motion of realistic Si tips on Si sam-
ples, and also the necking of sample material when the tip was retracted. Molecular
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(b) (c)(a)

Figure 17.6 Geometry (top row) and stress distribution without adhesion (middle
row) and with adhesion (bottom row) for (a) a crystalline tip, (b) an amorphous tip
and (c) a stepped tip pushed against a rigid flat surface. Reproduced from [196]
with permission from Macmillan Publishers Ltd.

dynamics simulations have also shown that continuum mechanics may fail to cap-
ture the properties of nanoscale contacts. This can be seen in Fig. 17.6, where
the same global geometry and loading conditions, but different atomic arrange-
ments, result in contact areas and stress variations spanning more than two orders
of magnitude. While a crystalline tip is well described by the Hertz theory, with-
out adhesion, and by the Maugis–Dugdale theory, with adhesion, the compressive
stress in the contact of an amorphous tip presents strong fluctuations, and a stepped
tip shows compressive stress peaks at step edges. The definition of the contact area
A is thus very critical in these cases. For instance, we may define a distance within
which a couple of atoms are assumed to be in contact, and take A as the area of
the region circumscribing those atoms. In this way, the contact distance obviously
depends on the type of bonding at the interface.

To simulate the normal force applied while scanning, the uppermost layers of the
model tip are usually treated as a rigid body onto which a constant load is applied.
As an example, Fig. 17.7(a) shows the simulated load dependence of the friction
force when a truncated cone-shaped Pt tip forms an incommensurate contact with
a Au(111) substrate. The friction increases slowly with load till wear occurs and
atoms are exchanged between tip and substrate. This results in a larger contact area
and in a rearrangement of the atoms in the contact to more stable configurations.
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Figure 17.7 (a) MD simulations and (b) AFM measurements of the load depen-
dence of friction for a Pt /Au(111) system. Reproduced from [76] with permission
from AIP Publishing.

The considerable increase of friction accompanying these processes has indeed
been observed in AFM measurements (Fig. 17.7(b)) but cannot be described by
continuum mechanics.

The main problem when studying the velocity dependence of friction by MD
simulations is the fact that speeds below few m/s are not accessible. These values
are well above typical speeds at which atomic stick–slip is resolved by AFM (nm/s
to µm/s). The reason for that is the typical time scales in MD, which are of the
order of 1 fs. Furthermore, phenomena such as thermally activated hopping are
not effective at high speeds, which makes any attempts to extrapolate the model
predictions on the velocity dependence of friction quite doubtful. A possible solu-
tion consists of accelerating the simulations during the long stick phases separating
rapid slip events.

On the other side, an advantage of MD simulations over the experiments is the
fact that the temperature can be controlled very easily. On the variety of substrates
examined so far, including metals (Cu and Au), diamond and alkylsilane monolay-
ers, a decrease of friction with temperature has always been observed. Due to the
finite size of the systems addressed by MD simulations, boundary conditions need
to be properly chosen to avoid unphysical effects. For instance, the thermal energy
generated in the slip cannot be simply reflected at a fixed boundary or re-enter the
system via periodic boundary conditions. The problem is solved by introducing
a numerical thermostat. In this way energy is extracted such that the temperature
of the system fluctuates around a given value. In MD simulations of atomic friction,
the thermostat is applied only to the atoms far from the contact region. In this way
the dynamics of the contacting atoms is not disturbed, although the heat generated
during sliding is effectively dissipated.
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As described in the previous chapter, the friction force between two crystalline
surfaces is a function of the misfit angle between the substrates and the pulling
direction. However, MD simulations have shown that this dependence is made
smoother by surface irregularities and thermal vibrations. As an example, Qi et al.
observed that, at room temperature, a rotation of 45◦ can change the friction by two
orders of magnitude on an atomically flat Ni(100)/Ni(100) contact, but only by a
factor of four if one of the surfaces has a roughness of 0.08 nm [278].

Nanowear

The long time scales which characterize wear processes and the large amounts of
material involved make any attempt to simulate these mechanisms on a computer
extremely challenging. In spite of that, MD can provide useful insight into the
mechanisms of removal and deposition of single atoms by a nano-indenter, which
cannot be directly visualized by AFM. Complex processes like abrasive wear
and nanolithography can only be investigated using approximations in classical
mechanics.

The first MD simulations showing material transfer during tip retraction were
performed by Landman et al. [178] and by Nieminen et al. [234] on Si/Si and
Cu/Cu contacts respectively. Livshits and Shluger observed that an AFM tip under-
goes a process of self-organization when scanning alkali halide surfaces [187]. The
tip contamination caused by the adhesion of surface atoms may improve the res-
olution of crystal surfaces, if the adsorbed material forms stable structures on the
tip. In a series of MD simulations on Cu surfaces, Sørensen et al. used (111)- and
(100)-terminated Cu tips and also amorphous structures obtained by annealing the
tip at high temperature [314]. The lateral motion of the neck formed while scan-
ning the surface revealed stick–slip due to combined sliding and stretching, and
ruptures caused by deposition of debris onto the substrate (Fig. 17.8).

Only a few examples of plowing wear simulations on the atomic scale have been
reported. The first of these investigations was performed by Belak and Stowers on
a Cu surface using a rigid C tip [17]. The interactions within metal atoms were
modeled with an embedded atom potential while LJ potentials were used between
C and Cu atoms. The tip was first indented and then pulled over the surface. In
2D simulations Hertzian behavior was observed up to a load FN ≈ 2.7 nN and
an indentation of about 3.5 Cu layers. At this point a series of single dislocation
edges was created along the easy slip planes. After indenting six Cu layers, the
tip was slid parallel to the original surface. The work per unit volume of removed
material was found to scale as δ−0.6, where δ is the depth of cut. Interestingly, the
same power law was observed in machining of Cu with a nanotip [223], although
macroscopic experiments typically give an exponent of −0.2. In 3D simulations,
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Figure 17.8 Snapshot of the neck formed during the scanning of a Cu(100)-
terminated tip on a Cu(100) surface. Reproduced from [314] with permission from
the American Physical Society.

long-range elastic deformations were also included. After an indentation of only
1.5 layers, a small dislocation loop was formed, resulting in plastic deformation.
While dislocations spread several hundred lattice constants in 2D, this was not the
case in 3D, where they remained confined to distances of a few lattice constants.
The tip was also moved laterally at v = 100 m/s during indentation, which resulted
in negligible friction till the onset of plastic yield. At this point, the friction force
suddenly jumped to values comparable to the normal force, corresponding to a
coefficient of friction μ ≈ 1.

The nanoindentation and sliding of sharp and blunt Ni tips on atomically flat Cu
surfaces were studied by Buldum et al. using MD simulations [38]. Quasi-periodic
variations of the lateral force were observed with the sharp tip. In this case one
layer of the asperity was deformed to match the substrate during the first slip and
then two asperity layers merged into one through structural transition during the
second slip. In the case of the blunt tip, the stick–slip appeared much less regular.



18

Experimental results in nanotribology

In this chapter we will discuss a selection of experimental observations of friction
on the nanoscale, obtained by atomic force microscopy and related techniques.
After presenting high resolution friction maps on different materials, we will com-
pare the load, velocity and temperature dependence of friction detected in the
experiments to the predictions of the Prandtl–Tomlinson model. The comparison
will be extended to simple experiments showing the effect of contact vibrations
and friction anisotropy on crystalline samples.

18.1 Friction measurements on the atomic scale

The first lattice resolved maps of stick–slip were acquired by Mate et al. [206] just
one year after the atomic force microscope was invented [24]. In their experiment,
Mate et al. used a tungsten wire as a probing tip and detected lateral forces on a
graphite surface using non-fiber interferometry. Since graphite is stable, chemically
inert and easy to cleave along atomic planes, it is an ideal material for this kind of
measurement. The pioneer work by Mate et al. was followed by experiments on
ionic crystals (NaCl, KBr etc.), metals (Cu, Au, Al, W, Pt, Pd and Ag) and cova-
lent materials: semiconductors, carbon-based materials (e.g. graphite, diamond,
and diamondlike carbon), organic materials and many oxides.

The ultra-high vacuum (UHV) environment reduces the influence of contami-
nants on the sample surfaces and results in more precise and reproducible results.
An atomic-scale friction map, acquired with a silicon tip sliding on a NaCl(001)
cleavage surface in UHV (lattice constant a = 0.564 nm), is shown in Fig. 18.1(a).
The spring force F grows up to a maximum value, corresponding to the static
friction Fs ≈ 0.4 nN at which the tip suddenly slips. After that, the tip quickly
rebinds to a neighboring unit cell on the crystal surface. The process is repeated
several times along each scan line, reproducing the structure of the surface lattice.1

However, the value of Fs while crossing the centers of the unit cells in Fig. 18.1(a)

1 A noticeable exception is given by the measurements on NaF(001) by Ishikawa et al., who were able to
resolve both ionic species depending on the applied load [147].

196
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Figure 18.1 (a) Lateral force map on a NaCl(001) surface in UHV and (b) cross-
section (forward and backwards) through the centers of the unit cells. Scan size:
5 nm; normal force value: FN = 0.65 nN. Adapted from [107] with permission
from the American Physical Society.

is not always the same. This is due to thermally activated hopping, as discussed in
Section 15.3. As shown in Section 15.1, the maximum value of the static friction
and the slope of the turning points of the F(x) curves can be used to determine
the corrugation U0 of the tip–surface interaction potential and the effective lat-
eral stiffness k of the system. From Fig. 18.1(b) we estimate U0 ≈ 0.22 eV and
k ≈ 1 N/m.

Howald et al. [142] were able to measure atomic-scale friction on the recon-
structed Si(111)7 × 7 surface after coating the tip with a polymer (PTFE), which
has lubricant properties and does not react with the dangling bonds of the sub-
strate. On the other hand, uncoated Si tips and tips coated with Pt, Au, Ag, Cr, Pt/C
damaged the sample irreversibly. Different reconstruction domains on semicon-
ducting surfaces of InSb(0001) and Ge(001) [117], and variations of the friction
force while crossing the step edges of NaCl(001) and Ge(001) [319] have been
recently observed using FFM (Fig. 18.2). Atomic-scale friction was also resolved
on metal surfaces in UHV [18].

If ultrasharp probing tips are used (with radii of curvature of the order of 1 nm),
additional features in the atomic-scale maps of the friction force can be captured.
This is proven by the images in Fig. 18.3, which refer to a KBr film heteroepitaxi-
ally grown on an NaCl(001) surface [202]. A so-called Moiré pattern is seen, which
is caused by the mismatch between the ultrathin films imaged by AFM and the sub-
strate lattice. In the case of KBr/NaCl(001) the ratio between the lattice constants
of substrate and adsorbate is approximately 6:7. Note that the Moiré pattern was
not visible when the loading force was reduced close to the pull-off value and the
tip interacted only with the top layer of KBr. Another impressive example (with
hexagonal Moiré pattern) was reported by Filleter et al. by scanning a graphene
film on SiC(0001) [92].
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Figure 18.2 (a) AFM topography and (b) lateral force map acquired on two ter-
races of a (2 × 1) reconstructed Ge(001) surface separated by a monatomic step
edge. (c) Section along the black line in (b). Adapted from [117] with permission
from the American Physical Society.
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Figure 18.3 (a) Lateral force map of the Moiré superstructure formed by KBr on
a NaCl(001) surface and (b) cross-sections (forward and backward) through the
Moiré pattern. (c) Interface structure as calculated by Monte-Carlo simulations.
Adapted from [202] with permission from the American Physical Society.

Another excellent environment for high-resolution friction force microscopy is
liquid solutions, where capillary forces are eliminated and attractive forces become
very small. Figure 18.4 shows a dolomite (104) surface and a thin film of Cu
phthalocyanine (Pc) molecules deposited on it [236]. The structures of the dolomite
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Figure 18.4 Lateral force maps of (a) a dolomite (104) cleavage surface and (b)
CuPc molecules grown on it. Both images were acquired in deionized water at
room temperature. The structure of the mineral surface, with the protruding oxy-
gen atoms enhanced by open circles, and the molecular stack geometry are shown
on the right side. Adapted from [236] with permission from The Royal Society of
Chemistry.

face and the stack geometry of the organic molecules, as determined from single
crystal X-ray diffraction, are also sketched. Note that two pinning sites per unit
cell are resolved in Fig. 18.4(a), corresponding to oxygen atoms protruding out of
the dolomite surface. The atoms are resolved with different contrast, depending on
the scan direction, which can also be explained using the PT model [272]. In Fig.
18.4(b) two benzene rings per molecule are distinguished while sliding over the
CuPc film. Such a resolution could not be achieved in ambient conditions using the
same setup and probing tips.

18.2 Lateral and normal stiffness

In a first approximation, the effective lateral stiffness2 kL,eff of an FFM originates
from two contributions:

1

kL,eff
= 1

kL
+ 1

kL,con
, (18.1)

2 This quantity is simply denoted k in Chapter 15 and Section 18.1.
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where kL is the lateral spring constant of the micro-fabricated cantilever (Appendix
A) and kL,con is the lateral force per unit displacement causing an elastic defor-
mation of the contact region. Assuming that contact mechanics holds at a single
asperity level, the contact stiffness3 kL,con = 8G∗a, where a is the radius of the
contact area and the effective shear modulus G∗ of the materials forming tip and
substrate is defined by Eq. (5.8). The contact stiffness kL,con can be further sepa-
rated into the stiffness of the tip body, ktip, the stiffness of the tip apex, kapex, and
the stiffness caused by the deformation of the substrate, ksub.

As mentioned in Appendix A, standard cantilevers have a lateral stiffness kL

of the order of 10–100 N/m. Using the finite element method and realistic geo-
metric parameters measured by TEM, Lantz et al. estimated that, for silicon and
silicon nitride tips, the values of ktip are comparable to those of kL [181]. Due to
its nanoscale sharpness, the tip apex is expected to be much more compliant. It is
responsible for the fine structures and elongated slip duration observed in atomic
friction maps [201]. Both kapex and ksub play a key role in determining kL,eff, but no
convincing ways to separate their contributions have been proposed so far.

Compared to the lateral stiffness, the normal stiffness of a nanocontact, kN,eff

is more difficult to determine. A possible method is to track the normal resonance
frequency fN while scanning. Atomically resolved measurements of this kind were
reported by Steiner et al. [317]. Figure 18.5 shows the variation of fN along the
[100] direction of a NaCl(001) surface in UHV together with the corresponding
variation of the lateral force F . Note that an atomic defect (indicated by an arrow)
is resolved in the frequency signal, but not in the lateral force signal. The normal
stiffness kN can be estimated from the formulas in Section 7.1, modified to account
for the inclination of the cantilever with respect to the sample surface (approxi-
mately 15◦). As a result, kN,eff ∼ 10 N/m, i.e. two orders of magnitude more than
the spring constant kN of the free lever.

18.3 Load dependence of nanoscale friction

The general trend observed in AFM experiments is that the friction force increases
with the normal load FN. However, different behaviors have been recognized.
A linear load dependence was reported on various substrates including gold and
alkylthiol molecules [98, 270]. The power law predicted by the DMT model (Sec-
tion 10.2) was observed on different carbon forms using well-defined spherical
tips with radii of curvature of tens of nanometers [305]. In this case the tip termi-
nations were produced by contaminating standard silicon probes with amorphous
carbon inside a TEM. Other AFM measurements performed in UHV on alkali

3 It is also assumed that the tip radius is much larger than a and the tip motion has a negligible influence.
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Figure 18.5 (a) Lateral force profile and (b) corresponding variation of the con-
tact resonance frequency recorded while scanning a NaCl(001) surface in contact
mode. Adapted from [317] with permission from IOP Publishing.

halides, mica and various metals could be better reproduced with the JKR model
[218, 46, 274]. A reason for the variety of the behaviors reported experimentally is
the delicate balance between chemical and mechanical properties of the contacting
surfaces. While the elasticity and roughness determine the response of chemically
inert surfaces, the formation and rupture of bonds while sliding may prevail on
chemically active surfaces. On metal surfaces, nanojunctions can also be formed
and wear may occur.

The situation is better defined in UHV. In this environment Socoliuc et al. were
able to recognize the transition from stick–slip to smooth sliding predicted by the
PT model when the characteristic parameter η < 1 (section 15.1) on a NaCl(001)
surface (Figures 15.2(b) and 15.3(b)) [312]. A similar transition was observed in
manipulation experiments of single Pb atoms by STM [12]. In this case, the stick–
slip was found to disappear after bringing the probing tip close to the atoms, which
weakened the Pb – substrate interaction.

18.4 Velocity dependence of nanoscale friction

The logarithmic velocity dependence of friction caused by thermally activated hop-
ping of the nanotip (Section 15.3) has been measured, starting from lattice resolved
images, on Cu(111) and NaCl(100) surfaces in UHV [18, 107]. From a comparison
of Fig. 18.6 with Eq. (15.17), a characteristic velocity v0 ≈ 2.5 µm/s and a corre-
sponding attempt frequency f0 ≈ 66 kHz can be estimated when sliding on NaCl.
A similar logarithmic dependence (without lattice resolution) was also reported
in earlier measurements on a polymer layer grafted on silica [29] and interpreted
within the Eyring model introduced in Section 24.1.
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Figure 18.6 Kinetic friction force Fk as a function of the sliding velocity for a
silicon tip in contact with an NaCl(100) surface. The measurements were per-
formed for two different values of the normal force FN = 0.65 nN (squares)
and 0.44 nN (circles). Adapted from [107] with permission from the American
Physical Society.

