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We live twice.
The first round is serious.
The second round is funny.
Interestingly, we are mixed together on Earth.
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Preface

In this book, we revise the vehicle dynamics based on a new mathematical model for
combined tire forces. The force system at the tireprint of a loaded, rolling, steered,
cambered tire includes forward, lateral, and vertical forces, as well as aligning, roll,
and pitch moment. The forward and lateral forces are the most significant forces in
vehicle maneuvering. Tire force modeling has been introduced more than a century
ago and improved in several steps through experiments and empirical modeling.

In dynamic modeling of tire forces and vehicles motion, it is traditional to
introduce the longitudinal force by slip ratio and lateral force by sideslip angle. Our
experiments as well as other available experiments conducted by other investigators
during the past decades show that there are decreasing interactions between the
lateral and longitudinal tire forces. We introduce a set of equations to model
interaction of the lateral and longitudinal tire forces and develop the equations of
motion of vehicles based on a new model. Such realistic tire force model has the
potential to improve the control strategies and increase the safety of vehicles at
critical conditions.

In summary, the vehicle dynamic models that are developed for combined
tire forces modeling, four-wheel planar, bicycle roll, and four-wheel roll are
new theories introduced in this book. Several examples have been included to
show the effectiveness of the mathematical equations as well as good results to
compare other analysis and projects. The newly developed equations of motion
and the mathematical modeling are perfect for investigation, study, predication, and
development of control strategy specially for vehicle drift, sliding, and skidding on
slippery, icy, snowy, wet, dirt pavements. The equations are also supporting the new
vehicle designs equipped with in-wheel electrical motors, and steering by wires, as
well as traditional vehicle designs.

I deeply appreciate the extensive helps from my colleagues, Hormoz Marzbani,
Sina Milani, Nguyen Dang Quy, and Amir Salemi, for their valuable comments and
reviews, simulation, and tests. This book would have not been prepared without
their contributions.

ix



x Preface

Level of the Book

This book has been developed from nearly a decade of research and experiments
in nonlinear vehicle dynamics and teaching courses in vehicle dynamics. It is
addressed primarily to the graduate student in engineering. Hence, it is an advanced
releaser book that may also be used as a textbook. It provides fundamental and
advanced topics needed in computerizing vehicle handling. The whole book can
be covered in one course in 12–16 weeks. Students are required to know the
fundamentals of vehicle dynamics, kinematics and dynamics, as well as have an
acceptable knowledge of numerical methods and differential equations.

The contents of the book have been kept at a fairly theoretical–practical level.
All concepts are deeply explained and their application emphasized, and most of the
related theories and formal proofs have been explained. The book places a strong
emphasis on the physical meaning and applications of the concepts. Topics that have
been selected are of high interest in the field. An attempt has been made to expose
students and researchers to the most important topics and applications.

Organization of the Book

The book is organized so it can be used for teaching or for self-study. Chapter 1,
“Tire Dynamics,” contains kinematics and coordinate frame transformation between
different frames in tire, wheel, and vehicle body. It also includes the main theory
behind combined tire force equations and their interactions. It also covers the
vehicle load transfer by forward and lateral acceleration. Chapter 2, “Vehicle Planar
Dynamics,” develops the equations of motion of a planar rigid vehicle, both bicycle
and four-wheel models. Several examples for normal and critical maneuvers are
presented. Chapter 3, “Vehicle Roll Dynamics,” follows the same method as the
Chap. 2 to present the equations of motion of a roll rigid vehicle, also for both
bicycle and four-wheel models. There are several new phenomena that appear only
in the roll model. Several examples for normal and critical maneuvers are presented.
Chapter 4, “Road Dynamics,” deals with the main concept of road design to help
vehicles move safer and smoother.

Method of Presentation

This book uses a “fact–reason–application” structure. The “fact” is the main subject
we introduce in each section. Then the reason is given as a “proof.” The application
of the fact is examined in some “examples.” The “examples” are a very important
part of the book as they show how to implement the “facts.” They also cover some
other facts that are needed to expand the “fact.”



Preface xi

Prerequisites

Since the book is written for researchers and advanced graduate level students of
engineering, the assumption is that users are familiar with matrix algebra, numerical
analysis, differential equations, as well as principles of kinematics and dynamics.
Therefore, the prerequisites are the fundamentals of kinematics, dynamics, vector
analysis, matrix theory, numerical methods, and differential equations.

Unit System

The system of units adopted in this book is, unless otherwise stated, the international
system of units (SI). The units of degree (deg) or radian ( rad) are utilized for
variables representing angular quantities.

Symbols

• Lowercase bold letters indicate a vector. Vectors may be expressed in an n-
dimensional Euclidian space. Example:

r, s, d, a, b, c
p, q, v, w, y, z
ω, α, ε, θ , δ, φ

• Uppercase bold letters indicate a dynamic vector or a dynamic matrix, such as
force and moment. Example:

F M

• Lowercase letters with a hat indicate a unit vector. Unit vectors are not bold.
Example:

ı̂, ĵ , k̂, û, û, n̂

Î , Ĵ , K̂, ûθ , ûϕ, ûψ

• Lowercase letters with a tilde indicate a 3 × 3 skew symmetric matrix associated
with a vector. Example:

ã =
⎡
⎣

0 −a3 a2

a3 0 −a1

−a2 a1 0

⎤
⎦ a =

⎡
⎣

a1

a2

a3

⎤
⎦
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• An arrow above two uppercase letters indicates the start and end points of a
position vector. Example:

−−→
ON = a position vector from point O to point N

• The length of a vector is indicated by a non-bold lowercase letter. Example:

r = |r| a = |a| b = |b| s = |s|

• Capital letter B is utilized to denote a body coordinate frame. Example:

B(oxyz) B(Oxyz) B1(o1x1y1z1)

• Capital letter G is utilized to denote a global, inertial, or fixed coordinate frame.
Example:

G G(XYZ) G(OXYZ)

• Right subscript on a transformation matrix indicates the departure frames.
Example:

RB = transformation matrix from frame B(oxyz)

• Left superscript on a transformation matrix indicates the destination frame.
Example:

GRB = transformation matrix from frame B(oxyz)

to frame G(OXYZ)

• Capital letter R indicates rotation or a transformation matrix, if it shows the
beginning and destination coordinate frames. Example:

GRB =
⎡
⎣

cos α − sin α 0
sin α cos α 0

0 0 1

⎤
⎦

• Whenever there is no subscript or superscript, the matrices are shown in a bracket.
Example:

[T ] =
⎡
⎣

cos α − sin α 0
sin α cos α 0

0 0 1

⎤
⎦
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• Left superscript on a vector denotes the frame in which the vector is expressed.
That superscript indicates the frame that the vector belongs to, so the vector is
expressed using the unit vectors of that frame. Example:

Gr = position vector expressed in frame G(OXYZ)

• Right subscript on a vector denotes the tip point that the vector is referred to.
Example:

GrP = position vector of point P

expressed in coordinate frame G(OXYZ)

• Right subscript on an angular velocity vector indicates the frame that the angular
vector is referred to. Example:

ωB = angular velocity of the body coordinate frame B(oxyz)

• Left subscript on an angular velocity vector indicates the frame that the angular
vector is measured with respect to. Example:

GωB = angular velocity of the body coordinate frame B(oxyz)

with respect to the global coordinate frame G(OXYZ)

• Left superscript on an angular velocity vector denotes the frame in which the
angular velocity is expressed. Example:

B2
G ωB1 = angular velocity of the body coordinate frame B1

with respect to the global coordinate frame G,

and expressed in body coordinate frame B2

Whenever the subscript and superscript of an angular velocity are the same, we
usually drop the left superscript. Example:

GωB ≡ G
GωB

Also for position, velocity, and acceleration vectors, we drop the left subscripts
if it is the same as the left superscript. Example:

B
BvP ≡ BvP
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• Left superscript on derivative operators indicates the frame in which the deriva-
tive of a variable is taken. Example:

Gd

dt
x

Gd

dt

BrP

Bd

dt

G
B rP

If the variable is a vector function, and also the frame in which the vector is
defined is the same frame in which a time derivative is taken, we may use the
following short notation,

Gd

dt

GrP = GṙP

Bd

dt

B
o rP = B

o ṙP

and write equations simpler. Example:

Gv =
Gd

dt

Gr(t) = Gṙ

• If followed by angles, lowercase c and s denote cos and sin functions in
mathematical equations. Example:

cα = cos α sϕ = sin ϕ

• Capital bold letter I indicates a unit matrix, which, depending on the dimension
of the matrix equation, could be a 3 × 3 or a 4 × 4 unit matrix. I3 or I4 are also
being used to clarify the dimension of I. Example:

I = I3 =
⎡
⎣

1 0 0
0 1 0
0 0 1

⎤
⎦

• An asterisk � indicates a more advanced subject or example that is not designed
for undergraduate teaching and can be dropped in the first reading.

Melbourne, VIC, Australia Reza N. Jazar
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Chapter 1
Tire Dynamics

The dynamic performance of a vehicle is mainly determined by the interaction of
its tires and road. A vehicle can only move and maneuver by the force systems
generated under the tires. In this chapter, we review the generated forces by a tire as
well as the kinematics of a tire with respect to the vehicle body. Figure 1.1 illustrates
a steered and leaned tire along with the required coordinate frames to analyze its
orientation with respect to the vehicle body.

1.1 Wheel and Tire Coordinate Frames

By narrowing a tire, it becomes a flat disk in its mid-plane called the tire-plane. We
introduce three coordinate frames to express the orientation of such a flat disc with
respect to the vehicle. These coordinate frames are: the wheel frame W , wheel-body
frame C, and tire frame T . Figure 1.1 illustrates the W and T coordinate frames,
and Fig. 1.2 illustrates the W and C coordinate frames (Jazar 2017).

The wheel coordinate frame W (xw, yw, zw) is attached to the center of the wheel
and it follows every motion of the wheel except the spin. Therefore, the xw and zw

axes are always in the tire-plane, and the yw-axis is always on the spin axis.
When a wheel is straight and upright on the ground, it is at its neutral or rest

position. The W -frame at rest position becomes coincident with the wheel-body
coordinate frame C (xc, yc, zc) which is attached to the center of the neutral wheel,
parallel to the vehicle coordinate axes, B. The wheel-body frame C is motionless
with respect to the vehicle and does not follow any motion of the wheel. The axes
xc, yc, zc are always parallel to the axes of the body coordinate frame, B. The
vehicle or body coordinate frame B (x, y, z) is attached to the vehicle at its mass
center. The x-axis is the longitudinal forward axis of the vehicle parallel to the
ground, the y-axis is leftward and parallel to the ground, and the z-axis is the upward
axis. The body coordinate frame acts as a reference frame to determine the position
and orientation of any component of the vehicle.

© Springer Nature Switzerland AG 2019
R. N. Jazar, Advanced Vehicle Dynamics,
https://doi.org/10.1007/978-3-030-13062-6_1
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Tire plane

Ground plane
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Fig. 1.1 Tire frames T and W , sideslip, and camber angles

The tire coordinate frame T (xt , yt , zt ) is set at the center of the tireprint, which
is assumed to be at the intersection of the tire-plane and the ground. The tireprint
or contact patch is the contact area of the tire and the ground. The zt -axis is always
perpendicular to the ground and upward. The xt -axis is along the intersection line
of the tire-plane and the ground and yt makes the T coordinate frame right handed.
The tire frame does not follow the spin and camber rotations of the tire; however, it
follows the steer angle rotation about the zc-axis (Jazar 2017).

Example 1 Transformation of W to T coordinate frame.
Let us assume that the tire is leaned by an angle γ . The lean of tire is a rotation

about the xt -axis and is called the camber angle γ . Camber angle generates some
lateral force. Figure 1.2 illustrates the relative configuration of a tire frame T and a
wheel frame W .

To determine transformation from W to T , we should begin by assuming W -
frame is sitting on the T -frame. Then W needs to go over a rotation and a translation
to come to its current position. It should rotate γ about the xt -axis followed by a
displacement T dW along the zw-axis, where R is the radius of the tire. The rotation
transformation matrix T RW and displacement T dW are:

T RW =
⎡
⎣

1 0 0
0 cos γ − sin γ

0 sin γ cos γ

⎤
⎦ (1.1)
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Fig. 1.2 Illustration of tire and wheel coordinate frames

T dW = R T RW
W k̂ (1.2)

and the total transformation from W -frame to T -frame is:

T r = T RW
W r + T dW = T RW

W r + R T RW
W k̂ (1.3)

where r is the position vector of a point of the tire in tire-plane.
The displacement T dW indicates the T -expression of the position vector of origin

of the wheel frame in the tire frame T . If W rP indicates the position vector of a point
P in the wheel frame,

W rP = [xP yP zP

]T
(1.4)

then the coordinates of the point P in the tire frame T rP are

T rP = T RW
W rP + T dW = T RW

W rP + T RW T
W dW

=
⎡
⎣

xP

yP cos γ − R sin γ − zP sin γ

R cos γ + zP cos γ + yP sin γ

⎤
⎦ (1.5)

where W
T dW is the W -expression of the position vector of the wheel frame in the tire

frame.

W
T dW = R W k̂ = [0 0 R

]T
(1.6)
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As an example, the center of the wheel W rP = W ro = 0 is the origin of the wheel
frame W and is always at W r = W 0 = W

[
0 0 0

]
in the W coordinate frame.

Therefore, in the T -frame, the center of the wheel will be at:

T r = T RW
W 0 + R T RW

W k̂ =
⎡
⎣

0
−R sin γ

R cos γ

⎤
⎦ (1.7)

The transformation from the wheel W to tire T coordinate frame may also be
expressed by a 4 × 4 homogeneous transformation matrix T TW ,

T rP = T TW
W rP =

[
T RW

T dW

0 1

]
W rP (1.8)

where (Jazar 2010a, 2011; Mason 2001),

T TW =

⎡
⎢⎢⎣

1 0 0 0
0 cos γ − sin γ −R sin γ

0 sin γ cos γ R cos γ

0 0 0 1

⎤
⎥⎥⎦ (1.9)

Example 2 Tire T to wheel W frame transformation.
Assume T rP to indicate the position vector of a point P in the tire coordinate

frame,

T rP = [xP yP zP

]T
(1.10)

The position vector W rP of the point P in the wheel coordinate frame is

W rP = WRT
T rP − W

T dW (1.11)

=
⎡
⎣

xP

yP cos γ + zP sin γ

zP cos γ − R − yP sin γ

⎤
⎦

because

WRT =
⎡
⎣

1 0 0
0 cos γ sin γ

0 − sin γ cos γ

⎤
⎦ W

T dW = − W dT =
⎡
⎣

0
0
R

⎤
⎦ (1.12)

We may also multiply both sides of Eq. (1.3) by T RT
W to get the same result.

T RT
W

T rP = W rP + T RT
W

T dW = W rP + W
T dW (1.13)
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W rP = WRT
T rP − W

T dW (1.14)

As an example, the center of tireprint in the wheel frame is at

W rP =
⎡
⎣

1 0 0
0 cos γ − sin γ

0 sin γ cos γ

⎤
⎦

T ⎡
⎣

0
0
0

⎤
⎦−

⎡
⎣

0
0
R

⎤
⎦ =

⎡
⎣

0
0

−R

⎤
⎦ (1.15)

The corresponding homogeneous transformation matrix WTT from the tire to wheel
frame would be

WTT =
[

WRT
W dT

0 1

]
=

⎡
⎢⎢⎣

1 0 0 0
0 cos γ sin γ 0
0 − sin γ cos γ −R

0 0 0 1

⎤
⎥⎥⎦ (1.16)

We can check that WTT = T T −1
W , using the inverse of a homogeneous transforma-

tion matrix rule.

T T −1
W =

[
T RW

T dW

0 1

]−1

=
[

T RT
W − T RT

W
T dW

0 1

]

=
[

WRT − WRT
T dW

0 1

]
=
[

WRT
W dT

0 1

]
(1.17)

Example 3 Tire T to wheel-body C frame transformation.
Figure 1.3 illustrates the relative configuration of a wheel-body frame C, a tire

frame T , and a wheel frame W (Jazar 2017).
To determine the transformation from T -frame to C-frame, we may assume T is

on C and find the required maneuvers that T needs to go to its current position. Let
us assume that the wheel steers about the zc-axis by the steer angle δ. The T -frame
should go through a rotation of δ about the zt -axis followed by a displacement of
CdT . The rotation matrix CRT and displacement CdT are:

CRT =
⎡
⎣

cos δ − sin δ 0
sin δ cos δ 0

0 0 1

⎤
⎦ (1.18)

CdT = −R CRT
T k̂ (1.19)

and therefore, the transformation between the tire T and wheel-body C frames
would be:

Cr = CRT
T r + CdT = CRT

T r − R CRT
T k̂ (1.20)
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Fig. 1.3 Illustration of tire, wheel, and body coordinate frames

where T r is the position vector of a point in T -frame and Cr is the same point in the
C-frame. As an example, the center of the wheel from (1.7) is always at

T r = [0 −R sin γ R cos γ
]T

(1.21)

Therefore, in the C-frame, the center of the wheel will be at:

Cr = CRT
T r − R CRT

T k̂ =
⎡
⎣

R sin γ sin δ

−R cos δ sin γ

R cos γ − R

⎤
⎦ (1.22)

The origin of the tire frame is at CdT in the wheel-body frame.

CdT = [0 0 −R
]T

(1.23)

Therefore, the transformation between the tire and wheel-body frames can be
expressed equivalently, by a homogeneous transformation matrix CTT .

CTT =
[

CRT
CdT

0 1

]
=

⎡
⎢⎢⎣

cos δ − sin δ 0 0
sin δ cos δ 0 0

0 0 1 −R

0 0 0 1

⎤
⎥⎥⎦ (1.24)
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Fig. 1.4 The tire, wheel, and wheel-body frames of a steered wheel

As an example, the wheel-body coordinates of the point P on the tread of a
negatively steered tire at the position shown in Fig. 1.4 are:

Cr = CTT
T rP =

⎡
⎢⎢⎣

cos (−δ) − sin (−δ) 0 0
sin (−δ) cos (−δ) 0 0

0 0 1 −R

0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

R

0
R

1

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

R cos δ

−R sin δ

0
1

⎤
⎥⎥⎦ (1.25)

The homogeneous transformation matrix for wheel-body to tire frame T TC is:

T TC = CT −1
T =

[
CRT

CdT

0 1

]−1

=
[

CRT
T − CRT

T
CdT

0 1

]

=
[

CRT
T − T

CdT

0 1

]
=

⎡
⎢⎢⎣

cos δ sin δ 0 0
− sin δ cos δ 0 0

0 0 1 R

0 0 0 1

⎤
⎥⎥⎦ (1.26)

Example 4 Wheel W to wheel-body C frame transformation.
The homogeneous transformation matrix CTW to go from the wheel frame W to

the wheel-body frame C may be found by combined transformations of CTT and
T TW .
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CTW = CTT
T TW (1.27)

=

⎡
⎢⎢⎣

cδ −sδ 0 0
sδ cδ 0 0
0 0 1 −R

0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1 0 0 0
0 cγ −sγ −R sin γ

0 sγ cγ R cos γ

0 0 0 1

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

cos δ − cos γ sin δ sin γ sin δ R sin γ sin δ

sin δ cos γ cos δ − cos δ sin γ −R cos δ sin γ

0 sin γ cos γ R cos γ − R

0 0 0 1

⎤
⎥⎥⎦

If rP indicates the position vector of a point P in the wheel coordinate frame,

W rP = [xP yP zP

]T
(1.28)

then the homogeneous position vector CrP of the point P in the wheel-body
coordinate frame would be:

CrP = CTW
W rP

=

⎡
⎢⎢⎣

xP cos δ − yP cos γ sin δ + (R + zP ) sin γ sin δ

xP sin δ + yP cos γ cos δ − (R + zP ) cos δ sin γ

−R + (R + zP ) cos γ + yP sin γ

1

⎤
⎥⎥⎦ (1.29)

As an example, the position of the wheel center W r = 0 for a cambered and steered
wheel is at

Cr = CTW
W r =

⎡
⎢⎢⎣

R sin γ sin δ

−R cos δ sin γ

−R(1 − cos γ )

1

⎤
⎥⎥⎦ (1.30)

The zc = R (cos γ − 1) indicates how far the center of the wheel moves down when
the wheel cambers.

If the wheel is not steerable, then δ = 0 and the transformation matrix CTW

reduces to

CTW =

⎡
⎢⎢⎣

1 0 0 0
0 cos γ − sin γ −R sin γ

0 sin γ cos γ R (cos γ − 1)

0 0 0 1

⎤
⎥⎥⎦ (1.31)
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Fig. 1.5 The coordinate frames of the first and fourth tires of a four-wheel vehicle with respect to
the body frame

that shows

CrP = CTW
W rP

=

⎡
⎢⎢⎣

xP

yP cos γ − R sin γ − zP sin γ

zP cos γ + yP sin γ + R (cos γ − 1)

1

⎤
⎥⎥⎦ (1.32)

Example 5 Tire T to coordinate C frame transformation.
Figure 1.5 illustrates the first and fourth tires of a four-wheel vehicle. There is

a body coordinate frame B (x, y, z) attached to the mass center C of the vehicle.
There are also two tire coordinate frames T1

(
xt1 , yt1 , zt1

)
and T4

(
xt4 , yt4 , zt4

)
attached to the tires 1 and 4 at the center of their tireprints (Jazar 2017).

The origin of the tire coordinate frame T1 is at BdT1

BdT1 = [ a1 b1 −h
]T

(1.33)

where a1 is the longitudinal distance between C and the front axle, b1 is the lateral
distance between C and the tireprint of the tire 1, and h is the height of C from the
ground level. If P is a point in the tire frame at T1 rP

T1 rP = [xP yP zP

]T
(1.34)
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then its coordinates in the body frame are

BrP = BRT1
T1 rP + BdT1

=
⎡
⎣

xP cos δ1 − yP sin δ1 + a1

yP cos δ1 + xP sin δ1 + b1

zP − h

⎤
⎦ (1.35)

The transformation matrix BRT1 is a result of steering about the zt1 -axis.

BRT1 =
⎡
⎣

cos δ1 − sin δ1 0
sin δ1 cos δ1 0

0 0 1

⎤
⎦ (1.36)

Employing Eq. (1.3), we may examine a wheel point P at W rP

W rP = [xP yP zP

]T
(1.37)

and find the body coordinates of the point

BrP = BRT1
T1 rP + BdT1

= BRT1

(
T1RW

W rP + T1 dW

)
+ BdT1

= BRT1
T1RW

W rP + BRT1
T1 dW + BdT1

= BRW
W rP + BRT1

T1 dW + BdT1 (1.38)

BrP =
⎡
⎣

xP cos δ1 − yP cos γ sin δ1 + (R + zP ) sin γ sin δ1 + a1

xP sin δ1 + yP cos γ cos δ1 − (R + zP ) cos δ1 sin γ + b1

(R + zP ) cos γ + yP sin γ − h

⎤
⎦ (1.39)

where

BRW = BRT1
T1RW

=
⎡
⎣

cos δ1 − cos γ sin δ1 sin γ sin δ1

sin δ1 cos γ cos δ1 − cos δ1 sin γ

0 sin γ cos γ

⎤
⎦ (1.40)

T1 dW = [0 −R sin γ R cos γ
]T

(1.41)

As an example let us consider a point P on the zt1 -axis at

T1 rP = [0 0 2R
]T

(1.42)
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The coordinates of P in the body B frame are:

BrP = BRT1
T1 rP + BdT1

=
⎡
⎣

cos δ1 − sin δ1 0
sin δ1 cos δ1 0

0 0 1

⎤
⎦
⎡
⎣

0
0

2R

⎤
⎦+

⎡
⎣

a1

b1

−h

⎤
⎦

=
⎡
⎣

a1

b1

2R − h

⎤
⎦ (1.43)

Example 6 Wheel-body C to vehicle B transformation.
The wheel-body coordinate frame C is always parallel to the vehicle frame B.

The origin of the wheel-body coordinate frame of the wheel number 1 is at

BdC1 = [a1 b1 −h + R
]T

(1.44)

Hence the transformation between the two frames is only a displacement.

Br = BIC1
C1 r + BdC1 (1.45)

As an example consider a point P on the xt1 -axis at a distance R from the center
of the tire and assume that the tire is turning about yt1 -axis with angular speed ω.
Therefore,

C1 rP (t) = [R cos ωt 0 −R sin ωt
]T

(1.46)

and the coordinates of the point P in the body coordinate frame B at time t are:

Br (t) = BIC1
C1 rP (t) + BdC1

=
⎡
⎣

1 0 0
0 1 0
0 0 1

⎤
⎦
⎡
⎣

R cos ωt

0
−R sin ωt

⎤
⎦+

⎡
⎣

a1

b1

−h + R

⎤
⎦

=
⎡
⎣

a1 + R cos tω

b1

R − h − R sin tω

⎤
⎦ (1.47)

Example 7 Difference between tire and wheel frames.
As shown in Fig. 1.6, to express the orientation of a wheel and the force system,

three coordinate frames are needed: the wheel frame W , wheel-body frame C, and
tire frame T . The wheel coordinate frame W (xw, yw, zw) is attached to the center of
the wheel and follows every motion of the wheel except the wheel spin. Therefore,
the xw and zw axes are always in the tire-plane, while the yw-axis is always on the
spin axis.
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Fig. 1.6 Tire force system is expressed in T -frame

We also attach a wheel-body coordinate frame C (xc, yc, zc) at the center of the
wheel parallel and fixed with respect to the vehicle coordinate axes B (x, y, z). The
wheel-body frame C is motionless with respect to the vehicle coordinate and does
not follow any motion of the wheel. When the wheel is upright straight, the W -frame
coincides with C-frame and becomes parallel to the vehicle coordinate frame B. The
W -frame makes the steer angle δ and camber angle γ with respect to the C-frame.

The tire coordinate frame T (xt , yt , zt ) is set at the center of the tireprint with the
zt -axis perpendicular to the ground and parallel to the z-axis. The xt -axis is along
the intersection line of the tire-plane and the ground. The tire frame follows the steer
angle rotation about the zc-axis but it does not follow the spin and camber rotations
of the tire.

To determine the difference between the T and W frames, let us use T dW to
indicate the T -expression of the position vector of the wheel frame origin relative
to the tire frame origin. Having the coordinates of a point P in the wheel frame, we
may find its coordinates in the tire frame by:

T rP = T RW
W rP + T dW (1.48)

If W rP indicates the position vector of a point P in the wheel frame,

W rP = [xP yP zP

]T
(1.49)
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then the coordinates of the point P in the tire frame T rP are

T rP = T R W rP + T d = T RW
W rP + T R W

T dW

=
⎡
⎣

xP

yP cos γ − R sin γ − zP sin γ

R cos γ + zP cos γ + yP sin γ

⎤
⎦ (1.50)

because

T RW =
⎡
⎣

1 0 0
0 cos γ − sin γ

0 sin γ cos γ

⎤
⎦ W

T dW =
⎡
⎣

0
0
R

⎤
⎦ (1.51)

where W
T dW is the W -expression of the position vector of the wheel frame in the tire

frame, R is the radius of the wheel, and T RW is the transformation matrix from the
W to T .

The center of the wheel W rP = W ro = 0 is the origin of the wheel frame W that
will be at T ro in the tire coordinate frame T .