The friction force can present a different behavior, and the slope of the F(ln v)
curve can even change sign, in a humid environment. This can be attributed to
the formation of water menisci by thermally activated capillary condensation, as
discussed in Section 24.2. However, a logarithmic decrease of friction can be also
associated with chemical modifications. This happens in systems forming cross-
linked structures that can be broken by the applied load, such as surfaces terminated
by -OH, -COOH and -NH2 groups [52]. At slow velocities there is more time to
form bonds between tip and surface, which results in larger friction.

If the scan velocity increases, thermally activated processes are less important,
and, beyond a critical value, the friction force becomes independent of the velocity,
as seen in a series of measurements between Si tips and diamond, graphite and
amorphous carbon surfaces with scan velocities above 1 µm/s [353]. The transition
from a logarithmic increase to a friction plateau was recognized on a mica surface
and reproduced using Eq. (15.18) [291].

18.5 Temperature dependence of nanoscale friction

Apart from a slight logarithmic dependence on the scan velocity, thermally acti-
vated stick–slip results in a strong decrease of the friction with the temperature T ,
as seen from Eqs. (15.17) and (15.18). A significant decrease of friction as 1/T
was indeed observed by Zhao et al. in a series of AFM measurements on graphite
in UHV conditions and in a wide temperature range (140–750 K) [351], but no
comparison with the PT model at finite temperature was attempted. In another
series of UHV experiments, Jansen et al. measured the temperature dependence of
atomic-scale friction from cryogenic conditions to a few hundred Kelvin on silicon,
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SiC, ionic crystals and graphite [151]. When the samples were cooled down from
room temperature, a substantial agreement with the thermally activated PT model
was found down to a peak or a plateau, which, depending on the material, appeared
around 50–200 K. Below these values, the friction was found to decrease with
temperature, which was attributed to the competition between thermally activated
formation and rupture of chemical bonds [11].

18.6 Effect of contact vibrations

Developing strategies for reducing sliding friction is important for proper func-
tioning of micro- and nanoelectromechanical systems (MEMS and NEMS). In
this context, traditional lubricants cannot be used, since the viscosity of min-
eral oils dramatically increases when the lubricant molecules are confined into
nanometer-sized interstices, as discussed in Section 23.1. Different strategies, such
as mechanical excitations, need to be explored. Ultrasonic vibrations have been
used for years to modify the frictional behavior of materials at a macroscopic scale
and their application at the nanoscale looks promising.

AFM experiments on alkali halide surfaces in UHV have shown that the friction
can be efficiently reduced if mechanical resonance modes of the nano-junctions
formed while sliding are excited [313]. Lantz et al. [182] showed how the abrasive
wear of a silicon tip sliding over several hundred meters can be prevented by this
strategy. The state of dynamic superlubricity so-achieved has been also exploited
to acquire lattice-resolved FFM maps of crystal surfaces without damaging the
samples [109]. An example, referring to graphite, is shown in Fig. 18.7.

In the previous cases, the actuation was applied perpendicularly to the sliding
plane (out-of-plane). Nevertheless, a reduction of friction is also observed if

(a) (b)

Figure 18.7 Lateral force maps acquired on a graphite surface in UHV: (a) in
contact mode, (b) by exciting the tip at the contact resonance frequency while
scanning. Frame sizes: 3 nm. Reproduced from [109] with permission from IOP
Publishing.



204 Experimental results in nanotribology

1000 50

0.4

0.2

Vexc [V]

F [nN]

X [nm]

F [nN]

0

1

2 4311

(b)(a)

0

Figure 18.8 Effect of lateral vibrations on atomic-scale friction as measured on
an NaCl(001) surface by a room temperature UHV-AFM: (a) friction force loops
with (dark curves) and without (light curves) actuation; (b) average friction force
as a function of the excitation amplitude. Reproduced from [294] with permission
from AIP Publishing.

in-plane vibrations are excited. The transition from stick–slip to ultra-low friction
is indeed attested by the two friction loops on an NaCl(001) surface in Fig. 18.8
[294]. In the absence of vibrations, the usual sawtooth pattern is observed (Section
18.1). When the lateral vibrations are excited the forward and backward curves
become closer and completely overlap if the excitation amplitude is large enough
(dark curves in Fig. 18.8). In this case the average friction force Fk becomes neg-
ligible. Note that the slip towards the new equilibrium position is accompanied by
a series of back-and-forth jumps induced by the thermal vibrations at the temper-
ature T = 300 K of the measurements (as seen with higher temporal resolution).
The dependence of the average friction force on the excitation amplitude is shown
in Fig. 18.8(b). The force F decreases gradually, as observed when normal oscil-
lations are applied. A comparison between Fig. 15.8 and Fig. 18.8 shows that an
excitation of 50 mV applied to the piezoactuator corresponds to lateral oscilla-
tions of approximately half the lattice constant, suggesting a simple method for
calibration of the driving amplitude.

18.7 Friction anisotropy

The importance of the misfit angle when two flat surfaces slide past each other
was first demonstrated experimentally with the surface force apparatus [212, 140].
The friction force between two mica sheets was indeed found to increase when
the surfaces formed a commensurate contact. In STM measurements with a
monocrystalline tungsten tip on Si(001), Hirano et al. observed what they called
‘superlubricity’ in the case of incommensurate contact [141]. Structural lubricity
has also been reported on other materials including MoS2, Si/W, Ti3SiC2 and
graphite.
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Figure 18.9 Sketch of the tribometer used by Dienwiebel et al. to measure friction
anisotropy on an atomic scale. Reproduced from [72] with permission from the
American Physical Society.

40º20º 60º 80º0º

0.3

20º

F [nN]

Figure 18.10 Angular dependence of friction on graphite, as measured with
the setup in Fig. 18.9. Adapted from [72] with permission from the American
Physical Society.

One of the most convincing evidences of structural lubricity was given by Dien-
wiebel et al. by means of an original setup consisting of four optical interferometers
directed towards a pyramid holding a tungsten wire (Fig. 18.9) [72]. Thanks to the
symmetric design of the instrument the normal and lateral forces could be detected
with minimal crosstalk. In this way lateral forces below 50 pN were measured
between a graphite flake attached to the wire and an atomically flat graphite surface,
but only if the two surface lattices were misaligned. In a narrow range of angles
centered at 0◦ and 60◦ the force peaked at values of about 0.25 nN, as shown in
Fig. 18.10. A comparison with the simulations described in Section 16.2 allowed
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them to estimate that the flake attached to the tip was formed by approximately
80–90 C atoms. However, structural lubricity was also found to disappear after
repeated scanning. A reasonable explanation is a sudden rotation of the graphite
flake leading to alignment with the substrate [90]. Other experiments with nano-
islands and carbon nanotubes are discussed in Section 19.1 and 19.3 in the context
of nanomanipulation.

To conclude this chapter it is worth mentioning another experiment on flower-
shaped islands of a lipid monolayer on mica, which consisted of domains with dif-
ferent molecular orientations. In this case Liley et al. observed a significant angular
dependence of the friction force, reflecting the tilt direction of the alkyl chains of
the monolayer. Friction anisotropy was also reported on graphene/Si and attributed
to a rippling process caused by the probing tip (see also Section 20.2) [55].
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Nanomanipulation

One of the greatest advantages of the AFM, compared to other imaging techniques,
is the possibility of modifying the morphology of a surface while scanning it. This
possibility is well exemplified by the number of nanolithography and nanomanip-
ulation experiments reported in the literature. However, to use these techniques for
practical applications, the motion of the probing tip must be controlled in order to
pattern the surfaces in a desired way or to rearrange the manipulated objects in a
desired configuration. In the case of nanomanipulation, assembling nanoparticles
in a well-defined arrangement is usually a difficult and time-consuming task. Fric-
tion and adhesion forces between particles and substrates indeed play a major role
in the motion on the nanoscale and, even if one works in a controlled environment,
the size of the nanoparticles is usually comparable to that of the tip apex, which
makes any attempt of controlling the manipulation process quite challenging.

19.1 Contact mode manipulation

One of the first examples of AFM manipulation was reported by Lüthi et al. [199],
who succeded in moving compact C60 islands on a NaCl(001) surface by pushing
them with the probing tip (Fig. 19.1). From the area of the islands determined by
the AFM topographies and the values of the kinetic friction force recorded while
sliding, a shear stress between C60 and NaCl of the order of 0.1 MPa was estimated.
A larger shear stress, caused by the static friction and more difficult to quantify,
accompanied the onset of motion. In another experiment, Sheehan and Lieber rec-
ognized the importance of the misfit angle in the manipulation of MoO3 islands
on an MoS2 surface [307]. In this case, the islands could only move along low
index directions of the substrate. Another experiment on Sb islands manipulated
on the same substrate is presented in Section 19.3. Note that, instead of pushing a
nanoisland, the tip can also be positioned on top of it. In this case, the friction force
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Figure 19.1 Sequence of AFM topography images of a C60 island manipulated on
a NaCl(100) substrate in contact mode. Frame size: 530×530mm2. Reproduced
from [199] with permission from AAAS.

between tip and island must be larger than the friction between island and substrate
in order to move tip and island together [75].

Manipulation of nanocrystals in water has been reported by Pimentel et al. [271].
In this environment the shear strength accompanying the detachment of calcite
islands from dolomite and kutnahorite (104) surfaces was estimated to be 7 and
130 MPa respectively, in line with the different lattice mismatch between adsorbate
and substrates.

Carbon nanotubes have also been manipulated using AFM. In their experi-
ments on multiwalled nanotubes on graphite, Falvo et al. were able to distinguish
between sliding and rolling motion [89]. A dramatic increase of the lateral force
was observed in the directions in which the hexagonal surfaces of the two materials
formed a commensurate contact. Indications of superlubricity have been recog-
nized in the telescopic extension and retraction of multiwalled nanotubes, which
showed no signs of wear after many repetitions [61].

19.2 Dynamic mode manipulation

Nanomanipulation can also be performed using the AFM in tapping mode. In this
case, as shown by Aruliah et al., it is possible to relate the energy dissipation (17.4)
to the friction forces between particles and substrate [8]. As first demonstrated by
Ritter et al. with latex spheres on graphite [293], one can position the tip at the side
of a nanoparticle and increase the oscillation amplitude A till the particle starts
moving. By changing the driving amplitude Ad (and hence the power input into
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the sample) it is possible to switch between an imaging mode and a manipulation
mode. Since the lateral force applied to the particle depends on A2, the accessible
dynamic range is quite broad.

Mougin et al. used tapping mode manipulation to study the temperature depen-
dence of Au nanospheres on SiO2 [224]. The amplitude at which the detachment
occurred was found to decrease at higher temperatures, showing that the particle
detachment is a thermally activated process. The detachment threshold could be
further lowered by coating the nanospheres with hydrophobic functional groups.
In a similar way, Tripathi et al. investigated the static friction between Au clusters
and graphite [333].

Note that the tapping mode cannot be used in UHV, and, in these conditions,
the preferred dynamic AFM technique is the frequency modulation mode. How-
ever, this mode is very sensitive to external perturbations and the manipulation of
nanoparticles with linear size beyond 10 nm usually results in the breakdown of
the cantilever oscillations. This is not the case for single atoms [331] or organic
molecules [180].

19.3 Nanoparticle trajectories during AFM manipulation

When nanoparticles are manipulated by AFM, the probing tip is usually hit towards
the center of mass of the particle to be displaced. However, it is not easy to estimate
the position of this point while imaging, especially if the particle has an irregu-
lar shape or its size is comparable with the tip apex. Furthermore, the alignment
between tip and particle can be affected by thermal drift. These problems can be
overcome if the particle is repeatedly hit from the side using a zigzag scan pat-
tern. To prove that, we will discuss, more generally, how the scan pattern defines
the direction of motion and the angle of rotation of the nanoparticles. If the parti-
cle (e.g. an atomically flat island) forms an extended contact with the substrate,
the friction can in principle be estimated from the trajectories recorded during
nanomanipulation.

Nanospheres

Consider a rigid sphere of radius Rp manipulated in tapping mode [281]. The tip
has a conical shape with half-angle γ and is ended by a spherical cap with radius
Rt. Along the scan path, the tip hits the particle as shown in Fig. 19.2(a). The
sections of tip and particle parallel to the xy plane at the point of contact are circles
with radii R1 and R2 respectively (Fig. 19.2(b)). The centers of the two circles will
be denoted by O and P .

In a raster scan pattern (Fig. 19.3(a)) the tip moves forth and back along the x
axis, it is displaced by a given distance b along the y axis, and moves again forth
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Figure 19.2 (a) Side view and (b) top view of a conical AFM tip colliding with a
nanosphere.
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Figure 19.3 Most typical scan patterns adopted in AFM: (a) raster scan path and
(b) zigzag scan path.

and back along x and so on. Suppose that the friction between sphere and substrate
can be neglected when the tip hits the sphere, but it is high enough to stop the
sphere immediately after the contact with the tip is lost. In this case the sphere
displacement after each hit is determined by the equations

dy

dx
= tanα,

dy

dα
= R cosα, (19.1)

where R = R1 + R2 and α is the angle between O P and the x direction.
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Dividing the equations (19.1) by each other, we can relate the displacement of
the sphere along x to the variation of α. At the end of the scan line, the total dis-
placement�x of the sphere is obtained by integrating the result between the initial
and the final values of α, which we will denote α0 and αf respectively. The value of
α0 depends on the initial position of the sphere, and is not defined on the very first
scan line. In the next scan lines, it is easy to see that α0 is always the same, and is
equal to

α0 = arcsin (1 − b/R) . (19.2)

When the sphere is completely displaced by the tip, O P forms an angle αf = π/2
with respect to the x direction. The total displacement of the sphere in the fast scan
direction is thus

�x = R
∫ π/2

α0

cos2 α

sinα
dα = −R

(
cosα0 + log tan

α0

2

)
,

i.e. it is a function of the spacing b between consecutive scan lines (for a given tip
shape). With the exception of the first scan line, the corresponding displacement
along the slow scan direction is �y = b. Thus, the angle of motion θ of the sphere
(with respect to the x direction) is given by

tan θ ≡ �y

�x
= − b

R
(

cosα0 + log tan
α0

2

) . (19.3)

To conclude the derivation, we have to consider the 3D shapes of tip and particle.
With the geometry in Fig. 19.2(a), we distinguish two cases. If Rp < Rt(1 − sin γ )
the particle is pushed by the spherical part of the tip and, from geometric consider-
ations, R is twice the geometric average of the tip and particle radii: R = 2

√
Rt Rp.

If Rp > Rt(1 − sin γ ), the particle is pushed by the conical part of the tip, and

R = Rp(1 + sin γ ) tan γ + Rt
1 − sin γ

cos γ
+ Rp cos γ.

The expression for R so obtained can be substituted into Eqs. (19.2) and (19.3)
to get an analytic relation between the angle of motion θ and the ‘spacing’ b. In
Fig. 19.4 this relation is used to fit experimental data on Au nanospheres with
radius Rp = 25 nm manipulated by a tip with radius Rt = 10 nm and half-angle
γ = 5◦ on a silicon wafer [281].

A different relation is obtained if the tip moves along a zigzag scan path
(Fig. 19.3(b)). In this case θ depends on the x coordinate of the nanosphere, and
hence changes in each scan line. However, it can be proven that θ → 90◦ if the
spacing b → 0 [281]. This suggests that, in order to move a sphere in a desired
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Figure 19.4 Direction of motion (filled circles) of Au nanospheres manipulated
on an SiO2 surface in tapping mode AFM. The continous line represents the best
fit of the experimental data with Eqs. (19.2) and (19.3). Adapted from [281] with
permission from IOP Publishing.

direction, it is sufficient to scan the tip along a ‘dense’ zigzag pattern perpendicular
to this direction.

Note that the model goes beyond the restrictive hypothesis that the particles stop
immediately after losing contact with the tip. This has been shown by numerical
simulations, where the distance d covered by the nanoparticles after being hit by
the tip was introduced. If the friction between particles and substrate decreases,
and hence d increases, the trajectory becomes more irregular, but the relation θ(b)
remains essentially unchanged [282].

Other shapes

The previous analysis can be extended to particles with different shapes. For
instance, the center of mass of a rigid nanowire of length L moves in the direction
defined by the angle

θ = arccos(b/L)

if the raster scan pattern is adopted [111]. On each scan line the wire flickers around
a configuration perpendicular to this direction.

The rotation accompanying the manipulation of non-spherical particles has been
studied on star-shaped symmetric islands [105]. In Fig. 19.5 the ‘angular velocity’
dϕ/dN , defined as the average angle of rotation of the islands per scan line, is
compared to the direction θ of the center of mass. Depending on the values of b
the rotation is ‘quantized’ at the angles defining the symmetry of the island, as
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Figure 19.5 (a) Angle of motion and (b) angular velocity of star-shaped islands
with 4, 6 and 8 branches (squares, circles and triangles respectively) as a function
of distance between consecutive scan lines. Adapted from [105] with permission
from Beilstein Institut.

Figure 19.6 Manipulation of an Sb island in contact mode on an MoS2 surface by
contact mode AFM: (a) topography image before manipulation, (b) lateral force
map during manipulation and (c) topography image after manipulation. In the
‘HL’ region the normal load was increased by 65 nN and the nanoisland was trans-
lated and rotated. In the ‘LL’ region the load was returned to the standard imaging
value. Frame size: 2 × 2 µm2. Reproduced from [235] with permission from IOP
Publishing.

shown by the horizontal plateaus corresponding to 45, 60, 90 and 120 degrees in
the curves in Fig. 19.5(b).

The simultaneous translation and rotation of irregularly shaped islands can be
recognized in the AFM images accompanying the manipulation of Sb islands on
a MoS2 surface in Fig. 19.6 [235]. The island profiles have been digitized and fed
as an input to a collisional algorithm based on the previous assumptions. However,
since the manipulation was performed in contact mode, the friction Ffric between
island and substrate could not be neglected when the tip was pushing the islands. A
shear strength between Sb and MoS2 of the order of 0.2 MPa could be estimated by
varying the value of Ffric in the simulations till the translation and rotation observed
experimentally were simultaneously reproduced.
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19.4 Lifting up molecular chains

The AFM can also be used to pick up a nano-object lying on a substrate and mea-
sure the normal and lateral forces accompanying the detachment. An impressive
example has been provided by Kawai et al. [165], who managed to lift up iso-
lated polyfluorene chains from a herringbone-reconstructed Au(111) surface in
NC mode (Section 17.2). The experiment was performed in UHV at very low
temperature (4K). Under these conditions, it was possible to measure the force
gradients accompanying the detachment of the chains with extremely high accu-
racy (Fig. 19.7). The primary observation was a remarkable modulation of the
normal force during detachment of single fluorene groups. This modulation could
be precisely related to the adhesion energy of the groups using the extended FK
model introduced in the end of Section 16.2. A small modulation of the force
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Figure 19.7 (a) STM images of a herringbone-reconstructed Au(111) substrate
before and after the removal of a polyfluorene chain lying on it. (b) Frequency
shift variations showing a periodic detachment of the fluorene units. (c) Magnified
section showing minor variations caused by the sliding of the chain. Reproduced
from [165] with permission from the National Academy of Sciences, USA.
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gradient caused by the sliding on the gold surface was also observed. This sec-
ondary modulation indicates that the sliding is superlubric, as expected from the
incommensurability between the lattice constant of the substrate and the equilib-
rium distance between consecutive fluorene groups. The AFM measurements also
showed that the stiffness of the chemical bonds between groups is relatively large
(around 200 N/m), which makes elastic deformation to accommodate the molecule
on the substrate not favorable.
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Wear on the nanoscale

In this chapter we present a series of illustrative AFM experiments on ionic crystals
and layered materials demonstrating the onset of abrasive wear on the nanoscale.
The results support the idea that the bond breaking in the worn surfaces is thermally
activated. The energy dissipation can be estimated from the lateral force variations
recorded while scraping. If a micrometric region is repeatedly worn off, wavy sur-
face patterns can be formed on a variety of materials including polymers, metals
and ionic crystals. An extension of the Prandtl–Tomlinson model with a variable
interaction potential corresponding to the surface profile can partially reproduce
this result. Still, geometric features such as the orientation of the wave profiles and
distortions at the edges of the worn regions are not well understood.

20.1 Wear on the nanoscale

Figure 20.1 shows high-resolution FFM images of the damage produced on a
KBr(001) surface repeatedly worn off by the probing tip in UHV [108]. The left
side of the image corresponds to a groove obtained after 256 ‘scratches’ with a
normal force FN = 21 nN. The small hill of material piled up at the end of the
groove is imaged under different magnifications (and much lower values of FN).
The hill is formed by a few monolayers, into which the atoms recrystallized with
the same structure as the undamaged surface. The topmost layers of the hill are
nevertheless quite unstable and the hill is progressively reduced with time. While
scanning the groove back and forth for about 30 minutes, the average lateral force
〈F〉 was found to saturate asympotically with the number of scans N :

〈F〉 (t) = F∞ + (F0 − F∞)e−N/N0,

where F0 = 1.0 nN, F∞ = 14.5 nN and N0 = 5.45 × 103.
Although it is not easy to understand how the wear process is initiated and how

the material is displaced by the tip, interesting hints come from the lateral force
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Figure 20.1 Series of lateral force images at the end of a groove previously
scraped on a KBr(001) surface by contact mode AFM. Normal force value (for
imaging): FN = 1 nN. Frame size: (a) 115 nm, (b) 39 nm, (c) 25 nm. Reproduced
from [108] with permission from the American Physical Society.
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Figure 20.2 Lateral force loops acquired while scanning for the 100th time 5 ×
5 nm2 large areas on KBr(100) with increasing values of FN: 5.7, 10.0, 14.3,
18.6 and 22.8 nN. Reproduced from [108] with permission from the American
Physical Society.

profiles recorded during scraping. Figure 20.2 shows some friction loops acquired
while scanning 5 × 5 nm2 square areas with increasing values of FN. The total
energy dissipation is obtained as the mean lateral force multiplied by the travelled
distance. The result are the pits in Fig. 20.3. The number of atoms removed by the
tip could be estimated after imaging the damaged area with lower values of FN. In
the present case, up to 70% of the energy loss went into wearless friction. Figures
20.2 and 20.3 show how the lateral force and the damage increased with increasing
load. On the other hand, changing the scan velocity between 25 and 100 nm/s did
not result in visible variations of the pit shapes.

Assuming that the bond breaking accompanying the scraping process is a ther-
mally activated process governed by the Arrhenius equation, the overall wear rate
can be written as

� = �0 exp

(
−�U − σ�V

kBT

)
, (20.1)
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(b)(a)

Figure 20.3 Lateral force images of the pits and surrounding mounds correspond-
ing to the areas in Fig. 20.2. Frame size: (a) 150 nm, (b) 17 nm. Reproduced from
[108] with permission from the American Physical Society.

where �0 is an effective attempt frequency,�U is the (stress-free) energy of activa-
tion, σ is the stress component lowering the energy barrier, and�V is the so-called
activation volume. Note that σ depends on the geometry, the way the forces are
applied and the materials of both tip and surface. Equation (20.1) is consistent with
original measurements by Jacobs and Carpick on the progressive wear of silicon
nanotips [150]. In this case the authors visualized the damage and quantitatively
estimated it using an in-situ TEM, which allowed then to resolve worn volumes of
few tens of nm3. Remarkably, they also observed that the wear of silicon against
diamond is not accompanied by fracture or plastic deformation.

Another interesting experiment was performed by Kopta and Salmeron using
AFM on mica [168]. In this case the authors assumed that the 0.2 nm deep scars
in Fig. 20.4 resulted from the growth of defects accumulated beyond a critical
concentration. Based on Eq. (20.1) one can assume that, at a given value of FN, the
number of defects created in the contact area A(FN) is

Ndef(FN) = tresn0 A(FN) f0 exp

(
−�E

kBT

)
,

where tres is the time of residence of the tip, n0 is the surface density of atoms,
and f0 is the attempt frequency to overcome the load-dependent energy barrier,
�E , required to break an Si-O bond. When the density of defects reaches a critical
value, a hole is nucleated. The lateral force accompanying the creation of a hole
could also be estimated as

F = A(FN − F0)
2/3 + C F2/3

N eB F2/3
N , (20.2)

where A, B, C and F0 are constants. The first term on the right hand side of
Eq. (20.2) gives the wearless dependence of the friction predicted by the DMT
model (Section 10.2). The second term is the contribution of the defect production.
A good agreement between Eq. (20.2) and the experiments can be seen in Fig. 20.5.
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Figure 20.4 (a) AFM topography of a region on muscovite mica previously
scanned with a normal force FN = 230 nN. (b), (c) Fourier-filtered images of areas
abraded at different depths, corresponding to crystal planes with different atomic
arrangements. Reproduced from [168] with permission from AIP Publishing.
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Figure 20.5 Friction vs. load curve during the generation of a hole in the mica
surface. The rapid increase corresponds to the removal of a monolayer. Adapted
from [168] with permission from AIP Publishing.
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20.2 Surface rippling

When the shear stress on a compliant surface exceeds the yield strength of the
material, a periodic wrinkle pattern is often observed. Similar phenomena have
also been recognized at the nanometer scale on polymers [184], metals, ionic crys-
tals [311] and semiconductors [326]. In these cases, the mechanical stress can be
efficiently provided by an AFM tip elastically driven at constant velocity along the
surface. An example of ripples formed by repeatedly scanning a straight line on a
KBr(001) surface in UHV is given in Fig. 20.6 [311]. The scan line was oriented
along the (100) direction of the surface and scanned hundreds of times forth and
back with a normal force FN = 25 nN (the image in Fig. 20.1 is actually the end
part of one such groove). ‘Travelling ripples’ have also been reported using circu-
lar scan patterns [110]. In general, the ripple periodicity λ is slightly larger than
the linear size of the tip apex, and changes with the material properties. This can
be seen, for instance, in the rapid increase of λ when a polymer surface is heated
above the glass transition temperature and the material enters the rubbery state
[118, 304, 110].

To explain the occurrence of this kind of pattern various models have been pro-
posed. Elkaakour et al. assumed that the rippling of polymer surfaces is caused by
a peeling process in which the material is pushed ahead of the contact by crack
propagation [85]. Filippov et al. reproduced the profile in Fig. 20.6(b) assuming
that the material is removed atom-by-atom and randomly displaced aside at an
angle depending on the tip shape [91]. In this case, the elastic spring restoring the
tip apex in real AFM experiments was also taken into account. As seen in Section
15.1, the stiffness k of this spring can discriminate between stick–slip motion and
continuous sliding on a crystal lattice. Since stick–slip occurs also when the ripples
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Figure 20.6 (a) Cross-section of the lateral force produced during the repeated
scraping a 750 nm long groove on a KBr(001) surface. (b) Topography image of
the groove after 512 scratches. The ripples have an average periodicity λ of about
40 nm and a corrugation of about 2.4 nm. Reproduced from [311] with permission
from the American Physical Society.
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Figure 20.7 (a) The PT model as applied to the formation of surface ripples. A
rigid tip is pulled by a spring of stiffness k (driven at a velocity v) and, at the
same time, is indenting a compliant surface, evolving with time according to the
profile in the figure. (b) A solvent-enriched polystyrene surface after indentation
with normal forces of 400 nN (upper two rows) and 1200 nN (lower two rows)
(courtesy of Dr. Franco Dinelli).

are formed (Fig. 20.6(a)), it seems to be possible to interprete the ripple evolution
within the PT model.

Suppose that, in 1D, the tip–surface interaction potential Uint introduced in
Section 15.1 changes with time according to the equation

dUint

dt
= N

(
−Gx0(x)+ 1

2
Gx0+2σ (x)+ 1

2
Gx0−2σ (x)

)
, (20.3)

where Gx0(x) is a Gaussian profile with half-width σ centered at x0 (Fig. 20.7(a)).
This shape is suggested by the typical footprints left by the tip when indenting
a polymer surface without scanning (Fig. 20.7(b)). The factor 1/2 corresponds to
the assumption that the mass density remains constant in the indentation, and no
material is displaced far away from the indentation site. Assuming that Uint(x, t)
resembles the surface profile h(x, t), the parameter N can be interpreted as the
indentation rate of the surface.

Equation (20.3) can be introduced into the PT model, with the tip position x0(t)
defined as the minimum of the total potential U (x, t) and Uint(x, 0) = 0. In the
present case the model parameters are the indentation rate N , the driving veloc-
ity v, the lateral stiffness k and the ‘tip radius’ σ . As a result, ripple profiles are
obtained in a certain range of parameter values consistent with the AFM measure-
ments (Fig. 20.8(a)). The tip, while pushed against the surface with a normal force
FN, builds up two hills ahead and behind the indentation pit. At the same time
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Figure 20.8 Surface profiles obtained with the modified PT model described in
the text. Parameter values: lateral stiffness k = 2 N/m, tip half-width σ = 50 nm,
scan velocity v = 10 µm/s, and indentation rate N (a) 100 nm/s, (b) 10 nm/s.

the lateral force increases, since the spring is continuously elongated. If the spring
force reaches a certain threshold (depending on the corrugation of the ripples), the
equilibrium becomes unstable and the tip suddenly hops beyond the hill ahead and
sticks again into a new equilibrium position on the surface. The process is repeated
several times.

If the indentation rate N is decreased the ripple pattern may disappear, as shown
in Fig. 20.8(b). In this case the depth of the indentation pit and the height of the
side hills are too low to prevent sliding, and the tip follows the spring support
without stopping. Consequently, no ripples are formed and only two pairs of pits
with corresponding hills at the beginning and the end of the scanned line are left
as a result. This mechanism has a certain analogy with the transition from stick–
slip to continuous sliding observed in atomic-scale friction experiments when the
normal force is reduced below a critical value (Section 15.1).

Still, the previous 1D model cannot describe the patterns observed when a 2D
region of the substrate is worn off [229]. As an example, Fig. 20.9 shows the rip-
ple pattern formed after scanning an array of parallel lines at close distance from
each other, and increasing FN in well-defined geometric areas. The angle between
the ripples and the fast scan direction increases with FN and boundary effects
are clearly visible. Here, we can notice a remarkable analogy with the direction
of motion of rigid nanoparticles manipulated by AFM (Section 19.3). In the first
scan line the material builds up in front of the tip until the mechanical equilibrium
becomes unstable and the tip jumps over the mound so formed. In the next forward
scan (at a distance b from the first one) the upper part of the bump is pushed again
at an angle θ , which depends on b, as seen in Fig. 20.10. This results in the forma-
tion of a wavy pattern perpendicular to the flux direction defined by θ . The precise
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Figure 20.9 Ripple patterns on (a) a circular area and (b) a triangle surrounded
by four L-shaped regions. The gray scale covers about 30 nm on both images.
Reproduced from [229] with permission from IOP Publishing.

“Raised” mound

b

Figure 20.10 Analogy between surface rippling and nanoparticle manipulation by
AFM. Similarly to an ensemble of nanospheres (Fig. 19.3(a)), a compliant poly-
mer surface is reshaped perpendicularly to a direction θ defined by the distance
b between consecutive scan lines. Reproduced from [229] with permission from
IOP Publishing.

relation between θ and b depends on the material properties of the polymer and
it is, at the present, unknown. Different ripple orientations were also observed by
Schmidt et al. [304], who reported a branching of the ripple pattern corresponding
to a zigzag scan path on a thin polystyrene film above Tc. Since the polymer sur-
faces are continuously reshaped when the tip slides over them, a detailed analysis
of these processes is more difficult than for rigid particles manipulated on a solid
surface.
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Non-contact friction

The friction force observed between two moving bodies separated by a vacuum
gap is called non-contact friction and was investigated for the first time by non-
contact force microscopy setups [68, 78, 119, 322]. Non-contact friction forces are
often in the range of 10–100 aN and corresponding damping coefficients, �, of the
order of 10−13 kg/s. In some cases, e.g. on charge density wave systems, giant non-
contact friction is observed, where friction coefficients of the order of 10−5 kg/s
are measured [300, 179]. Non-contact friction forces are several orders of mag-
nitude smaller than contact-friction forces, therefore ultrasensitive force detection
is required to investigate them. To sense the smallest possible forces between two
bodies the internal friction force of the force sensor has to be minimized. At sep-
arations below 1 nm, a rapid increase of frictional forces is observed. This regime
is also called near-contact friction, where typical forces are of the order of some
fractions of nano newtons. In this regime, chemical forces and tunneling currents
are observed as well.

When the excitation of a damped oscillator is stopped, the amplitude of the oscil-
lator will decay in time, which is accompanied by the conversion of kinetic energy
into heat. The energy transfer lasts until the cantilever system reaches its thermo-
dynamic equilibrium. In this state, stationary fluctuations from the mean value 〈x〉
are observed. Both decay time τ and equilibrium fluctuations x(t) contain infor-
mation about the dissipative process. The equation of motion of a linear damped
harmonic oscillator can be written as

meff
d2x

dt2
+ �

dx

dt
+ ω2

0x = Fext(t), (21.1)

where k is the spring constant, ω0 the angular resonance frequency, � the friction
coefficient, meff the effective mass and Fext the external force.

The external force Fext can be regarded as a superposition of a non-stochastic
force and a stochastic force. Since Eq. (21.1) is a linear differential equation, both

224



Non-contact friction 225

f

S
ω

–0,2

Figure 21.1 Left: example of a thermal spectrum, which has been fitted by (21.7),
leading to the value Q = 142 914. Right: oscillation of the cantilever as a function
of time. This is called the ring-down method. The curve was fitted by (21.8) and
the value Q = 142 280 was found, in good agreement with the value from the
thermal spectrum.

contributions can be treated separately. An experimentally accessible quantity to
describe the dissipation process of a vibrating cantilever at its resonance frequency
is its decay time τ . The simplest way to measure the decay time is a ring-down
measurement (see Fig. 21.1). An exponential fit of the data yields the decay time.
The decay time can be used to determine the quality factor Q:

Q = τω0/2. (21.2)

Alternatively, the friction coefficient � can be determined from the spring constant
k and decay time τ :

� = k

ω0 Q
. (21.3)

Then, the non-conservative friction force F can be derived as

F = −�v, (21.4)

where v is the velocity of the oscillator.
To give an idea about the orders of magnitude, parameters for typical force sen-

sors are as follows. A soft free cantilever with a resonance frequency of 2.7 kHz,
a vibration amplitude of x0 = 20 nm, a Q-factor of 5 × 105 and � = 10−14 kg/s
experiences friction forces of F = �ω0x0 = 3.4 × 10−18 N. The dissipated power
P = �v2 = 1.15 × 10−21 W (7.17 × 10−3 eV/s). For conventional non-contact
force sensors with a resonance frequency of 300 kHz, � = 10−11 kg/s and a typical
amplitude of 1 nm, the friction force is F = 1.8 × 10−14 N, which corresponds to
a dissipated power of 3.5 × 10−17 W (221 eV/s).