T ro = T dW = T R W
T dW =

⎡
⎣

0
−R sin γ

R cos γ

⎤
⎦ (1.52)

If the camber angle is zero, γ = 0, then

T ro =
⎡
⎣

0
0
R

⎤
⎦ = W

T dW γ = 0 (1.53)

1.2 Tire Force System

The resultant force system that a tire receives from the ground is assumed to be
located at the center of the tireprint and can be decomposed along xt , yt , and zt

axes of the tire coordinate frame T . Therefore, the interaction of a tire with the road
generates a three-dimensional (3D) force system including three forces and three
moments, as shown in Fig. 1.6. The components of the tire force system are:

1. Longitudinal force Fx . It is the force acting along the x-axis. The resultant
longitudinal force Fx > 0 in accelerating and Fx < 0 in braking. Longitudinal
force is also called forward force or traction force.

2. Lateral force Fy . It is the force tangent to the ground and orthogonal to both Fx

and Fz. The resultant lateral force Fy > 0 when it is in the y-direction.
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3. Normal force Fz. It is the vertical force, normal to the ground plane. The resultant
normal force Fz > 0 if it is upward. The traditional tires and pavements are
unable to provide Fz < 0. Normal force is also called vertical force or wheel
load.

4. Roll moment Mx . It is the longitudinal moment about the x-axis. The resultant
roll moment Mx > 0 when it tends to turn the tire about the x-axis. The roll
moment is also called the bank moment, tilting torque, or overturning moment.

5. Pitch moment My . It is the lateral moment about the y-axis. The resultant pitch
moment My > 0 when it tends to turn the tire about the y-axis and move it
forward. The pitch moment is also called rolling resistance torque.

6. Yaw moment Mz. It is the upward moment about the z-axis. The resultant yaw
moment Mz > 0 when it tends to turn the tire about the z-axis. The yaw moment
is also called the aligning moment, self-aligning moment, or bore torque.

This force system is applied on the tire from the ground. All other possible forces
on a wheel are assumed to be at the wheel axle. The driving or braking moment
applied to the tire from the vehicle about the tire axis is called wheel torque T

(Jazar 2011, 2017).

1.3 Tire Longitudinal Force

To accelerate or brake a vehicle, a longitudinal force must develop between the
tire and the ground. When a moment T is applied to the spin axis of the tire,
longitudinal slip ratio s occurs and a longitudinal force Fx is generated at the
tireprint proportional to s

Fx = Fx
T ı̂ (1.54)

Fx

Fz

= Cs S (s − ss) (1.55)

Cs = 1

Fz

lim
s→0

∂Fx

∂s
> 0 (1.56)

s = Rg ωw − vx

Rg ωw H(Rg ωw − vx) + vx H(vx − Rg ωw)
(1.57)

Iw ω̇w = T − Rw Fx (1.58)

Rh = Rg − Fz

kz

(1.59)

where S is the Saturation function, H is the Heaviside function, Iw is the mass
moment of the wheel about its spin axis, Rg is the unloaded geometric radius of
tire, Rw is the equivalent tire radius as are shown in Fig. 1.7, and kz is the vertical
stiffness of the tire (Jazar 2011, 2013). The ωw is tire’s angular velocity, and vx is
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Fig. 1.7 Geometric radius Rg , effective radius Rw , and tire center height Rh of loaded and rolling
tire

the tire’s forward velocity. Saturation is a linearly proportional function while the
variable is within a limit, and constant out of the limit. The Saturation function
S(x − x0) is defined as:

S(x − x0) =
⎧⎨
⎩

x0 x0 < x

x −x0 < x < x0

−x0 x < −x0

(1.60)

Heaviside is an on-off switching function that is defined as:

H(x − x0) =
{

1 x > x0

0 x < x0
(1.61)

Saturation function may be defined by Heaviside function (Andrzejewski and
Awrejcewicz 2005).

S(x − x0) = x H (x0 − |x|) + x0 H (|x| − x0) (1.62)

The force Fx is proportional to the normal load Fz, where the coefficient μx (s)

is called the longitudinal friction coefficient. If FxM
is the maximum achievable

longitudinal tire force, then

FxM
= Cs ssFz = μx Fz (1.63)

where ss is the saturation slip ratio.
The longitudinal slip ratio of a driving tire is defined by

s = Rg ωw − vx

Rg ωw

Rg ωw > vx 0 < s < 1 (1.64)
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Fig. 1.8 Longitudinal friction coefficient as a function of slip ratio s, in driving and braking

and a braking tire with

s = Rg ωw − vx

vx

Rg ωw < vx − 1 < s < 0 (1.65)

Slip ratio s is positive for driving and is negative for braking. The longitudinal force
Fx/Fz is a function of slip ratio s as shown in Fig. 1.8. The longitudinal force
reaches a driving peak value FxP

at s = ss ≈ 0.1, before dropping to an almost
constant steady-state saturated driving value FxM

. The longitudinal force Fx (s) may
be assumed proportional to s when s is very small

Fx (s)

Fz

= Cs s |s| < 0.1 (1.66)

where Cs is called the longitudinal slip coefficient.
The tire will spin when s � 0.1 and the traction force remains almost constant at

FxM
. The same phenomena happens in braking and tire slides when s � −0.1 at the

values −FxP
and −FxM

. Although the values of FxP
and FxM

in accelerating and
decelerating might be different, we assume they are equal in this book.

A proportional-saturation simplification of the longitudinal tire force is exact
and safe enough to be used in computer calculation. Figure 1.9 illustrates the model.
To include the saturation behavior of the longitudinal force Fx as a function of s for
a constant vertical load Fz, we employ this model in which Fx/Fz is proportional to
s while s is less than the saturation ss , and remains constant at the saturated value
Fx = FxM

equal to the maximum lateral force Fx = FxM
for s > ss

Fx

Fz

=
⎧⎨
⎩

Cs s −ss ≤ s ≤ ss
FxM

Fz

= Cs ss = μx s > ss or s < −ss
(1.67)
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Fig. 1.9 The proportional-saturation model of longitudinal tire force Fx/Fz in vehicle dynamics

v

Ground plane x
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Fig. 1.10 A turning tire on the ground to show the no slip travel distance dF , and the actual travel
distance dA

where FxM
= −Cs ssFz = μxFz is the maximum longitudinal force that the tire can

support, which is set by the tire load and the longitudinal friction coefficient μx .

Proof The longitudinal slip ratio s, or simply slip, is defined as the difference
between the actual speed of the tire vx and the theoretical tire speed Rgωw.
Figure 1.10 illustrates a rolling tire on the ground. The ideal distance that the tire
would freely travel with no slip is denoted by dF , while the actual distance the tire
travels is denoted by dA. Thus, for a driving tire, dF > dA, and for a braking tire,
dF < dA.

The difference dF − dA is the tire slip and therefore, the tire slip ratio of the
tire is

s = dF − dA

dF

dF > dA (1.68)
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s = dF − dA

dA

dF < dA (1.69)

To have the instant value of s, we must measure the travel distances in an
infinitesimal time period, and therefore,

s ≡ ḋF − ḋA

ḋF

ḋF > ḋA (1.70)

s ≡ ḋF − ḋA

ḋA

ḋF < ḋA (1.71)

If the angular velocity of the tire is ωw, then ḋF = Rg ωw and ḋA = Rw ωw = vx ,
where Rg is the geometric tire radius and Rw is the effective radius. Therefore, the
slip ratio s is defined based on the actual speed vx = Rw ωw, and the freely rolling
speed Rg ωw.

s = Rg ωw − Rw ωw

Rg ωw

= Rg ωw − vx

Rg ωw

= 1 − vx

Rg ωw

Rg ωw > vx (1.72)

s = Rg ωw − Rw ωw

Rw ωw

= Rg ωw − vx

vx

= Rg ωw

vx

− 1 vx > Rg ωw (1.73)

A tire can exert longitudinal force only if a longitudinal slip is present. During
acceleration, the actual velocity vx is less than the ideal free velocity Rg ωw, and
therefore, s > 0. During braking, the actual velocity vx is higher than the free
velocity Rg ωw and therefore, s < 0. We may combine the positive and negative slip
ratios and define it by a single equation as (1.57) to be used in computer analysis of
the equations of motion.

The frictional force Fx between a tire and the road surface is a function of normal
load Fz, vehicle speed vx , and wheel angular speed ωw. In addition to these variables
there are a number of parameters that affect Fx , such as tire pressure, tread design,
wear, and road surface conditions (Hartman et al. 2018). It has been determined
empirically that a contact friction force of the form

FxM
= μx Fz (1.74)

can effectively model experimental measurements obtained with constant vx , ωw

and other environmental conditions. Longitudinal slip is also called circumferential
or tangential slip.
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Fig. 1.11 Free-body-diagram of a wheel

Figure 1.11 illustrates free-body-diagram of a tire. In x-direction, there is a
traction (or braking) force Fx and a rolling resistance force FR . In z-direction there
is a tire load Fz which will be in balance with the ground reaction as long as the tire
is touching the ground. About the y-axis there is a applied torque T . The equations
of motion of such tire are:

mwv̇x = Fx − FR (1.75)

Iwω̇w = T − (Fx − FR)Rw (1.76)

where mw is the wheel mass, Iw is the mass moment of the wheel, and Rw is the
tire effective radius.

An effective radius Rw = vx/ωw is defined by measuring the tire’s angular
velocity ω = ωw and forward velocity vx . When the tire rolls, each part of the
circumference is flattened as it passes through the contact area. A practical estimate
of the effective radius Rw may be estimated by substituting the arc with the straight
length of tireprint as is shown in Fig. 1.7. The tire vertical deflection is

Rg − Rh = Rg (1 − cos ϕ) (1.77)

and

Rh = Rg cos ϕ (1.78)

a = Rg sin ϕ (1.79)

If the motion of the tire is compared to the rolling of a rigid disk with radius Rw,
then the tire must move a distance a ≈ Rw ϕ for an angular rotation ϕ

a = Rg sin ϕ ≈ Rw ϕ (1.80)
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hence,

Rw = Rg sin ϕ

ϕ
(1.81)

Expanding sin ϕ
ϕ

in a Taylor series shows that

Rw = Rg

(
1 − 1

6
ϕ2 + O

(
ϕ4
))

(1.82)

Using Eq. (1.77) we may approximate

cos ϕ ≈ 1 − 1

2
ϕ2 (1.83)

ϕ2 ≈ 2 (1 − cos ϕ) ≈ 2

(
1 − Rh

Rg

)
(1.84)

and therefore,

Rw ≈ Rg

(
1 − 1

3

(
1 − Rh

Rg

))
= 2

3
Rg + 1

3
Rh (1.85)

As Rh is a function of tire load Fz,

Rh = Rh (Fz) = Rg − Fz

kz

(1.86)

the effective radius Rw is also a function of the tire load. The angle ϕ is called
tireprint angle or tire contact angle.

The vertical stiffness of radial tires kz is less than non-radial tires under the same
conditions. So, the loaded height of radial tires, Rh, is less than the non-radials’.
However, the effective radius of radial tires Rw is closer to their unloaded radius
Rg . As a good estimate, for a non-radial tire, Rw ≈ 0.96Rg , and Rh ≈ 0.94Rg ,
while for a radial tire, Rw ≈ 0.98Rg , and Rh ≈ 0.92Rg .

Generally speaking, the effective radius Rw depends on the type of tire, stiffness,
load conditions, inflation pressure, and tire’s forward velocity. �
Example 8 Slip ratio is 0 < s < 1 in driving.

When we accelerate, a driving moment is applied to the tire axis. The tire is
moving slower than a free tire

Rw ωw < Rg ωw (1.87)

and therefore s > 0. The equivalent radius for a driving tire is less than the geometric
radius

Rw < Rg (1.88)
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Equivalently, we may express the condition using the equivalent angular velocity
ωeq and deduce that a driving tire turns faster than a free tire

Rg ωeq < Rg ωw (1.89)

The driving moment can be high enough to overcome the friction and turn the tire
on pavement while the vehicle is not moving. In this case vx = 0 and therefore,
s = 1. It shows that the longitudinal slip would be between 0 < s < 1 when a
driving torque is applied.

0 < s < 1 for T > 0 (1.90)

The tire speed Rw ωw equals vehicle speed vx only if wheel torque T is zero.

Example 9 Slip ratio is −1 < s < 0 in braking.
When we brake, a braking moment is applied to the wheel axis. The tire is

moving faster than a free tire

Rw ωw > Rg ωw (1.91)

and therefore, s < 0. The equivalent radius for a braking tire is more than the free
radius

Rw > Rg (1.92)

Equivalently, we may express the condition using the equivalent angular velocity
ωeq and deduce that a braking tire turns slower than a free tire

Rg ωeq > Rg ωw (1.93)

The brake moment can be high enough to lock the tire. In this case ωw = 0 and
therefore, s = −1. The longitudinal slip would be between −1 < s < 0 when
braking.

−1 < s < 0 for T < 0 (1.94)

Example 10 �Slip ratio based on equivalent angular velocity ωeq .
It is possible to define an effective angular velocity ωeq as an equivalent angular

velocity for a tire with radius Rg to proceed with the actual speed vx = Rg ωeq .
Using ωeq we have

vx = Rg ωeq = Rw ωw (1.95)
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Table 1.1 Average of
longitudinal friction
coefficients

Road surface Peak value, μx Sliding value, μxM

Asphalt, dry 0.8–0.9 0.75

Concrete, dry 0.8–0.9 0.76

Asphalt, wet 0.5–0.7 0.45–0.6

Concrete, wet 0.8 0.7

Gravel 0.6 0.55

Snow, packed 0.2 0.15

Ice 0.1 0.07

and therefore,

s = Rg ωw − Rg ωeq

Rg ωw

= 1 − ωeq

ωw

ωw > ωeq (1.96)

s = Rg ωw − Rg ωeq

Rg ωeq

= ωw

ωeq

− 1 ωeq > ωw (1.97)

Example 11 Maximum acceleration and longitudinal friction.
Consider a car with mass m = 1400 kg that achieves vx = 40 m/s in t = 10 s.

Assuming the car reaches vx = 10 m/s in the first second, then we may assume a
maximum acceleration of a = 10 m/s2 which needs a traction force of Fx = ma =
1400 × 10 = 14,000 N. Let us assume that the car is rear-wheel-drive and the rear
wheels are driving at the maximum traction under the load 4600 N on each rear tire,
then a longitudinal friction coefficient of

μx = Fx

Fz

= 14,000

2 × 4600
≈ 1.52 (1.98)

is required. Such a large friction needs small grain asphalt and special race car tires.
Table 1.1 shows the average values of longitudinal friction coefficients μx for a

passenger car tire 215/65R15.
In this book we accept a linear-saturation model for tire friction. Therefore, the

last column of the Table 1.1 depicts the maximum friction coefficients.

Example 12 � Alternative slip ratio definitions.
In another alternative definition, the following equation is used for longitudinal

slip:

s = 1 −
(

Rg ωw

vx

)n

where n =
{+1 Rg ωw ≤ vx

−1 Rg ωw > vx
(1.99)

s ∈ [0, 1]

In this definition s is always between zero and one. When s = 1, then the tire is
either locked while the car is sliding, or the tire is spinning while the car is not
moving.
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Example 13 � Acceleration-based longitudinal slip.
Employing Eq. (1.70), we may also define s as

s ≡ d̈F − d̈A

d̈F

d̈F > d̈A (1.100)

s ≡ d̈F − d̈A

d̈A

d̈F < d̈A (1.101)

and therefore,

s = Rg αw − ax

Rg αw

= 1 − ax

Rg αw

Rg αw > ax (1.102)

s = Rg αw − ax

ax

= Rg αw

ax

− 1 ax > Rg αw (1.103)

where αw is the tire’s angular acceleration, and ax is the tire’s forward acceleration.

Example 14 Velocity-dependent longitudinal force.
Experimental results show that the longitudinal force of a tire drops at higher

speeds for the same slip. This fact suggests a correction in the equation of
longitudinal force (1.55) as

Fx

Fz

= Cs s − Cs1 vx (1.104)

or

Fx

Fz

= Cs s − Cs2 v2
x (1.105)

or

Fx

Fz

= Cs s − Cs1 vx − Cs2 v2
x (1.106)

where Cs1 [ s/m] is the coefficient indication how much Fx/Fz will drop for every
1 m/s of longitudinal velocity of the tire. Similarly, Cs2 [ s2/ m2] is the coefficient
indication how much Fx/Fz will drop for every 1 [ m/s]2 of square of longitudinal
velocity of the tire.

Example 15 �Longitudinal slip ratio rate.
Time derivative of s shows that

ṡ = − d

dt

vx

Rg ωw

= −ax ωw − vx αw

Rg ω2
w

= vx

ωwRg

αw

ωw

− vx

ωwRg

ax

vx

= (1 − s)

(
αw

ωw

− ax

vx

)
Rg ωw > vx (1.107)
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ṡ = d

dt

Rg ωw

vx

= Rg αw vx − Rg ax ωw

v2
x

= Rg ωw

vx

αw

ωw

− Rg ωw

vx

ax

vx

= (s − 1)

(
αw

ωw

− ax

vx

)
vx > Rg ωw (1.108)

or

ṡ =
(

αw

ωw

− ax

vx

)
(1 − s) H(Rg ωw − vx)

+
(

αw

ωw

− ax

vx

)
(s − 1) H(vx − Rg ωw) (1.109)

A better model for longitudinal tire force is to include the rate of s such as

Fx

Fz

= Cs s − Cṡ ṡ (1.110)

where Cṡ is the coefficient indicating how Fx/Fz drops because of the slip rate ṡ.

Example 16 Activation functions.
Activation functions are utilized to change the level of a command signal from a

steady-state value to another steady-state value. The simplest activation function is
Heaviside function which act as a sudden on/off switch function.

H(x − x0) =
{

1 x > x0

0 x < x0
(1.111)

The Saturation function (1.112) does the change with a constant rate between −x0
and x0.

S(x − x0) =
⎧⎨
⎩

x0 x0 < x

x −x0 < x < x0

−x0 x < −x0

(1.112)

S(x − x0) = x H (x0 − |x|) + x0 H (|x| − x0) (1.113)

In reality, the signal will smoothly gain a rate of change and then smoothly get a
negative rate until its level changes to the new value. Therefore, all signals will
change their steady-state values on smoother curves. The most practical activation
function is the Logistic or Sigmoid function.

f (x) = Sig (x) = L

1 + e−k(x−x0)
(1.114)
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The Sigmoid function may also be called Soft step. Tangent hyperbolic function is
another smooth activation function

f (x) = tanh (x) = ex − e−x

ex + e−x
(1.115)

The arctan is another useful activation function.

f (x) = arctan (x) = tan−1 (x) (1.116)

The soft sign,

f (x) = x

1 + |x| (1.117)

inverse square root

f (x) = x√
1 + kx2

(1.118)

are other practical activation functions.
To have a more realistic change and saturation in longitudinal slip ratio and other

saturating characteristics in vehicle dynamics, we may use a continuous activation
function instead of the sharp changing Saturation function.

1.4 Tire Lateral Force

The capability of generating lateral force is the main advantage of using rubber tires.
Only few materials have the characteristics to make a flexible tire while sticking to
the ground and generate lateral force when steering. The lateral force is made by
sideslip and camber which will be studied in this section (Jazar 2017).

The tire lateral force Fy is the most important tire force in vehicle maneuvering.
The lateral force is mainly a function of two angles of the tire: sideslip angle α and
camber angle γ as are shown in Fig. 1.6. The lateral force Fy is a linear combination
of the angles α and γ assuming the lateral forces generated by α and γ do not affect
each other.

Fy

Fz

= −Cα S (α − αs) − Cγ S
(
γ − γ s

)
(1.119)

The Saturation function S(x − x0) is defined as:

S(x − x0) =
⎧⎨
⎩

x0 x0 < x

x −x0 < x < x0

−x0 x < −x0

(1.120)
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Fig. 1.12 Camber and sideslip angles illustration. (a) Front view of a tire and measurement of the
camber angle. (b) Top view of a tire and measurement of the sideslip angle

The sideslip angle α and camber angle γ are measured in radians [ rad] or degrees[
deg
]

and therefore, their associated coefficients Cα and Cγ are respectively in[
rad−1] or

[
deg−1].

To show the sideslip and camber angles, we assume a flat ground and attach
a Cartesian tire coordinate frame T at the center of the tireprint when the tire is
vertical and stationary. The xt -axis is along the intersection line of the tire-plane
and the ground. The zt -axis is upward perpendicular to the ground, and the yt -axis
makes the coordinate system a right-hand triad.

The camber angle γ is the angle between the vertical plane and the tire-plane
measured from the zt -axis to the zw-axis about the xt -axis. The camber angle can
be recognized better in a front view on x-axis as shown in Fig. 1.12a. The sideslip
angle α is the angle between the xt -axis and the tire velocity vector v, measured
about the zt -axis. Because the xt -axis of the T -frame and is always parallel to the
xw-axis of the W -frame, we may also define α as the angle between xw-axis and v
in a plane parallel to the ground. The sideslip can be recognized better in a top view,
as shown in Fig. 1.12b.

Figure 1.13a illustrates a tire, moving along the velocity vector v at a sideslip
angle α. The tire is steered by the steer angle δ. If the angle between the vehicle
x-axis and the tire velocity vector v is shown by β, then

α = β − δ (1.121)

α = arctan
T vy

T vx

(1.122)

β = arctan
Cvy

Cvx

(1.123)
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Fig. 1.13 Angular orientation of a moving tire along the velocity vector v at a sideslip angle α and
a steer angle δ. (a) α > 0. (b) α < 0

The angle β is called the wheel-body sideslip angle and α is the tire sideslip angle.
The lateral force Fy , generated by a tire, is proportional to the sideslip angle α for
small α.

Fy

Fz

= −Cα α = −Cα (β − δ) |α| < αs (1.124)

Proof A wheel coordinate frame W(xw, yw) is attached to the wheel at the center
of the wheel as shown in Fig. 1.13a. The orientation of the wheel frame is measured
with respect to the wheel-body coordinate frame C (xc, yc). The C-frame is always
parallel to the vehicle frame B(x, y). The angle between the xc and xw axes is the
wheel steer angle δ, measured about the zw-axis. The wheel is moving along the tire
velocity vector v. The angle between the xt -axis and v is the tire sideslip angle α,
and the angle between the body xc-axis and v is the wheel-body sideslip angle β.
The angles α, β, and δ in Fig. 1.13a are all positive. The figure shows that

α = β − δ (1.125)

Practically, when a steered wheel is moving forward, the relationship between
the angles α, β, and δ is such that the velocity vector sits between the xC and xw

axes. A practical situation is shown in Fig. 1.13b. A steer angle will turn the heading
of the wheel by a δ angle. However, because of tire flexibility, the velocity vector
of the wheel is lazier than the heading and turns by a β angle, where β < δ. As a
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result, a positive steer angle δ generates a negative sideslip angle α. Figure 1.13b,
shows that the relation (1.121) is correct under a practical situation.

Velocity vector of a tire may be decomposed and expressed in the tire frame T

or in the wheel-body frame C. The sideslip angle α is used to express v in T -frame

T v = v cos α T ı̂ + v sin α T ĵ (1.126)

and therefore,

α = arctan
T vy

T vx

(1.127)

To express v in C-frame we use the wheel-body sideslip angle β

Cv = v cos β Cı̂ + v sin β Cĵ (1.128)

and therefore,

β = arctan
Cvy

Cvx

(1.129)

If we indicate the velocity vector T v of a tire in T -frame with

T v = [ vx vy 0
]T

(1.130)

then velocity vector v in C-frame will be

Cv = CRT
T v (1.131)

⎡
⎣

v cos α cos δ − v sin α sin δ

v cos α sin δ + v cos δ sin α

0

⎤
⎦ =

⎡
⎣

cos δ − sin δ 0
sin δ cos δ 0

0 0 1

⎤
⎦
⎡
⎣

v cos α

v sin α

0

⎤
⎦

Therefore, the wheel-body sideslip angle β is

tan β =
Cvy

Cvx

= cos α sin δ + cos δ sin α

cos α cos δ − sin α sin δ
= tan (α + δ) (1.132)

β = α + δ (1.133)

Existence of a sideslip angle is sufficient to generate a lateral force Fy , which is
proportional to α when the angle is small.

Fy

Fz

= −Cα α = −Cα (β − δ) |α| < αs (1.134)
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The sideslip angle α is a tire dynamic parameter and the angles β and δ are
vehicle dynamic parameters. Equation (1.121) introduces the way we replace wheel
parameter with vehicle parameters in the equations of motion of the vehicle. �
Example 17 Extreme velocity cases of a wheel.

Consider a wheel as is shown in Fig. 1.13b which has a spinning angular velocity
of ω �= 0 on a frictionless ground. Therefore, the velocity of the wheel center would
be zero, v = 0. The sideslip angle of such a wheel would be zero, α = 0.

Now consider the wheel which has a zero spinning angular velocity ω = 0 and
a nonzero translational velocity v �= 0. The sideslip angle of such a wheel would
be as is shown in Fig. 1.13b. The sideslip angle of a wheel is not a function of the
spinning angular velocity of a wheel.

Example 18 Velocity vector from T to wheel-body C-frame.
We have seen the T to C coordinate frame transformation in Example 3 as

Cr = CRT
T r + CdT = CRT

T r − R CRT
T k̂ (1.135)

or by a homogeneous transformation matrix CTT .

CTT =
[

CRT
CdT

0 1

]
=

⎡
⎢⎢⎣

cos δ − sin δ 0 0
sin δ cos δ 0 0

0 0 1 −R

0 0 0 1

⎤
⎥⎥⎦ (1.136)

T TC = CT −1
T =

[
CRT

CdT

0 1

]−1

=
[

CRT
T − CRT

T
CdT

0 1

]

=
[

CRT
T − T

CdT

0 1

]
=

⎡
⎢⎢⎣

cos δ sin δ 0 0
− sin δ cos δ 0 0

0 0 1 R

0 0 0 1

⎤
⎥⎥⎦ (1.137)

where T r is the position vector of a point in T -frame and Cr is the same point in the
C-frame.

If we indicate the velocity vector T v of a tire in T -frame with

T v = [ vx vy 0
]T

(1.138)

then velocity vector v in C-frame will be

Cv = CRT
T v (1.139)

⎡
⎣

cos δ − sin δ 0
sin δ cos δ 0

0 0 1

⎤
⎦
⎡
⎣

vx

vy

0

⎤
⎦ =

⎡
⎣

vx cos δ − vy sin δ

vy cos δ + vx sin δ

0

⎤
⎦
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Fig. 1.14 A lateral force Fy generation in tireprint of a rolling tire under vertical and lateral forces

Knowing that

T v = v cos α T ı̂ + v sin α T ĵ (1.140)

makes

Cv =
⎡
⎣

v cos α cos δ − v sin α sin δ

v cos α sin δ + v cos δ sin α

0

⎤
⎦ (1.141)

Therefore,

tan β =
Cvy

Cvx

= cos α sin δ + cos δ sin α

cos α cos δ − sin α sin δ
= tan (α + δ) (1.142)

β = α + δ (1.143)

consistent with Eq. (1.121).

1.4.1 Tire Sideslip

Consider a rolling tire that is under a vertical load Fz and a side force F at the tire
axis, as is shown in Fig. 1.14. Such a rolling tire will move laterally and a reaction
lateral force Fy will be generated under the tire. The tire travel velocity v makes
an angle α with respect to the tire longitudinal x-axis as is shown in Fig. 1.15. The
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Fig. 1.15 The path of motion of a rolling tire under vertical and lateral forces
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Fig. 1.16 The cornering stiffness Cα is the slope of the curve Fy = Fy (α) at α = 0 for a given Fz

angle is called sideslip angle which is a reason for generating lateral force Fy . The
lateral force is proportional with α for small Fy (Jazar 2017).

Fy = Fy
T ĵ (1.144)

Fy

Fz

= −Cα S (α − αs) (1.145)

α = arctan
T vy

T vx

(1.146)

The coefficient Cα is called the cornering stiffness or sideslip coefficient of the tire.
Cα is the slope of the curve Fy/Fz = Fy (α) /Fz at α = 0 at a constant Fz, as is
shown in Fig. 1.16.

Cα = lim
α→0

∂
(−Fy/Fz

)
∂α

= 1

Fz

∣∣∣∣ lim
α→0

∂Fy

∂α

∣∣∣∣ (1.147)
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Fig. 1.17 Bottom view of a laterally deflected tire
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Fig. 1.18 Bottom view of a laterally deflected and turning tire

Proof When a tire is under a constant load Fz and then a side lateral force F is
applied on the rim, the tire will deflect laterally while sticking to the ground. A static
lateral force Fy is generated at the tireprint as is shown in the back view of Fig. 1.14.
The wheel will start sliding laterally if the lateral force Fy reaches a maximum value
FyM

. At this point, the lateral force approximately remains constant. The maximum
lateral force is proportional to the vertical load

FyM
= μy Fz (1.148)

where μy is the tire friction coefficient in the y-direction. A bottom view of the
tireprint of a laterally deflected tire is shown in Fig. 1.17.

If the laterally deflected tire is rolling forward on the road by pushing its spin axis
forward, the tireprint will also flex longitudinally. A bottom view of the tireprint for
such a laterally deflected and rolling tire is shown in Fig. 1.18. Although the tire-
plane of such a tire remains perpendicular to the road, the path of the wheel makes
an angle α with tire-plane. The path of the tire is indicated by the velocity vector v
which sits between wheel xw-axis and body x-axis as is shown in Fig. 1.19.

As the wheel rolls forward, un-deflected treads enter the tireprint region and
deflect laterally as well as longitudinally while its normal contact force from the
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Fig. 1.19 The orientation of the tire velocity vector v with respect to the tire and body coordinate
frames in a steered wheel

road increases. When a tread moves from the head to the tail of the tireprint, its
lateral deflection as well as its normal force increase from zero until it reaches the
sliding line. The point where the laterally deflected tread starts sliding back is called
sliding line. When the tread passes the sliding line and enters the tail region, the
deflection and the normal force decrease. They approach zero when tread goes to
the tailing edge of the tireprint. As the normal contact force from the road decreases
at the tail region of the tireprint, the friction force also decreases and the tread slides
back to its original position when leaving the tireprint region. In practical situations,
the velocity vector of the center of a steered wheel will be between wheel xw-
axis and the vehicle body x-axis, as is shown in Fig. 1.19. The steering angle δ,
tire sideslip angle α, and wheel sideslip angle β are indicated in the figure. The
wheel-body sideslip angle β is the angle between the tire velocity v and the vehicle
longitudinal x-axis, measured from the x-axis about the z-axis.

The slip angle α increases by increasing the lateral force Fy as long as Fy is
not saturated, Fy < FyM

. It is assumed that the slip angle α and lateral force Fy

act as action and reaction. A lateral force generates a slip angle, and a slip angle
generates a lateral force. Hence, we can steer the tires of a car to make a slip angle
and generate a lateral force to turn the car. Steering causes a slip angle in the tires
and creates a lateral force. The slip angle is positive α > 0 if the tire should be
turned about the z-axis to be aligned with the velocity vector v. A positive slip angle
α generates a negative lateral force Fy . Hence, steering to the left about the z-axis
makes a negative slip angle and produces a positive lateral force to move the tire to
the left (Jazar 2017).

Using the velocity vector of the tire in the wheel coordinate frame W , and its
components, W v =vx ı̂ + vyĵ , we may also define the sideslip angle as

α = arctan
vy

vx

(1.149)

A sample of measured lateral force Fy/Fz as a function of slip angle α is
plotted in Fig. 1.16. The lateral force Fy/Fz increases linearly for small slip angles;
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Fig. 1.20 The proportional-saturation model for the lateral force Fy as a function of α, Fy =
Fy (α), for a constant vertical load Fz

however, the rate of increasing Fy/Fz decreases for higher α. The lateral force
remains constant or drops slightly when α reaches a critical value at which the
tire slides on the road. For practical purposes, we may accept different simplified
models for the function Fy/Fz = Fy (α) /Fz.

1. Linear model: We assume the lateral force Fy is proportional to the slip angle α

for low values of α.

Fy

Fz

= −Cα S (α − αs) (1.150)

Cα = − 1

Fz

lim
α→0

∂Fy

∂α
> 0 (1.151)

Figure 1.16 illustrates the linear model.
2. Proportional-saturation model: To include the saturation behavior of the lateral

force Fy as a function of α for a constant vertical load Fz, we employ a
proportional-saturation model in which Fy/Fz is proportional to α while α is
less than the saturation αs , and remains constant at the saturated value Fy = Fs

equal to the maximum lateral force Fy = Fs = FyM
for α > αs .

Fy

Fz

=
⎧⎨
⎩

−Cα α −αs ≤ α ≤ αs

FyM

Fz

= −Cα αs = μy α > αs or α < −αs
(1.152)

The FyM
= −Cα αsFz = μyFz is the maximum lateral force that the tire

can support. The FyM
is set by the tire load and the lateral friction coefficient

μy . Figure 1.20 illustrates the proportional-saturation model and Eq. (1.152)
expresses the proportional-saturation function.
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Fig. 1.21 Two nonlinear models for the lateral force Fy/Fz as a function of α, Fy/Fz =
tanh (Cαα) and Fy/Fz = arctan (Cαα)

3. Nonlinear-saturation model: A nonlinear saturating function may also be used
for better approximation of the behavior of the lateral force Fy as a function of
α. Two practical approximate functions are:

Fy

Fz

= − tanh (α) (1.153)

Fy

Fz

= − arctan (α) (1.154)

Figure 1.21 illustrates the nonlinear-saturation models. �
Example 19 Lateral force modeling.

There are many mathematical and approximate functions introduced by many
researchers to model the lateral force Fy of tires as function of sideslip angle
α and Fz. However, none of them can exactly model all tire behaviors in all
conditions. This is because Fy is a function of many more parameters, namely:
tire size and pattern, speed of the vehicle, tire load, tire air pressure, pavement,
ambient temperature and humidity, time history of tire operation, etc. As a result,
keeping all parameters constant, only a physical measurement can exactly express
Fy = Fy (α). However, such data also cannot be recovered and used for another
experiment, as it is practically impossible to keep the conditions the same. Linear
approximations are the easiest function for control purposes. Interestingly the
linear and proportional-saturation approximations are exact enough for most normal
practical driving conditions.

A more exact approximation of the function Fy = Fy (α) is to use a trilinear
model as is shown in Fig. 1.22. The first part of the function Fy/Fz = Fy (α) /Fz =
−Cαα is applied for all low-speed low-steering maneuvers of vehicles. By increas-
ing speed or higher sideslip angle, the rate of the proportionality decreases and Fy

will follow another line, Fy/Fz = Fy (α) /Fz = −C1α − C2.



36 1 Tire Dynamics

0             2              4              6              8             10           12

1.4
1.2
1.0
0.8
0.6
0.4
0.2

0

Prop
ort

ion
al

ph
ase

Saturation phase

tan 1 C−
α 1α sα

-FyM / Fz

–F
y 

/ F
z

α[deg]

Fig. 1.22 Trilinear model of tire lateral force

–F
y 

/ F
yM

α[deg]

Cαα
arctan (Cαα)

α1 αs

tanh (Cαα)

Fig. 1.23 A sample of trilinear model of tire lateral force compared with the linear and nonlinear
models

The mathematical expression of the function Fy = Fy (α) is:

− Fy

Fz

=

⎧⎪⎪⎨
⎪⎪⎩

Cαα α ≤ α1
Cαα1 − FyM

/Fz

α1 − αs

(α − α1) + Cαα1 α1 < α ≤ αs

−FyM
/Fz αs < α

(1.155)

Figure 1.23 illustrates a sample of trilinear model of tire lateral force compared with
the linear and nonlinear models. Figure 1.23 illustrates a comparison for different
models.

Example 20 Cubic model of tire lateral force.
Based on a parabolic normal stress distribution on the tireprint, a third-degree

function was presented in the 1950s to calculate the lateral force
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Fig. 1.24 A cubic curve model for lateral force as a function of the sideslip angle

Fy

Fz

= −Cα α

(
1 − α

αs

+ 1

3

(
α

αs

)2
)

(1.156)

Let us show the sideslip angle at which the lateral force Fy reaches its maximum
value FyM

by αs . Equation (1.156) shows that

αs = − 3

Cα

FyM

Fz

(1.157)

and therefore,

Fy

FyM

= 3α

αs

(
1 − α

αs

+ 1

3

(
α

αs

)2
)

(1.158)

Figure 1.24 shows the cubic curve model for lateral force as a function of sideslip
angle. The equation is applicable only for 0 ≤ α ≤ αM .

Example 21 Aligning moments and pneumatic trails.
A rolling tire under lateral force and the associated sideslip angle α are

shown in Fig. 1.25. Lateral distortion of the tire treads is a result of a tangential
stress distribution τy over the tireprint. Assuming that the tangential stress τy is
proportional to the distortion, the resultant lateral force Fy over the tireprint area AP

Fy =
∫

AP

τy dAp (1.159)

is at a distance axα behind the center line.

axα = 1

Fy

∫
AP

x τy dAp (1.160)
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Fig. 1.25 The stress distribution τy , the resultant lateral force Fy and longitudinal Fx , and the
pneumatic trails ay and ax for a turning tire going on a negative slip angle α

The distance axα < 0 is called the pneumatic trail, and the resultant moment Mz is
called the aligning moment, Mz = Fy axα k̂. For a rolling forward tire, the distance
axα < 0 for ∀α. The aligning moment tends to turn the tire about the z-axis and
make it align with the direction of tire velocity vector v.

A slight shift, ayα , of the longitudinal force Fx will also contribute in the aligning
moment to make the tire parallel to v, Mz = −Fx ayα k̂. For a rolling forward tire,
the distance ayα < 0 for α > 0, and Fx > 0 when a positive moment is applied on
the wheel to turn it forward. Therefore the total aligning moment of a rolling tire is:

Mz = (Fy axα − Fx ayα

)
k̂ (1.161)

The stress distributions τy and τx , the resultant lateral and longitudinal forces Fy

and Fx , and the pneumatic trails axα and ayα are illustrated in Fig. 1.25.
There is also a lateral shift in the vertical force Fz under the tire because of slip

angle α, which generates a slip moment Mx about the forward x-axis, and break
moment My about the y-axis.

Mx = −Fz ayα ı̂ (1.162)

My = −Fz axα ĵ (1.163)

The aligning moments for tires are as illustrated in Fig. 1.26. The pneumatic trails
axα and ayα increase for small slip angles up to a maximum value, and decrease to
zero and negative values for high slip angles.

The lateral force Fy/Fz = −Cα α may be decomposed to Fy sin α, parallel to
the path of motion v, and Fy cos α, perpendicular to v as shown in Fig. 1.27. The
component Fy cos α, normal to the path of motion, is called cornering force, and
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Fig. 1.26 Aligning moment Mz as a function of slip angle α for a constant vertical load
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Fig. 1.27 The cornering and drag components of a lateral force Fy

the component Fy sin α, along the path of motion, is called drag force. The lateral
force Fy is also called side force or grip. We may combine the lateral forces of all
tires of a vehicle and have them acting at the car’s mass center C.

Example 22 Effect of velocity.
The curve of lateral force Fy (α) as a function of the sideslip angle α decreases as

velocity increases. Hence, we need to increase the sideslip angle at higher velocities
to generate the same lateral force. Sideslip angle increases by increasing the steer
angle. Figure 1.28 illustrates the effect of velocity on Fy for a radial passenger tire.
Because of this behavior, the curvature of trajectory of a one-wheel-car at a fixed
steer angle decreases by increasing the driving speed.
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Fig. 1.28 Effect of velocity on Fy for a radial tire

To model the experimental results of lateral force dependency with speed, we
suggest a correction in the equation of lateral force (1.145) as

Fy

Fz

= −Cα α + Cα1 vx (1.164)

or

Fy

Fz

= −Cα α + Cα2 v2
x (1.165)

or

Fy

Fz

= −Cα α + Cα1 vx + Cα2 v2
x (1.166)

where Cs1 [ s/m] is the coefficient indication how much Fy/Fz will drop for every
1 m/s of longitudinal velocity of the tire. Similarly, Cα2 [ s2/ m2] is the coefficient
indication how much Fy/Fz will drop for every 1 [ m/s]2 of longitudinal velocity of
the tire.

Example 23 Effect of tire load on lateral force.
When the tire load Fz increases, the tire treads stick to the road better. Hence,

the lateral force increases at a constant slip angle α, and the slippage occurs at
a higher slip angles. Figure 1.29 illustrates the lateral force behavior of a sample
tire for different normal loads. Increasing the load not only increases the maximum
attainable lateral force, but also pushes the maximum of the lateral force to higher
slip angles.
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Fig. 1.29 Lateral force behavior of a sample tire for different normal loads as a function of slip
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Fig. 1.30 A tireprint

Example 24 Tireprint.
The contact area between a tire and the road is called the tireprint and is shown by

A. At any point of a tireprint, the normal and friction forces are transmitted between
the road and tire. The effect of the contact forces can be described by a resulting
force system including force and torque vectors applied at the center of the tireprint.
The tireprint is also called contact patch, contact region, or tire footprint. A model
of tireprint is shown in Fig. 1.30.

The area of the tireprint is inversely proportional to the tire pressure. Lowering
the tire pressure is a technique used for off-road vehicles in sandy, muddy, or snowy
areas, and for drag racing. Decreasing the tire pressure causes the tire to slump, so
more of the tire is in contact with the surface, giving better traction in low friction
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Fig. 1.31 The lateral tire force Fy is proportional to the sideslip angle α assuming the coefficient
Cα to remain constant

conditions. It also helps the tire grip small obstacles as the tire conforms more to the
shape of the obstacle, and makes contact with the object in more places. The shape
of tireprint may be expressed by

x2n

a2n
+ y2n

b2n
= 1 n ∈ N (1.167)

where n = 2 or n = 3 are showing the tireprint shape for radial tires better.

Example 25 Saturation of lateral force.
Consider a tire that is rolling forward with constant velocity vx . Applying a

constant lateral force F at the wheel center will generate a tire lateral reaction
force Fy at the tireprint that causes the tire path to make an angle α with the
straightforward x-axis as is shown by label 1 in Fig. 1.31. The tire is in lateral
equilibrium force balance. Increasing the applied force F will increase the tire
lateral reaction force Fy as well as the angle α. The tire with label 2 in Fig. 1.31
illustrates this situation. The lateral force Fy is proportional to the sideslip angle α

and we may assume the coefficient Cα to remain constant.

Fy1 = −Cαα1Fz (1.168)

Fy2 = −Cαα2Fz (1.169)
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The lateral forces are in balance as long as F ≤ FyM
. If the applied force F is

greater than FyM
, then the tire lateral force Fy will saturate and reach its maximum

value FyM
and remain at Fy = FyM

for any F > FyM
. The lateral forces will

not be balanced and the extra force will accelerate the tire laterally at a constant
acceleration ay ,

F − FyM
= mt ay (1.170)

where mt is the mass of tire and ay is the lateral acceleration. This situation is
labeled 3 in Fig. 1.31. Assuming a given forward velocity vx , the tire will be moving
along vector v.

v1 = vx ı̂ + vx tan α1 ĵ = v1 cos α1 ı̂ + v1 sin α1 ĵ (1.171)

v2 = vx ı̂ + vx tan α2 ĵ = v2 cos α2 ı̂ + v2 sin α2 ĵ (1.172)

At the moment where the lateral force is saturated, we have

v = vx ı̂ + vx tan αs ĵ (1.173)

and when F > FyM
the tire will be sliding on the ground along the velocity

vector v3.

v3 = vx ı̂ +
(

vx tan αs +
∫

ay dt

)
ĵ (1.174)

When a tire has an acceleration in a direction and constant velocity in the orthogonal
direction, the tire force is saturated in the direction of acceleration. In this case, the
tire force is saturated in the y direction and the tire force remains at the maximum
in the y direction, Fy = FyM

.

1.4.2 Tire Camber

Camber angle γ is the tilting angle of tire-plane about the longitudinal x-axis.
Camber angle generates a lateral force Fy called camber thrust or camber force.
Figure 1.32 illustrates the front view of a positively cambered tire and the generated
camber force Fy . Camber angle is considered positive γ > 0, if it is in the positive
direction of the x-axis, measured from the z-axis to the tire-plane. A positive camber
angle generates a camber force along the y-axis (Jazar 2017).

The camber force is proportional to γ at low camber angles and depends
proportionally on the wheel load Fz. Therefore,

Fy = Fy ĵ (1.175)

Fy

Fz

= −Cγ S
(
γ − γ s

)
(1.176)
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Fig. 1.32 A front view of a cambered tire and the generated camber force

where Cγ is called the camber stiffness of tire.

Cγ = 1

Fz

lim
γ→0

∂
(−Fy

)
∂γ

(1.177)

In the presence of both camber γ and sideslip α, the overall lateral force Fy on a
tire is a superposition of the corner force and camber thrust.

Fy

Fz

= −Cγ γ − Cα α |γ | < γ s |α| < αs (1.178)

Proof Consider a tire under a constant load while a camber angle is applied on the
rim. The tire will deflect laterally such that the tireprint area will be longer in the
cambered side. Figure 1.33 compares the tireprint of a straight and a cambered tire
on a flat road. As the wheel rolls forward, un-deflected treads enter the tireprint
region and deflect laterally as well as longitudinally. The shape of the tireprint
depicts that the treads entering the tireprint closer to the cambered side have more
time to bestretched laterally. Because the developed lateral stress is proportional
to the lateral stretch, the nonuniform tread stretching generates an asymmetric
stress distribution and more lateral stress will be developed on the cambered side.
The resultant of the nonuniform lateral stress distribution over the tireprint of the
cambered tire makes the camber thrust force Fy in the cambered direction.

Fy = Fy ĵ Fy =
∫

A

τy dA (1.179)

The camber thrust is proportional to the camber angle for small angles.

Fy

Fz

= −Cγ γ |γ | < γ s (1.180)
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Fig. 1.33 The tireprint of a straight and a cambered tire, turning slowly on a flat road

When the tire is rolling, the resultant camber thrust Fy shifts forward by a
distance axγ . The resultant moment in the z-direction is called camber torque, and
the distance axγ is called camber trail.

Mz = Mz k̂ Mz = Fy axγ (1.181)

Camber trail is usually very small, and hence the camber torque is usually ignored
in linear analysis of vehicle dynamics.

Because the tireprint of a cambered tire is longer in the cambered side, the
resultant vertical force Fz that supports the wheel load

Fz =
∫

AP

σ z dA (1.182)

shifts laterally by a distance ayγ from the center of the tireprint.

ayγ = 1

Fz

∫
A

y σz dA (1.183)
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Fig. 1.34 The camber force Fy of a tire as a function of camber angle γ at a constant tire load
Fz = 4500 N

The distance ayγ is called the camber arm, and the resultant moment Mx is called
the camber moment.

Mx = Mx k̂ Mx = −Fz ayγ (1.184)

The camber moment tends to turn the tire about the x-axis and tries to make the
tire-plane align with the z-axis. The camber arm ayγ is proportional to the camber
angle γ for small angles.

ayγ = Cyγ γ (1.185)

Figure 1.34 shows the camber force Fy as a function of camber angle γ at a
constant tire load Fz = 4500 N. The lateral force because of camber behaves similar
to the lateral force because of sideslip. A linearly increasing and saturating function
is a simple and effective model of camber force behavior.

Figure 1.35 depicts the variation of camber force Fy as a function of normal load
Fz at different camber angles for a sample radial tire.

The tireprint of a rolling tire will have a longitudinally distortion. Camber will
distort the tireprint laterally. Apply a slip angle α to a rolling cambered tire will
distort the tireprint laterally in a nonuniform way such that the resultant lateral force
would be at a distance axγ and ayγ from the center of the tireprint. Both distances
axγ and ayγ are functions of angles α and γ . Camber force due to γ , along with
the corner force due to α, gives the total lateral force applied on a tire (Clark 1971).
Therefore, the overall lateral force will be calculated as

Fy

Fz

= −Cα α − Cγ γ (1.186)
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Fig. 1.35 The variation of camber force Fy as a function of normal load Fz at different camber
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Fig. 1.36 An experimental example for lateral force as a function of γ and α at a constant load
Fz = 4000 N

that is acceptable for γ � 10 deg and α � 5 deg. Presence of both camber angle
γ and slip angle α makes the situation interesting because the total lateral force
can be positive or negative according to the directions of γ and α. Figure 1.36
illustrates an example of lateral force as a function of γ and α at a constant load
Fz = 4000 N. Similar to lateral force, the aligning moment Mz can be approximated
as a combination of the slip and camber angle effects.

Mz = CMα α + CMγ γ (1.187)
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The coefficient CMα is the aligning moment generated by 1 rad sideslip α at a zero
γ , and the coefficient CMα is the aligning moment generated by 1 rad camber γ at
zero α. For a radial tire, CMα ≈ 0.013 N m/ deg and CMγ ≈ 0.0003 N m/ deg, while
for a non-radial tire, CMα ≈ 0.01 N m/ deg and CMγ ≈ 0.001 N m/ deg. �
Example 26 Camber importance and tireprint model.

Cambering of a tire creates a lateral force, even though there is no sideslip. The
effects of cambering are particularly important for motorcycles that produce a large
part of the lateral force by camber. The following equations are presented to model
the lateral deviation of a cambered tireprint from the straight tireprint, and express
the lateral stress τy due to camber

y = − sin γ
(√

R2
g − x2 −

√
R2

g − a2
)

(1.188)

τy = −γ k
(
a2 − x2

)
(1.189)

where a is half of the longitudinal length of tireprint and the coefficient k is chosen
such that the average camber defection is correct in the tireprint.

∫ a

−a

τ y dx =
∫ a

−a

y dx (1.190)

−4

3
γ ka3 = − sin γ

(
R2

g sin−1 a

Rg

− a

√
R2

g − a2

)
(1.191)

Therefore,

k = 3 sin γ

4a3γ

(
R2

g sin−1 a

Rg

− a

√
R2

g − a2

)
(1.192)

≈ 3

4

Rg

√
R2

g − a2

a2 (1.193)

and

τy = −3

4
γ

Rg

√
R2

g − a2

a2

(
a2 − x2

)
(1.194)

Example 27 Banked road.
Consider a vehicle moving on a road with a transversal slope β, while its tires

remain vertical. There is a downhill component of weight, F1 = mg sin β, that
pulls the vehicle down. There is also an uphill camber force due to camber γ ≈ β

of tires with respect to the road F2 = Cγ γFz. The resultant lateral force Fy =
Cγ γFz − mg sin β depends on camber stiffness Cγ and determines if the vehicle
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goes uphill or downhill, considering the vehicle to be neutral steering. Since the
camber stiffness Cγ is higher for non-radial tires, it is more possible for a non-radial
than a radial tire to go uphill.

The effects of cambering are particularly important for motorcycles that produce
a large part of their lateral force by cambering. For cars and trucks, the camber
angles are much smaller and in many applications their effect can be negligible.
However, some suspensions are designed to make the wheels cambered when the
axle load varies, or when they steered.

1.5 Tire Combined Force

The force system at the tireprint of a loaded, rolling, steered, cambered tire includes:
forward force Fx , lateral force Fy , vertical force Fz, aligning moment Mz, roll
moment Mx , and pitch moment My . The forward force Fx and lateral force Fy

are the most significant forces in vehicle maneuvering. The Fx and Fy take the tire
load Fz, sideslip α, longitudinal slip s, and the camber angle γ as input,

Fx

Fz

= Fx (α, s, γ ) = Cs S (s − ss) (1.195)

Fy

Fz

= Fy (α, s, γ ) = −Cα S (α − αs) − Cγ S
(
γ − γ s

)
(1.196)

where S is the saturation functions. The saturation function S has been introduced
in (1.60) and (1.62).

S(x − x0) =
⎧⎨
⎩

x0 x0 < x

x −x0 < x < x0

−x0 x < −x0

(1.197)

S(x − x0) = x H (x0 − |x|) + x0 H (|x| − x0) (1.198)

H(x − x0) =
{

1 x > x0

0 x < x0
(1.199)

The longitudinal slip coefficient Cs , the lateral stiffness Cα , and the camber stiffness
Cγ are all assumed to be constant. The forward or longitudinal force Fx and the
lateral force Fy are in tireprint and tangent to the ground. The tangential forces Fx

and Fy may be combined to make a resultant tangetial force called the shear force
(Pacejka 2012; Abe 2009; Dai et al. 2017a,b).

When the tire has a combination of tire inputs, α, s, γ , the tire forces are called
tire combined force. The most important tire combined force is the shear force
because of longitudinal slip and sideslip. However, as long as the angles and slips are
very small within the linear range of tire behavior, a superposition can be utilized to
estimate the output forces. When the tire is under both longitudinal slip and sideslip,
the tire is under combined slip.
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Fig. 1.37 The longitudinal force Fx/Fz drops in the (α, Fx/Fz)plane, when sideslip α introduces
and increases to a tire

It is known that introducing both, longitudinal slip and sideslip together, will
reduce their effect and their associated forces. In this section, we study the lateral
and longitudinal forces when both of them are present.

1.5.1 Elliptic Model

We adopt the proportional-saturation model for longitudinal and sideslip of tire.
When α = 0, a small longitudinal slip s < ss generates the longitudinal force
Fx/Fz = Css, and when s = 0, a small sideslip angle α < αs generates a lateral
force of Fy/Fz = −Cαα. When there exists a longitudinal slip s < ss and then we
also introduce a sideslip α < αs , the longitudinal force will reduce by

Fx

Fz

= Css

√
1 − Csα

(
α

αs

)2

|α| < αs |s| < ss (1.200)

where αs and ss are respectively the saturation values of α and s for the tire, and
Csα is the tire longitudinal drop factor for reduction of Fx in the presence of sideslip
α. The tire longitudinal drop factor Csα is determined by experiment. Figure 1.37
illustrates how the longitudinal force reduces in the (α, Fx/Fz)-plane when sideslip
α is introduced to a tire with constant longitudinal slip s.