The experimentally determined friction coefficient � can be modeled as a super-
position of internal damping of the cantilever �0 and damping due to dissipative
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interactions between the probing tip and sample �s:

� = �0 + �s. (21.5)

Approaching the free cantilever close to a flat surface opens new dissipative
channels due to the long-ranging electromagnetic field between probing tip and
surface, which give rise to the friction coefficient �s. An important limitation is that
soft cantilevers jump into contact when the attractive force gradient is larger than
the spring constant, which happens on almost all surfaces because of the attractive
van der Waals forces. An alternative way has been recently introduced by the use
of the so-called pendulum geometry [296]. Spring constants of the order of mN/m
are used, which greatly improves the force sensitivity to the level of attonewtons
close to the surface. The cantilever is oriented perpendicular to the surface, which
avoids a jump-into contact.

The first experimental demonstration was reported by Denk and Pohl, who ana-
lyzed the resonance of an oscillating cantilever with a metallic tip in electrostatic
interaction with a heterostructured semiconducting sample [68]. In this experiment,
the cantilever oscillation was damped by Joule dissipation of charge carriers which
were moved by the oscillating electric field produced by the tip vibration. The
authors pointed out that the damping deduced from the resonance analysis can
also be obtained from the excitation amplitude Aexc needed to maintain a constant
oscillation amplitude.

21.1 Experimental methods to measure non-contact friction

In non-contact force microscopy measurements the power dissipation P0, caused
by internal friction in the freely oscillating cantilever, is given by

P0 = 2π f0
k A2/2

Q
, (21.6)

with f0 the eigenfrequency of the freely oscillating cantilever. This dissipation is
independent of the sample and cannot be avoided. It produces a background signal
in which variations in the dissipation have to be detected. The extra dissipation Ps

caused by tip–sample interaction can be calibrated by comparison with the intrinsic
dissipation, once the Q-factor of the free oscillation is known.

There are different ways to determine the Q-factor of the cantilever far from the
surface. One possibility is to record the amplitude spectrum of the thermal noise of
the cantilever. The form of this spectrum (see Fig. 21.1) is given by

S(ω) = 2kBTω3
0

Qk
[
(ω2 − ω2

0)
2 + ω2

0ω
2/Q2

] , (21.7)
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where S(ω) is the spectral amplitude density, ω = 2π f the angular frequency, and
k the spring constant.

An accurate method for cantilevers with high Q-factor is the ring-down method.
The amplitude A is measured as a function of time t after stopping the excitation.
An example is shown in Fig. 21.1. The curve is analyzed with the equation

A(t) = A(0)e−π( f0/Q)t . (21.8)

Finally, the Q-factor can also be determined in a phase variation experiment. The
frequency f and the excitation amplitude Aexc are recorded as a function of the
phase ϕ while the oscillation amplitude is kept constant. The advantage of this
procedure is that it can be applied with the tip in close proximity to the surface
[189]. The relation between frequency and phase is given by

f = f0

(
1 − 1

2Q
tanϕ

)
. (21.9)

Phase variation experiments, as shown in Fig. 21.2, are in good agreement with
thermal noise spectra and ring-down experiments. At close separations, non-linear
effects may lead to distortions or broadening of the spectrum, which may lead to
wrong Q-values for the thermal spectrum method (see [322]).

A convenient way to interpret the local measurements of the excitation signal
Aexc is to calculate the power dissipation. As suggested by Cleveland et al. [58]
and Gotsmann et al. [120], the power Ps dissipated by the interaction between tip
and sample is given by the difference between the power which is delivered by the
piezoactuator to the cantilever base Pin and the power which is used by the intrinsic
damping of the cantilever (background dissipation) P0:

Ps = Pin − P0 . (21.10)

f [kHz]

0 6060

32.02

31.98

32.00

[deg]ϕ

Figure 21.2 Phase variation experiment, in which (21.9) is used to determine the
Q-factor.
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This power dissipation can be determined from the measurement of the excita-
tion signal Aexc:

Ps = 1

2

k A2ω

Q0

(
Q0 Aexc sin ϕ

A
− ω

ω0

)
. (21.11)

Since frequency shifts of the cantilever are relatively small, the term ω/ω0 can be
approximated by 1. Furthermore, the phase shift is given by ϕ = 90◦ for dynamic
force microscopy, which leads us to the equation

Ps = 1

2

k A2ω

Q0

(
Q0 Aexc

A
− 1

)
= 1

2

k A2ω

Q0

(
Aexc

Aexc,0
− 1

)
, (21.12)

where Aexc,0 denotes the excitation amplitude required to drive the oscillation with
amplitude A far from the sample.

21.2 Internal friction of cantilevers

In order to measure non-contact friction, it is important to use cantilevers with
small internal friction, which improves the force sensitivity. Therefore, a short sum-
mary of mechanisms of internal friction of cantilevers is discussed in this section.
The temperature dependence of resonance frequency of cantilevers is rather well
understood [127]. Geometry changes due to thermal expansion can be neglected.
However, the temperature dependence of the Young’s modulus, E(T ), is given by
the Wachtman formula:

E(T ) = E0 − BT exp

(
−T0

T

)
, (21.13)

where T0 is related to the Debye temperature of the sensor material. With Eq.
(21.13) the temperature-dependent resonance frequency can be calculated:

ωn = α2
n

t

L2

√
E

12ρ
, (21.14)

where α1 = 1.875 for the first eigenmode, t is the thickness, L the length and
ρ the mass density. In case of silicon cantilevers, the experimental frequency vs.
temperature data are well fitted with T0 = 317 K [127]. According to D = T0/2 a
Debye temperature of D = 634 K is determined, which is in good agreement with
literature values of D = 645 K for silicon.

In contrast, the damping of cantilevers is still rather poorly understood. Several
contributions have to be distinguished:

1. damping due to thermoelastic damping;
2. damping due to bulk losses;
3. damping due to surface losses;
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4. damping due to acoustic emission into the bulk;
5. losses due to the clamping;
6. viscous damping due to the presence of gases or liquids.

As far as ultrasensitive measurements under ultrahigh vacuum conditions are
concerned, the influence of viscous damping at pressures below 10−6 mbar can be
neglected. The influence of clamping can be optimized by rigid holders and the
exclusion of glues with high damping rates. Damping due to acoustic emission
is also found to be negligible in most practical cases. Therefore, the first three
mechanisms are the most important ones.

Thermo-elastic damping

The conduction of heat is an important energy loss mechanism. Periodical com-
pression and expansion of oscillating micromechanical elements is associated with
heat flow between compressed and expanded areas. The Zener model is a contin-
uum model of this thermo-elastic damping mechanism [350, 185]. The internal
friction is given by

Q−1 = α2T E

ρcp

ωτ

1 + (ωτ)2
, (21.15)

where α is the thermal expansion coefficient, cp the specific heat capacity and ρ is
the mass density. The relaxation time τ is given by

τ = t2

π 2

ρcp

κ
, (21.16)

where κ is the thermal conductivity. Typical parameters for silicon at room temper-
ature are E=1.68 GPa, α = 2.54 × 10−6 K−1, ρ = 2.33 × 103 kgm−3, cp = 711
J kg−1K−1 and κ = 150 Wm−1K−1. The temperature dependence of the Young’s
modulus is small compared to the strong variations of thermal expansion (zero
crossings at 20 K and 125 K). The thermal conductivity in the bulk varies between
100 and 5000 Wm−1K−1. One should also take into account that the thermal con-
ductivity is reduced due to phonon-boundary scattering for thicknesses of the order
of microns below 100 Wm−1K−1 at temperatures below 30 K [9]. At present, many
experimental data indicate that thermo-elastic damping is the dominant loss mech-
anism at room temperature [198]. At temperatures below 200 K other channels start
to dominate, which may be related to bulk or surface losses.

Bulk and surface losses

The scattering of elastic waves with defects on the surface or in the bulk is
an important loss mechanism. The oscillation of the cantilever leads to a time-
dependent local stress field. The energy landscape of the defects is changed by this
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stress field. Instabilities of these defects may occur, where atoms jump from one
equilibrium position to another position. The energy difference between equilib-
rium positions is the activation energy. Therefore, damping vs. temperature curves
show activation peaks, also called Debye peaks. So far, most of the experimental
work is limited to silicon cantilevers which exhibit the highest Q-factor of available
cantilevers. Typical Q-factors are between 104 and 5×105. Comparable cantilevers
made of Si3N4 or SiO2 show much smaller Q-factors of 100 to 1000. Therefore,
we conclude that bulk losses are dominant for these amorphous structures. In the
case of silicon, bulk or surface losses may become dominant at temperatures below
200 K. At 160 K a peak is observed, which may be related to such an activation
peak with an activation energy of 0.25 eV. Unfortunately, the nature of these defects
in silicon is still poorly understood. Simple defects, such as vacancies or intersti-
tials, are ruled out because of their high activation barriers [127]. Recently, it has
been observed that the 160 K peak can be reduced strongly by annealing under
vacuum conditions [133]. It is also observed that the peak does not shift with the
resonance frequency, which is not in agreement with the simple activation energy
model. The authors suggest that the 160 K peak is related to an adsorbate layer.
Another peak at 30 K shifts with the resonance frequency and seems to be in better
agreement with a Debye peak [133].

Coating of cantilevers leads to a strong increase of dissipation. The polycrys-
talline nature of these metallic films implies grain boundaries, where increased
phonon scattering leads to an increase of damping losses. Other surface coatings,
such as silicon oxide, or adsorbates, such as H2O or hydrocarbons, lead to rather
large damping losses. Yang et al. annealed extremely small cantilevers (length <
80 µm) [345]. They used rather high annealing temperatures (1000 ◦C), which was
sufficient to remove the oxide layers. Recently, it has been shown that annealing at
temperatures below 600 ◦C of rather large silicon cantilevers (length of 400 or 500
µm and thickness of 0.5 to 1.5 µm) under ultrahigh vacuum (UHV) conditions can
also lead to a reduction of dissipation [283]. The quality factor of 6.2×104 could be
improved by an order of magnitude after 6 hours annealing at temperatures below
600◦C. Further annealing improved the quality factor to 1.24 × 106. The annealing
temperature was too low to remove the oxide layer. Thus, the removal of weakly
bound molecules, such as H2O, OH ions or hydrocarbons, improves the quality
factor. It could also be demonstrated that it is possible to reconstruct the cantilever
surface with induced defects with annealing temperatures below 600 ◦C. Therefore
a silicon bar cantilever with a length of 300 µm, a width of 35 µm and a thickness
of 1 µm with a quality factor of 3 × 106 was sputtered with argon ions. After the
ion bombardment a quality factor of 3×103 was measured. A layer thickness of the
cantilever was reduced by approximately 7–9 nm. One can assume that by the ion
bombardment the surface structure was modified. The cantilever was annealed for
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15 hours and the initial quality factor could be reached again. This simple experi-
ment demonstrates that the surface can already be modified at temperatures below
600 ◦C.

Alternatively, defects on the surface or in the bulk of the cantilever may be
reduced by the annealing procedure. It is evident that the internal friction coef-
ficient reduces in a rather continuous way down to 9 K, which is in qualitative
agreement with previous studies of internal friction of silicon [350, 127]. Below
9 K a small plateau of constant dissipation is observed. Some of the annealed canti-
levers are found to have attonewton-force sensitivity even at room temperature due
to Q-value enhancement, which opens new possibilities for experiments, such as
magnetic resonance force microscopy at room temperature or cantilever mass spec-
troscopy. The force sensitivity of commercial silicon sensors with a spring constant
of 0.176 N/m changes by an order of magnitude after annealing. Quality factors
higher than 6 × 106 can be reached after heat treatment. Cantilevers with mN/m
spring constant were fabricated by the use of a dry etching method [183]. For these
cantilevers, which have a thickness of 200 nm, the Q-factor can be improved by a
factor of 100.

21.3 Origins of non-contact friction

The dissipation between two moving bodies separated by a distance d is due to
electromagnetic interactions (see Fig. 21.3). In the case when no external field is
applied, van der Waals friction occurs. The non-contact friction is related to an
asymmetry of the reflection coefficient along the direction of motion. If one body

(b) electrostatic(a) van der Waals (c) phononics

Figure 21.3 Mechanisms of non-contact friction. (a) Van der Waals friction: the
returning back-action photon experiences Doppler shift. (b) Electrostatic fric-
tion: the induced charge follows the tip motion and experiences Joule losses.
(c) Phononic friction: the elastic deformation follows the tip motion and induces
phonons.
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emits radiation, the waves are Doppler-shifted in the rest-frame of the other body,
which will result in a different reflection coefficient. The same is true for the sec-
ond body. The exchange of Doppler-shifted photons is the origin of van der Waals
friction. Electrostatic friction occurs when an electrical field is applied between
the two surfaces. Mirror charges in combination with the relative movements lead
to Joule losses. Adsorbate layers or 2D-systems can lead to high effective con-
ductivity, which enhances this type of electrostatic friction. Static electric fields
between two different surfaces can exist without any externally applied voltage
due to different work functions of different orientations of the crystallites of a
polycrystalline surface. These so-called patch forces can lead to electrostatic fric-
tion in the case of compensated average contact potential. Phononic friction is
related to the local deformation of the surfaces, which leads to the creation of
phonons.

Stipe et al. [322] observed electrostatic dissipation at separations of 1–200 nm
by using ultrasensitve force sensors (see Fig. 21.4). A gold tip was attached to
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Figure 21.4 (a) Zero-bias tip–sample friction on a Au(111)-surface as a function
of distance for temperatures of 300 and 77 K. Data were taken by the ring-down
method with an ultrasoft sensitive cantilever, of 0.3 mN/m, and a Au-coated prob-
ing tip with an initial amplitude of 10 nm. (b) Friction as a function of bias voltage.
Note that friction at 300 K for d = 20 nm is approximately six times larger than
at 77 K, regardless of voltage. Reproduced from [322] with permission from the
American Physical Society.
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an ultra-sensitive cantilever in the pendulum geometry. Friction coefficients of the
order of 10−13 kg/s between tip and metal substrate were observed. An increase
of dissipation with increasing temperature was observed. The distance dependence
of the friction coefficient was fitted by a power law � ∝ d−n with an exponent
n =1.3±0.2. The measurements of Stipe et al. were performed under high vacuum
conditions. The friction coefficient fits to a quadratic power law � ∝ (Vbias−Vcpd)

2.
The friction coefficient of the force sensor changes by approximately 3×10−12 kg/s
by applying 1 V at room temperature.

Chumak et al. have calculated the non-contact friction due to Joule losses [56].
For a clean metallic surface, they derived the formula

� = 31/2

√
RV 2

27d3/2πσ
. (21.17)

The distance dependence is in agreement with the experimental results from
Stipe et al. [322]. By assuming a tip radius R = 1 µm, the conductivity of gold at
300 K, σ = 4 × 1017 s−1 = 4.4 × 107 �−1 m −1at a tip sample distance of 10 nm
we obtain � = 1.4×10−23 kg/s. This value is ten orders of magnitude smaller than
the experimental value. For a cylindrical tip the friction increases by two orders of
magnitude, which is still too small to explain the experimental results. Volokitin,
Persson and Ueba [336] have then considered the presence of an adsorbed layer. In
this case, the electrostatic friction is increased by orders of magnitude. A formula
in analogy to Eq. (21.17) is derived, where an effective conductivity is introduced.
They find agreement for an effective conductivity σeff ≈ 4 × 109 s−1. This value is
reasonable under the assumption of surface coverage with adsorbates of 10%.

At compensated contact potential the dissipation might be related to van der
Waals friction. However, even at compensated contact potential there are some
uncompensated charges, which are due to the inhomogenieties of the probing tip
and sample. The work functions of different facets, such as (111) or (100), are dif-
ferent. The spherical tips have different crystal orientations, which leads to incom-
plete compensation and some remaining charges on the facets. Therefore, the min-
imum of non-contact friction is most probably not related to van der Waals friction,
but to fluctuations of charges and associated electrical fields, which give raise to the
remaining non-contact friction at compensated contact potential. Volokitin et al.
[336] have also shown that charge fluctuations in the bulk of dielectrics can give
dissipation values comparable to the experimental values of the order of 10−12 kg/s.
Nonetheless, Volokitin et al. [336] have predicted that van der Waals friction can
be large enough to be measured by state-of-art non-contact force microscopy.

The quadratic behavior of the friction coefficient as a function of the bias volt-
age confirms the assumption that the friction is of electromagnetic origin. Several
contributions can enhance the friction between tip and sample. Stipe et al. [322]
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observed that artificial electric fields generated by defects (E′ centers) in gamma-
irradiated quartz have an influence on the friction coefficient. The higher the defect
concentration the higher the value of distance-dependent friction coefficient. Cov-
erage with a 20 nm thick gold film prevents a penetrating of the electrical field into
the non-conducting substrate, so that damping is reduced again. No extra damping
is observed due to the presence of layers below the gold film.