When there exists a longitudinal slip s < ss , the lateral force will drop from its
level of Fy/Fz = −Cαα to

Fy

Fz

= −Cαα

√
1 − Cαs

(
s

ss

)2

|α| < αs |s| < ss (1.201)
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Fig. 1.39 The longitudinal and lateral forces drop in the
(−Fy, Fx

)
plane, when respectively

sideslip and longitudinal slip are introduced to a tire

and Cαs is the tire lateral drop factor for reduction of Fy in the presence of
longitudinal slip s. The tire lateral drop factor Cαs is determined by experiment.
Figure 1.38 illustrates how the lateral force drops in the

(
α,−Fy/Fz

)
-plane when

longitudinal slip is introduced to a tire with constant sideslip and then increases.
A proper way to show the effect of combined slips on tire forces is to plot Fx/Fz

and Fy/Fz against each other. Figure 1.39 illustrates both lateral and longitudinal
forces when longitudinal slip and sideslip are introduced in the tire dynamics.

Including positive and negative ranges of α and s and plotting the curves for
0 > s > ss and 0 > α > αs for different values of tire drop factors, Cαs , Csα ,
makes the relationship of Fx and Fy as shown in Fig. 1.40 justifying elliptic model.
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Fig. 1.40 The longitudinal and lateral forces at the limits in the
(
Fy, Fx

)
plane, when sideslip and

longitudinal slip are introduced to a tire. At any point on limit shape one of the slips, α or s, is
saturated. There are four points on the limit shape where both α and s are saturated

Including the saturation in lateral and longitudinal forces, we define Fx and Fy

mathematically by the following equations.

Fx

Fz

= Cs S (s − ss)

√
1 − Csα

(
S (α − αs)

αs

)2

(1.202)

Fy

Fz

= −CαS (α − αs)

√
1 − Cαs

(
S (s − ss)

ss

)2

(1.203)

S(s − ss) = s H (ss − |s|) + ss H (|s| − ss) (1.204)

S(α − αs) = α H (αs − |α|) + αs H (|α| − αs) (1.205)

Figures 1.41 and 1.42 illustrate the elliptic proportional-saturation model for
longitudinal and lateral forces indicating the effect of sideslip α on longitudinal
force Fx/Fz and the effect of longitudinal slip s on lateral force Fy/Fz.

Proof Assuming α = 0, a small longitudinal slip s < ss generates the longitudinal
force Fx/Fz = Css. When we have longitudinal slip s and then a sideslip α is
introduced into the system, the longitudinal force will drop. To have a mathematical
model that simulates experimental data, the following nonlinear function is intro-
duced to model the phenomenon

Fx

Fz

= Css

√
1 − Csα

(
α

αs

)2

|α| < αs |s| < ss (1.206)
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Fig. 1.41 The effect of sideslip angle α on longitudinal force Fx/Fz in saturating model
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Fig. 1.42 The effect of longitudinal slip ratio s on lateral force Fy/Fz in saturating model

where αs is the saturation point of α for the tire. The coefficient Csα is the
longitudinal drop factor that indicates the percentage of reduction in Fx/Fz when α

is changing from α = 0 to α = αs , for a constant s.
Similarly, when s = 0 and a small sideslip angle α < αs is applied, the tire

generates a lateral force of Fy/Fz = −Cαα. The lateral force Fy/Fz will drop when
longitudinal slip s is added to the dynamics of the tire. The following nonlinear
function models this phenomenon

Fy

Fz

= −Cαα

√
1 − Cαs

(
s

ss

)2

|α| < αs |s| < ss (1.207)

where ss is the saturation point of s for the tire. The coefficient Cαs is the lateral
drop factor that determines the percentage of reduction in Fy/Fz when s is changing
from s = 0 to s = ss , for a constant α. Figures 1.37 and 1.38 illustrate how the
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Fy / Fz

Fx
Fz

α = 0

α = αs

α

0 < α < αs

as = 5 [deg]Cs = 10
Csa = 0.5
Ca = 0.24 s = 0.04

Fig. 1.43 Csα = 0.5 means that Fx/Fz drops 1−√
1 − Csα = 30% when α increases from α = 0

to α = αs . If Csα = 0.3 then Fx/Fz drops (1 − 0.3) × 100 = 70% when α increases from α = 0
to α = αs

functions (1.206) and (1.207) work. Although α and s may go beyond αs and ss
will saturate at Fx/Fz = Css

√
1 − Csα and Fy/Fz = −Cαα

√
1 − Cαs .

Employing proportional-saturation model for longitudinal and lateral forces, we
may use saturation and Heaviside functions (1.60) and (1.61) to express the forces
in a single equation to cover proportional and saturation parts of Fx/Fz and Fy/Fz.
Equations (1.202) and (1.203) are expressing the longitudinal and lateral forces of
tires using proportional-saturation in elliptic model. �
Example 28 Measuring of Csα .

Figure 1.43 illustrates a sample of the effect of increasing α on Fx/Fz using
elliptic model (1.200) from α = 0 to α = αs , for a constant s = 0.04. When α = 0
then, Fx/Fz = 0.4 for the given values of Cs = 10, αs = 5 deg, Cα = 0.24. By
increasing α the value of Fx/Fz drops as is shown in the figure. Knowing that when
α = αs , then Fx/Fz = 0.283 and Fy/Fz = −1.15, we have,

Fx

Fz

= Css

√
1 − Csα

(
α

αs

)2

(1.208)

0.283 = 0.4
√

1 − Csα (1.209)

Csα = 0.499 (1.210)

which indicates, Csα = 0.499, and Fx/Fz drops by
(
1 − √

1 − 0.5
) × 100 
 30%

approximately.
In general, when α = 0 we have

Fx1

Fz

= Css (1.211)
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Csα

ΔFx
CsSs

Fig. 1.44 The effect of the longitudinal drop factor Csα on percentage reduction of longitudinal
force �Fx/Csss

and when we α = αs , then

Fx2

Fz

= Css
√

1 − Csα (1.212)

therefore,

Fx2

Fx1

= √1 − Csα (1.213)

and therefore, the reduction will be

�Fx

Csss
= Fx1 − Fx2

Fx1

= 1 −√1 − Csα (1.214)

In case of Csα = 0.3 then Fx/Fz drops
(
1 − √

1 − 0.3
) × 100 = 16% when α

increases from α = 0 to α = αs .
Figure 1.44 illustrates the effect of the longitudinal drop factor Csα on percentage

reduction of longitudinal force �Fx/Csss .

Example 29 The limit slip curve.
Let us begin with α = 0, s = ss , and

ss = 0.1 Cs = 10 Csα = 0.5

αs = 5 deg Cα = 0.24 Cαs = 0.5 (1.215)

The longitudinal force of the tire is saturated and is at its maximum Fx/Fz =
FxM

/Fz = Cs ss = 1. This situation is indicated by point A in Fig. 1.45. Increasing
sideslip angle α from α = 0 to α = αs will generate a lateral force according
to Eq. (1.201) and decreases the magnitude of the longitudinal force according to
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–Fy / Fz

0 < α < αs

as = 5 [deg]Cs = 10

Csa = 0.5
Ca = 0.24

Cas = 0.5

ss = 0.1

Fig. 1.45 The saturation line. At any point on the saturation line, at least one of s or α is at its
saturation level. Only at point C, both s and α are at their saturation levels

Eq. (1.200). The nominal point B is a sample point indicating the tire force vector
with a saturated longitudinal component and unsaturated lateral component. The
tire at point B is considered to be in longitudinal sliding on the ground and laterally
sticking to the ground.

The curve from point A to C indicates how the forces Fx/Fz and Fy/Fz will
change when α increases from α = 0 at A to α = αs at C while s = ss . This is true
for all points between A and C at which the longitudinal force is saturated and the
lateral force is undersaturated and their values are:

Fx

Fz

= FxM

Fz

= Csss

√
1 − Csα

(
α

αs

)2

(1.216)

Fy

Fz

= −Cαα
√

1 − Cαs <
FyM

Fz

(1.217)

At a nominal point B between A and C, at which Fx/Fz = 0.9, we have

FxM

Fz

= Csss

√
1 − Csα

(
α

αs

)2

=
√

1 − 0.5
(α

5

)2 = 0.9 (1.218)

α = 3.08 deg (1.219)

and therefore,

Fy

Fz

= −Cαα

√
1 − Cαs

(
s

ss

)2

= 0.24 × 3.08
√

1 − 0.5 = 0.522 (1.220)
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At point C where α = αs , the lateral force will also be saturated and the force
conditions become

Fx

Fz

= FxM

Fz

= Csss
√

1 − Csα (1.221)

Fy

Fz

= FyM

Fz

= −Cααs

√
1 − Cαs (1.222)

Having Csα = 0.5, the magnitude of Fx/Fz will drop from FxM
/Fz = 1 at point A

to FxM
/Fz = 0.707 at point C.

Fx

Fz

= FxM

Fz

= Csss

√
1 − Csα

(
αs

αs

)2

= 10 × 0.1

√
1 − 0.5 × 5

5
= 0.707 (1.223)

The curve AC is the limit line of generating force on which the longitudinal force
remains saturated. The point C is the absolute terminating point at which both
longitudinal and lateral forces are saturated. No matter how much s and α are more
than their saturation values of ss and αs , the resultant tire tangential force of the
tireprint will not move from point C.

Let us now begin with α = αs , s = 0, for the same tire (1.215). The lateral force
of the tire is saturated and it is at its maximum possible value Fy/Fz = −FyM

/Fz =
Cα sα = 1.2. This situation is shown by point D in Fig. 1.45. Let us increase the
longitudinal slip of the tire s from s = 0 to generate longitudinal force in addition to
the lateral force. The lateral force reduces and the tangential tire force vector moves
from point D towards C. Point E is a nominal point between D and C at which
the lateral force of the tire is saturated while the longitudinal force is unsaturated.
The tire at E slides laterally on the ground while remaining stuck to the ground in
longitudinally direction. The line from point D to point C indicates how the forces
Fy/Fz and Fx/Fz will change when s increases from s = 0 to s = ss .

Example 30 Possible tire force zone.
Let us assume a tire that is at conditions that at least one of the longitudinal slips

or sideslip α is saturated. Considering both, negative and positive values of s and
α and plotting the limit slip curves make a closed elliptic shape that divides the
plane of

(
Fx/Fz, Fy/Fz

)
into possible and impossible zones of tangential tire force

vectors. Figure 1.40 illustrates a sample of the possible force zone. Any resultant
tangential force vector at the tireprint of the tire starts at the origin of the coordinate
at the center of tireprint and ends to a point inside the friction limit shape or on its
boundary.

Let us analytically determine the equation of the closed limit shape of Fig. 1.40.

ss = 0.1 Cs = 10 Csα = 0.5
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αs = 5 deg Cα = 0.24 Cαs = 0.5 (1.224)

The curve AC in Fig. 1.45 is a part of the shape on which we have

Fx

Fz

= Csss

√
1 − Csα

(
α

αs

)2

=
√

1 − 0.02α2 (1.225)

−Fy

Fz

= Cαα

√
1 − Cαs

(
ss

ss

)2


 0.17α (1.226)

These are parametric equations of the curve AC. The other parts of the shape would
have similar parametric equations. Although Fig. 1.40 shows an elliptic shape, the
limit shape may not be an actual ellipse.

Example 31 Ellipse condition.
It is common to use the following ellipse as an approximation for the limit of tire

force.

(
Fy/Fz

Cααs

)2

+
(

Fx/Fz

Csss

)2

= 1 (1.227)

Substituting elliptical model of Fx/Fz and Fy/Fz from (1.200) and (1.201) provide
us with

⎛
⎜⎜⎝

α

√
1 − Cαs

(
s
ss

)2

αs

⎞
⎟⎟⎠

2

+

⎛
⎜⎜⎝

s

√
1 − Csα

(
α
αs

)2

ss

⎞
⎟⎟⎠

2

= 1 (1.228)

and then,

α2

α2
s

+ s2

s2
s

− α2s2

α2
s s

2
s

Csα − α2s2

α2
s s

2
s

Cαs = 1 (1.229)

This is the condition to have the tire force limit to be the ellipse (1.227).
On the partial curve AC of Fig. 1.45, the longitudinal slip is saturated, s = ss .

Therefore, the condition (1.229) simplifies to

Csα + Cαs = 1 (1.230)

It means that if we have Csα + Cαs = 1, then the curve AC of Fig. 1.45 is a part
of ellipse (1.227). Equation (1.230) is the condition to have the limit shape as an
ellipse.
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Fig. 1.46 Location and orientation of friction ellipse compared to the tire

Similarly, on the partial curve DC of Fig. 1.45, the sideslip is saturated and
therefore, α = αs . The condition (1.229) simplifies to the same ellipse limit
condition (1.230). Therefore, the ellipse (1.227) matches well with elliptical tire
force model if (1.230) is correct.

Figure 1.46 illustrates the friction ellipse compared to the orientation of the tire.
The tire friction force or shear force Fshear is saturated as it is touching the friction
ellipse. This tire is either sliding longitudinally or laterally, or both, and the tire
forces are calculated by (1.202) and (1.203). In case the tire force is within the
friction ellipse, then the tire sticks to the ground and we have

(
Fy

Cααs

)2

+
(

Fx

Csss

)2

< 1 (1.231)

Figure 1.47 illustrates a stuck to the ground tire.

Example 32 Different Csα and Cαs with Csα + Cαs = 1.
Let us assume a tire with different values of Csα and Cαs satisfying the ellipse

limit condition (1.230).

αs = 5 deg ss = 0.1 Cs = 10 Cα = 0.24 (1.232)

Figure 1.48 illustrates the friction ellipse for Csα = 0.1, Cαs = 0.9, and Csα = 0.3,
Cαs = 0.7, and Csα = 0.7, Cαs = 0.3, and Csα = 0.9, Cαs = 0.1. The friction
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Fig. 1.47 A tire with unsaturated shear tire force on the ground. When the point (Fx, Fy ) is inside
the friction ellipse of the tire, then the calculated forces Fx, Fy are not saturated
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Fx / Fz Fx / Fz

Fx / Fz Fx / Fz

–Fy / Fz

–Fy / Fz –Fy / Fz

–Fy / Fz

αs = 5 [deg] 0 < α < αs ss = 0.1 Cs = 10 Cα = 0.24

Fig. 1.48 The effects of changing Csα and Cαs with the ellipse condition Csα + Cαs = 1 on the
friction limit
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Fig. 1.49 The effects of changing Csα and Cαs with condition Csα +Cαs < 1 on the friction limit

ellipse remains the same as long as the limit condition Csα + Cαs = 1 is fulfilled.
Changing the values of Csα , Cαs will move the point at which both Fx/Fz and
Fy/Fz are saturated. The coordinate of the full saturation point C may be calculated
from the Eqs. (1.200) and (1.201) are:

(
FxM

Fz

,
FyM

Fz

)
=
(
±Csss

√
1 − Csα,∓Cααs

√
1 − Cαs

)
(1.233)

To determine the loci of the full saturation points (1.233), we need to substitute
Csα = 1 −Cαs in (Fx/Fz, Fy/Fz) and eliminate Cαs between them. The loci of full
saturation points will end up to be the same ellipse (1.227) when 0 < Csα < 1−Cαs

and 1 − Csα < Csα < 0.

Example 33 Breaking the ellipse limit condition.
Let us consider a tire with Csα + Cαs �= 1 and therefore its force limit breaks the

ellipse condition (1.230). Let us consider

Csα + Cαs = 0.7 (1.234)

Figure 1.49 illustrates the friction limit for Csα = 0.1, Cαs = 0.6, and Csα = 0.3,
Cαs = 0.4, and Csα = 0.5, Cαs = 0.2, and Csα = 0.6, Cαs = 0.1. The friction
limit is not an ellipse anymore when Csα + Cαs �= 1, however, the friction limit is
still a closed shape. Changing the values of Csα , Cαs will move the point at which
both Fx/Fz and Fxy/Fz are saturated as shown in the figure.
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Fig. 1.50 The effects of changing Csα and Cαs with condition Csα +Cαs > 1 on the friction limit

To study the case of Csα + Cαs > 1, we should consider that there are two
conditions to have real numbers for the forces:

1 − Csα

(
α

αs

)2

> 0 (1.235)

1 − Cαs

(
s

ss

)2

> 0 (1.236)

which puts the following conditions on Csα , Cαs .

Csα <
α2

s

α2 Cαs <
s2
s

s2 (1.237)

The minimum value of both α2
s /α

2 and s2
s /s2 is one. Therefore, none of Csα , Cαs

can be greater than one while Csα + Cαs > 1.
Let us try

Csα + Cαs = 1.3 (1.238)

Figure 1.50 illustrates the friction limit for Csα = 0.4, Cαs = 0.9, and Csα = 0.55,
Cαs = 0.75, and Csα = 0.75, Cαs = 0.55, and Csα = 0.9, Cαs = 0.4.
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Example 34 �Velocity dependency of combined forces.
Experimental results show that the longitudinal and lateral forces are also

velocity dependent as expressed in Eqs. (1.104)–(1.106) for longitudinal force
and (1.164)–(1.166) for lateral force when the slips are very small |α| < αs , |s| <

ss . In a combined force situation, same model applies and the following equations
express how the velocity of a car affects the combined lateral and longitudinal
forces.

Fx

Fz

= (Cs s − Cs1 vx

)
√

1 − Csα

(
α

αs

)2

(1.239)

Fy

Fz

= (−Cα α + Cα1 vx

)
√

1 − Cαs

(
s

ss

)2

(1.240)

Lateral velocity also affects inversely both, longitudinal and lateral forces. The
effect of lateral velocity may be included in the force equations as:

Fx

Fz

= (Cs s − Cs1 vx − Cy vy

)
√

1 − Csα

(
α

αs

)2

(1.241)

Fy

Fz

= (−Cα α + Cα1 vx + Cy vy

)
√

1 − Cαs

(
s

ss

)2

(1.242)

Experiments also show that the saturation values of ss and αs reduce with associated
velocity.

Fx

Fz

= (Cs s − Cs1 vx − Cy vy

)
√√√√1 − Csα

(
α

αs

(
1 − Cαyvx

)
)2

(1.243)

Fy

Fz

= (−Cα α + Cα1 vx + Cy vy

)
√

1 − Cαs

(
s

ss (1 − Csxvx)

)2

(1.244)

Including all of the above velocity dependency, we may use the following models
for tire forces.

Fx

Fz

= (Cs S (s − ss (1 − Csxvx)) − Cs1 vx − Cy vy

)

×
√√√√1 − Csα

(
S (α − αs)

αs

(
1 − Cαyvx

)
)2

(1.245)
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Fig. 1.51 A tire with saturated tire force

Fy

Fz

= (−Cα S
(
α − αs

(
1 − Cαyvx

))+ Cα1 vx + Cy vy

)

×
√

1 − Cαs

(
S (s − ss)

ss (1 − Csxvx)

)2

(1.246)

Example 35 Is a tire sliding longitudinally or laterally?

Figure 1.51 illustrates a tire with saturated tire force. The tire force F/Fz = −→
OC

has the longitudinal component Fx/Fz = −−→
OH and the lateral component Fy/Fz =

−−→
OE. Let us assume that tire parameters Cs , Cα , Csα , Cαs , αs , ss are given.

ss = 0.1 Cs = 10 Cα = 0.24

Csα = 0.5 Cαs = 0.5 αs = 5 deg

F/Fz = 1.134 Fx/Fz = 0.5935 Fy/Fz = 0.966 (1.247)

Therefore, the only unknowns in the force equations (1.200) and (1.201) are the
longitudinal and side slips s and α.

Fx

Fz

= Cs s

√
1 − Csα

(
α

αs

)2

(1.248)
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Fy

Fz

= −Cα α

√
1 − Cαs

(
s

ss

)2

(1.249)

Knowing that for a vector at the limit ellipse, either s or α must be saturated. We
may assume that s = ss and, from Fx/Fz

0.5935 = 10 (0.1)

√
1 − 0.5

(α

5

)2
(1.250)

we find

α = 5.688 4 (1.251)

which is more than αs and impossible. Therefore we must have α = αs and
calculate s.

0.5935 = 10s
√

1 − 0.5 (1.252)

s = 0.083934 < ss (1.253)

Therefore, this tire is saturated laterally and unsaturated longitudinally. We may use
Eq. (1.201) to examine the results

Fy

Fz

= −Cα α

√
1 − Cαs

(
s

ss

)2

= 0.24 (5)

√
1 − 0.5

(
0.08934

0.1

)2

= 0.966 (1.254)

Example 36 Combined force experimental data.
Figure 1.52 illustrates how a sideslip α affects the longitudinal force ratio Fx/Fz

as a function of slip ratio s. Figure 1.53 illustrates the effect of sideslip α on the
lateral force ratio Fy/Fz as a function of slip ratio s. Figure 1.54 shows how the
lateral force Fy/Fz will affect by longitudinal slip s at constant sideslip (Genta
2007; Genta and Morello 2009a,b; Haney 2003).

Example 37 �T V -shaped model.
To model experimental data of race car tires better, we may use a more

rectangular function such as the T V -shaped equation

(
Fy/Fz

Cααs

)4

+
(

Fx/Fz

Csss

)4

= 1 (1.255)
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Fig. 1.52 Longitudinal force ratio Fx/Fz as a function of slip ratio s for different sideslip α
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Fig. 1.53 Lateral force ratio Fy/Fz as a function of slip ratio s for different sideslip α

The below suggested force equations for the combined effect of longitudinal slip
and sideslip for small values of the longitudinal slip ratio s < ss and sideslip angle
α < αs although more complicated, matches with experimental data of race car tires
better than elliptical model:

Fx

Fz

= Css
4

√
1 − Csα

(
α

αs

)4

α < αs s < ss (1.256)

Fy

Fz

= −Cαα
4

√
1 − Cαs

(
s

ss

)4

α < αs s < ss (1.257)
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Fig. 1.54 Experimental results on a tire showing how the lateral force Fy/Fz will be affected by
longitudinal slip s at constant sideslip angles

where αs and ss are respectively the saturation values of α and s for the tire, and
Csα and Cαs are the tire longitudinal drop TV-factor for reduction of Fx and Fy in
the presence of sideslip α and s. The tire drop TV-factor Csα and Cαs are determined
by experiment.

Substituting the suggested model of Fx and Fy in the T V -shape equation provide
us with

⎛
⎜⎜⎝

α
4

√
1 − Cαs

(
s
ss

)4

αs

⎞
⎟⎟⎠

4

+

⎛
⎜⎜⎝

s
4

√
1 − Csα

(
α
αs

)4

ss

⎞
⎟⎟⎠

4

= 1 (1.258)

and then simplifies to:

α4

α4
s

+ s4

s4
s

− α4s4

α4
s s

4
s

Csα − α4s4

α4
s s

4
s

Cαs = 1 (1.259)

On the limit condition, either s = ss or α = αs . Substituting s = ss simplifies the
above equation to

Csα + Cαs = 1 (1.260)

Therefore, if we have Csα + Cαs = 1, then the shape of tire force limit will be the
T V -shaped limit condition (1.255).
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Example 38 The camber effects.
In case camber γ is also included in longitudinal and lateral forces then, the

following equations may be used.

Fx

Fz

= Css

√
1 − Csα

(
α

αs

)2

− Csγ

(
γ

γ s

)2

(1.261)

|α| < αs |s| < ss |γ | < γ s

Fy

Fz

= −Cαα

√
1 − Cαs

(
s

ss

)2

− Cαγ

(
γ

γ s

)2

− Cγ γ (1.262)

|α| < αs |s| < ss |γ | < γ s

Introducing a camber γ in a tire will increase the lateral force Fy/Fz by −Cγ γ

and decrease it by square root of Cαγ

(
γ /γ s

)2. The longitudinal force Fx/Fz will

decrease by square root of Csγ

(
γ /γ s

)2. The Csγ and Cαγ are the longitudinal
camber drop factor and lateral camber drop factor respectively. The Csγ and Cαγ

factors are determined experimentally.

Example 39 Approximate elliptic tire model.
We may expand the elliptical equation in series and approximate it with a second

order polynomial.

√
1 − Cx2 = 1 − 1

2
Cx2 + O

(
x3
)

(1.263)

Following this approximation, we may use simpler equations for tire force compo-
nents.

Fx

Fz

= Cs S (s − ss)

√
1 − Csα

(
S (α − αs)

αs

)2


 Cs S (s − ss)

(
1 − 1

2
Csα

(
S (α − αs)

αs

)
2
)

(1.264)

Fy

Fz

= −CαS (α − αs)

√
1 − Cαs

(
S (s − ss)

ss

)2


 −CαS (α − αs)

(
1 − 1

2
Cαs

(
S (s − ss)

ss

)2
)

(1.265)
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Fig. 1.55 The longitudinal force Fx/Fz drops in the (α, Fx/Fz)-plane when sideslip α introduces
and increases to a tire with constant longitudinal slip s

In case the tire slips are not saturated, then the equations will be simplifies to:

Fx

Fz


 Cs s

(
1 − 1

2
Csα

(
α

αs

)2
)

(1.266)

Fy

Fz


 −Cαα

(
1 − 1

2
Cαs

(
s

ss

)2
)

(1.267)

1.5.2 Diamond Model

A linear model for interaction of tire forces is the simplest model and acts as the
principal model for comparison purposes. We assume the proportional-saturation
model for longitudinal and sideslip of tire. When α = 0, a small longitudinal
slip s generates the longitudinal force Fx/Fz = Css, and when s = 0, a small
sideslip angle α generates a lateral force of Fy/Fz = −Cαα. When there exists a
longitudinal slip s and we also introduce a sideslip α, the longitudinal force will
decreases as

Fx

Fz

= Css

(
1 − Csα

|α|
αs

)
|α| < αs |s| < ss (1.268)

where αs and ss are respectively the saturation values of α and s for the tire, and
Csα is the tire longitudinal drop factor for reduction of Fx in the presence of sideslip
α. The tire longitudinal drop factor Csα is determined by experiment for tires and is
usually 0.2 < Csα < 0.9. Figure 1.55 illustrates the longitudinal force reduction in
the (α, Fx/Fz)-plane when sideslip is introduced to a tire with constant longitudinal
slip and then increased.
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Fig. 1.57 The longitudinal force drops in the
(−Fy, Fx

)
plane, when sideslip introduces and

increases to a tire

In the presence of longitudinal slip s, the lateral force will also drop from its level
of Fy = −Cαα to

Fy

Fz

= −Cαα

(
1 − Cαs

|s|
ss

)
|α| < αs |s| < ss (1.269)

where Cαs is the tire lateral drop factor for reduction of Fy in the presence of
longitudinal slip s. The tire lateral drop factor Cαs is determined by experiment for
the tire and is usually 0.2 < Cαs < 0.9. Figure 1.56 illustrates how the lateral force
reduces in the

(
α, Fy/Fz

)
-plane when longitudinal slip is introduced to a tire with

constant sideslip and then increased.
Combining Figs. 1.55 and 1.56, we may draw Fig. 1.57 to illustrate the longi-

tudinal force reduction in the
(
Fy/Fz, Fx/Fz

)
-plane, when sideslip is introduced
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Fig. 1.58 The lateral force drops in the
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Fig. 1.59 The longitudinal and lateral forces drop in the
(−Fy, Fx

)
plane, when respectively

sideslip and longitudinal slip are introduced to a tire

to a tire with constant longitudinal slip and then increased. Similarly, Fig. 1.58
illustrates how the lateral force reduces in the

(
Fy, Fx

)
-plane, when longitudinal

slip is introduced to a tire with constant sideslip. Figure 1.59 depicts both lateral
and longitudinal forces when longitudinal slip and sideslip are introduced in the tire
dynamics.

Including positive and negative ranges of α and s and plotting the curves for
−ss < s < ss and −α < α < αs for different values of tire drop factors, Cαs , Csα ,
make the relationship of Fx and Fy as shown in Fig. 1.60 justifying diamond model.
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Fig. 1.60 The longitudinal and lateral forces at the limits in the
(−Fy, Fx

)
plane, when respec-

tively sideslip and longitudinal slip are introduced to a tire and increased up to their saturation
values

Including the saturation in lateral and longitudinal forces, we define them
mathematically by the following equations.

Fx

Fz

= CsS (s − ss)

(
1 − Csα

|α|
αs

)
(1.270)

Fy

Fz

= −CαS (α − αs)

(
1 − Cαs

|s|
ss

)
(1.271)

Figures 1.61 and 1.62 illustrate the diamond proportional-saturation model for
longitudinal and lateral forces indicating the effect of sideslip α on longitudinal
force Fx/Fz and the effect of longitudinal slip s on lateral force Fy/Fz.

Proof Assume that α = 0 and a small longitudinal slip s < ss generates the
longitudinal force Fx/Fz = Css. When we have longitudinal slip s and then
introduce a sideslip α, the longitudinal force will drop. The following linear function
is the simplest representation of the phenomenon

Fx

Fz

= Css

(
1 − Csα

|α|
αs

)
(1.272)

where αs is the saturation point of α for the tire. The coefficient Csα is called the
longitudinal drop factor that indicates the percentage of drop in Fx/Fz from α = 0
to α = αs , for a constant s.
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Fig. 1.61 The effect of sideslip angle α on longitudinal force Fx/Fz in saturating model

Fig. 1.62 The effect of longitudinal slip ratio s on lateral force −Fy/Fz in saturating model

Similarly, assume that s = 0 and a small sideslip angle α < αs generates a
lateral force of Fy/Fz = −Cαα. The lateral force will also be dropped when a
small longitudinal slip s is added to the dynamics of the tire. The following linear
function expresses this phenomenon

Fy

Fz

= −Cαα

(
1 − Cαs

|s|
ss

)
(1.273)

where ss is the saturation point of s for the tire. The coefficient Cαs is the lateral
drop factor that indicates the percentage of drop in Fy/Fz from s = 0 to s = ss , for
a constant α. Figures 1.57 and 1.58 illustrate how the functions (1.272) and (1.273)
work.

Employing linear saturation model for longitudinal and lateral forces, we may
use Saturation function (1.60) or Heaviside function (1.62) to express the forces
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Fig. 1.63 Csα = 0.5 means that Fx/Fz drops 50% when α increases from α = 0 to α = αs . If
Csα = 0.3, then Fx/Fz drops 30% when α increases from α = 0 to α = αs

in a single equation to cover proportional and saturation parts of Fx/Fz and Fy/Fz.
Equations (1.270) and (1.271) express the longitudinal and lateral forces of tires
using proportional-saturation models of figures (1.20).

In order to have a unified function for computer simulation, we may rewrite the
force equations as:

Fx

Fz

= CsS (s − ss)

(
1 − Csα

|α|
αs

)
(1.274)

Fy

Fz

= −CαS (α − αs)

(
1 − Cαs

|s|
ss

)
(1.275)

�
Example 40 Meaning of Csα .

Figure 1.63 illustrates a sample of the effect of increasing α on reduction of
Fx/Fz in Eq. (1.272) from α = 0 to α = αs , for a constant s = 0.04. When α = 0,
then Fx/Fz = 0.4 for the given values of Cs = 10, αs = 5 deg, Cα = 0.2. By
increasing α the value of Fx/Fz decreases linearly and proportionally. Assuming
when α = αs we have Fx/Fz = 0.2, and therefore,

FxM

Fz

= Csss

(
1 − Csα

|αs |
αs

)
(1.276)

0.2 = 0.4 (1 − Csα) (1.277)

Csα = 0.5 (1.278)

which indicates Csα = 0.5 and Fx/Fz drops to (1 − 0.5) × 100 = 50%.
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Fig. 1.64 The saturation line. At any point on the saturation line, at least one of s or α is at its
saturation level. Only at point C, both s and α are at their saturation levels

In case of Csα = 0.3, then Fx/Fz drops to (1 − 0.3) × 100 = 70% when α

increases from α = 0 to α = αs .

Example 41 The limit slip line.
Let us assume α = 0, s = ss , and

ss = 0.1 Cs = 10 Csα = 0.5

αs = 5 deg Cα = 0.24 Cαs = 0.5 (1.279)

therefore, the longitudinal force is saturated and is at its maximum Fx/Fz =
FxM

/Fz = Cs ss = 1. This situation is indicated by point A in Fig. 1.64 at which
the tire is generating maximum possible longitudinal force while rolling straight.
Increasing sideslip angle α from α = 0 to α = αs will generate lateral force
in addition to the longitudinal force while the magnitude of longitudinal force
decreases according to Eq. (1.272). The line from point A to point C indicates how
the forces Fx/Fz and Fy/Fz will change when α increases from α = 0 to α = αs .
As long as s = ss and 0 < α < αs , the longitudinal force is saturated and the lateral
force is undersaturated

Fx

Fz

= Csss

(
1 − Csα

α

αs

)
= FxM

Fz

(1.280)

Fy

Fz

= −Cαα (1 − Cαs) <
FyM

Fz

(1.281)

At point C where α = αs , the lateral force will also be saturated and the force
conditions become

Fx

Fz

= Csss (1 − Csα) = FxM

Fz

(1.282)
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Fy

Fz

= −Cααs (1 − Cαs) = FyM

Fz

(1.283)

Because Csα = 0.5, the magnitude of Fx/Fz will drop from Fx/Fz = 1 at point A

to

Fx

Fz

= FxM

Fz

= Csss

(
1 − Csα

α

αs

)

= 10 × 0.1

(
1 − 0.5 × 5

5

)
= 0.5 (1.284)

at point C.
At a nominal point B between A and C, at which Fx/Fz = 0.8, we have

FxM

Fz

=
(

1 − 0.5
α

5

)
= 0.8 (1.285)

α = 2 deg (1.286)

and therefore,

Fy

Fz

= −Cαα

(
1 − Cαs

|s|
ss

)

= −0.24 × 2

(
1 − 0.5

(
ss

ss

))
= −0.24 (1.287)

The line AC is the limit line of generating longitudinal force by the tire and point
C is the absolute terminating point at which both longitudinal and lateral forces are
saturated. No matter how much s and α are more than their saturation values of ss
and αs , the resultant tangential force of the tire at the tireprint will not move from
point C.

Now, let us assume α = αs , s = 0, for the same tire as (1.279). The lateral force
of the tire is saturated and is at its maximum possible value Fy/Fz = FyM

/Fz =
−Cα sα = −1.2. This situation is indicated by point D in Fig. 1.64 at which the
tire is generating the maximum possible lateral force. Increasing slip s from s = 0
to s = ss will generate longitudinal force in addition to the lateral force while the
magnitude of lateral force decreases according to Eq. (1.21). The line from point D

to point C indicates how the forces Fy/Fz and Fx/Fz will change when s increases
from s = 0 to s = ss . Therefore, The line AC indicates the situation at which the
tire longitudinally slides and laterally sticks to the road, and line DC indicates the
situation at which the tire slides laterally and sticks to the ground longitudinally.

Considering both negative and positive maximum forces ±FxM
/Fz and

±FyM
/Fz, the limit curves make a closed shape that divides the plane of(

Fx/Fz, Fy/Fz

)
into possible and impossible zones of tangential tire force vectors.

Figure 1.65 illustrates a sample of the possible force zone.
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Fig. 1.65 The maximum tangential tire forces is limited into a closed zone surrounded by the
limit curves made by Fx/Fz, and −Fy/Fz relationship when at least one of the slips, s, or α to be
saturated
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Fig. 1.66 Experimental results of Fx/Fz versus −Fy/Fz for a sample tire and their diamond
model approximate

Example 42 Experimental verification.
Experimental data on tires are showing vast and diverse curves for longitudinal

and lateral forces for different tires at different conditions. As a result, there is no
unique model that covers all tires, all applications, and all conditions. Figure 1.66
illustrates a few experimental data on a sample tire to illustrate how we approximate
them with their diamond models. All of these curves belong to unsaturated cases
indicating how the combined forces affect each other.

There are two points on every diamond model approximation line. The first point
on (Fx/Fz)-axis indicates the initial value of α = 0 where there is no sideslip. The
second point on the other end of the line indicates the saturation value of αs . Let us
consider the first line indicated by A. The line starts from
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Fx/Fz = 0.88 s = 0.087 Cs = 10.115 (1.288)

and ends at

Fx/Fz = 0.43 s = 0.043 Cs = 10.115 (1.289)

assuming αs = 5 deg and using Fx/Fz at two ends, we calculate Csα

Fx

Fz

= Css

(
1 − Csα

α

αs

)
(1.290)

0.29 = 0.6 (1 − Csα) (1.291)

Csα = 0.511 (1.292)

and therefore, the equation for Fx/Fz when both s and α exist will be

Fx

Fz

= 10.115s
(

1 − 0.511
α

5

)
(1.293)

Applying the same method for the second and third experimental curves, we find
the following diamond approximations for line B and C, respectively,

Fx

Fz

= 10.115s
(

1 − 0.516
α

5

)
(1.294)

Fx

Fz

= 10.115s
(

1 − 0.512
α

5

)
(1.295)

indicating that the diamond model is consistent with experiments on this tire.

1.6 Vehicle Kinematics

A body coordinate frame B(Cxyz) is attached to a vehicle at its mass center C.
The x-axis is the longitudinal axis passing through C and directed forward. The
y-axis goes laterally to the left from the driver’s viewpoint. The z-axis makes the
coordinate system a right-hand triad as shown in Fig. 1.67. Vehicles are assumed to
be symmetric about the (x, z)-plane. When the car is parked on a flat horizontal road,
the z-axis is perpendicular to the ground, opposite to the gravitational acceleration
g. The equations of motion of vehicles are always expressed in the vehicle body
coordinate frame, B(Cxyz), (Jazar 2017).

The orientation of the vehicle is determined by the three angles of roll angle ϕ

about the x-axis, pitch angle θ about the y-axis, and yaw angle ψ about the z-axis.
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Fig. 1.67 A moving vehicle, indicated by its body coordinate frame B in a global coordinate
frame G

The rate of the orientation angles are called roll rate p, pitch rate q, and yaw rate r ,
respectively.

ϕ̇ = p (1.296)

θ̇ = q (1.297)

ψ̇ = r (1.298)

The vehicle force system (F, M), expressed in body coordinate is the resultant of
external forces and moments that vehicle receives from the ground and environment
(Ellis 1994; Dixon 1996).

BF = Fxı̂ + Fyĵ + Fzk̂ (1.299)

BM = Mxı̂ + Myĵ + Mzk̂ (1.300)

The components of the vehicle force system that are shown in Fig. 1.67 have
special names and importance.

1. The Fx is the longitudinal force acting on the x-axis. The longitudinal force may
also be called forward force, traction force, or brake force. Traction or braking
force of tires and the aerodynamic forces on the vehicle make Fx .

2. The Fy is the lateral force leftward on the y-axis. Imbalance lateral force on front
and rear tires is needed to generate a yaw moment to turn a vehicle. Steering is
the main way to generate Fy .

3. The Fz is vertical to the ground plane and is called vehicle load. Vehicle load
affects the limit and force capacity of tires.

4. The Mx is the roll moment about the x-axis. The roll moment is also called the
longitudinal moment, bank moment, tilting torque, or overturning moment.

5. The My is the pitch moment or lateral moment about the y-axis.
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Fig. 1.68 Top view of a moving vehicle to show the yaw angle ψ between the X and x axes, the
attitude angle β between the x-axis and the velocity vector v, at the mass center C, and the cruise
angle β + ψ between the X-axis and the velocity vector v

6. The Mz is the yaw moment or upward moment about the z-axis. The yaw moment
may also be called the aligning moment. Yaw moment along with lateral forces
would make a vehicle turn.

We determine the position and orientation of a vehicle by determining the
position and orientation of the body coordinate frame B(Cxyz) with respect to a
fixed global coordinate frame G(OXYZ). Figure 1.67 shows how a moving vehicle
is indicated by a body frame B in a global frame G (Dieter et al. 2018; Dukkipati
et al. 2008).

The angle ψ between the X and x axes measured from X to x about Z is the
yaw angle or heading angle ψ . A velocity vector v of the vehicle at its mass center
C makes an angle β with the body x-axis, measured from x to v about z, which
is called vehicle sideslip angle or attitude angle. Therefore, the vehicle’s velocity
vector v makes an angle β + ψ with the global X-axis, measured from X to v about
Z that is called the cruise angle. A positive configuration of these angles is shown
in Fig. 1.68.

Bv = v cos β Bı̂ + v sin β Bĵ = vx
B ı̂ + vy

Bĵ (1.301)

The definition of β for a vehicle in (1.301) is similar to the definition of β for tires
in (1.123) and (1.128). To make it distinguishable between the wheel-body sideslip
angle (1.129) in C-frame and the vehicle sideslip angle (1.301) in B-frame, we
usually refer to β in (1.301) as vehicle sideslip or vehicle attitude angle.

The numbering of tires of a vehicle starts from the first axle at the front. The front
left wheel is number 1, and then the front right wheel would be number 2. Then the
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Fig. 1.69 A six-wheel passenger car wheel numbering, relative position, and orientation of
B (x, y, z) and coordinate G(x, y, z) frames

left wheel on second axle would be number 3 and the tire on second axle on the right
will be number 4. Numbering increases sequentially on the left and right of the next
axles. Therefore, the tires with odd numbers are on the left and even numbers on the
right. Assuming each axle has only two wheels, the number of a wheel indicates the
axle as well as the left or right one.

Besides a single number indicator for wheels, there are literatures in which they
use axle number and add left-right wheels, such that the position vector of the wheels
1 to 6 of a three axle vehicle is numbered as: r1l , r1r , r2l , r2r , r3l , r3r , or r11, r12,
r21, r22, r31, r32. Numbering of a four-wheel and a six-wheel vehicle are shown in
Figs. 1.68 and 1.69, respectively.

Each wheel is indicated by a position vector Bri , expressed in the body
coordinate frame B

Bri = xii + yij + zik (1.302)

and its velocity will be indicated by Bvi , expressed in the body coordinate frame B

Bvi = Bv + GωB × Bri =
⎡
⎣

v cos β − ryi

v sin β + rxi

0

⎤
⎦ (1.303)
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and the G-expression velocity Gvi of tire number i is:

Gvi = GωB ×
(

Gri − GdB

)
+ GḋB

= GRB
Bvi =

⎡
⎣

−r (yi cos ψ + xi sin ψ) + v cos (β + ψ)

r (xi cos ψ − yi sin ψ) + v sin (β + ψ)

0

⎤
⎦ (1.304)

where GωB is the angular velocity of the vehicle in G-frame, GdB is the position
vector of the origin of the B-frame in G-frame as shown in Fig. 1.68. For a planar
vehicle model, GωB = r Gk̂ where r is the yaw rate r = ωz and Gk̂ is the unit
vector of the Z-axis in the global coordinate frame.

Proof Let us show the coordinates of the origin of the B-frame in G-frame by Gd

Gd =
[

XC

YC

]
(1.305)

The transformation matrix between B-frame and G-frame GRB is a rotation matrix
by the yaw angle ψ .

GRB =
[

cos ψ − sin ψ

sin ψ cos ψ

]
(1.306)

Therefore the position vector of tires in the G-frame will be

Gri = Gd + GRB
Bri

=
[

XC

YC

]
+
[

cos ψ − sin ψ

sin ψ cos ψ

] [
xi

yi

]

=
[

XC + xi cos ψ − yi sin ψ

YC + yi cos ψ + xi sin ψ

]
(1.307)

Assuming different front track wf and rear track wr , the position vectors of the
wheels of the four-wheel vehicle in Fig. 1.68 are

Br1 =
[

a1
1
2wf

]
Br2 =

[
a1

− 1
2wf

]

Br3 =
[−a2

1
2wr

]
Br4 =

[ −a2

− 1
2wr

]
(1.308)
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The velocity of the vehicle v in B-frame is

Bv =
[

v cos β

v sin β

]
(1.309)

Having the velocity Bv and the angular velocity B
GωB = r B k̂ of the vehicle at the

mass center C, we are able to calculate the velocity of any other point of the vehicle.
The velocity of tires will be needed in calculating traction force and torques.

B
GωB = GRB GωB (1.310)

=
⎡
⎣

cos ψ − sin ψ 0
sin ψ cos ψ 0

0 0 1

⎤
⎦×

⎡
⎣

0
0
r

⎤
⎦ =

⎡
⎣

0
0
r

⎤
⎦

Bvi = Bv+ B
GωB × Bri (1.311)

=
⎡
⎣

v cos β

v sin β

0

⎤
⎦+

⎡
⎣

0
0
r

⎤
⎦×

⎡
⎣

xi

yi

0

⎤
⎦ =

⎡
⎣

v cos β − ryi

v sin β + rxi

0

⎤
⎦

The vehicle velocity Bv after transformation to G-frame will be

Gv = GRB
Bv =

[
cos ψ − sin ψ

sin ψ cos ψ

] [
v cos β

v sin β

]

=
[

v cos (β + ψ)

v sin (β + ψ)

]
= Gḋ (1.312)

Therefore, the global velocity of the center of the wheel number i is:

Gvi = GωB ×
(

Gri − GdB

)
+ GḋB (1.313)

=
⎡
⎣

0
0
r

⎤
⎦×

⎛
⎝
⎡
⎣

XC − yi sin ψ + xi cos ψ

YC + yi cos ψ + xi sin ψ

0

⎤
⎦−

⎡
⎣

XC

YC

0

⎤
⎦
⎞
⎠

+
⎡
⎣

v cos (β + ψ)

v sin (β + ψ)

0

⎤
⎦

=
⎡
⎣

−r (yi cos ψ + xi sin ψ) + v cos (β + ψ)

r (xi cos ψ − yi sin ψ) + v sin (β + ψ)

0

⎤
⎦

�
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Example 43 Wheel numbers, their positions and velocity.
Figure 1.69 depicts a six-wheel passenger car. The velocity of the car at its mass

center is indicated by v. The wheel numbers are indicated next to each wheel. The
front left wheel is wheel number 1, and the front right wheel is number 2. Moving to
the second axle, we have the wheels numbered 3 and 4. The left wheel of the third
axle gets number 5, and the right wheel gets number 6.

Let us assume the global location vector of the car’s mass center is given by

GdB =
[

XC

YC

]
(1.314)

and the body velocity Bv at the mass center C and angular velocity of the car GωB

by

Bv =
[

vx

vy

]
=
[

v cos β

v sin β

]
GωB =

⎡
⎣

0
0
ψ̇

⎤
⎦ =

⎡
⎣

0
0
r

⎤
⎦ (1.315)

The body position vectors of the wheels are

Br1 =
[

a1

w/2

]
Br2 =

[
a1

−w/2

]
(1.316)

Br3 =
[−a2

w/2

]
Br4 =

[ −a2

−w/2

]
(1.317)

Br5 =
[−a3

w/2

]
Br6 =

[ −a3

−w/2

]
(1.318)

Employing the transformation matrix GRB to go from B to G coordinate frame,

GRB =
[

cos ψ − sin ψ

sin ψ cos ψ

]
(1.319)

we may determine the global position of the wheels:

Gr1 = Gd + GRB
Br1 =

[
XC − 1

2w sin ψ + a1 cos ψ

YC + 1
2w cos ψ + a1 sin ψ

]
(1.320)

Gr2 = Gd + GRB
Br2 =

[
XC + 1

2w sin ψ + a1 cos ψ

YC − 1
2w cos ψ + a1 sin ψ

]
(1.321)
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Gr3 = Gd + GRB
Br3 =

[
XC − 1

2w sin ψ − a2 cos ψ

YC + 1
2w cos ψ − a2 sin ψ

]
(1.322)

Gr4 = Gd + GRB
Br4 =

[
XC + 1

2w sin ψ − a2 cos ψ

YC − 1
2w cos ψ − a2 sin ψ

]
(1.323)

Gr5 = Gd + GRB
Br5 =

[
XC − 1

2w sin ψ − a3 cos ψ

YC + 1
2w cos ψ − a3 sin ψ

]
(1.324)

Gr6 = Gd + GRB
Br6 =

[
XC + 1

2w sin ψ − a3 cos ψ

YC − 1
2w cos ψ − a3 sin ψ

]
(1.325)

The velocity of C in G-frame is:

Gv = GRB
Bv =

[
cos ψ − sin ψ

sin ψ cos ψ

] [
v cos β

v sin β

]

=
[

v cos (β + ψ)

v sin (β + ψ)

]
= Gḋ (1.326)

The velocity of a point P at GrP will be calculated by

GvP = GωB ×
(

GrP − GdB

)
+ GḋB (1.327)

As an example, the global velocity of the center of the wheel number 1 is:

Gv1 = GωB ×
(

Gr1 − GdB

)
+ GḋB (1.328)

=
⎡
⎣

0
0
r

⎤
⎦×

⎛
⎝
⎡
⎣

XC − 1
2w sin ψ + a1 cos ψ

YC + 1
2w cos ψ + a1 sin ψ

0

⎤
⎦−

⎡
⎣

XC

YC

0

⎤
⎦
⎞
⎠

+
⎡
⎣

v cos (β + ψ)

v sin (β + ψ)

0

⎤
⎦

=

⎡
⎢⎢⎢⎣

v cos (β + ψ) − r
(

1
2w cos ψ + a1 sin ψ

)

v sin (β + ψ) + r

(
a1 cos ψ − 1

2
w sin ψ

)

0

⎤
⎥⎥⎥⎦
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Having Gv,we may calculate the velocity of tires in B-frame by transformation.

Bv1 = GRT
B

Gv1 =
⎡
⎣

cos ψ − sin ψ 0
sin ψ cos ψ 0

0 0 1

⎤
⎦

T

× (1.329)

⎡
⎢⎢⎣

v cos (β + ψ) − r
(
a1 sin ψ + w

2
cos ψ

)

v sin (β + ψ) + r
(
a1 cos ψ − w

2
sin ψ

)

0

⎤
⎥⎥⎦ =

⎡
⎢⎣

v cos β − w

2
r

v sin β + a1r

0

⎤
⎥⎦

As an example, consider a car as shown in Fig. 1.69, having the following data:

GdB =
[

25
5

]
m (1.330)

ψ̇ = r = 0.1 rad/s BvC = 20 m/s (1.331)

β = 0.2 rad ψ = 0.3 rad (1.332)

a1 = 1.2 m a2 = 1.5 m a3 = 2.1 m w = 1.4 m (1.333)

The velocity vector of C in body coordinate frame is:

Bv =
[

v cos β

v sin β

]
=
[

20 cos 0.2
20 sin 0.2

]
=
[

19.601
3.9734

]
m/s (1.334)

The transformation matrix from B to G coordinate frame is:

GRB =
[

cos ψ − sin ψ

sin ψ cos ψ

]
=
[

0.95534 −0.29552
0.29552 0.95534

]
(1.335)

The global position of the wheels is:

Gri = Gd + GRB
Bri (1.336)

The global velocity of C is:

Gv = GRB
Bv =

[
17.551
9.5884

]
= Gḋ (1.337)

The global velocity of the center of the wheel number 1 is:

Gv1 = GωB ×
(

Gr1 − GdB

)
+ GḋB =

[
17.449
9.6824

]
(1.338)
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Example 44 Velocity distribution of a vehicle.
Consider a general point P at BrP = xı̂ + yĵ of the vehicle in Fig. 1.69 along

with

BrP =
[

x

y

]
m GdB =

[
25
5

]
m (1.339)

ψ̇ = r = 0.1 rad/s BvC = 20 m/s (1.340)

β = 0.2 rad ψ = 0.3 rad (1.341)

a1 = 1.2 m a2 = 1.5 m a3 = 2.1 m w = 1.4 m (1.342)

GRB =
[

cos ψ − sin ψ

sin ψ cos ψ

]
=
[

0.95534 −0.29552
0.29552 0.95534

]
(1.343)

Bv =
[

v cos β

v sin β

]
=
[

19.601
3.9734

]
m/s (1.344)

Gv = GRB
Bv =

[
17.551
9.5884

]
= Gḋ (1.345)

The global coordinates of P are

GrP = Gd + GRB
BrP =

[
0.95534x − 0.29552y + 25
0.29552x + 0.95534y + 5

]
(1.346)

and the global velocity components at P are:

GvP = GωB ×
(

GrP − GdB

)
+ GḋB

=
⎡
⎣

−2.9552 × 10−2x − 9.5534 × 10−2y + 17.551
9.5534 × 10−2x − 2.9552 × 10−2y + 9.5884

0

⎤
⎦ (1.347)

Bv = GRT
B

Gv =
⎡
⎣

0.95534 −0.29552 0
0.29552 0.95534 0

0 0 1

⎤
⎦

T

Gv

=
⎡
⎣

19.601 − 0.1y

3.9735 + 0.1
0

⎤
⎦ (1.348)
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The velocity distribution is a linear function of the local coordinates in B-frame.
Therefore, having the velocity of any two points of the vehicle is enough to calculate
the velocity of any other point of the vehicle.

Example 45 Global vehicle path.
When we find the translational and rotational velocities of a vehicle, vX, vY , r ,

we may find the global path of motion of the vehicle by integration.

ψ =
∫

ψ̇ dt = ψ0 +
∫

r dt

Gv =
[

Ẏ

Ẋ

]
= GRB

Bv (1.349)

X =
∫

Ẋ dt =
∫ (

vx cos ψ − vy sin ψ
)
dt (1.350)

Y =
∫

Ẏ dt =
∫ (

vx sin ψ + vy cos ψ
)
dt (1.351)

1.7 Weight Transfer

Tire longitudinal and lateral forces are proportional to the load on the tire. The
load on tires of a vehicle is a combination of weight of the vehicle and vehicle
acceleration, as well as orientation of the vehicle on the road. In this section we
review how the normal force Fz on a tire of a moving vehicle is calculated.

1.7.1 Longitudinally Accelerating Vehicle

We assume vehicles are longitudinally symmetric. Therefore, the left and right sides
of vehicles are under same vertical force in level conditions. When a vehicle is
speeding with acceleration ax on a level road, as shown in Fig. 1.70, the vertical
forces under the front and rear tires are:

Fz1 = Fz2 = 1

2
mg

a2

l
− 1

2
maX

h

l
(1.352)

Fz3 = Fz4 = 1

2
mg

a1

l
+ 1

2
maX

h

l
(1.353)

l = a1 + a2 (1.354)
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Fig. 1.70 An accelerating car on a level road

The first terms, 1
2mg a2

l
and 1

2mg a1
l

, are the static parts, and the second terms,
± 1

2maX
h
l
, are dynamic parts of the vertical forces. The parameters a1 and a2

are longitudinal distances between front and rear axles respectively from the mass
center C. The height of the mass center C from the ground is indicated by h (Dieter
et al. 2018).

Proof The vehicle is considered as a rigid body that moves along a horizontal road.
The force at the tireprint of each tire may be decomposed into a vertical Fz and a
longitudinal force Fx . The Newton’s equation of motion for the accelerating vehicle
in the x-direction and two static equilibrium equations in y- and z-directions is:

∑
FX = maX (1.355)

∑
FZ = 0 (1.356)

∑
MY = 0 (1.357)

Expanding the equations produces three equations for four unknowns Fx2 , Fx4 , Fz2 ,
Fz4 .