The temperature dependence shows clearly an enhancement of non-contact fric-
tion with increasing temperature. In accordance with the fluctuation dissipation
theorem, the force fluctuations are given by

SF = 4�SkBT . (21.18)

If we assume that the field fluctuations are small compared to the overall applied
field, the force fluctuations are given by:

SF = q2SE = C2V 2SE, (21.19)

which is in agreement with the observed V 2-dependence, if SE is a constant inde-
pendent of voltage [322]. For � = 3 × 10−12 kg/s, C = 10−16 F one finds S0.5

E = 2
Vm−1Hz−0.5, which corresponds to charge fluctuations of the order of 2 × 10−5e
Hz−0.5, comparable to values observed in single-electron transistor experiments.

Electronic versus phononic friction

From the above discussion, we expect that friction on a metal substrate should
drop when the metal is cooled below the superconducting critical temperature Tc.
This effect was first measured by Krim et al. using the quartz crystal microbal-
ance (QCM) technique [64]. The temperature variation of the friction coefficient
� across the superconducting transition was measured by Kisiel et al. oscillat-
ing a cantilever in close proximity to a Nb film surface like a pendulum [166].
As shown in Fig. 21.5, the damping coefficient is reduced by a factor of 3 when
T < Tc at a separation of about 5 nm. The voltage dependence in the metallic
state is proportional to (V − VCPD)

2, in agreement with the theoretical expectations
for metallic surfaces and the previous experimental results. In the superconductive
state the non-contact friction is proportional to (V − VCPD)

4, which indicates that
electronic friction vanishes and phononic friction takes over (see Fig. 21.6). The
(V − VCPD)

4-dependence was predicted theoretically by Volokitin et al. for the
phononic case [336]. Furthermore, the distance dependence in the superconductive
state shows a more rapid decay of non-contact friction, which is proportional to
d−3.8. Again, Volokitin et al. predicted a comparable distance dependence of the
friction coefficient on d−4.
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Figure 21.5 (a) AFM topography image of the Nb film studied with a pendu-
lum AFM setup (frame size: 1×1 µm2). The z-controller was feed-backed to
the cantilever excitation signal. A scanning electron micrograph of the ultra-
soft Nanosensors Arrow-TL1 cantilever probe is shown in the top right corner.
(b) Temperature variation of the damping coefficient across the critical point
Tc = 9.2 K of Nb. The line is the fit based on the BCS-theory, which implies
that this friction coefficient is proportional to the number of unpaired electrons.
The black points show the temperature dependence of the internal friction of the
cantilever far away from the surface. Reproduced from [166] with permission
from the Nature Publishing Group.

Two related experiments may be mentioned. Electronic friction was also demon-
strated in doped semiconductors, where the local carrier concentration could be
controlled through the application of forward or reverse bias voltages between an
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Figure 21.6 (a) Voltage and (b) distance dependence of the friction coefficient
� in the metallic and superconductive state. The squares and diamonds refer to
the superconductor and the metal state respectively. Reproduced from [166] with
permission from the Nature Publishing Group.

AFM tip and the sample in the p and n regions [239]. In this case, repulsive con-
tact forces were applied and friction in the contact regime was measured. A related
experiment was performed by Cannara et al. [42], who investigated hydrogen- and
deuterium-terminated diamond and silicon surfaces. In all cases the hydrogenated
surfaces exhibited higher friction. In this case, where repulsive contact force were
applied, phononic friction seems to dominate and the lower natural frequency of
the deuterium atoms reduces the rate of dissipation.
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21.4 Giant non-contact friction

Saitoh et al. [300] reported the occurrence of giant non-contact friction between
the surfaces of NbSe2 and SrTiO3 and a sharp Pt-covered probing tip. At tem-
peratures of 4.2 K, the friction coefficient showed a giant maximum of the order
of 10−5 kg/s at tip–surface distances of several nanometers. The large distance
excludes repulsive contact formation and mechanical instabilities. The maximum
is at distances where chemical forces and tunneling currents are still rather small.
They observed that the maximum of non-contact friction is drastically reduced
at room temperature. The conductivity was found to be of minor importance,
because the peaks were found for metals and insulators. In the case of NbSe2,
which is superconductive below 7.2 K, the authors found a maximum below and
above Tc. However, they found no maximum at room temperature. Saitoh et al.
suggest that the giant non-contact friction is related to a Debye-like relaxation
mechanism with multiple time scales. In the case of of SrTiO3 a broader peak
is observed compared to the sharper maximum of NbSe2 at about 2 nm. Langer
et al. [179] have studied the case of NbSe2 in more detail. They found a muti-
plet of dissipation peaks at distances of several nanometers (see Fig. 21.7). They
were able to relate the giant dissipation to the existence of charge density waves
(CDW). If the temperature is increased above 70 K, where CDW short-range
order is known to disappear, the peaks disappeared as well. The authors suggest
that the probing tip couples to the extended charge density wave. The probing
tip leads to 2π slips of the phase of the CDWs, which leads to hysteresis and
dissipation.

21.5 Near-contact friction

At distances of less than 1 nm, where chemical forces start to emerge and tunnel-
ing currents flow, a strong increase of the friction coefficient is observed. This type
of non-contact friction is orders of magnitudes larger than the non-contact friction
due to charge fluctuations or Joule losses. Typically, forces of the order of fractions
of nano-Newtons and friction coefficients of the order of 10−5 to 10−8 kg/s are
observed. The rapid increase of the friction coefficient is commonly fitted by an
exponential function with decay lengths comparable to the decay lengths of chem-
ical forces or tunneling currents. The origins of this type of friction, often called
near-contact friction, are discussed below.

An early example was presented by Lüthi et al., where atomic-scale variation
of the damping coefficient in a non-contact or near-contact force setup on a Si(111)
7×7 surface were found. The strongest friction coefficient was found at the sites of
the corner holes [200].
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Figure 21.7 Observation of charge density wave on an NbSe2 surface and accom-
panied non-contact friction. (a) An oscillating AFM tip in proximity to the charge
density wave on the NbSe2 surface. (b) Constant current STM (I = 10 pA, V = 5
mV) image of the NbSe2 surface, showing a hexagonal CDW induced Moiré pat-
tern as well as two types of surface defect – adsorbed CO molecules (dashed
circle) and Se atom vacancies (circle). (c) Energy dissipation between the NbSe2
surface and the pendulum AFM tip versus tip–sample distance Z and bias voltage
V . The bright regions on the image stand for large non-contact friction. The fric-
tion increase is at the same cantilever frequency f = f0−22 Hz, f = f0 −30 Hz,
f = f0 − 120 Hz, and the constant frequency contours are shown with chained
curves. The measurements were acquired at T = 6 K. Reproduced from [179]
with permission from the Nature Publishing Group.

The sharp impact of the short-range forces acting at the lower turning point of the
tip oscillation may create phonons in the sample. This pathway to dissipation has
been studied within the framework of continuum mechanics [80], the fluctuation–
dissipation theorem [99], and molecular dynamics simulations [1]. The values
found in these studies are orders of magnitude smaller than the experimentally
measured dissipation. Nevertheless, phonon excitation by the tip may play an
important role for soft materials and force microscopy modes including repulsive
contact formation.

The experimental results of dissipation force microscopy might also be influ-
enced by non-linear effects [100]. A non-linear force law can cause a frequency
spectrum with manifolds, where only one branch is accessible for the experiment.
These asymmetric frequency spectra might mimic an increase in the Q-factor. The
examination of frequency spectra could disentangle this effect from real dissipa-
tion effects. Experiments by Erlandsson [87] indicate the non-linear character of
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the resonance, while phase variation experiments by Loppacher et al. [189] are in
accordance with the harmonic approximation.

Another possibility to explain the changes in the driving force at the resonance
frequency is the excitation of higher oscillation modes by the short force pulse of
the short-range forces. However, Pfeiffer et al. have shown that the higher bend-
ing modes are negligible with good accuracy during constant amplitude operation
[269]. On the other hand, higher harmonics n f0 may play a more important role.
These harmonics are difficult to quantify due to their artificial appearance in the
frequency spectrum caused by control electronics.

Sasaki et al. proposed that atomic-scale instabilities on the tip or on the sample
may be important for understanding dissipation force microscopy [303]. In close
analogy to the Tomlinson model in FFM, a second minimum of the potential is
formed during the approach, where a tip or sample atom jumps out of its equi-
librium position. During retraction the atom jumps back to the original position.
This type of mechanism may explain the rather large energy losses without involv-
ing permanent changes to the tip–sample geometry. This explanation was further
confirmed by a study of Alireza Ghasemi et al. [4], where the potential energy
landscape of realistic silicon probing tips was investigated by ab initio calcula-
tions. Many energetically close local minima were found. When thermal excitation
is present, configurations driven into metastability by the tip motion can access

F [nN]

z [nm]
0

0.5

0.5

0.5 1.0

Figure 21.8 Typical force curve calculated with a maximum approach distance of
0.1 nm above a KBr(001) surface. Approach and retract curves are represented by
thick and thin lines, respectively. Strong hysteresis is found due to the formation
of atomic wires. A few snapshots of the system are shown along the force curve
to indicate the indentation process. Reproduced from [164] with permission from
the American Physical Society.



240 Non-contact friction

other energy structures, which then leads to hysteresis and energy loss. A compar-
ative study of non-contact force spectroscopy and molecular dynamics simulations
on KBr(001) surfaces has shown that the quasi-static force vs. distance curves hide
stochastic dissipation processes. Due to the hysteresis of approach and retraction
curves the measurement of the damping coefficient shows additional dissipation
averaged over a few cycles. The formation of atomic chains is found to be an
important process for the dissipation processes, where some fraction of eV per
cycle are observed [164] (see Fig. 21.8).

Dissipation force microscopy is an operational mode with great relevance
to atomic-scale studies of surfaces, particularly with respect to emerging
nanomechanical technologies. Furthermore, the monotonic increase in dissipation
with decreasing distance makes it a candidate for replacing the frequency shift as
control parameter [152]. However, one has to keep in mind that frequency detec-
tion was invented for high Q-factor systems because of its fast response compared
to amplitude detection schemes.



Part IV
Lubrication
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Drag in a viscous fluid

The friction force on an object moving in a viscous fluid (so-called ‘drag’) has
a completely different character from the friction on the same object sliding on
a solid substrate. The parasitic drag is ‘tuned’ by the shape of the object (‘form
drag’) and also by the contact between the fluid and the surface of the body (‘skin
friction’). In a first approximation the parasitic drag is proportional to the square
of the velocity. Furthermore, the lift force created on a streamlined body such as
a wing can also cause friction (‘induced drag’). Here, we will introduce the most
important expressions for the drag forces. The corresponding derivations can be
found in textbooks on advanced fluid dynamics such as [176]. The wave drag
caused by the shock waves formed at transonic and supersonic speed will be not
discussed.

22.1 The Navier–Stokes equation

The motion of an incompressible viscous fluid is described by the Navier–Stokes
equation [230, 323]

ρ

(
∂v
∂t

+ v · ∇v
)

= −∇ p + η∇2v, (22.1)

where ρ and v are the density and velocity of the fluid, p is the pressure and η
is the dynamic viscosity.1 Equation (22.1) is obtained from the Newton equation
with the addition of a diffusing viscous term. Typical values for the viscosity of
various fluids at room temperature are listed in Table 22.1. A brief discussion on the
viscosity of gases, as estimated with the kinetic theory, is presented in Appendix B.

Equation (22.1) is accompanied by the equation of continuity

∇ · v = 0,

1 The ratio of the dynamic viscosity to the fluid density is the kinematic viscosity ν = η/ρ.
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Table 22.1 Typical values of dynamic viscosity (in mPa·s)

Fluid η

Air 0.017
Water 0.9
Ethanol 1.2
Mercury 1.5
Glycerol 1.2 × 103

which simply states that the mass of the fluid is conserved. Furthermore, appro-
priate boundary conditions must be satisfied. A common assumption is the no-slip
condition, according to which the velocity v is zero on the solid walls limiting
the fluid. Although the no-slip condition is an excellent approximation for most
engineering applications, it can be violated in micromechanical devices with very
smooth surfaces (see Appendix C).

In this chapter we will also assume that the fluid is Newtonian, i.e. that η (at a
fixed temperature) does not depend on the rate of change of the velocity at which a
fluid layer flows over an adjacent one2 (the so-called shear rate γ̇ ). This hypothesis
holds well for liquids like water, benzene and light oils, whereas more complex
fluids present a non-Newtonian behavior.3

Using the Navier–Stokes equation it can be proven that the kinetic energy per
unit volume of the fluid is dissipated at a rate

dEkin

dt
= −η

2

(
∂vi

∂x j
+ ∂v j

∂xi

)2

(22.2)

and the components of the friction force on the unit area of a bounding wall are

τfric,i = −η
(
∂vi

∂x j
+ ∂v j

∂xi
− 2

3
δi j
∂vk

∂xk

)
ni , (22.3)

where n is a unit vector directed normally into the solid surface.

Viscosity of slurry

A slurry is a mixture of liquid and fine solid particles which retains fluid prop-
erties. If the ratio c between the volume occupied by the particles and the total
volume of the suspension is extremely low, the viscosity differs by the amount
�η = 5cη/2 from the viscosity η of the original fluid. This result, which is strictly

2 We assume that the fluid flows in parallel layers without lateral mixing (laminar flow).This is always the case
if the velocity is low enough.

3 For instance, animal joints are lubricated with a slightly viscous fluid, which is made non-Newtonian by the
addition of long-chain polymers.
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valid for spherical particles, can be derived from the Navier–Stokes equation using
an elegant procedure proposed by Einstein [83]. However, things change if the
suspension is dense. As demonstrated by experiments on polystyrene spheres in
water [53], in the absence of shear stress spherical particles arrange in close-packed
hexagonal layers. If a very low shear stress τ is applied the system solidifies in a
polycrystalline state. At higher values of τ a sudden transition may occur into a
new state where the particles are arranged in sliding layers, the fraction of which
increases with the shear stress.

22.2 Flow of a viscous fluid

As a first example of application of the Navier–Stokes equation, consider the flow
of a fluid confined between two parallel planes which are separated by a distance
h and move transversally with a relative velocity V . In this case it is easy to prove
that the velocity of the fluid will increase linearly with the height z as

v(z) = V z/h

(Fig. 22.1(a)). The friction force on the unit area of the lower wall is obtained from
Eq. (22.3) as

τfric = η (∂vx/∂z)|z=0 (22.4)

and, in the present case, it is proportional to V :

τfric = ηV/h. (22.5)

If the planes are fixed, but the pressure p changes along the direction of flow,
the velocity distribution has a parabolic profile with maximum value at half the
distance between the two planes (Fig. 22.1(b)):

vh

V

vh

(a) (b)

Figure 22.1 Laminar shear of fluid (a) between two plates in relative motion with
a constant velocity V and (b) between two fixed plates with a gradient of pressure
along the flow direction.
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z
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α

Figure 22.2 Flow along an inclined plane.

v(z) = − 1

2η

dp

dx
z(h − z).

In this case the friction on the walls is τfric = −(1/(2h))(dp/dx).
If a fluid layer with thickness h flows along a plane which is inclined by an angle

α, as in Fig. 22.2, it is not difficult to see that the velocity distribution is

v(z) = ρg sinα

2η
z(2h − z),

where g is the acceleration of gravity. Thus, the friction force (per unit area) is
τfric = ρgh sinα/η and the amount of fluid (per unit width) flowing along the
plane in the time unit (volumetric flow rate) is

Q ≡
∫ h

0
v dz = ρgh3 sinα

3η
.

Flow through a pipe

The viscous flow through a pipe of length L and arbitrary cross-section is
determined by the two-dimensional equation

∇2v = −�p

ηL
, (22.6)

where �p is the pressure drop between the ends of the pipe. In a cylindrical pipe
with radius R, the distribution of the fluid velocity is parabolic:

v(r) = �p

4ηL
(R2 − r2). (22.7)

Integrating Eq. (22.7) through the cross-section of the pipe, the volumetric flow
rate is found to be proportional to the fourth power of the radius:4

4 Equation (22.8) represents the famous Poiseuille’s law [273].
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Q = π�p

8ηL
R4. (22.8)

The friction on the unit area of the wall is

τfric = R

2η

�p

L
.

Analytical expressions can be also derived for different cross-sections. For
instance, if the pipe has a rectangular cross-section with width a and height b:

Q = �p

12ηL
ab3. (22.9)

Rotary flow

The motion of a fluid between two coaxial cylinders rotating with different angular
velocities �1 and �2 is known as Taylor–Couette flow. In this case the velocity
distribution in the fluid depends on the radial distance r from the common axis as

v(r) = �2 R2
2 −�1 R2

1

R2
2 − R2

1

r + (�1 −�2)R2
1 R2

2

R2
2 − R2

1

1

r
.

The moment of the friction forces acting on the unit length of each cylinder is

Mfric = 4πη(�1 −�2)R2
1 R2

2

R2
2 − R2

1

. (22.10)

Equation (22.10) is important in rotational viscometers.