2Fx2 + 2Fx4 = maX (1.358)

2Fz2 + 2Fz4 − mg = 0 (1.359)

−2Fz2a1 + 2Fz4a2 − 2
(
Fx2 + Fx4

)
h = 0 (1.360)

We may substitute
(
Fx2 + Fx4

)
from the first equation in the third equations to solve

for the normal forces Fz2 , Fz4 from second and third equations

Fz1 = Fz2 = (Fz2

)
st + (Fz2

)
dyn

= 1

2
mg

a2

l
− 1

2
maX

h

l
(1.361)
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Fz3 = Fz4 = (Fz4

)
st

+ (Fz4

)
dyn

= 1

2
mg

a1

l
+ 1

2
maX

h

l
(1.362)

The static parts

(
Fz2

)
st

= 1

2
mg

a2

l
(1.363)

(
Fz4

)
st

= 1

2
mg

a1

l
(1.364)

are weight distribution for a stationary car and depend on the horizontal position of
the mass center. However, the dynamic parts

(
Fz2

)
dyn

= −1

2
maX

h

l
(1.365)

(
Fz4

)
dyn

= 1

2
maX

h

l
(1.366)

indicate the weight distribution because of horizontal acceleration, and depend on
the vertical position of the mass center.

When accelerating ax > 0, the normal forces under the front tires are less than
the static load, and under the rear tires are more than the static load. �
Example 46 Front and rear wheel drive accelerating on a level road.

When the car is front-wheel-drive, then Fx3 = Fx4 = 0. Equations (1.355)–
(1.357) will provide us with the same vertical tireprint forces as (1.352) and (1.353).
However, the required horizontal force, 2Fx2 , to achieve the same acceleration, ax ,
must be provided solely by the front wheels.

2Fx2 = maX (1.367)

If a car is rear-wheel drive, then Fx1 = Fx2 = 0 and the required force to achieve
the acceleration, ax , must be provided only by the rear wheels.

2Fx4 = maX (1.368)

The vertical force under the wheels will still be the same as (1.352) and (1.353).

Example 47 Maximum acceleration on a level road.
The maximum acceleration of a car is proportional to the friction under its tires.

We assume the friction coefficients at the front and rear tires are equal and all tires
reach their maximum traction at the same time.

Fxi
= ±μxFzi

(1.369)
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Fig. 1.71 An accelerating car on inclined pavement

Also, we assume the engine has infinite power to produce as much power as needed.
Newton’s equation (1.352) can now be written as

maX = ±μx

4∑
i=1

Fzi
(1.370)

Substituting Fzi
from (1.361) and (1.362) results in

aX = ±μxg (1.371)

Therefore, the maximum acceleration and deceleration depend directly on the
friction coefficient.

μx = Cs ss (1.372)

Example 48 Accelerating vehicles on an inclined road.
When a symmetric vehicle is accelerating on an inclined pavement with angle φ

as shown in Fig. 1.71, the vertical force under each of the front and rear axles, Fz1 ,
Fz2 , Fz3 , Fz4 , would be:

Fz1 = Fz2 = 1

2
mg

(
a2

l
cos φ − h

l
sin φ

)
− 1

2
maX

h

l
(1.373)

Fz3 = Fz4 = 1

2
mg

(
a1

l
cos φ + h

l
sin φ

)
+ 1

2
maX

h

l
(1.374)

l = a1 + a2
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The dynamic parts, ± 1
2maxX

h
l
, depend on acceleration ax and height h of mass

center C, while the static parts depend on the slope angle φ as well as the
longitudinal and vertical positions of the mass center.

The Newton’s equation in x-direction and two static equilibrium equations must
be solved together to find the equation of motion and ground reaction forces.

∑
FX = maX (1.375)

∑
FZ = 0 (1.376)

∑
MY = 0 (1.377)

Expanding these equations produces three equations for four unknowns Fx1 , Fx2 ,
Fz1 , Fz2 .

2Fx2 + 2Fx4 − mg sin φ = maX (1.378)

2Fz2 + 2Fz4 − mg cos φ = 0 (1.379)

−2Fz2a1 + 2Fz4a2 − 2
(
Fx2 + Fx4

)
h = 0 (1.380)

It is possible to eliminate
(
Fx2 + Fx4

)
between the first and third equations, and

solve for the vertical forces Fz1 , Fz2 , Fz3 , Fz4 .

Fz2 = Fz1 = (Fz2

)
st

+ (Fz2

)
dyn

= 1

2
mg

(
a2

l
cos φ − h

l
sin φ

)
− 1

2
maX

h

l
(1.381)

Fz4 = Fz3 = (Fz4

)
st

+ (Fz4

)
dyn

= 1

2
mg

(
a1

l
cos φ + h

l
sin φ

)
+ 1

2
maX

h

l
(1.382)

Example 49 Maximum acceleration on an inclined road.
The maximum acceleration depends on the friction under the tires. Let us assume

the friction coefficients at the front and rear tires are equal. Then, the front and rear
traction forces are

Fxi
≤ μxFzi

(1.383)

If we assume the front and rear wheels reach their traction limits at the same time,
then

Fxi
= ±μxFzi

(1.384)
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Fig. 1.72 A vehicle on lateral acceleration

and we may rewrite Newton’s equation (1.375) as

maXM
= ±μx

4∑
i=1

Fzi
− mg sin φ (1.385)

where axM
is the maximum achievable acceleration.

Substituting
∑4

i=1 Fzi
from (1.381) and (1.382) results in

axM

g
= ±μx cos φ − sin φ (1.386)

Accelerating on an uphill road and braking on a downhill road are the extreme cases
in which the car can stall, ax = 0. In these cases, the car can move only if

μx ≥ |tan φ| (1.387)

Following the directions of the body coordinate frame of the vehicle, uphill road
should be assigned by φ < 0 and downhill by φ > 0, as the slope angle φ should
be measured about the y-axis. However, in this section we have used the absolute
value of the slope angle for calculations.

1.7.2 Laterally Accelerating Vehicle

Figure 1.72 illustrates a vehicle on lateral acceleration. The vertical force under the
left and right tires, Fz1 , Fz2 , Fz3 , Fz4 , are:

Fz1 = Fz3 = 1

2
mg

b2

w
− 1

2
maY

h

w
(1.388)
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Fz2 = Fz4 = 1

2
mg

b1

w
+ 1

2
maY

h

w
(1.389)

w = b1 + b2 (1.390)

Proof Assuming a symmetric vehicle, we may use equilibrium and equation of
motion in the body coordinate frame (Cxyz)

∑
FY = maY (1.391)

∑
FZ = 0 (1.392)

∑
MX = 0 (1.393)

we can write

2Fy1 + 2Fy2 = maY (1.394)

2Fz1 + 2Fz2 − mg = 0 (1.395)

2Fz1b1 − 2Fz2b2 + 2
(
Fy1 + Fy2

)
h = 0 (1.396)

Substituting
(
Fy1 + Fy2

)
from (1.394) into (1.396) enables us to solve for Fzi

.

Fz1 = Fz3 = 1

2
mg

b2

w
− 1

2
maY

h

w
(1.397)

Fz2 = Fz4 = 1

2
mg

b1

w
+ 1

2
maY

h

w
(1.398)

�
Example 50 Vehicle on a banked road.

Figure 1.73 illustrates the effect of a bank angle φ on the load distribution of a
vehicle. A bank road causes the load on the lower tires to increase and the load on
the upper tires to decrease. The tire reaction forces are:

Fz1 = 1

2

mg

w
(b2 cos φ − h sin φ) (1.399)

Fz2 = 1

2

mg

w
(b1 cos φ + h sin φ) (1.400)

w = b1 + b2 (1.401)

The maximum bank angle is

tan φM = μy (1.402)

at which the car will slide down laterally.
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Fig. 1.73 Vertical forces to the ground under the uphill and downhill tires of a vehicle, on banked
road

Starting with equilibrium equations in the body coordinate frame (Cxyz)

∑
FY = 0 (1.403)

∑
FZ = 0 (1.404)

∑
MX = 0 (1.405)

we write

2Fy1 + 2Fy2 − mg sin φ = 0 (1.406)

2Fz1 + 2Fz2 − mg cos φ = 0 (1.407)

2Fz1b1 − 2Fz2b2 + 2
(
Fy1 + Fy2

)
h = 0 (1.408)

We assumed the force under the lower tires, front and rear, are equal, and also the
forces under the upper tires, front and rear, are equal. To calculate the reaction forces
under each tire, we may assume the overall lateral force Fy1 + Fy2 as an unknown.
The solution of these equations provide the lateral and reaction forces under the
upper and lower tires.

Fz1 = Fz3 = 1

2
mg

b2

w
cos φ − 1

2
mg

h

w
sin φ (1.409)

Fz2 = Fz4 = 1

2
mg

b1

w
cos φ + 1

2
mg

h

w
sin φ (1.410)

Fyi
= 1

4
mg sin φ (1.411)
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At the ultimate angle φ = φM , all wheels will begin to slide simultaneously and
therefore,

Fyi
= μyi

Fzi
(1.412)

The equilibrium equations show that

2μy1
Fz1 + 2μy2

Fz2 − mg sin φ = 0 (1.413)

2Fz1 + 2Fz2 − mg cos φ = 0 (1.414)

2Fz1b1 − 2Fz2b2 + 2
(
μy1

Fz1 + μy2
Fz2

)
h = 0 (1.415)

Assuming all friction coefficients are equal

μyi
= μy (1.416)

provides us with

Fz1 = Fz3 = 1

2
mg

b2

w
cos φM − 1

2
mg

h

w
sin φM (1.417)

Fz2 = Fz4 = 1

2
mg

b1

w
cos φM + 1

2
mg

h

w
sin φM (1.418)

tan φM = μy (1.419)

These calculations are correct as long as

tan φM ≤ b2

h
(1.420)

μy ≤ b2

h
(1.421)

If the lateral friction μy is higher than b2/h, then the car will roll downhill. To
increase the capability of a car moving on a banked road, the car should be as wide
as possible with a mass center as low as possible.

Example 51 Tire forces of a parked car in a banked road.
A car having

m = 980 kg h = 0.6 m w = 1.52 m b1 = b2 (1.422)

is parked on a banked road with φ = 4 deg. The forces under the lower and upper
tires of the car are:

2Fz1 = 2265.2 N 2Fz2 = 2529.9 N (1.423)

2Fy1 + 2Fy2 = 335.3 N (1.424)
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Fig. 1.74 A moving car on a round banked road

The ratio of the uphill force 2Fz1 to downhill force 2Fz2 depends on only the
mass center location.

Fz1

Fz2

= b2 cos φ − h sin φ

b1 cos φ + h sin φ
(1.425)

Assuming a symmetric car with b1 = b2 = w/2 simplifies the equation to

Fz1

Fz2

= w cos φ − 2h sin φ

w cos φ + 2h sin φ
(1.426)

Example 52 Vehicle on a banked round road.
When a vehicle of mass m is moving with speed v on a flat round path of radius

R, the direction of the wheels lateral force are inward and provide the required
centripetal acceleration.

(
2Fy1 + 2Fy2

)
cos φ = m

v2

R
(1.427)

Knowing that the wheels’ lateral forces are limited by the maximum friction force
between tire and road, we conclude that there is a maximum speed vM at which the
required lateral force will not be produced by tires and vehicle slides out of the road.

To have a safe road, we have to design round roads such that vehicle do not need
any wheel lateral force to provide the required centripetal force at the recommended
speed. Designing roads with a bank angle is a good approximate solution; so a
component of weight force provides the required centripetal force. Figure 1.74
illustrates a moving car on a round banked road. Assuming equal vertical force under
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each tire, the balance of the applied forces on the vehicle in the body coordinate
frame provides us with

mg cos φ − 4Fz1 − m
v2

R
sin φ = 0 (1.428)

mg sin φ − m
v2

R
cos φ = 0 (1.429)

The second equation indicates the required bank angle as a function of speed

tan φ = v2

Rg
(1.430)

The bank angle is independent of the vehicle mass m and is a function of the road
radius of turn R and velocity of the vehicle v. Assuming that the road radius of turn
R is not variable, the bank angle must ideally vary with the speed of the vehicle.
To design a traditionally fixed road, we have to decide about the proper velocity
of vehicles on the road and calculate the bank angle based on (1.430). Because
the angle is only a function of the vehicle velocity, the proper banked road works
well for all types of vehicles as long as they keep their velocity as recommended.
Any lower or higher speed would respectively need some positive or negative lateral
force to be generated by tires. The lack or excessive tire lateral force will be provided
by steering and sideslip angles of vehicles, or by roll and camber angles of bicycles
and motorcycles.

1.7.3 Longitudinally and Laterally Accelerating Vehicle

Figure 1.75 illustrates a vehicle on longitudinal and lateral acceleration ax and ay .
The tire forces of the vehicle on a flat ground are equal to:

Fz1 = m

(
a2

l
g − h

l
aX

)
b2f

wf

− m

(
a2

l
g − h

l
aX

)
h

wf

aY

g
(1.431)

Fz2 = m

(
a2

l
g − h

l
aX

)
b1f

wf

+ m

(
a2

l
g − h

l
aX

)
h

wf

aY

g
(1.432)

Fz3 = m

(
a1

l
g + h

l
aX

)
b2r

wr

− m

(
a1

l
g + h

l
aX

)
h

wr

aY

g
(1.433)
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Fig. 1.75 A vehicle on longitudinal and lateral acceleration ax and ay

Fz4 = m

(
a1

l
g + h

l
aX

)
b1r

wr

+ m

(
a1

l
g + h

l
aX

)
h

wr

aY

g
(1.434)

wf = b1f + b2f (1.435)

wr = b1r + b2r (1.436)

Proof Let us use the tire numbers according to the recommendation in previous
section. The front left wheel is number 1, and then the front right wheel would be
number 2. The left wheel on second axle is number 3 and the second axle on the
right will be number 4.

Figure 1.76 illustrates a vehicle on a flat ground with forward acceleration ax .
The forces Fzf , Fzr , on front and rear axles of the vehicle from (1.352) to (1.353)
are:

Fzf
= mg

a2

l
− maX

h

l
(1.437)

Fzr = mg
a1

l
+ maX

h

l
(1.438)

l = a1 + a2 (1.439)

Figure 1.77 depicts the front view of the same vehicle when the load on the front
axle is as (1.437) and the vehicle has a lateral acceleration of ay . Using (1.437), we
introduce a virtual front mass mvf
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Fig. 1.76 A vehicle on a flat ground with forward acceleration ax
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Fig. 1.77 A vehicle with a vertical load of Fzf on front axle and on a lateral acceleration of ay

mvf = Fzf

g
= 1

g

(
mg

a2

l
− maX

h

l

)
(1.440)

Employing (1.388)–(1.389) we find the vertical force under front wheels z1 and z2
as:

Fz1 = mvf g
b2f

wf

− mvf aY

h

wf

=
(

mg
a2

l
− max

h

l

)(
b2f

wf

− aY

g

h

wf

)

= m

(
a2

l
g − h

l
aX

)
b2f

wf

− m

(
a2

l
g − h

l
aX

)
h

wf

aY

g
(1.441)



1.7 Weight Transfer 101

Fz2 = mvf g
b1f

wf

+ mvf aY

h

wf

=
(

mg
a2

l
− maX

h

l

)(
b1f

wf

+ aY

g

h

wf

)

= m

(
a2

l
g − h

l
aX

)
b1f

wf

+ m

(
a2

l
g − h

l
aX

)
h

wf

aY

g
(1.442)

wf = b1f + b2f (1.443)

Similarly, we use (1.438) to introduce a virtual rear mass mvr

mvr = Fzr

g
= 1

g

(
mg

a1

l
+ maX

h

l

)
(1.444)

and use (1.388)–(1.389) to find the vertical force under rear wheels z3 and z4 as:

Fz3 = mvr g
b2r

wr

− mvr aY

h

wr

=
(

mg
a1

l
+ maX

h

l

)(
b2r

wr

− aY

g

h

wr

)

= m

(
a1

l
g + h

l
aX

)
b2r

wr

− m

(
a1

l
g + h

l
aX

)
h

wr

aY

g
(1.445)

Fz4 = Fzf

b1r

wr

+ Fzr

g
aY

h

wr

=
(

mg
a1

l
+ maX

h

l

)(
b1r

wr

+ aY

g

h

wr

)

= m

(
a1

l
g + h

l
aX

)
b1r

wr

+ m

(
a1

l
g + h

l
aX

)
h

wr

aY

g
(1.446)

wr = b1r + b2r (1.447)

There were few assumptions in this analysis that make the results to be
approximately correct.

1. We started from Eqs. (1.352) to (1.353) to determine the vertical load on the
front and rear axles. These equations assume the left and right wheels are under
the same forces.

2. We used (1.437) and (1.438) and defined virtual masses at front and rear parts
of the vehicle. This is only an assumption to be able to connect the effects of
longitudinal and lateral accelerations aX and aY .

3. The sprung and unsprung masses are assumed rigidly connected. �
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Example 53 Linearized equations for tires’ load.
Under normal driving conditions, vehicles usually have very low lateral and lon-

gitudinal accelerations. In case the term including axay may be ignored compared
to other terms, the set of Eqs. (1.431)–(1.434) for vertical forces of tires will become
linear.

Fz1 = 1

l

m

wf

(
ga2b2f − hb2f aX − ha2aY

)
(1.448)

Fz2 = 1

l

m

wf

(
ga2b1f − hb1f aX + ha2aY

)
(1.449)

Fz3 = 1

l

m

wr

(ga1b2r + hb2raX − ha1aY ) (1.450)

Fz4 = 1

l

m

wr

(ga1b1r + hb1raX + ha1aY ) (1.451)

Example 54 The problem with exact equations.
Consider the rigid vehicle in Fig. 1.75. There will be six equations of motions:

∑
FX = maX

∑
FY = maY

∑
FZ = 0

∑
MX = 0

∑
MX = 0

∑
MX = 0 (1.452)

which will be expanded to

Fx1 + Fx2 + Fx3 + Fx4 = maX (1.453)

Fy1 + Fy2 + Fy3 + Fy4 = maY (1.454)

Fz1 + Fz2 + Fz3 + Fz4 − mg = 0 (1.455)

− (Fz1 + Fz2

)
a1 + (Fz3 + Fz4

)
a2

− (Fx1 + Fx2 + Fx3 + Fx4

)
h = Iyq̇ (1.456)

Fz1b1f − Fz2b2f + Fz3b1r − Fz4b2r

+ (Fy1 + Fy2 + Fy3 + Fy4

)
h = Ixṗ (1.457)

Fy1a1 + Fy2a1 − Fy3a2 − Fy4a2

−Fx1b1f + Fx2b2f − Fx3b1r + Fx4b2r = Izṙ (1.458)
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Assuming every parameter and variables are given except the vertical forces Fz1 ,
Fz2 , Fz3 , Fz4 , we only have three equations (1.455), (1.456), (1.457) to determine
four unknowns. This system is undetermined and is not solvable unless a constraint
being introduced into the system of equations.

⎡
⎣

1 1 1 1
−a1 −a1 a2 a2

b1f −b2f b1r −b2r

⎤
⎦

⎡
⎢⎢⎣

Fz1

Fz2

Fz3

Fz4

⎤
⎥⎥⎦ =

⎡
⎣

mg

maXh + Iyq̇

−maY h + Ixṗ

⎤
⎦ (1.459)

If the calculated forces in Eqs. (1.431)–(1.434) are correct, then they must satisfy
Eq. (1.459) when q̇ = 0, ṗ = 0. Substituting the vertical forces Fz1 , Fz2 , Fz3 , Fz4

from (1.431) to (1.434) into Eq. (1.459) indicates that all three equations will be
satisfied.

Example 55 Weight transfer in local coordinate frame.
Equations (1.431)–(1.434) determine the load transfer on vehicle’s wheels

because of longitudinal and lateral accelerations aX and aY , both expressed in the
global coordinate frame. We will see that the equations of motion of vehicles are
better to be defined in the body coordinate frame. In the body coordinate frame, we
have

aX = v̇x − r vy (1.460)

aY = v̇y + r vx (1.461)

Therefore, the weight transfer equations (1.431)–(1.434) must be modified as below
to be applied.

Fz1 = m

(
a2

l
g − h

l

(
v̇x − r vy

)) b2f

wf

−m

(
a2

l
g − h

l

(
v̇x − r vy

)) h

wf

v̇y + r vx

g
(1.462)

Fz2 = m

(
a2

l
g − h

l

(
v̇x − r vy

)) b1f

wf

+m

(
a2

l
g − h

l

(
v̇x − r vy

)) h

wf

v̇y + r vx

g
(1.463)

Fz3 = m

(
a1

l
g + h

l

(
v̇x − r vy

)) b2r

wr

−m

(
a1

l
g + h

l

(
v̇x − r vy

)) h

wr

v̇y + r vx

g
(1.464)
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Fz4 = m

(
a1

l
g + h

l

(
v̇x − r vy

)) b1r

wr

+ m

(
a1

l
g + h

l

(
v̇x − r vy

)) h

wr

v̇y + r vx

g
(1.465)

wf = b1f + b2f (1.466)

wr = b1r + b2r (1.467)

1.8 Chapter Summary

The dynamic performance of a vehicle is mainly determined by the interaction of
its tires and road. A vehicle can only move and maneuver by the force systems
generated under the tires. In this chapter, we introduce the required coordinate
frames to determine the location and orientation of tires in the vehicle body
coordinate frame; the mathematical equation to calculate longitudinal and lateral
forces; and individual equations needed to develop dynamic equations of vehicles
in the following chapters.

The resultant force system that a tire receives from the ground is at the center of
the tireprint and can be decomposed along xt , yt , and zt axes of the tire coordinate
frame T . The interaction of a tire with road generates a three-dimensional (3D) force
system including three forces and three moments. The force system at the tireprint
of a loaded, rolling, steered, cambered tire includes: forward force Fx , lateral force
Fy , vertical force Fz, aligning moment Mz, roll moment Mx , and pitch moment
My . The forward force Fx and lateral force Fy are the most significant forces in
vehicle maneuvering. To accelerate or brake a vehicle, a longitudinal force must be
developed between the tire and the ground. When a torque T is applied to the spin
axis of a tire, longitudinal slip ratio s occurs and a longitudinal force Fx is generated
at the tireprint proportional to s. The tire lateral force Fy is a function of two angles
of the tire: sideslip angle α and camber angle γ . The Fx and Fy take the tire load
Fz, sideslip α, longitudinal slip s, and the camber angle γ as input.

We adopt the proportional-saturation model for longitudinal and lateral slips of
tire. When α = 0, a small longitudinal slip s < ss generates the longitudinal force
Fx/Fz = Css, and when s = 0, a small sideslip angle α < αs generates a lateral
force of Fy/Fz = −Cαα. When there exists a longitudinal slip s < ss and then
we also introduce a sideslip α < αs , the longitudinal force will reduce. Similarly,
when there exists a longitudinal slip s < ss , the lateral force will drop. The elliptic
mathematical model introduces the analytical expression of the interaction Fx/Fz

and Fy/Fz.
Because the longitudinal and lateral forces are affected by the vertical force Fz

on the tire, there must be a model to calculate the weight transfer during forward
and lateral acceleration. Such equations are calculated in this chapter.
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1.9 Key Symbols

a ≡ ẍ Acceleration
a, b Semiaxes of tire print area A

ai Longitudinal distance of axle i from mass center
Axle number starting from the front first axle

ax Forward acceleration
ay Lateral acceleration
axM

Maximum forward acceleration
ayM

Maximum lateral acceleration
axα Aligning arm
axγ Camber trail
ayγ Camber arm
A,AP Tireprint area
b Lateral distance of a wheel from longitudinal x-axis
B Vehicle body coordinate frame
C Wheel-body coordinate frame, mass center
CMα Sideslip aligning moment coefficient
CMγ Camber aligning moment coefficient
Cs Longitudinal slip coefficient
Cṡ Longitudinal force drop coefficient with slip rate
Csα Tire longitudinal force drop factor
Csγ Tire longitudinal-camber force drop factor
Cs1 , Cs2 Velocity drop coefficient in longitudinal force
Csx , Csy Longitudinal and lateral slip coefficients
Cyγ Camber arm coefficient
Cα Sideslip coefficient, sideslip stiffness
Cαs Tire lateral force drop factor
Cαγ Tire lateral-camber force drop factor
Cα1 , Cα2 Velocity drop coefficient in lateral force
Cγ Camber coefficient, camber stiffness
d Displacement
d Location vector
dF No slip tire travel
dA Actual tire travel
D Tire diameter
f Function
F, F Force
Fx Longitudinal force, forward force
FxM

Maximum longitudinal force
Fy Lateral force
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FyM
Maximum lateral force

Fz Normal force, vertical force, wheel load
g g Gravitational acceleration
h Height of mass center from the ground
H Heaviside function
I Mass moment
I Unity matrix
k Stiffness
kx Tire stiffness in the x-direction
ky Tire stiffness in the y-direction
kz Tire stiffness in the z-direction
K Radial and non-radial tires parameter in μr = μr (p, vx)

m Mass
mvf Virtual front mass
mvr Virtual rear mass
Mr Mr Rolling resistance moment
Mx, Mx Roll moment, bank moment, tilting torque
My Pitch moment, rolling resistance torque
Mz Yaw moment, aligning moment, self-aligning moment
n Exponent for shape and stress distribution of AP

n1 Number of tire rotations
o,O Origin of a coordinate frame
O Order of magnitude
p Tire inflation pressure
P Point
r Radial position of tire periphery
r Position vector
Rg Geometric tire radius
Rh Loaded tire height
Re Equivalent tire radius
R Tire radius, rolling radius, effective radius

Rotation transformation matrix
s Longitudinal slip
ss Saturation value of longitudinal slip
sy Lateral slip
S Saturation function
T Wheel torque, tire coordinate frame
v ≡ ẋ, v Velocity, tread velocity in tireprint
vg Velocity of the ground
vrel Relative velocity of tire tread with respect to ground
x, y, z, x Displacement
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x, y, z Coordinate axes
xg Displacement of the ground
xrel Relative displacement of tread with respect to ground
W Wheel coordinate frame

0 Zero vector
α Tire sideslip angle, tire angular acceleration
αs Saturation sideslip angle
αw Tire angular acceleration
β Tire-body sideslip, wheel-body sideslip, vehicle sideslip

Transversal slope, attitude angle
γ Camber angle
δ Steer angle
θ Tire angular rotation
μ Friction coefficient
μx Longitudinal friction coefficient
μy Lateral friction coefficient
μdp Friction coefficient driving peak value
μds Friction coefficient steady-state value
τ Shear stress
τx, τ y Shear stresses over the tireprint
τxM

, τ yM
Maximum shear stresses

ϕ Contact angle, angular length of A

φ Slope angle
ω Angular velocity, frequency
ωeq Equivalent tire angular velocity
ωw Angular velocity of a wheel, actual tire angular velocity

Exercises

1. Tire-wheel coordinate frames.
Assume an equivalent rigid tire disc with the following equation in T -
coordinate.

(z − R)2 + x2 = R2 (1.468)

(a) Assuming a positive γ , determine the equation of the tire in W -frame.
(b) Assuming a positive δ, determine the equation of the tire in C-frame.
(c) Assuming a positive γ and δ, determine the equation of the tire in C-frame.
(d) Assuming a positive γ and δ, determine the equation of the tire in B-frame.
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2. Time-dependent transformation.
Consider the point P in Fig. 1.4 as the heading point of tire in T -frame. The
coordinates of P in T -frame are:

T rP = [R 0 R
]T

(1.469)

Assume the steer angle δ is varying with time as

δ = π

10
sin

π

10
t (1.470)

(a) Determine the coordinates of P in W -frame.
(b) Determine the coordinates of P in C-frame.
(c) Determine the coordinates of P in B-frame.

3. T -frame vector to W -frame.

(a) Consider a vector quantity T F in the tire T -frame as:

T F = [F1 F2 F3
]T

(1.471)

and knowing that:

WTT =
[

WRT
W dT

0 1

]
=

⎡
⎢⎢⎣

1 0 0 0
0 cos γ sin γ 0
0 − sin γ cos γ −R

0 0 0 1

⎤
⎥⎥⎦ (1.472)

CTT =
[

CRT
CdT

0 1

]
=

⎡
⎢⎢⎣

cos δ − sin δ 0 0
sin δ cos δ 0 0

0 0 1 −R

0 0 0 1

⎤
⎥⎥⎦ (1.473)

(b) transform the vector to W -frame.
(c) transform the vector to C-frame.
(d) transform the vector to B-frame if:

BRW = BRT
T RW

=
⎡
⎣

cos δ1 − cos γ sin δ1 sin γ sin δ1

sin δ1 cos γ cos δ1 − cos δ1 sin γ

0 sin γ cos γ

⎤
⎦ (1.474)

T dW = [0 −R sin γ R cos γ
]T

(1.475)
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4. Phase portrait for longitudinal force.
Assume

Fx

Fz

= Css − 1

10
Css

3 (1.476)

(a) Plot Fx/Fz as a function of s for Cs = 10.01001.
(b) How much slip ratio is needed to have Fx = Fz and how much to have

Fx = 2Fz.
(c) Plot d (Fx/Fz) /dt versus Fx/Fz for s = 0.01, s = 0.05, s = 0.075,

s = 0.1, s = 0.01, s = 0.15 and make a conclusion.

5. Tire sideslip, steer, wheel sideslip angles relationship.
The relationship of α = β − δ is correct from top view at zero camber γ = 0.
Determine the relationship when γ �= 0.

6. Sigmoid or Logistic function derivative.
Prove that if

f (x) = Sig (x) = 1

1 + e−x
(1.477)

then

f ′ (x) = f (x) (1 − f (x)) (1.478)

7. Sigmoid and Saturation function.
Determine the coefficient k in the Sigmoid function

f (x) = Sig (x) = 1

1 + e−kx
(1.479)

such that the difference between Saturation and Sigmoid function to be
minimum.

8. Activation functions.
Show that

(a) If f (x) = x/ (1 + |x|), then

f ′ (x) = x

(1 + |x|)2
(1.480)

(b) If f (x) = arctan (x) = tan−1 (x), then

f ′ (x) = x

1 + x2
(1.481)
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(c) If f (x) = x/
√

1 + kx2, then

f ′ (x) =
(

1√
1 + kx2

)3

(1.482)

(d) If f (x) = tanh (x), then

f ′ (x) = 1 − f (x)2 (1.483)

(e) If f (x) = tanh (x) = 2/
(
1 + e−2x

)− 1, then

tanh (x) = 2 Sig (2x) − 1 (1.484)

Therefore, Sigmoid function is a scaled tanh function.

9. Graphical view of tire force.
Consider a vehicle with the following data.

Cαf = 8.5 Cαr = 8.5 αs = 5 deg ss = 0.1

Csf = 7.5 Csr = 7.5 Cαs = 0.5 Csα = 0.5 (1.485)

and the tire force equations:

Fx

Fz

= Css

√
1 − Csα

(
α

αs

)2

|α| < αs |s| < ss (1.486)

Fy

Fz

= −Cαα

√
1 − Cαs

(
s

ss

)2

|α| < αs |s| < ss (1.487)

(a) Plot Fx/Fz as functions of α and s for −2αs < α < 2αs and −2ss < s <

2ss . Replot Fx/Fz for Cαs = 0 and Csα = 0 and compare the plots.
(b) Plot Fz/Fz as functions of α and s for −2αs < α < 2αs and −2ss < s <

2ss . Replot Fy/Fz for Cαs = 0 and Csα = 0 and compare the plots.
(c) If there is any sharp edges in any of the above plots, explain what would

happen to the tire forces before and after the sharp edges.

10. Tire camber and steer angles connection.
Practically, we design a suspension and steering mechanism such that the
camber angle γ is proportional to the steer angle δ.

γ = Cγδδ (1.488)

Rewrite the lateral force equation to be a function of steer angle and sideslip
angle.
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11. Slope of limit ellipse tire force.

(a) Determine the slope of both sides of the limit curve at the point that Fx/Fz

and Fy/Fz reach each other.
(b) Determine the required condition to have the same slope of both sides of

the limit curve at the point that Fx/Fz and Fz/Fz reach each other.

12. Jump in limit ellipse tire force.
Determine if it is possible the limit elliptical model curve at the point where
both Fx/Fz and Fy/Fz are saturated do not reach each other and show a jump?

13. Approximate elliptic tire model.
Use the approximate elliptical tire force model (1.266) and (1.267),

Fx

Fz


 Cs s

(
1 − 1

2
Csα

(
α

αs

)2
)

(1.489)

Fy

Fz


 −Cαα

(
1 − 1

2
Cαs

(
s

ss

)2
)

(1.490)

and use the following date

ss = 0.1 Cs = 10 Cα = 0.24

Csα = 0.5 Cαs = 0.5 αs = 5 deg (1.491)

and

(a) Plot Fx/Fz as a function α for −αs < α < αs and for s = 0.01, s = 0.02,
s = 0.03, s = 0.04.

(b) Plot Fy/Fz as a function s for −ss < s < ss and for α = 0.5 deg, α =
1 deg, α = 1.5 deg, α = 2 deg.

(c) Plot Fx/Fz versus Fy/Fz for s = 0.01, s = 0.02, s = 0.03, s = 0.04 and
α = 0.5 deg, α = 1 deg, α = 1.5 deg, α = 2 deg.

(d) Plot Fx/Fz versus Fy/Fz for s = ss and for −αs < α < αs , and also plot
Fx/Fz versus Fy/Fz for α = αs and for −ss < s < ss . The closed curve
will show the possible limit zone of tire slips.

(e) Compare plots of 11(a) with elliptical tire model in the book and explain
the differences.

(f) Compare plots of 11(b) with elliptical tire model in the book and explain
the differences.

(g) Compare the limit of 11(c) with limit shape of elliptical tire model and
explain the differences.

14. Jump in limit diamond tire force.
Determine if it is possible the limit diamond model curve at the point where
both Fx/Fz and Fy/Fz are saturated do not reach each other and show a jump?
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15. Tires’ loads order of magnitude.
Assuming that for most passenger cars the longitudinal and lateral accelerations
are ax/g < 1 and ay/g < 0.05, determine the order of magnitude of the term
with axay compared to other terms in equations for vertical force on tires.

16. Vertical force examination
Use Eqs. (1.431)–(1.434) and show that all Eq. (1.459) are correct.

17. Longitudinal and lateral accelerating vehicle.
Reprove the equations for tires vertical force calculation starting with lateral
acceleration. Then define a left and right virtual masses, mvl mvr , and use the
longitudinal analysis. Compare your results with Eqs. (1.431)–(1.434).

18. Fourth equation.
The set of Eq. (1.459) provides three equations among four unknown forces,

Fz1 , Fz2 , Fz3 , Fz4 . We have a set of solutions (1.431)–(1.434) that satisfy the
set of equations. What can be the fourth equation to be added to Eq. (1.459) to
provide us with the solutions (1.431)–(1.434).

⎡
⎣

Fz1 + Fz2 + Fz3 + Fz4

a2Fz3 − a1Fz2 − a1Fz1 + a2Fz4

Fz1bf + Fz3br − Fz2b2f − Fz4b2r

⎤
⎦ =

⎡
⎣

mg

maxh

−mayh

⎤
⎦ (1.492)

Is it possible to rewrite Eq. (1.459) as

⎡
⎢⎢⎣

1 1 1 1
−a1 −a1 a2 a2

b1f −b2f b1r −b2r

C1 C2 C2 C3

⎤
⎥⎥⎦

⎡
⎢⎢⎣

Fz1

Fz2

Fz3

Fz4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

mg

maxh

−mayh

A

⎤
⎥⎥⎦ (1.493)

and solve the equations to find Fz1 , Fz2 , Fz3 , Fz4

⎡
⎢⎢⎣

1 1 1 1
−a1 −a1 a2 a2

b1f −b2f b1r −b2r

C1 C2 C2 C3

⎤
⎥⎥⎦

−1⎡
⎢⎢⎣

mg

maxh

−mayh

A

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

Fz1

Fz2

Fz3

Fz4

⎤
⎥⎥⎦ (1.494)

and then expand the equations and pick one of the coefficients C1, C2, C3, C4
equal to one, say C1 = 1, and find C2, C3, C4, A?

19. Independent longitudinal and lateral forces.
In case the longitudinal and lateral forces are independent and not been affected
when the other force is developed, then the following questions will be applied.

Fx

Fz

= Fx (α, s, γ ) = Cs s (1.495)

Fy

Fz

= Fy (α, s, γ ) = −Cα α − Cγ γ (1.496)
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(a) Use Cs = 10, αs = 5 deg, Cα = 0.24, ss = 0.1 and plot force relations
similar to Figs. 1.39 and 1.40.

(b) Use Cαs = 0.5, and Csα = 0.5, and redraw the elliptical and diamond and
independent models on one plot similar to Fig. 1.40.

20. �Elliptical camber equation.
Consider the elliptical relationships (1.200) and (1.201) and include an elliptical
camber equation to the lateral force.

Fy

Fz

= −Cαα

√
1 − Cαs

(
s

ss

)2

− Cαγ

(
γ

γ s

)2

−Cγ γ

√
1 − Cγs

(
s

ss

)
2 − Cγα

(
α

αs

)2

(1.497)

α < αs s < ss γ < γ s

(a) Plot Fy/Fz as a function of α and γ at constant values of s for Cs = 10,
αs = 5 deg, Cα = 0.24, ss = 0.1, Cγ = 0.05, γ s = 20 deg, Cαs = 0.5,
Csα = 0.5, Cαγ = 0.5, and Cγα = 0.5.

21. Path of motion.
Assume

r = 0.01 rad/s Gv =
[

Ẏ

Ẋ

]
=
[

0.1
15

]
m/s (1.498)

Determine the path of motion of the vehicle.
22. Path of alternative motion.

Assume

r = 0.01 rad/s Gv =
[

Ẏ

Ẋ

]
=
[

0.1 sin t
100

15

]
m/s (1.499)

Determine the path of motion of the vehicle.
23. Path of yaw rate related motion.

Assume

r = 0.01 sin
t

100
rad/s Gv =

[
Ẏ

Ẋ

]
=
[

10lr

100lr

]
m/s (1.500)

l = 3 m (1.501)

Determine the path of motion of the vehicle.



Chapter 2
Vehicle Planar Dynamics

The planar model of vehicles is mathematically the simplest model to determine
dynamic characteristics of vehicles and it still predicts the dynamic behavior of
vehicles very well. In this chapter we study this principal model to examine
maneuvering of vehicles by steering as well as the wheel torque control. The wheel
torque and steer angle are the inputs and the longitudinal velocity, lateral velocity,
and yaw rate are the main output variables of the planar vehicle dynamics model.

2.1 Vehicle Dynamics Equations

The planar vehicle dynamic model is the simplest applied modeling in which we
assume the vehicle remains parallel to the ground and has no roll, no pitch, and no
bounce motions. Figure 2.1 illustrates the variables of the planar vehicle dynamic
model. A vehicle body coordinate B (C, x, y, z) is attached to the mass center C of
the vehicle. The planar motion of vehicles has three degrees of freedom: translation
in the x and y directions, and a rotation about the z-axis. The longitudinal velocity
vx along the x-axis, the lateral velocity vy along the y-axis, and the yaw rate r = ψ̇

about the z-axis are the outputs of the dynamic equations of motion (Jazar 2017,
2011; MacMillan 1936). The Newton–Euler equations of motion for the vehicle in
the body coordinate frame B are:

Fx = m v̇x − mr vy (2.1)

Fy = m v̇y + mr vx (2.2)

Mz = Iz ṙ (2.3)

Ti = Iwi
ω̇wi

+ Rw Fxi
(2.4)
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yFy

C

x Fx

Mz
ψr

g

vx vy

B

Fig. 2.1 Vehicle body coordinate frame B(Cxyz), dynamic variables, and force system of the
planar dynamic model

X

Y

C

x
y FxFy

v

β vx

vy

d

ψ

BG

Fig. 2.2 A rigid vehicle in a planar motion in a globally fixed coordinate frame G (X, Y,Z)

Proof Figure 2.2 illustrates a vehicle in a planar motion. We attach a body
coordinate frame B (x, y, z) to the vehicle at its mass center C. The vehicle is
moving in a global coordinate frame G(X, Y,Z) that is attached to the ground at a
given fixed point. The Z and z axes are always parallel. The orientation of the frame
B in G is indicated by the heading angle ψ between the X and x axes, measured
from X. The global position vector of the mass center of the vehicle is denoted by
the location vector Gd.
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The equations of motion of a rigid body in the body coordinate frame are:

BF = BRG
GF = BRG

(
m GaB

)
= m B

GaB

= m B v̇B + m B
GωB × BvB (2.5)

BM = BRG
GM =

Gd

dt

BL = B
GL̇B = B L̇ + B

GωB × BL

= BI B
Gω̇B + B

GωB ×
(

BI B
GωB

)
(2.6)

The force, moment, and kinematic vectors for the vehicle are:

BF = [Fx Fy 0
]T BM = [0 0 Mz

]T
(2.7)

B
GωB = [0 0 r

]T B
Gω̇B = [0 0 ṙ

]T
(2.8)

Bv = [ vx vy 0
]T B v̇ = [ v̇x v̇y 0

]T
(2.9)

The vx is the forward component and the vy is the lateral component of the velocity
vector Bv. The r = ψ̇ = ωz is the yaw rate of the vehicle.

We assume that the body coordinate is the principal coordinate frame of the
vehicle, and therefore we have a diagonal mass moment matrix (Beatty 1986;
Bottema and Roth 1979).

BI =
⎡
⎣

I1 0 0
0 I2 0
0 0 I3

⎤
⎦ =

⎡
⎣

Ix 0 0
0 Iy 0
0 0 Iz

⎤
⎦ (2.10)

Substituting the above vectors and matrices in the equations of motion (2.5)–(2.6)
provides us with the following equations:

BF = m B v̇B + m B
GωB × BvB

= m

⎡
⎣

v̇x

v̇y

0

⎤
⎦+ m

⎡
⎣

0
0
r

⎤
⎦×

⎡
⎣

vx

vy

0

⎤
⎦ =

⎡
⎣

mv̇x − mrvy

mv̇y + mrvx

0

⎤
⎦ (2.11)
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vx

Rw

ω

z

x

T

FxFR

Fz

Fz

Fig. 2.3 Free-body-diagram of a wheel

BM = BI B
Gω̇B + B

GωB ×
(

BI B
GωB

)

=
⎡
⎣

Ix 0 0
0 Iy 0
0 0 Iz

⎤
⎦
⎡
⎣

0
0
ṙ

⎤
⎦

+
⎡
⎣

0
0
r

⎤
⎦×

⎛
⎝
⎡
⎣

Ix 0 0
0 Iy 0
0 0 Iz

⎤
⎦
⎡
⎣

0
0
r

⎤
⎦
⎞
⎠ =

⎡
⎣

0
0

Iz ṙ

⎤
⎦ (2.12)

The first two Equations of (2.11) and the third Equation of (2.12) make the set of
equations of motion (2.1)–(2.3) for the planar vehicle dynamics.

Fx = m v̇x − mr vy (2.13)

Fy = m v̇y + mr vx (2.14)

Mz = ṙ Iz (2.15)

The right-hand side of the equations of motion are the resultant of the kinematics
of the rigid vehicle acceleration B

Ga expressed in B-frame. The left-hand side is the
resultant of the external force system on the vehicle, expressed in body coordinate
frame, BF, BM.

The fourth equation (2.4) is a result of dynamic analysis of individual wheels
of the vehicle. Consider the free-body-diagram of the wheel number i as shown in
Fig. 2.3. There is a traction force Fx and a roll resistance force FR in the x-direction
according to the tire coordinate frame. The equal action and reaction forces of wheel
load and ground reaction are also applied to the tire in the z-direction by ignoring
the mass of the wheel. The in-wheel torque Ti will provide us with the resultant
traction force Fxi

according to:
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Ti = Iwi
ω̇wi

+ Rwi
Fxi

(2.16)

where Iw is the mass moment of the wheel about its spin axis, ωw is the angular
velocity of the wheel about its spin axis, and Rw is the equivalent tire radius. We
may replace Rw with tire geometric radius Rg considering that in normal conditions
they are very close to each other.

Besides these main components of the force system on a wheel, there are several
other less important forces as aerodynamic resistance torque and force, aligning
moments and forces, etc. (Schiehlen 1982; Milliken and Milliken 1995, 2002). �
Example 56 Global equations of motion.

The equation of motion of a planar vehicle, expressed in the global coordinate
frame, is called the G-expression.

FX = m
d

dt
Ẋ = mv̇X (2.17)

FY = m
d

dt
Ẏ = mv̇Y (2.18)

MZ = Iz

d

dt
ψ̇ = Iz ω̇Z (2.19)

ω̇Z = ṙ K̂ (2.20)

Although these equations look simpler than (2.1)–(2.3), they are not practical
because the forces FX, FY are dependent on the orientation of the vehicle, and they
are well expressed in the B-frame. The orientation of the vehicle is indicated by the
heading angle ψ .

To recover the vehicle’s equations of motion in B-frame we need to transform
the global equations of motion (2.17)–(2.19) to the vehicle’s body coordinate frame
B, using the transformation matrix GRB to go from B-frame to G-frame.

GRB =
⎡
⎣

cos ψ − sin ψ 0
sin ψ cos ψ 0

0 0 1

⎤
⎦ (2.21)

The G-expression of the velocity vector is

GvC = GRB
BvC (2.22)

⎡
⎣

vX

vY

0

⎤
⎦ =

⎡
⎣

cos ψ − sin ψ 0
sin ψ cos ψ 0

0 0 1

⎤
⎦
⎡
⎣

vx

vy

0

⎤
⎦

=
⎡
⎣

vx cos ψ − vy sin ψ

vy cos ψ + vx sin ψ

0

⎤
⎦ (2.23)
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where BvC is the velocity of vehicle at C expressed in B-frame. Therefore, the
global acceleration components are

Gv̇C =
Gd

dt

GvC (2.24)

⎡
⎣

v̇X

v̇Y

0

⎤
⎦ =

⎡
⎣
(
v̇x − ψ̇ vy

)
cos ψ − (v̇y + ψ̇ vx

)
sin ψ(

v̇y + ψ̇ vx

)
cos ψ + (v̇x − ψ̇ vy

)
sin ψ

0

⎤
⎦ (2.25)

The B-expression of the angular velocity vector is

GωB = GRB
B
GωB

⎡
⎣

0
0

ωZ

⎤
⎦ =

⎡
⎣

cos ψ − sin ψ 0
sin ψ cos ψ 0

0 0 1

⎤
⎦
⎡
⎣

0
0
r

⎤
⎦ =

⎡
⎣

0
0
ωz

⎤
⎦ (2.26)

where B
GωB is the angular velocity of B-frame with respect to G-frame expressed in

B-frame. The global equations of motion are

GFC = m Gv̇C
GMC = GI Gω̇B (2.27)

where the force system vector transformation is

GFC = GRB
BFC

GMC = GRB
BMC (2.28)

therefore, the B-expression of the equations of motion is

BFC = GRT
B

GFC = m GRT
B

Gv̇C (2.29)
BMC = GRT

B
GMC = GRB

BI GRT
B

B
Gω̇B (2.30)

Substituting the associated vectors generates the Newton’s equations of motion in
the body coordinate frame.

⎡
⎣

Fx

Fy

0

⎤
⎦ = GRT

B

⎡
⎣

FX

FY

0

⎤
⎦

= m GRT
B

⎡
⎣
(
v̇x − ψ̇ vy

)
cos ψ − (v̇y + ψ̇ vx

)
sin ψ(

v̇y + ψ̇ vx

)
cos ψ + (v̇x − ψ̇ vy

)
sin ψ

0

⎤
⎦

= m

⎡
⎣

v̇x − ψ̇ vy

v̇y + ψ̇ vx

0

⎤
⎦ (2.31)
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Applying the same method for moment transformation,

⎡
⎣

0
0

MZ

⎤
⎦ =

⎡
⎣

cos ψ − sin ψ 0
sin ψ cos ψ 0

0 0 1

⎤
⎦
⎡
⎣

0
0

Mz

⎤
⎦ =

⎡
⎣

0
0

Mz

⎤
⎦ (2.32)

we find the Euler equation in the body coordinate frame.

Mz = GRB
BI GRT

B
B
Gω̇B = ṙ Iz (2.33)

These are the same equations we found in (2.13)–(2.15).

Example 57 Lagrange method and equations of motion.
We may use the Lagrange method to determine the equations of motion of planar

vehicle model. The kinetic energy K of a vehicle in a planar motion is,

K = 1

2
GvT

B m GvB + 1

2
GωT

B
GI GωB

= 1

2

⎡
⎣

vX

vY

0

⎤
⎦

T

m

⎡
⎣

vX

vY

0

⎤
⎦+ 1

2

⎡
⎣

0
0

ωZ

⎤
⎦

T

GI

⎡
⎣

0
0

ωZ

⎤
⎦

= 1

2
mv2

X + 1

2
mv2

Y + 1

2
Izω

2
Z = 1

2
m
(
Ẋ2 + Ẏ 2

)
+ 1

2
Iz ψ̇

2
(2.34)

where its mass moment matrix in global coordinate is:

GI = GRB
BI GRT

B

=
⎡
⎣

cos ψ − sin ψ 0
sin ψ cos ψ 0

0 0 1

⎤
⎦
⎡
⎣

Ix 0 0
0 Iy 0
0 0 Iz

⎤
⎦
⎡
⎣

cos ψ − sin ψ 0
sin ψ cos ψ 0

0 0 1

⎤
⎦

T

=
⎡
⎣

Ix cos2 ψ + Iy sin2 ψ
(
Ix − Iy

)
sin ψ cos ψ 0(

Ix − Iy

)
sin ψ cos ψ Iy cos2 ψ + Ix sin2 ψ 0
0 0 Iz

⎤
⎦ (2.35)

and

GvB = [ vX vY 0
]T = [ Ẋ Ẏ 0

]T
(2.36)

GωB =
⎡
⎣

0
0

ωZ

⎤
⎦ =

⎡
⎣

0
0
r

⎤
⎦ =

⎡
⎣

0
0
ψ̇

⎤
⎦ (2.37)
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The resultant external force system in G-frame is:

GFC = [FX FY 0
]T GMC = [0 0 MZ

]T
(2.38)

Employing the Lagrange method

d

dt

(
∂K

∂q̇i

)
− ∂K

∂qi

= Fi i = 1, 2, · · · n (2.39)

and using the coordinates X, Y , and ψ as generalized coordinates qi provide us with
the following equations of motion in the global coordinate frame:

FX = m
d

dt
Ẋ = mv̇X (2.40)

FY = m
d

dt
Ẏ = mv̇Y (2.41)

MZ = Iz

d

dt
ψ̇ = Iz ω̇Z (2.42)

These are the same equations as (2.17)–(2.19) (Jazar 2011; Goldstein et al. 2002).

Example 58 Comments on dynamic equations of motion.
Equations of motion of a moving rigid body such as a vehicle should be expressed

in its principal body coordinate frame at its mass center. This is the only coordinate
frame in which the mass moment matrix of the rigid body is diagonal and is
constant. Furthermore, in study of vehicles, the external forces are resultant of
the generated forces under the tires. Such forces have their simplest expression
in the vehicle body frame. The traction force in x-direction and the lateral force
in the y-direction are both independent of the orientation of the vehicle in the
global frame. Similarly, the equations of motion of spacecraft, aircraft, helicopter,
bicycle, motorcycle, hovercraft, and any other vehicle should be expressed in body
coordinate frame. Majority of external forces have simpler expression in B-frame
and the mass moments are constant in B-frame (Jazar 2011; Yang et al. 2015).

Example 59 Aerodynamic force.
The left-hand side of Eqs. (2.1) and (2.2) indicates all external forces applied on

vehicles. Main reason of external forces are the resultant of tire road interactions.
However, we may also consider other external forces such as aerodynamic and tilted
gravitational forces.

Fx = m v̇x − mr vy (2.43)

Fy = m v̇y + mr vx (2.44)

Aerodynamics force FA is considered to be proportional to relative velocity between
the vehicle and ambient air. Therefore, the aerodynamic force may be a result of
wind as well as vehicle speed. In this book we only consider FA to be proportional
to the square of the relative velocity v2.
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Fig. 2.4 A vehicle is moving with attitude angle ψ with velocity v while ambient wind is moving
at an angle θ with respect to the global X-axis with velocity vwind

Assuming stationary air, the aerodynamic force FA is only in the x-direction. We
separate the tire traction force and air resistance force and write the equations of
motion as:

Fx − FA = m v̇x − mr vy (2.45)

Fy = m v̇y + mr vx (2.46)

The force FA is the air resistance aerodynamic forces

FA = 1

2
ρ CD Af v2

x = CA v2
x (2.47)

where ρ is the air density in
[
kg/m3

]
, CD is the drag coefficient, and Af is the

frontal area or projected area of vehicle in x-direction in
[

m2
]
. We may consider ρ,

CD , Af to be constant for a vehicle; then, we combine the coefficients into a single
aerodynamic coefficient CA.

Example 60 Global force, wind.
Assume there exists a wind at the area the vehicle is moving. The wind force on

the vehicle is an example of external force which is well expressed in the G-frame
instead of B-frame. Figure 2.4 illustrates a vehicle facing a side wind at an angle θ

with respect to the global X-axis.
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Fig. 2.5 A vehicle on a laterally tilted road to the angle −θ about the x-axis

GFA = CA

(
Gv − vwind

)
2 (2.48)

= CA

⎛
⎝GRB

⎡
⎣

vx

vy

0

⎤
⎦−

⎡
⎣

vwind cos θ

vwind sin θ

0

⎤
⎦
⎞
⎠

2

= CA

⎡
⎢⎣
(
vx cos ψ − vy sin ψ − vwind cos θ

)2
(
vy cos ψ + vx sin ψ − vwind sin θ

)2
0

⎤
⎥⎦

To include the wind force into the vehicle equations of motion, we need to express
GFA in B-frame.