22.3 Motion in a viscous fluid

When a rigid body moves in a viscous fluid with a velocity V, a resistive drag
force Ffric parallel to V appears. This problem is equivalent to that of the fluid
flowing around the fixed body, where V is the velocity of the main stream. In gen-
eral, the flow of a viscous fluid past a rigid body is characterized by the Reynolds
number [285]

R = ρV L

η
,

where L and V are the characteristic length and velocity of the problem. If R is
sufficiently small, a steady flow is stable. However, when R increases, it can even-
tually reach a critical value Rc beyond which the flow becomes unstable. In this
case the fluid velocity varies very irregularly at each point in the fluid, and vortices
of various sizes are superimposed on the mean flow (so-called turbulence). The
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value of Rc depends on the geometry of the problem and is usually of the order
of 105.

If R is small the left hand side in Eq. (22.1) is negligible and the Navier–Stokes
equation takes a simple form:

η∇2v − p = 0. (22.11)

In this case dimensional arguments imply that, in a first approximation, the drag
force depends on V by a relation of the form Fi = ηai j Vj , where ai j is a symmetric
tensor determined by the shape of the body.

If the fluid flows around a sphere of radius R the velocity distribution obtained
from Eq. (22.11) is described in spherical coordinates by the relations

vr = V cos θ

(
1 − 3R

2r
+ R3

2r3

)
,

vθ = −V sin θ

(
1 − 3R

4r
− R3

4r3

)

and is plotted in Fig. 22.3. The drag on the sphere is given by the famous Stokes’
law [324]:

Ffric = −6πηRV . (22.12)

Considering the contribution of the velocity field at large distances from the body,
a correction �Ffric/Ffric = (3/8)R must be introduced in Eq. (22.12) [238]. It is
also interesting to observe that the drag force on a spherical bubble is two thirds of
the force acting on a rigid sphere with the same radius [128, 298].

Figure 22.3 Velocity distribution of a viscous liquid flowing around a rigid sphere
(cross-section).
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If the fluid flows parallel to the plane of a disk of radius R the drag force is [174]

Ffric = −32

3
ηRV .

However, if the fluid flows perpendicularly to the plane, the force is 3/2 times
larger:

Ffric = −16ηRV .

If the disk is approaching a flat plane with a velocity V the drag force on the moving
disk is

Ffric = −3πηV R4

2h3
, (22.13)

where h is the separation between the two objects. We will come back to Eq.
(22.13), and its limitations when h → 0, in Section 24.4.

The two-dimensional problem of the viscous flow around a cylinder was first
solved by Lamb [173]. The drag force on the unit length of the cylinder depends
on the logarithm of the velocity V of the main stream as

Ffric = − 4πηRV

1/2 − C − log(RV/4ν)
,

where C ≈ 0.577 is Euler’s constant.
The moment of the friction forces acting on a rigid body rotating in a fluid can

be also estimated analytically in a few simple cases. If a sphere of radius R rotates
with with an angular speed �, the velocity distribution of the fluid around the
sphere is

v = (R/r)3� × r,

and the frictional torque exerted by the fluid is [176, par. 20]

Mfric = −8πηR3�. (22.14)

Equation (22.14) can be seen as a generalization of Stokes’ law for rotational
motion. Note also that a fluid confined in a rotating spherical cavity moves rigidly
with the cavity.

Finally, the moment of the friction forces on a rotating disk was calculated by
von Kármán [337]:

Mfric = −1.94R4
√
ρη�3.

The rotation is accompanied by a constant axial flow from infinity, as shown in Fig.
22.4. Note that the friction torque is not proportional to the angular velocity �.
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Figure 22.4 Flow in the region close to a disk rotating in a viscous fluid.

However, this is the case for a cylinder rotating about its axis, as seen from
Eq. (22.10):

Mfric = −4πηR2�.

22.4 Boundary layers and skin friction

If the Reynolds number R is large, the velocity of a fluid decreases to zero in a thin
boundary layer adjoining the walls confining it. In a boundary layer the Navier–
Stokes equation can be simplified, and approximated expressions for the fluid flow
can be derived.

If the fluid flows along a semi-infinite plate, as in Fig. 22.5, the thickness
of the laminar boundary layer increases as the square root of the downstream
coordinate x :

δlam ∼
√

xη

ρV
,

where V is the velocity of the main stream. The velocity distribution in the layer
can be found numerically by solving a non-linear differential equation for the
stream function ψ(x, y) defined by the relations

vx = ∂ψ

∂z
, vz = −∂ψ

∂x
.

The friction force on the unit area of the plate (so-called skin friction), as obtained
from Eq. (22.4), is [25]
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Figure 22.5 Laminar boundary layer (darker area) on a semi-infinite plate.

τfric(x) = 0.322
√
ηρV 3/x .

In a turbulent boundary layer the mean velocity vx parallel to the wall can be esti-
mated by dimensional considerations. Assuming that the viscosity plays a role only
at very small distances z, only a logarithmic velocity distribution is possible [338]:

vx(z) ≈ vτ

(
1

κ
ln
ρzvτ
η

+ const.

)
. (22.15)

The von Kármán’s constant κ in the law of the wall (22.15), as determined exper-
imentally, is 0.41, whereas the additive constant in Eq. (22.15) is about 5.0 (for a
smooth wall). The so-called shear velocity vτ is connected to the friction force τ
per unit area by the relation

τfric = ρv2
τ . (22.16)

Eliminating vτ from Eqs. (22.15) and (22.16) it can be seen that the friction force
τfric(x) decreases slowly with the distance x . The thickness δ of the turbulent
boundary layer can be estimated by observing that dδ/dx ∼ vτ /V , and is found to
increase linearly with x :

δturb ∼ vτ x/V .

Flow in a pipe

The pressure loss due to the friction along a given length L of a pipe can be
described by the dimensionless friction factor

C = 2R�p/L

(1/2)ρV 2
, (22.17)

where R is the radius of the pipe and V is the average velocity of flow. Since the
thickness of a boundary layer is continuously increasing downstream, at a finite
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Figure 22.6 Friction factor C as a function of the Reynolds number in a circular
pipe.

distance from the point of entry of the fluid the whole cross-section of the pipe will
be filled by a laminar or turbulent boundary layer.

If the flux is laminar, Poiseuille’s equation (22.8) implies that the factor C is
inversely proportional to the Reynold’s number:

C = 64/R. (22.18)

In a turbulent flow, the law of the wall (22.15) can be used to derive an implicit
relation known as Colebrook’s equation [60]:

1√
C

≈ 0.88 ln(R C)− 0.85. (22.19)

Figure 22.6 shows the relations between the friction factor and the Reynolds
number expressed by Eqs. (22.18) and (22.19). Note the abrupt variation of C
at the transition from laminar to turbulent flow, which is usually observed when
R ∼ 2–3 ×103.

In the case of Taylor–Couette flow (Section 22.2) it can be proven that, for large
Reynolds numbers, the flow is always unstable if the two cylinders rotate in the
same direction. If the cylinders rotate in opposite directions the flow is unsta-
ble only if �2 R2 < �1 R1 [284]. The first instability leads to the appearance of
axisymmetric toroidal Taylor’s vortices between the cylinders (Fig. 22.7). If the
separation h between the two cylinders is very small and the outer cylinder is fixed,
the vortices appear when [330]

R ≡ ρ�1 R1h

η
> 41.2

√
R1

h
.
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R1

R2

Figure 22.7 Taylor’s vortices.

22.5 Drag crisis

Similarly to the definition (22.17) for a flow in a pipe, the motion of a body in a
fluid can be characterized by the drag coefficient

Cd = Ffric/A

(1/2)ρV 2
,

where V is the velocity of the body, Ffric is the drag force and A is the area of a
cross-section of the body transverse to the direction of flow. The coefficient Cd is
a function of the Reynolds number R and the typical dependence Cd(R) observed
for a sphere is shown in Fig. 22.8. At low values of R the drag coefficient decreases
according to Stokes’ law, Cd = 24/R. The decrease becomes slower, and Cd almost
levels off, when R ∼ 103–105. When R ∼ 2–3×105, the drag coefficient suddenly
drops by a factor 4 or 5. This phenomenon is known as drag crisis and corresponds
to the onset of a turbulent boundary layer. At this point a turbulent wake beyond
the body, already appearing for lower values of R, suddenly becomes more narrow
[176, par. 45], which reduces the value of the total drag force. If R is very high,
the compressibility, parametrized by the Mach number M = V/c, where c is the
velocity of sound in the fluid, becomes important. As a general result R is found to
increase when M increases.

22.6 Streamlined bodies

A streamlined body (e.g. the wing of an airplane) is an elongated object with a
rounded leading edge and a sharp trailing edge (Fig. 22.9). If a streamlined body
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Figure 22.8 Drag coefficient for a sphere moving in a fluid as a function of the
Reynolds number.
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Figure 22.9 A cross-section of a thin wing.

moves in a viscous fluid with a velocity V , the skin friction is an important source
of drag (which is not the case for a non-streamlined body such as a sphere).

According to a theorem first derived by Zhukovsky, the lift force on the body is
given by

Flift = ρV
∫
� dy, (22.20)

where ρ is the fluid density and � is the velocity circulation, i.e. the line integral

� =
∮

v · dl

taken along a closed contour surrounding the wing profile. If the angle of attack α
in Fig. 22.9 is � 10◦, the ratio between the lift force Flift and the drag force Ffric can
be as high as 10–100, but it decreases rapidly if α increases and the object ceases
to be streamlined (Fig. 22.10).

We can also introduce the lift coefficient

Cz = Flift/aL

(1/2)ρv2
,
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Figure 22.10 Lift coefficient versus angle of attack for a cambered airfoil.

where a and L are the width and the span of the wing, respectively. If the wing
is very long, the lift coefficient is proportional to the angle of attack α, which is
supposed to be small. In this case the proportionality constant depends only on
the shape of the wing. For instance, if the wing is a thin plate [176, section 48]
Cz ≈ 2πα.

An important part of the drag acting on a wing is due to the energy dissipation in
the thin turbulent wake formed behind the wing (Section 22.5). This induced drag
can be estimated using a formula derived by Prandtl [276]:

Ffric = − ρ

4π

∫∫
d�(y)

dy

d�(y′)
dy′ ln

∣∣y − y ′∣∣ dy dy′. (22.21)

In Eq. (22.21) the integrals are taken between y = 0 and y = L , and the origin of
the y axis is at one end of the wing. Note that, if the span L increases, the induced
drag does not change in magnitude, whereas the lift force (22.20) increases almost
linearly.
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Lubrication

Friction between two solid surfaces can be reduced by means of a lubricant film.
In hydrodynamic lubrication the films are so thick that the surfaces are prevented
from coming into contact. In this case the lubrication is governed by the viscosity
of the film and the frictional resistance to motion arises from the shearing of the
fluid layers. The principles of fluid mechanics outlined in Chapter 22 completely
determine the performance of the system. If the elastic deformation of the lubri-
cated surfaces is significant, we speak of elastohydrodynamic lubrication. If the
fluid is pumped into the gap between the two surfaces, the lubrication is hydro-
static. Solid flakes can be also intercalated to lower the coefficient of friction. In
the case of boundary lubrication the surfaces touch each other on a considerable
contact area. This subject is much less established and will be discussed separately
in the next chapter.

23.1 Hydrodynamic lubrication

Consider a lubricant film between two solid surfaces moving with a relative veloc-
ity V as in Fig. 23.1. If the surfaces were parallel, no pressure field could be
established to support a given load. This is not the case if the top surface is inclined
by a certain angle. Suppose first that the lower surface is flat and the upper one has
an arbitrary profile h(x, y). In this case it can be proven that the pressure gradient
is related to the function h(x, y) by the so-called Reynolds’ equation [286]:

∂

∂x

(
h3 ∂p

∂x

)
+ ∂

∂y

(
h3 ∂p

∂y

)
= 6Vη

∂h

∂x
. (23.1)

Equation (23.1) is derived from the the Navier–Stokes equation (22.1) assuming
that the gap between the two surfaces is very small, the flow is laminar and the
lubricant is Newtonian. Furthermore, the fluid velocity and the volumetric flow
rate (per unit width) in the x direction are, respectively,

256
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Figure 23.1 Hydrodynamic pressure generation between non-parallel surfaces.

vx = − z(h − z)

2η

∂p

∂x
−
(

1 − z

h

)
V, (23.2)

qx = − h3

12η

∂p

∂x
− V

h

2
. (23.3)

The previous formulas form the basis for determining the friction force and the
lubricant leakage out of the ends of the gap.1 Further approximations can be made
in two cases of practical importance.

- If the gap is very long in the y direction (perpendicular to the plane of Fig. 23.1),
the pressure gradient ∂p/∂y is negligible, and Eq. (23.1) becomes

dp

dx
= −6ηV

hmax − h

h3
, (23.4)

where hmax is the separation corresponding to the maximum value of pressure in
the fluid (long bearing approximation).

- In the opposite case, the pressure gradient in the x direction is negligible and the
Reynolds’ equation becomes

p(x, y) = 3V η

h3

dh

dx

(
y2 − b2

4

)
, (23.5)

where b is the width of the bearing (short bearing approximation).

Pad bearings

A pad bearing has the simple profile shown in Fig. 23.1:

h(x) = h0 + tanα = h0 + x(h1 − h0)/L .

The pressure distribution is obtained by integrating Eq. (23.4) with the boundary
conditions p(0) = p(L) = pext, where pext is the external pressure:

p(x) = pext + 6VηL

h0(k − 1)

(
− 1

h(x)
+ h0

h2(x)

k

k + 1
+ 1

h0(k + 1)

)
, (23.6)

1 For a derivation of these formulas see [325, section 5.1]
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where k = h1/h0. The normal force that the bearing will support is obtained by
integrating the pressure distribution (23.6) over the bearing area:

FN = FN0

(k − 1)2

(
− ln k + 2(k − 1)

k + 1

)
, (23.7)

where FN0 = 6VηL2b/h2
0. The relation FN(k) expressed by Eq. (23.7) is plotted

in Fig. 23.2. The normal force FN has a maximum when k ≈ 2.19.
The friction force is obtained by integrating the shear stress τ = ηdvx/dz using

the relation (23.2) for the fluid velocity:

Ffric = VηLb

h0

(
6

k + 1
− 4 ln k

k − 1

)
.

As a result, the friction coefficient μ = Ffric/FN is found to be independent of the
viscosity (Fig. 23.2):

μ = (k − 1)h0

L

3(k − 1)− 2(k + 1) ln k

6(k − 1)− 3(k + 1) ln k
.

Finally, the lubricant flow is determined by the sliding speed and the film geometry:

Qx = V h0b
k

k + 1
. (23.8)

Note that the minimum value of μ is obtained when k ≈ 2.53 and is usually
quite small. As an example, if α = 1◦, the friction coefficient μ ≈ 0.05, meaning
that hydrodynamic lubrication is a very efficient way to reduce friction. If V = 10
m/s, h0 = 100 µm and b = 10 cm, the corresponding amount of lubricant per unit
time to be supplied is Qx ∼ 0.1 l/s.

k
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k

Figure 23.2 (a) Load capacity and (b) friction coefficient as a function of the ratio
k between the outlet and the inlet film thickness in a pad bearing.
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Figure 23.3 Geometry of a journal bearing.

If the angle of inclination α < 0, the normal force (23.7) becomes negative. In
this case the surfaces are sucked together by the negative pressure, and the limits
of hydrodynamic lubrication (see below) are reached in a short time.

Journal bearings

A journal bearing is formed by a shaft of radius R1 rotating inside a stationary bush
with an angular speed� (Fig. 23.3). The difference between the radii R2 and R1 of
bush and shaft is the clearance c. Shaft and bush are not concentric and the precise
position of the shaft is determined by the load that it is carrying. Introducing the
eccentricity ratio ε as the distance between the centers of shaft and bush divided
by c, the film thickness can be written as

h(θ) = c(1 + ε cos θ). (23.9)

Since in most journal bearings the width b is shorter than the shaft diameter, we
can use Eq. (23.5) to determine the pressure distribution. Assuming the boundary
conditions (the so-called ‘half Sommerfeld condition’) p(0) = p(π) = 0, it can
be seen that the axial variation of pressure is parabolic, and the circumferential
variation is governed by a trigonometric function (Fig. 23.4):

p(θ, y) = 3η�

c2

(
b2

4
− y2

)
ε sin θ

(1 + ε cos θ)3
.

The pressure p reaches its maximum value at the angle

θmax = arccos
1 − √

1 + 24ε2

4ε
.
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p
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Figure 23.4 Pressure distribution in a journal bearing.

Integrating the function p(θ) around the bearing, one gets the components of
the normal force parallel and perpendicular to the line of centers. This allows us to
determine the load that the bearing is supporting:

FN = FN,0
ε

(1 − ε2)2

√
16ε2 + π 2(1 − ε2),

where FN,0 = η�Rb3/4c2, and the attitude angle between the line of centers and
the vertical:2

ϕ = arctan
π

√
1 − ε2

4ε
.

The friction force is obtained by integrating the shear stress:3

Ffric = Ffric,0
1√

1 − ε2
, (23.10)

where Ffric,0 = 2πηV bR1/c. The forces FN and Ffric are plotted in Fig. 23.5 as
a function of ε. Note that the load capacity FN rises sharply with increasing ε,
whereas the friction force Ffric is relatively insensitive to ε as long as ε � 0.8. In
order to avoid shaft misalignments at high values and vibrations at low values, the
optimum value of ε is usually chosen around 0.7.

Finally, the lubricant flow in the journal bearing is easily estimated from Eqs.
(23.3) and (23.9):

Qθ (θ) = �bR1

2
c(1 + ε cos θ).

The rate at which the lubricant is lost due to side leakage is

Q = Qθ (0)− Qθ (π) = �Rcbε.

2 Note that ϕ is different from θmax!
3 Equation (23.10) with ε = 0 is known as Petroff’s law [267].
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Figure 23.5 (a) Normal force and (b) friction force in a journal bearing as a
function of the eccentricity ratio.

Thermal effects

The thermal energy carried away by the lubricant in unit time can be roughly esti-
mated by multiplying the flow Qx by ρCV�T , where ρ is the fluid density, CV

is the heat capacity of the lubricant and �T is the temperature rise. Equating the
result to the energy dissipation (per unit time) FfricV one gets

�T ∼ FfricV

QxρCV
.

Note that values of �T ∼ 100 ◦C are not uncommon. For an accurate estima-
tion, one has to solve the Reynolds equation and the heat transfer equation for the
lubricant film simultaneously, which is only possible by numerical methods. The
temperature dependence of the viscosity (Section 24.1) must also be taken into
account.

Limits of hydrodynamic lubrication

Hydrodynamic lubrication is only effective when the sliding velocity V is rela-
tively high. If this is not the case, Eq. (23.7) shows that the film thickness must
decline to maintain the pressure field. This means that contact between surface
asperities may occur, causing wear and high friction. The variation of the friction
coefficient μ with the parameter ηV/FN for a pad bearing is represented by the
Stribeck curve (Fig. 23.6). The friction is proportional to ηV only if V is large
enough. Although for perfectly smooth surfaces the separation at the lower limit
of hydrodynamic lubrication can be as small as a few nanometers (see below), the
theory usually breaks down in the micron range, corresponding to the roughness of
most engineering surfaces.
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Figure 23.6 Relation between the friction coefficient and the velocity for a solid
body sliding on a lubricated surface.
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Figure 23.7 (a) Pressure distribution and (b) deformation in the elastohydro-
dynamic contact formed by a cylinder sliding on a flat surface.

23.2 Elastohydrodynamic lubrication

A liquid lubricant separating two surfaces forming a Hertzian contact undergoes
very high pressure, and its viscosity can consequently increase by several orders
of magnitude (see Section 24.1). In order to calculate the pressure distribution and
the elastic deformation in the gap one has to solve the Navier–Stokes equation
combined with the Barus law (introduced in the next chapter) and the Hertzian
theory. This is usually done numerically in an iterative way. The result is shown in
Fig. 23.7 for a cylinder sliding on a flat surface [131]. Note that the pressure peaks
and quickly decreases before the outlet of the gap, where a constriction appears.
This effect is even more pronounced in the contact between a sphere and a flat
surface, where a characteristic ‘horseshoe’ constriction can be observed.

23.3 Hydrostatic lubrication

In hydrostatic lubrication the solid surfaces are separated by a fluid forced by an
external pump. This scheme is adequate when very heavy loads and very slow



23.4 Solid lubrication 263

p(b)(a)

R
R0

p0

0 R0

r
R

h0

h

Figure 23.8 Flat circular pad bearing with central recess: (a) schematic and (b)
pressure distribution.

speeds are involved (e.g. when positioning a heavy telescope). As an example,
consider a circular hydrostatic pad bearing of radius R with a central recess of
radius R0, as in Fig. 23.8. The pressure distribution p(r) can be easily estimated
using Eq. (23.3), adapted to the radial flow, and integrating. As a result

p(r) = p0
ln(R/r)

ln(R/R0)
,

where p0 is the recess pressure. The bearing can support a normal load

FN = p0π

2

R2 − R2
0

ln(R/R0)
,

independently of the fluid viscosity η. This means that any fluid circulating in the
device can in principle be used as a lubricant. Assuming that the recess depth h0 is
much larger than the bearing film thickness h, the frictional torque is approximately
given by

Mfric = πη�

2h
(R4 − R4

0),

where � is the angular velocity of the bearing. If � is low, the power loss Mfric�

due to viscous dissipation is usually negligible with respect to the power loss p0 Q
associated with pumping (Q is the volumetric fluid flow).

23.4 Solid lubrication

Consider a layered solid material. If the layers are able to slide over one another at
relatively low shear stresses, the solid becomes self lubricating. This is indeed the
case for graphite, MoS2 and talc, but not for mica, where strong adhesive forces
prevent smooth sliding between the sheets. These forces are due to strong elec-
trostatic attraction between K+ and O2− ions. In talc, which is chemically and
crystallographic similar to mica, only much weaker vdW forces act between the
lamellae, and the friction is much lower. Note that the coefficients of static and
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kinetic friction in inorganic layered lubricants such as graphite or MoS2 are quite
similar: μk ≈μs. In this way, lamellar solids find application as additives in lubri-
cation oils. When the contacting surfaces are set into motion, small flakes of the
additive orient themselves parallel to the fluid streamlines to minimize the energy
dissipation. In order to be used as a good additive, a layered solid must also adhere
strongly to the sliding surfaces. This is the case when graphite or MoS2, but not
talc, are applied to steel [66]. Soft plastic metals such as Ag, Au, In and Pb can
also reduce friction when applied as thin films.



24

Viscous phenomena in confined or spreading liquids

In this chapter we will first introduce the Eyring model to interpret the phenomeno-
logical dependence of viscosity on temperature and pressure observed in most
liquids. This model can also explain important phenomena such as the similar val-
ues of static and kinetic friction in boundary lubrication with fatty acids or the shear
thinning of polymers. After that, we will address specific phenomena observed
when a liquid is confined in gaps with thickness comparable to the size of the
liquid molecules or forms ultrathin layers on a solid surface. These phenomena
include capillary condensation, flow between rough surfaces, squeezing processes
and spreading of liquid droplets.

24.1 The Eyring model

The viscosity η of a liquid medium tends to decrease as the temperature T increases
or the pressure p decreases. The temperature dependence of η is usually well
described by the phenomenological equation

η = η0eε/kBT , (24.1)

where the activation energy ε depends on the molecular size. As an example, for
linear hydrocarbons (alkanes) ε is of the order of 0.1 eV and increases with the
number N of carbon atoms up to N ∼ 30. Beyond this length the molecule
moves in a segmental way and η remains constant. The pressure dependence of
η is approximately described by the Barus law [13]:

η = η0ep/p0, (24.2)

where p0 ∼ 0.1 GPa. The exponential dependence η(p) implies that a contact
pressure of 1 GPa, which is not uncommon in ball bearings and gears, may increase
the viscosity of a mineral oil by a factor of 106.

265
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Figure 24.1 The Eyring model described in the text. Note the lowering of the
energy barrier A → B caused by the shear stress (dashed curve vs. continuous
curve).

Equations (24.1) and (24.2) can be understood by using the model introduced by
Eyring [104]. In this model the motion of a fluid molecule is seen as a stress-aided
thermally activated process. The motion occurs in the direction of the applied shear,
as shown in Fig. 24.1. In order to jump from the position A to the position B the
molecule has to overcome an energy barrier ε. If the molecule has a cross-section
δA and moves an average distance l, the energy barrier is reduced by the amount
lτδA when a shear stress τ is applied. Using a result from the theory of sliding
of adsorbate particles, expressed by Eq. (15.25), the viscosity of the fluid can be
written as

η = const.× e(ε+p δV )/kBT

elτδA/kBT − e−lτδA/kBT
, (24.3)

where δV is the volume of the gap to be opened in order for the molecule to jump
(slightly smaller than the molecular volume) and the prefactor is independent of τ .
If the shear stress is low enough Eq. (24.3) reduces to

η ∝ kBT

2lδA
e(ε+pδV )/kBT ,

and Eqs. (24.1) and (24.2) are recovered, with the parameter p0 = kBT/δV .

Application to boundary lubrication

Commercial oils contain additives aimed at improving the lubrication properties.
The additives are usually fatty acids consisting of long hydrocarbon chains with a
polar head capable of binding to metal oxides (Fig. 24.2). The adhesion is so strong
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Hydrocarbon tail

Additive

Polar head

Figure 24.2 Binding of a fatty acid to a metal oxide surface.

that the adsorbate cannot fluidize and a dense film is formed with the inert hydro-
carbon tails pointing away from the surface. If two flat surfaces coated by these
additives are pressed together and slowly moved past each other, the sliding will
take place between the ends of the hydrocarbon tails and the viscosity of the lubri-
cant will play almost no role. The tails can in principle interdiffuse, which would
lead to a slow increase of the static friction with the time of stationary contact (see
Section 14.2). However, the ageing process can be inhibited if the contact pres-
sure is large enough to significantly increase the energy barriers for interdiffusion.
If this is the case the coefficients of static and kinetic friction will approximately
have the same values: μk ≈ μs.

Shear thinning

If polymers are used as additives in an otherwise Newtonian lubricant, so-called
shear thinning may appear. This phenomenon consists of a viscosity drop caused
by the fact that the long molecules of the polymer tend to align at high speed. Shear
thinning is exploited in wall paints as well as in human joints, and it is usually
reversible. The onset of shear thinning can also be explained by the Eyring model.
Equation (24.3) implies that the viscosity starts to decrease with increasing shear
stress τ when lτδA/kBT ∼ 1. The corresponding critical value of the shear rate
γ̇ = τ/η ∼ ρkBT/mη, where m ∼ ρlδA is the mass of the molecule (or of a chain
segment) and ρ is the fluid density. For a 10 nm film of n-hexadecane this value is
reached at a sliding velocity of the order of 100 m/s. However, the critical velocity
becomes much lower if the film is squeezed.

24.2 Capillary bridges

Capillary bridges have enormous importance in granular materials, insect adhe-
sion, head/disk systems and MEMS, where they can cause device failure. Capillary
bridges can result from organic contamination at ambient conditions, from water
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condensation in a humid environment or from thin lubrication films. Thanks to
capillary adhesion it is possible to build sand castles from humid sand but not from
dry sand.

Kelvin equation

If two rough surfaces are brough into contact in a humid environment, the water
will condense in the form of capillary bridges. The radius of curvature rK of a
bridge depends on the relative humidity according to the Kelvin equation:

rK = γ vm

kBT ln(p/psat)
. (24.4)

In Eq. (24.4) γ and vm are the surface tension and the molecular volume of the
liquid, and p/psat is the relative vapor pressure. In the case of water γ = 73 mN/m
and vm = 0.03 nm3 so that, for humidity values below 90%, rK takes values in the
nanometer range. The Kelvin equation is derived by observing that the chemical
potentials of vapor and liquid are, respectively, μ(p) = kBT ln p and μl = μ(p)+
�p · vm and, according to the Laplace formula, the pressure difference between
vapor and liquid is �p = −γ /rK.

Thermal effects

The formation of capillary bridges in a humid environment is a thermally acti-
vated process. This means that the time required to form a bridge between two
hydrophilic surfaces at nanometer distance from each other is

τ = τ0 exp

(
�ε

kBT

)
,

where �ε is the energy cost of condensing the corresponding liquid volume and
τ0 is a characteristic time. Correspondingly, the adhesion force between the two
surfaces is expected to increase logarithmically with the contact time t :

Fadh ∝ ln(t/τ0). (24.5)

It can be proven that the prefactor in Eq. (24.5) depends on the relative humidity as
1/ ln(psat/p) [245, section 7.5]. For this reason, the stability of a sand castle will
increase if the wet sand is kept under pressure for a while.

Equation (24.5) also implies that, in a humid environment, the friction force Ffric

will decrease logarithmically with the sliding velocity. This logarithmic depen-
dence was measured by Bocquet et al. on a paper–paper interface and on small
particles jammed in a rotating drum, whereas no influence of the humidity on
friction and adhesion was found on hydrophobic materials such as Teflon [26].
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Figure 24.3 Capillary bridges formed around contacting asperities.

A logarithmic decrease of friction with sliding velocity was also reported by Riedo
et al. on hydrophilic films using AFM [290].

Note that in AFM capillary forces are very important and usually detrimental.
Since these forces are typically of the order of some tens of nanonewtons, they
prevent high resolution in ambient conditions. Capillary forces can be reduced if
the probing tip is covered by amphiphilic molecules. They can even be removed
completely if tip and sample are immersed in a liquid (Section 18.1). On the other
hand, the water meniscus formed between a tip and a hydrophilic surface can be
exploited to deliver small ‘ink’ molecules in the so-called dip-pen nanolithography
technique.

Capillary adhesion between rough surfaces

If a flat elastic block is pressed against a rigid rough substrate in a humid
environment, the thickness of the liquid film formed at the interface (Fig. 24.3)
is d = rK(cos θ1 + cos θ2), where θ1 and θ2 are the contact angles between
the liquid and the solid surfaces. For water at room temperature, this thickness
is in the nanometer range. If the water wets the surfaces completely, the liquid
thickness is 2rK.

In the framework of the Persson theory the liquid covers the projected area
�A = A(ζK) − A(ζ1), where ζK is defined as the magnification at which the
incipient separation δinc = 2rK and ζ1 = k1/2πa is the highest possible magnifi-
cation (Section 8.4). According to the Laplace formula the (negative) pressure in
the liquid bridge is pattr = γ /rK, so that the attractive force between the two solid
surfaces is:

Fattr = γ

rK
[A(ζK)− A(ζ1)] .

If the gap between the two surfaces is completely filled by water, the attrac-
tive pressure pattr = γ /rK is balanced by the repulsive contact pressure p(δ)
determined by Eq. (8.23). As a result, the average equilibrium separation is
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δ = δ0 ln
βE∗rK

γ
,

and the corresponding work of adhesion (per unit area) is

Wadh =
∫ ∞

δ

(
pattr − p(δ′)

)
dδ′ = 2γ

(
1 − δ0

2rK
ln

eβE∗rK

γ

)
. (24.6)

For a self-affine fractal surface we can use the expressions for δ0 and β introduced
in Section 8.4 and conclude that

Wadh ≈ 2γ

(
1 − hrms

rK
ln

k0hrms E∗rK

γ

)
, (24.7)

in relatively good agreement with experimental results on polysilicon surfaces [67].
Note that for hard contacting materials, capillary adhesion appears only if rK is

much larger than the surface roughness. For very soft materials, capillary attraction
can pull the surfaces into contact and, in this case, Eq. (24.7) is not valid any more.

24.3 Fluid flow between rough surfaces

Consider a fluid flowing between a rigid flat surface and an elastic rough solid.
Suppose that the upper solid moves with a velocity V parallel to the lower surface.
The separation between the two surfaces is h(r, t), where r ≡ (x, y), and the
linear size of the nominal contact region is L . If the slope ∇h � 1 and h/L � 1
the fluid velocity v varies slowly with the coordinates x and y. Assuming a slow
time dependence, the Navier–Stokes equation (22.1) simplifies to

η
∂2v
∂z2

= ∇ p. (24.8)

The fluid flow vector j can be calculated by solving Eq. (24.8) and integrating over
the gap between the two surfaces. As a result:

j = −h3(r)
12η

∇ p + 1

2
h(r)V. (24.9)

Using a perturbation treatment, the average value of j can be related to the
roughness and the average separation for both isotropic and anisotropic sur-
faces [253].

Suppose now that the surfaces are in contact. In particular, we will consider the
fluid flow through a rubber seal, squeezed by a pressure p0, as shown in Fig. 24.4.
The fluid is released into a region at athmospheric pressure and undergoes a pres-
sure drop �p. The nominal contact is assumed to occur on a rectangular area. As
discussed in Section 8.3, at increasing magnification ζ a critical value ζc will be
reached, where the non-contact regions percolate. The surface separation at this
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Figure 24.4 Schematic of a rubber seal.
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Figure 24.5 Volumetric flow of water leaking through a seal as a function of the
applied pressure p0. The simulated rubber surface has a Hurst coefficient H = 0.8
and rms roughness of 1, 2, 4 or 8 µm. The pressure drop across the seal is �p =
0.01 MPa. Reproduced from [262] with permission from IOP Publishing.

point is hc ∼ δinc(ζc), where δinc is defined in Section 8.4. The critical percolation
channel has width and length λc. Assuming that all leakage occurs through it, the
volume flow per unit time is given by Poiseuille’s law (22.9):

Q ≈ h3
c

12η
N�p, (24.10)

where N is the ratio between the width and length of the apparent contact area. If
the magnification increases, more percolation channels with more narrow constric-
tions will appear but their contribution to the leak-rate will be negligible. Numeric
calculations (Fig. 24.5) show that Q decreases extremely fast when p0 increases,
and increases when the surface roughness increases [262]. A good agreement with
these results has been found in the case of water flowing through a silicon rubber
ring pressed against sand paper [190].



272 Viscous phenomena in confined or spreading liquids

24.4 Squeezed films

Consider now a rigid disk with radius R separated from a rigid flat substrate by a
fluid film of thickness h0 � R. If the disk is pushed towards the substrate by a
force FN, as in Fig. 24.6, using the Navier–Stokes equation it is not difficult to see
that the thickness h of the liquid layer varies with time as

dh

dt
= − 2h3 FN

3πηR4
(24.11)

or, after integrating,

1

h2(t)
− 1

h2
0

= 4FN

3πηR4
. (24.12)

The pressure distribution in the gap is

p(r) = pext − 3ηḣ

h3
(R2 − r2), (24.13)

where pext is the external pressure. For a steel block on a steel table lubricated by
a 1 µm thick film of castor oil, this means that direct contact would be reached
within few minutes. However, Eq. (24.12) breaks down when h becomes compa-
rable to the linear size of the liquid molecules. As a result, a fluid slab of a few
nanometers in thickness will remain trapped between the solid surfaces. Note that,
if the surfaces are separated rapidly (so that ḣ > 0), the pressure in the gap is lower
than pext and the formation of bubbles (cavitation) is possible.

When h reaches a value of a few nm, the liquid molecules tend to form layers
parallel to the two surfaces, and the viscosity η(h) increases rapidly. This is shown
by the ‘quantized’ variations of many physical properties such as the thickness of
the liquid slab and the yield strength k [101], the periodicity of which is close to the
diameter of the molecules. Note that a finite value of k indicates that the layers must
be ordered, as incommensurate structures experience a negligible pinning potential
(Section 16.3).

R
FN

h

Figure 24.6 A rigid solid disk pushed against a rigid flat substrate in a liquid.
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Figure 24.7 (a) The squeeze-out of the last lubricant monolayer from the contact
area between two elastic solids starts with the formation of a small circular ‘hole’.
(b) Free energy as a function of the hole radius for two values of external pressure
(with p2 > p1).

We will now focus on the squeezing of the last few layers in more detail. The
squeezing process is assisted by thermal fluctuations. In particular, a fluctuation
can give rise to a ‘hole’ in a layer. If the radius R of such hole exceeds a critical
value Rc, the pressure difference �p between the inner and the outer boundary
lines will drive the layer out of the contact region, as shown in Fig. 24.7(a) for the
n = 1 → 0 transition. The critical radius can be estimated by starting from the
expression for the adiabatic work required to form the hole [257]:

U (R) = 2π Rγ + π R2S − αR3. (24.14)

In Eq. (24.14) γ is the ‘line tension’, S is the two-dimensional spreading pressure
further discussed in Section 24.5 and the last term is the relaxation energy of the
walls, which are supposed to be elastic. The coefficient α ∼ p2

ext/E , where E
is the elastic modulus of the solid materials. The dependence U (R) is plotted in
Fig. 24.7(b). As pext increases, the energy barrier �ε preventing the layer from
squeezing out decreases. When �ε ∼ 1 eV, the layer is expelled. As a result, the
critical radius Rc turns out to be of the order of 1 nm for hydrocarbons on metals
or on metal oxides. As detailed in [257], the corresponding critical pressure is

pc ≈ 0.60

√
(2πγ + 2πRcS)E

3(1 − ν2)R2
c

.

Once a hole has nucleated, it spreads quickly through the contact area. The time
evolution of the squeezed-out area A can be estimated from the Navier–Stokes and
continuity equations in 2D [257]:

dA

dt
ln

(
A

A0

)
= −4π�p

ρη
, (24.15)
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Figure 24.8 Squeeze-out of one monolayer of a silicone liquid (OMCTS)
between two mica surfaces. The sequence of images was acquired at time intervals
of 100 ms. Reproduced from [16] with permission from IOP Publishing.

where A0 = πR2 is the total contact area and ρ is the density of the liquid. Assum-
ing that �p = p0 = const., Eq. (24.15) can be easily integrated. As a result, the
time required to completely squeeze out the layer is

tc = ρηA0

4πp0
.

A better agreement with the experiments is obtained by assuming a Hertzian
distribution for the contact pressure [352].

The squeeze-out of liquid layers has been demonstrated in a series of investi-
gations by Mugele and coworkers based on the surface force apparatus [16]. An
example, illustrating an n = 3 → 2 transition, is shown in Fig. 24.8. Note that the
circular symmetry gets broken in the late stages of the transition.

Rough surfaces

Suppose now that a cylindrical rubber block (with radius R) is squeezed against a
rough rigid substrate in a liquid. Neglecting the deformation of the block caused
by the non-uniform fluid pressure, the separation δ(r, t) depends on the time t
according to Eq. (24.11):

dδ

dt
≈ −2δ3 p(t)

3ηR2
, (24.16)

where p is the average fluid pressure in the nominal contact region. If p0 is the
pressure applied on the top surface of the cylinder,

p(t) = p0 − pcon(t),
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where pcon is the (locally averaged) asperity contact pressure. If p0 is so small that
δ � hrms we can use Eq. (8.23) and conclude, after some simplifications, that δ(t)
approaches the equilibrium separation asymptotically as [191]

δ ≈ δ∞ +
(

1 − pcon(0)

p0

)
u0 exp

[
−
(
δ(p0)

hrms

)3 t

τ

]
, (24.17)

where δ∞ ≡ δ0 log(βE∗/p0) and the characteristic time

τ = 3ηR2δ0

2h2
rms p0

.

Equation (24.17) breaks down if the pressure p0 is too high. In this case one has
to solve the equation [191]

dδ

dt
≈ − δ2

0δ
3

τh4
rms

(
1 − pcon

p0

)

together with the relation p(δ) given by Eq. (8.26).

24.5 Spreading of liquids

Finally, let us consider a small fluid drop on a flat solid surface. If the system is
in equilibrium the contact angle θeq between droplet and substrate is determined
by the solid–liquid, solid–vapor and liquid–vapor interfacial energies γsl, γsv and γ
respectively (Fig. 24.9) according to Young’s equation1 [349]:

γsv = γsl + γ cos θeq. (24.18)

If the droplet is not in equilibrium, a flow will start and only stop when Eq.
(24.18) is satisfied. In case of complete wetting (θeq = 0) the droplet spreads till it
reaches a thickness defined by the van der Waals forces. This situation is typically
observed on hard solids with high surface tension. As a result, the contact angle θ

svsl

γ

γ

θ

γ

Figure 24.9 A liquid droplet in thermodynamic equilibrium with a solid and its
vapor.

1 Equation (24.18) can be proven by minimizing the free energy of the system with the condition that the
volume of the fluid remains constant.
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decreases with time. The speed of advance v(t) is defined by the condition that the
rate of decrease of the interfacial energy equals the rate of viscous dissipation [65].
When the droplet expands the variation of the interfacial energy corresponding to
a section of liquid of length L is

dUsurf

dt
= −L Sv, (24.19)

where

S = γsv − γsl − γ cos θ (24.20)

is the so-called spreading pressure. If the actual contact angle θ is small, we
can assume that S ≈ S0 + γ θ2/2, where S0 is the spreading pressure at θ = 0.
According to Eq. (22.2), the dissipation rate depends on the velocity gradient in
the drop as η(dv/dz)2, where η is the viscosity of the fluid. In a first approximation
dv/dz ≈ v/h, where h(x) ≈ θx is the droplet profile, so that

dEdiss

dt
≈ Lη

∫ R

b

( v
xθ

)2
(θx) dx = Lηv2 ln(R/b)

θ
,

where R is the radius of the droplet and b is a cut-off distance comparable to the
size of a fluid molecule. Equating the dissipation rate to the energy loss (24.19),
observing that, for small values of θ , the quantity R3θ is approximately equal to
the (constant) volume V of the droplet, and neglecting S0, one gets

dR

dt
ln

R

b
≈ γ

η

(
V

R3

)3

.

Finally, neglecting the slowly varying logarithmic term and integrating, we end up
with the Tanner law of wetting [329]:

R(t) ≈
(

V 3γ

η
t

)1/10

. (24.21)

The Tanner law is experimentally verified even if S0 is not negligible. The reason
is that the fluid spreads far ahead of the macroscopic contact line in a flat precursor
film [137] of thickness between a monolayer and about 10 nm (Fig. 24.10). The ‘flat

precursor film

apparent contact line

Figure 24.10 Spreading of a precursor film driven by van der Waals forces.
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spreading pressure’ S0 is balanced by the energy dissipation in the precursor film,
whereas the residual spreading pressure γ θ2/2 is balanced by the dissipation in the
droplet, as described above. As shown by time-resolved ellipsometry, the radius of
the precursor film advances as

√
t [137]. This behavior can be reproduced using a

model which does not differ substantially from that discussed in Section 24.4 [245,
section 8.6.3].



Appendix A

Friction force microscopy

Similarly to standard AFM (Fig. 17.1), friction force microscopy (FFM) is based
on the relative motion of a sharp tip on a solid surface. This motion is realized by
a scanner formed by piezoelectric elements, which moves the surface perpendic-
ularly to the tip with a certain time periodicity. The scanner can be also extended
or retracted in order to vary the normal force FN between tip and surface. This
force is responsible for the deflection of the microcantilever supporting the tip.
If FN increases while scanning due to local variations of the surface height, the
scanner is retracted by a feedback loop. If FN decreases, the surface is brought
closer to the tip by extending the scanner. In such a way, the surface topography
can be reconstructed line by line from the vertical deformation of the scanner. An
accurate control of the imaging process is made possible by a light beam, which is
reflected from the rear of the cantilever into a photodetector. When the bending of
the cantilever changes, the light spot on the detector moves up or down. This causes
a variation of the photocurrent corresponding to the value of FN to be controlled.

The scan motion is also accompanied by friction. A tangential force F with the
opposite direction to the scan velocity v hinders the sliding motion. The force F
causes the torsion of the cantilever, and can be recorded simultaneously with the
topography if the photodetector can measure not only the normal deflection but
also the torsion of the lever while scanning. In practice this is made possible by
a four-quadrants photodetector, which converts the photocurrent corresponding to
the lateral force into a voltage VL. Note that the friction also causes lateral bending
of the cantilever, but this effect is modest if the thickness of the lever is much less
than its width.

The first atomic friction measurements by Mate et al. [206] were actually based
on the deflection of a tungsten wire. The optical beam deflection scheme was intro-
duced independently by two groups in 1990 [219, 205]. Other methods to measure
the forces between tip and surface are capacitance detection [232], dual fiber inter-
ferometry [211], and piezoelectric levers [186]. In the first method capacitance
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variations of two plates close to the cantilever are measured while scanning. The
second technique uses two optical fibers to detect the cantilever deflection along
two orthogonal directions angled at 45◦ with respect to the surface normal. In the
third case the normal and lateral forces are detected with two Wheatstone bridges
at the base of the cantilever. The two forces are proportional to respectively the
sum and the difference of the bridge signals.

Force calibration is relatively simple for rectangular cantilevers. Due to possible
discrepancy with the geometric values provided by manufacturers, one should use
optical or electron microscopes to determine the width, thickness and length of
cantilever, w, d and L , the tip height h and the position of the tip with respect
to the cantilever. The thickness of the cantilever can also be estimated from the
resonance frequency f0 using the relation

d = 2
√

12π

1.8752

√
ρ

E
f0L2. (A.1)

In Eq. (A.1) ρ is the density of the cantilever and E is its Young’s modulus. The
normal stiffness kN and the lateral stiffness kL of the lever are given by

kN = Ewt3

4L3
, kL = Gwt3

3h2L
,

where G is the shear modulus of the material. Typical values of kN and kL for
commercial probes are few N/m and few hundreds of N/m respectively.

The next step is measuring the sensitivity Sz of the photodetector in nm/V. For
beam-deflection FFMs Sz can be determined by force vs. distance curves measured
on hard surfaces (e.g. Al2O3), where elastic deformations are negligible and the
vertical elongation of the scanner equals the deflection of the cantilever. The typical
response of the photodetector when the tip is brought into contact and then retracted
is sketched in Fig. A.1. In the beginning no signal variations are observed until the
tip jumps into contact at the distance z = z1 from the surface. Further extension or
retraction of the scanner results in a linear response until the tip jumps again out
of contact at a distance z2 > z1. The slope of the linear part of the curve gives the
required value of Sz . Assuming that the light beam is precisely positioned above
the tip, the normal and lateral forces can be finally estimated as

FN = kNSzVN, FL = 3

2
cL

h

L
SzVL,

where VN is the voltage corresponding to the normal deflection of the lever.
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VN

zz1 z2

Figure A.1 A typical force–distance curve on a hard surface.

The normal stiffness kN can also be calibrated with alternative methods. Cleve-
land et al. attached tungsten spheres to the tip, which changes the value of
f0 as

f0 = 1

2π

√
kN

M + meff
.

In the previous equation M is the total mass of the spheres and meff is the effective
mass of the cantilever [59]. The value of kN can be extrapolated from the frequency
shifts � f corresponding to different masses. Alternatively Hutter et al. observed

w/sinL

h

d2

α

α

Figure A.2 Geometry of a V-shaped cantilever.
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that kN is related to the area P of the power spectrum of the thermal fluctuations of
the free cantilever [143]. The correct relation is kN = 4kBT/3P , where kB is Boltz-
mann’s constant and T is the absolute temperature [41]. Extensions of this method
have been proposed by Sader et al. for both normal and lateral force calibration
[299, 121].

Calculations for cantilevers with different shapes require finite element analysis,
although approximate formulas have been derived. In the case of V-shaped can-
tilevers, Neumeister et al. [233] have obtained an analytical approximation for the
lateral stiffness:

kL = Ed3

3(1 + ν)h2

(
1

tan α
ln

w

l sinα
+ l cosα

w
− 3 sin 2α

8

)−1

,

where the geometrical quantities L , w, α, d and h are defined in Fig. A.2. The
expression for kN is more complex and can be found in [233]. Note that V-shaped
cantilevers are more sensitive to lateral forces, but also more prone to in-plane
bending.



Appendix B

Viscosity of gases

The viscosity of a gas is determined by molecular diffusion. Accurate estimations
can be made using the methods of kinetic theory. In this theory the fraction of
molecules with momentum p = mv close to a given position r at a given time t
defines the distribution function f (p, r, t) (m is the mass of a molecule and v its
velocity). According to Boltzmann’s equation this function varies with the time t as

∂ f

∂t
+ v · ∇ f = ∂ f

∂t

∣∣∣∣
coll

, (B.1)

where the quantity on the right hand side corresponds to the so-called collision
integral. If collisions occur only between pairs of molecules:

∂ f

∂t

∣∣∣∣
coll

=
∫
vrel( f ′

1 f ′
2 − f1 f2) dσ d3 p2,

where vrel is the relative velocity of two generic molecules labeled as 1 and 2, and
σ is the collisional cross-section1 and the primes indicate the values acquired in
the collision.

Another key concept in kinetic theory is the mean free path l, which is defined
as the average distance covered by a molecule between two consecutive collisions.
The order of magnitude of l depends on σ and on the number n of molecules per
unit volume as

l ∼ 1

nσ
.

For air at room temperature l ≈ 70 nm.
Considering the viscosity η of a gas as a ‘diffusivity of momentum’, this quantity

has an order of magnitude

η ∼ mnlvT ,

1 If a molecular beam hits a scattering center with the same velocity, the cross section σ is defined as the ratio
between the number of molecules scattered in unit time and the flux density of the incident molecules.
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where vT ∼ √
kBT is the average velocity of a molecule at the temperature T .

Since σ also depends on the temperature, a general relation for η as a function of
T is not possible. However, if T is not too low, the molecules can be considered
as hard elastic particles and σ varies only slightly with the velocity. In this case,
η ∝ √

T , where the coefficient of proportionality is of the order of
√

mkB/σ .
The viscosity of a dilute gas can be estimated using the theory of Chapman–

Enskog [51, 86]. In this theory η is expressed as a series of polynomials. When
inserted in Eq. (B.1), the series turns out to be rapidly converging. For a gas formed
by rigid spheres with diameter d, the cross-section is σ = πd4 and

η ≈ 0.18

√
mkBT

d2
.

It is interesting to observe that an exact calculation of η is possible if the interaction
law between the gas particles has the form U (r) = α/r4. The solution to this
formal problem was obtained by Maxwell [208]:

η = 0.81kBT

√
m

α
.

A completely similar result holds for the thermal conductivity κ , which relates
the heat flow q to the temperature gradient ∇T in a fluid:

q = −κ∇T .

Considering the quantity κ as a ‘diffusivity of energy’, it is not difficult to see that
its order of magnitude is κ ∼ cnlvT , where c is the molecular heat capacity.



Appendix C

Slip conditions

Consider a fluid confined by two parallel planes in relative motion as in Fig. 22.1
and suppose that the fluid sticks to the upper plane but slips on the lower one. In this
case, it can be proven that the shear stress is given by Eq. (22.5), with the right hand
side divided by (1 + l/h) [245, section 8.6]. The slip length l can be seen as the
fictitious distance below the surface where the no-slip boundary condition would
be satisfied. Similarly, the flow rate in a cylindrical pipe is given by Poiseuille’s
law (22.8) with the right hand side multiplied by the factor (1 + 4l/h). From
dimensional considerations it is not difficult to prove that, under ideal conditions,

l = η

γmna
,

where η is the viscosity, m is the mass of a liquid molecule, na is the adsorbate
concentration and γ is the damping coefficient in Eq. (15.26). In the case of water
flowing on a flat metal surface, the slip length would be thus of the order of 10 µm.

However, the slip length is influenced by many factors, e.g. surface roughness,
dissolved gases, wetting, electrical properties and viscous heating. In the case of
a wavy surface with amplitude h0 and periodicity λ = 2π/k, Einzel et al. [84]
derived an expression for the effective slip length leff from the Navier–Stokes
equation. Introducing a critical slip length

lc = λ3

8π3h2
0

,

they concluded that leff ≈ lc if l � lc, and leff ≈ −λ2/(4π 2lc) if l � lc. Thus,
negative slip lengths are also possible.
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