BFA = GRT
B

GFA = CA

(
Bv − GRT

B vwind

)2
(2.49)

= CA

⎡
⎢⎣

(vx − vwind cos (θ − ψ))2
(
vy − vwind sin (θ − ψ)

)2
0

⎤
⎥⎦

Example 61 Global force, gravitation.
Gravitational force is also an example of external forces that is well expressed

in the G-frame instead of B-frame; however, it is easy to express it in the B-frame.
Figure 2.5 illustrates a vehicle on a laterally tilted road to the angle −θ about the
x-axis. Due to the tilting angle we have a lateral external force.

Fymg = mg sin θ (2.50)
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Fig. 2.6 The force system of tire number 1

Therefore the equation of motion of the vehicle on a laterally tilted road will be

m v̇x − mr vy = Fx (2.51)

m v̇y + mr vx = Fy + Fymg

= Fy + mg sin θ (2.52)

Road angle about the y-axis provides us with similar equation in the x-component
of the equations of motion.

2.2 Tire Force System

Figure 2.6 illustrates wheel number 1 of a vehicle and its force system(
FxW1

, FyW1
,MzW1

)
in the wheel coordinate frame W , as well as the force system(

Fx1, Fy1 ,Mz1

)
in the wheel-body coordinate frame C (Jazar 2017).

If the force system at the tireprint in the tire coordinate frame T is:

T Fw =
[
FxTi

FyTi
FzTi

]T
(2.53)

T Mw =
[
MxTi

MyTi
MzTi

]T
(2.54)
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then the force system at the center of the wheel in W -frame is:

W Fw =
⎡
⎢⎣

FxWi

FyWi

FzWi

⎤
⎥⎦ =

⎡
⎢⎣

FxTi

FyTi
cos γ i + FzTi

sin γ i

FzTi
cos γ i − FyTi

sin γ i

⎤
⎥⎦ (2.55)

W Mw =
⎡
⎢⎣

MxWi

MyWi

MzWi

⎤
⎥⎦ =

⎡
⎢⎣

MxTi
+ RFyTi

cos γ + RFzTi
sin γ

MyTi
cos γ − RFxTi

+ MzTi
sin γ

MzTi
cos γ − MyTi

sin γ

⎤
⎥⎦ (2.56)

where R is the tire radius. The force system at the center of the wheel number i in
the wheel-body coordinate frame C is:

CFw =
⎡
⎣

Fxi

Fyi

Fzi

⎤
⎦ =

⎡
⎢⎣

FxWi
cos δ1 − FyWi

sin δ1

FyWi
cos δ1 + FxWi

sin δ1

FzWi

⎤
⎥⎦ (2.57)

CMw =
⎡
⎣

Mxi

Myi

Mzi

⎤
⎦ =

⎡
⎢⎣

MxWi
cos δ1 − MyWi

sin δ1

MyWi
cos δ1 + MxWi

sin δ1

MzWi

⎤
⎥⎦ (2.58)

Therefore, the total planar force system on the vehicle in the body coordinate frame
B is:

BFx =
∑

i

Fxi
=
∑

i

FxWi
cos δi −

∑
i

FyWi
sin δi (2.59)

BFy =
∑

i

Fyi
=
∑

i

FyWi
cos δi +

∑
i

FxWi
sin δi (2.60)

BMz =
∑

i

Mzi
+
∑

i

xiFyi
−
∑

i

yiFxi
(2.61)

Proof There exists a tire coordinate frame T at the center of the tireprint at the
intersection of tire-plane and the ground. The zT -axis is always perpendicular to
the ground and upward. The T -frame does not follow the spin and camber rotations
of the tire; however, it follows the steer angle rotation about the zT -axis. The W -
frame that is attached to the center of the wheel follows every motion of the wheel
except the spin. The C-frame at the center of neutral wheel is parallel to the body
coordinate frame B. When the wheel is at the rest position, then W -frame and C-
frame become coincident. The C-frame is motionless with respect to the vehicle
and does not follow any motion of the wheel. The vehicle body coordinate frame
B (x, y, z) is attached to the vehicle at its mass center. The wheel force system is
generated in T -frame and must be transformed to the C-frame and then B-frame to
develop the vehicle equities of motion.
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Let us assume that the force system in the T -frame at the tireprint of the wheel
number i is

T Fw =
[
FxTi

FyTi
FzTi

]T
(2.62)

T Mw =
[
MxTi

MyTi
MzTi

]T
(2.63)

then the force system in the W -frame at the center of the wheel will be

W Fw = WRT
T Fw =

⎡
⎢⎣

FxTi

FyTi
cos γ i + FzTi

sin γ i

FzTi
cos γ i − FyTi

sin γ i

⎤
⎥⎦ =

⎡
⎢⎣

FxWi

FyWi

FzWi

⎤
⎥⎦ (2.64)

W Mw = WRT
T Mw + W R × W

T Fw

= WRT
T Mw + (−R) W k̂ × WRT

T Fw

= WRT

⎡
⎢⎣

MxTi

MyTi

MzTi

⎤
⎥⎦+

⎡
⎣

0
0

−R

⎤
⎦× WRT

⎡
⎢⎣

FxTi

FyTi

FzTi

⎤
⎥⎦

=
⎡
⎢⎣

MxTi
+ RFyTi

cos γ + RFzTi
sin γ

MyTi
cos γ − RFxTi

+ MzTi
sin γ

MzTi
cos γ − MyTi

sin γ

⎤
⎥⎦ =

⎡
⎢⎣

MxWi

MyWi

MzWi

⎤
⎥⎦ (2.65)

where W R is the position vector of the T -frame in W -frame which is equal to radius
of the wheel.

W R = −R W k̂ (2.66)

The transformation WRT from T -frame in W -frame is:

WRT =
⎡
⎣

1 0 0
0 cos γ sin γ

0 − sin γ cos γ

⎤
⎦ (2.67)

Assuming W -frame and C-frame have a common origin, the transformation matrix
between the W -frame and the C-frame is

CRW =
⎡
⎣

cos δ1 − sin δ1 0
sin δ1 cos δ1 0
0 0 1

⎤
⎦ (2.68)



128 2 Vehicle Planar Dynamics

and therefore, the force system at the center of the wheel, parallel to the vehicle
coordinate frame, is

CFw = CRW
W Fw (2.69)

⎡
⎣

Fx1

Fy1

Fz1

⎤
⎦ =

⎡
⎣

cos δ1 − sin δ1 0
sin δ1 cos δ1 0

0 0 1

⎤
⎦
⎡
⎢⎣

FxWi

FyWi

FzWi

⎤
⎥⎦

=
⎡
⎢⎣

FxWi
cos δ1 − FyWi

sin δ1

FyWi
cos δ1 + FxWi

sin δ1

FzWi

⎤
⎥⎦ (2.70)

CMw = CRW
W Mw

⎡
⎣

Mx1

My1

Mz1

⎤
⎦ =

⎡
⎣

cos δ1 − sin δ1 0
sin δ1 cos δ1 0

0 0 1

⎤
⎦
⎡
⎢⎣

MxWi

MyWi

MzWi

⎤
⎥⎦

=
⎡
⎢⎣

MxWi
cos δ1 − MyWi

sin δ1

MyWi
cos δ1 + MxWi

sin δ1

MzWi

⎤
⎥⎦ (2.71)

Transforming the force system of each tire to the body coordinate frame B,
located at the body mass center C, generates the total force system applied on the
vehicle

BF =
∑

i

CFw =
∑

i

Fxi
ı̂ +
∑

i

Fyi
ĵ +

∑
i

Fzi
k̂ (2.72)

BM =
∑

i

CMw +
∑

i

Bri × BFwi
(2.73)

=
∑

i

Mxi
ı̂ +
∑

i

Myi
ĵ +

∑
i

Mzi
k̂ +

∑
i

⎡
⎣

yiFzi
− ziFyi

ziFxi
− xiFzi

xiFyi
− yiFxi

⎤
⎦

where Bri is the position vector of the wheel number i.

Bri = [xi yi zi

]T = [ai bi zi

]T
(2.74)

zi 
 0 (2.75)
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Expanding Eqs. (2.72) and (2.73) and assuming that

T Fw 

[
FxTi

FyTi
0
]T

(2.76)

T Mw 

[

0 0 MzTi

]T
(2.77)

provide us with the total planar force system.

BFx =
∑

i

FxWi
cos δi −

∑
i

FyWi
sin δi (2.78)

BFy =
∑

i

FyWi
cos δi +

∑
i

FxWi
sin δi (2.79)

BMz =
∑

i

Mzi
+
∑

i

xiFyi
−
∑

i

yiFxi
(2.80)

�
Example 62 Tire force system in W -frame.

If the force system at the tireprint is T Fw and T Mw = MzTi

T k̂, then the force
system in the W -frame at the center of the wheel would be

W Fw = WRT
T Fw = T RT

W
T Fw

⎡
⎢⎣

Fxwi

Fywi

Fzwi

⎤
⎥⎦ =

⎡
⎣

1 0 0
0 cos γ − sin γ

0 sin γ cos γ

⎤
⎦

T
⎡
⎢⎣

FxTi

FyTi

FzTi

⎤
⎥⎦

=
⎡
⎢⎣

FxTi

FyTi
cos γ + FzTi

sin γ

FzTi
cos γ − FyTi

sin γ

⎤
⎥⎦ (2.81)

W Mw = T RT
W

(
T Mw − T ro × T Fw

)

=
⎡
⎢⎣

RFywi
cos γ + RFzwi

sin γ

Mzwi
sin γ − RFxwi

Mzwi
cos γ

⎤
⎥⎦ (2.82)
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where

T ro =
⎡
⎣

0
−R sin γ

R cos γ

⎤
⎦ T Mw =

⎡
⎢⎣

0
0

Mzwi

⎤
⎥⎦ (2.83)

The wheel force system at zero camber, γ = 0, reduces to:

W Fw =
⎡
⎢⎣

Fxwi

Fywi

Fzwi

⎤
⎥⎦ W Mw =

⎡
⎢⎣

RFywi

−RFxwi

Mzwi

⎤
⎥⎦ (2.84)

Example 63 Full force in C-frame.
Considering force F under the tire number i in the T -frame is:

T Fw =
[
FxTi

FyTi
FzTi

]T
(2.85)

then the force in W -frame would be

W Fw = WRT
T Fw =

⎡
⎢⎣

FxTi

FyTi
cos γ i + FzTi

sin γ i

FzTi
cos γ i − FyTi

sin γ i

⎤
⎥⎦ (2.86)

and the force in C-frame would be

CFw = CRW
W Fw (2.87)

⎡
⎣

Fx1

Fy1

Fz1

⎤
⎦ =

⎡
⎢⎢⎣

FxTi
cos δ1 −

(
FyTi

cos γ i + FzTi
sin γ i

)
sin δ1

FxTi
sin δ1 +

(
FyTi

cos γ i + FzTi
sin γ i

)
cos δ1

FzTi
cos γ i − FyTi

sin γ i

⎤
⎥⎥⎦

The moment M under the tire number i in the T -frame is:

T Mw =
[
MxTi

MyTi
MzTi

]T
(2.88)

Therefore, the moment in W -frame is

W Mw = WRT
T Mw + W R × W

T Fw

= WRT
T Mw − R W k̂ × WRT

T Fw

=
⎡
⎢⎣

MxTi
+ RFyTi

cos γ + RFzTi
sin γ

MyTi
cos γ − RFxTi

+ MzTi
sin γ

MzTi
cos γ − MyTi

sin γ

⎤
⎥⎦ (2.89)
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Fig. 2.7 The acting forces at the wheel center of a front-wheel-steering four-wheel vehicle

and the moment in C-frame would be

CMw = CRW
W Mw (2.90)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
MxTi

+ RFyTi
cos γ + RFzTi

sin γ
)

cos δ1

−
(
MyTi

cos γ − RFxTi
+ MzTi

sin γ
)

sin δ1(
MxTi

+ RFyTi
cos γ + RFzTi

sin γ
)

sin δ1

+
(
MyTi

cos γ − RFxTi
+ MzTi

sin γ
)

cos δ1

MzTi
cos γ − MyTi

sin γ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

2.3 Bicycle Planar Vehicle Force Components

Figure 2.7 illustrates the force system of each wheel in the wheel-body coordinate
frame C. The forces are acting at the wheel center of a front-wheel-steering vehicle.
When we ignore the roll and pitch motions of the vehicle, then the body z and global
Z axes are parallel and the xy-plane remains parallel to the road’s XY -plane.

Ignoring the roll motion as well as the lateral load transfer between left and right
wheels, we may define a simplified two-wheel model for the vehicle. Figure 2.8
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Fig. 2.8 A two-wheel model for a vehicle moving with no roll

illustrates a two-wheel model for a vehicle with no roll motion. The two-wheel
model is also called the bicycle model, although a two-wheel vehicle model does
not act similar to a traditional bicycle.

The force system applied on a bicycle model of vehicle at its mass center C is:

Fx = Fxf
cos δ + Fxr − Fyf

sin δ (2.91)

Fy = Fyf
cos δ + Fyr + Fxf

sin δ (2.92)

Mz = a1Fyf
cos δ + a1Fxf

sin δ − a2Fyr (2.93)

Tf = If ω̇f + Rw Fxf
(2.94)

Tr = Ir ω̇r + Rw Fxr (2.95)

where tire forces based on elliptic combined tire forces are:

Fxf
= Fzf

Csf S
(
sf − ss

)
√√√√1 − Csα

(
S
(
αf − αs

)
αs

)
2 (2.96)

Fxr = Fzr Csr S (sr − ss)

√
1 − Csα

(
S (αr − αs)

αs

)
2 (2.97)



2.3 Bicycle Planar Vehicle Force Components 133

Fyf
= −Fzf

Cαf S
(
αf − αs

)
√√√√1 − Cαs

(
S
(
sf − ss

)
ss

)
2 (2.98)

Fyr = −Fzr Cαr S (αr − αs)

√
1 − Cαs

(
S (sr − ss)

ss

)
2 (2.99)

where S is the saturation function (1.60).

S(x − x0) =
⎧⎨
⎩

x0 x0 < x

x −x0 < x < x0

−x0 x < −x0

(2.100)

The tire force characteristics are:

Cαf = Cα1 = Cα2 (2.101)

Cαr = Cα3 = Cα4 (2.102)

Csf = Cs1 = Cs2 (2.103)

Csr = Cs3 = Cs4 (2.104)

Fzf
= Fz1 + Fz2 = mg

a2

l
− m

(
v̇x − r vy

) h

l
(2.105)

Fzr = Fz3 + Fz4 = mg
a1

l
+ m

(
v̇x − r vy

) h

l
(2.106)

l = a1 + a2 (2.107)

αf = arctan

(
vy

vx

+ a1

vx

r

)
− δ (2.108)

αr = arctan

(
vy

vx

− a2

vx

r

)
(2.109)

β = arctan
vy

vx

(2.110)

sf = Rg ωf − vxTf

Rg ωf H(Rg ωf − vxTf
) + vxTf

H(vxTf
− Rg ωf )

(2.111)

sr = Rg ωr − vx

Rg ωr H(Rg ωr − vx) + vx H(vx − Rg ωr)
(2.112)
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vxTf
= vx cos δ + (vy + a1r

)
sin δ (2.113)

ω̇f = Tf − Rwf Fxf

If

(2.114)

ω̇r = Tr − RwrFxr

Ir

(2.115)

The Tf and Tr are the applied torques on front and rear wheels, Rwf and Rwr are
equivalent tire radii of front and rear tires, and If and Ir are the front and rear
wheels’ mass moments about their spin axes. The forces

(
Fxf

, Fyf

)
and

(
Fxr , Fyr

)
are the planar forces at the tireprint of the front and rear wheels and we consider
them to be at the wheel center.

Proof For the bicycle vehicle model, we use the cot-average δ of the outer δo and
inner δi steer angles as the only steer angle for the model

cot δ = cot δo + cot δi

2
(2.116)

and we define sideslip coefficients Cαf and Cαr as well as slip ratio coefficients Csf

and Csr for the front and rear tires.

Cαf = (Cα1 + Cα2

)
/2 (2.117)

Cαr = (Cα3 + Cα4

)
/2 (2.118)

Csf = (Cs1 + Cs2

)
/2 (2.119)

Csr = (Cs3 + Cs4

)
/2 (2.120)

Assuming the left and right tires are identical, then we have:

Cαf = Cα1 = Cα2 (2.121)

Cαr = Cα3 = Cα4 (2.122)

Csf = Cs1 = Cs2 (2.123)

Csr = Cs3 = Cs4 (2.124)

Assuming similar force components to be equal on the left and right tires and adding
them up, we will have longitudinal and lateral forces

(
Fxf

, Fyf

)
and

(
Fxr , Fyr

)
applied on front and rear tires.

Fxf
= Fx1 + Fx2 Fx1 = Fx2 (2.125)

Fxr = Fx3 + Fx4 Fx3 = Fx4 (2.126)

Fyf
= Fy1 + Fy2 Fy1 = Fy2 (2.127)
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Fyr = Fy3 + Fy4 Fy3 = Fy4 (2.128)

Fzf
= Fz1 + Fz2 Fz1 = Fz2 (2.129)

Fzr = Fz3 + Fz4 Fz3 = Fz4 (2.130)

Employing the elliptical combined tire force models (1.202) and (1.203), and
proportional-saturation tire force behaviors (1.67) and (1.152), the longitudinal and
lateral forces on front and rear wheels will be

Fxf
= Fx1 + Fx2

= Fzf
Csf S

(
sf − ss

)
√√√√1 − Csα

(
S
(
αf − αs

)
αs

)2

(2.131)

Fxr = Fx3 + Fx4

= Fzr Csr S (sr − ss)

√
1 − Csα

(
S (αr − αs)

αs

)2

(2.132)

Fyf
= Fy1 + Fy2

= −Fzf
Cαf S

(
αf − αs

)
√√√√1 − Cαs

(
S
(
sf − ss

)
ss

)2

(2.133)

Fyr = Fy3 + Fy4

= −Fzr Cαr S (αr − αs)

√
1 − Cαs

(
S (sr − ss)

ss

)2

(2.134)

Using Eqs. (2.59)–(2.61) and ignoring the aligning moments Mzi
, the applied

forces on the two-wheel vehicle are:

Fx = Fxf
cos δ − Fyf

sin δ + Fxr (2.135)

Fy = Fyf
cos δ + Fxf

sin δ + Fyr (2.136)

Mz = a1Fyf
cos δ + a1Fxf

sin δ − a2Fyr (2.137)

Assuming

Fz1 = Fz2 Fz3 = Fz4 (2.138)
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and using the weight transfer equations in body frame (1.462)–(1.465), the vertical
load on front and rear tires is:

Fzf
= Fz1 + Fz2 = m

(
a2

l
g − h

l

(
v̇x − r vy

))
(2.139)

Fzr = Fz3 + Fz4 = m

(
a1

l
g + h

l

(
v̇x − r vy

))
(2.140)

l = a1 + a2 (2.141)

If we assume δ to be small, then the force equations may be approximated by the
following equations.

Fx ≈ Fxf
+ Fxr (2.142)

Fy ≈ Fyf
+ Fyr (2.143)

Mz ≈ a1Fyf
− a2Fyr (2.144)

Assume the wheel number i of the vehicle is located at (xi, yi) in the body
coordinate frame B. The velocity of the wheel number i in the B-frame is

Bvi = Bv + B
GωB × Bri (2.145)

B
GωB = ωz

Bk̂ = r B k̂ = ψ̇
B
k̂ (2.146)

in which Bri is the position vector of the wheel number i,

Br1 = [ a1 0 0
]T

(2.147)

Br2 = [−a2 0 0
]T

(2.148)

Bv is the velocity vector of the vehicle at its mass center C, and ωz = r is the
yaw rate of the vehicle as shown in Fig. 2.8. Expanding Eq. (2.145) provides the
following velocity vector for the wheel number i expressed in the B-frame at C.

Bvi =
⎡
⎣

vxi

vyi

0

⎤
⎦ =

⎡
⎣

vx

vy

0

⎤
⎦+

⎡
⎣

0
0
r

⎤
⎦×

⎡
⎣

xi

0
0

⎤
⎦ =

⎡
⎣

vx

vy + rxi

0

⎤
⎦ (2.149)

The wheel-body sideslip βi for the wheel i is the angle between the vehicle body
x-axis and the wheel velocity vector vi .

βi = arctan

(
vyi

vxi

)
= arctan

(
vy + xi r

vx

)
(2.150)
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The wheel sideslip angles βi for the front and rear wheels of a two-wheel vehicle
model, βf and βr , are

βf = arctan

(
vyf

vxf

)
= arctan

(
vy + a1 r

vx

)
(2.151)

βr = arctan

(
vyr

vxr

)
= arctan

(
vy − a2 r

vx

)
(2.152)

and the vehicle sideslip angle β is

β = arctan

(
vy

vx

)
(2.153)

Having the steer angle δ of the front wheel, the tire sideslip angles will be

αf = βf − δ = arctan

(
vy + a1 r

vx

)
− δ (2.154)

αr = βr = arctan

(
vy − a2 r

vx

)
(2.155)

Assuming small angles for wheel and vehicle sideslip βf , βr , and β, the tire sideslip
angles for the front and rear wheels, αf and αr , may be approximated as

αf = βf − δ 
 1

vx

(
vy + a1r

)− δ = β + a1

vx

r − δ (2.156)

αr = βr 
 1

vx

(
vy − a2r

) = β − a2

vx

r (2.157)

Also we substitute s from (1.57),

s = Rg ωw − vx

Rg ωw H(Rg ωw − vx) + vx H(vx − Rg ωw)
(2.158)

however, the slip ratio of the front tire need to be adapted as the steer angle will
change velocity of the tire in the xT -direction as is shown in Fig. 1.13. The velocity
of the front wheel center in the x-direction of its local C-frame is

vxTf
= vx cos δ + (vy + a1r

)
sin δ

Therefore, the longitudinal slip ratios of the front and rear tire are:

sf = Rg ωf − vxTf

Rg ωf H(Rg ωf − vxTf
) + vxTf

H(vxTf
− Rg ωf )

(2.159)
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sr = Rg ωr − vx

Rg ωr H(Rg ωr − vx) + vx H(vx − Rg ωr)
(2.160)

To derive Eq. (2.93), we calculate the resultant yaw moment Mz because of tire
forces.

BM =
2∑

i=1

ri × BFi =
2∑

i=1

ri × CRT
T Fi

=
⎡
⎣

a1

0
0

⎤
⎦× CRT

⎡
⎣

Fxf

Fyf

0

⎤
⎦+

⎡
⎣

−a2

0
0

⎤
⎦×

⎡
⎣

Fxr

Fyr

0

⎤
⎦

=
⎡
⎣

0
0

a1
(
Fyf

cos δ + Fxf
sin δ

)− a2Fyr

⎤
⎦ (2.161)

where CRT for the front wheel is

CRT =
⎡
⎣

cos δ − sin δ 0
sin δ cos δ 0

0 0 1

⎤
⎦ (2.162)

and CRT is an identity matrix for the rear CRT = [I] because of δr = 0. Therefore,
the force equations (2.91)–(2.93) are completed. �
Example 64 Kinematic steering of a two-wheel vehicle.

For the two-wheel vehicle shown in Fig. 2.9, we use the cot-average (2.116) of
the outer and inner steer angles as the input steer angle,

cot δ = cot δo + cot δi

2
(2.163)

Using the geometry of the vehicle of Fig. 2.9 and assuming same track in front and
rear, w = wf = wr , we have

tan δi = l

R1 − w

2

tan δo = l

R1 + w

2

(2.164)

The radius of rotation ρ for the two-wheel vehicle will be

ρ =
√

a2
2 + l2 cot2 δ (2.165)

when the vehicle is moving very slowly such that the rotation center remains on the
axis of the rear axle (Fenton 1996; Karnopp 2013).
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Fig. 2.9 Steer angle and rotation center of a two-wheel model for a vehicle moving with no roll at
low speed

Example 65 Unsaturated force system.
Let us assume δ is very small steer angle and

s < ss α < αs (2.166)

so the tire forces never reach their limit of saturation. In this case, the force system
of the vehicle bicycle model will be simplified to:

Fx = Fxf
+ Fxr (2.167)

Fy = Fyf
+ Fyr (2.168)

Mz = a1Fyf
− a2Fyr (2.169)

Fxf
= Fzf

Csf sf

√
1 − Csα

(
αf

αs

)2

(2.170)

Fxr = Fzr Csr sr

√
1 − Csα

(
αr

αs

)2

(2.171)
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Fyf
= −Fzf

Cαf αf

√
1 − Cαs

(
sf

ss

)2

(2.172)

Fyr = −Fzr Cαr αr

√
1 − Cαs

(
sr

ss

)2

(2.173)

Fzf
= Fz1 + Fz2 = mg

a2

l
− m

(
v̇x − r vy

) h

l
(2.174)

Fzr = Fz3 + Fz4 = mg
a1

l
+ m

(
v̇x − r vy

) h

l
(2.175)

l = a1 + a2 (2.176)

αf = β + a1

vx

r − δ αr = β − a2

vx

r (2.177)

sf = Rg ωf − vx

Rg ωf

sr = Rg ωr − vx

Rg ωr

(2.178)

ω̇f = Tf − Rwf Fxf

If

ω̇r = Tr − RwrFxr

Ir

(2.179)

The vehicle assumed to be in acceleration.

Example 66 Four-wheel rigid planar vehicle.
The force on each wheel of a planar model of vehicles is

F1 =
⎡
⎣

Fx1 cos δ1 − Fy1 sin δ1

Fx1 sin δ1 + Fy1 cos δ1

0

⎤
⎦ F3 =

⎡
⎣

Fx3

Fy3

0

⎤
⎦ (2.180)

F2 =
⎡
⎣

Fx2 cos δ2 − Fy2 sin δ2

Fx2 sin δ2 + Fy2 cos δ2

0

⎤
⎦ F4 =

⎡
⎣

Fx4

Fy4

0

⎤
⎦ (2.181)

The position vector of the wheels is

r1 =
⎡
⎣

a1

b1

0

⎤
⎦ r2 =

⎡
⎣

a1

−b2

0

⎤
⎦ (2.182)

r3 =
⎡
⎣

−a2

b1

0

⎤
⎦ r4 =

⎡
⎣

−a2

−b2

0

⎤
⎦ (2.183)
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and therefore the force system on a planar vehicles model is

F =
∑

Fi (2.184)

=
⎡
⎣

Fx1 cos δ1 + Fx2 cos δ2 − Fy1 sin δ1 − Fy2 sin δ2 + Fx3 + Fx4

Fy1 cos δ1 + Fy2 cos δ2 + Fx1 sin δ1 + Fx2 sin δ2 + Fy3 + Fy4

0

⎤
⎦

M =
∑

ri × Fi =
⎡
⎣

0
0

Mz

⎤
⎦ (2.185)

Mz = a1Fy1 cos δ1 + a1Fy2 cos δ2 − a2Fy3 − a2Fy4

+b1Fy1 sin δ1 − b2Fy2 sin δ2 + b2Fx2 cos δ2 − b1Fx1 cos δ1

+a1Fx1 sin δ1 + a1Fx2 sin δ2 + b2Fx4 − b1Fx3 (2.186)

Let us assume a planar dynamic model of vehicles with four wheels such that its
equation to be approximated by

Fx ≈ Fx1 + Fx2 + Fx3 + Fx4 (2.187)

Fy ≈ Fy1 + Fy2 + Fy3 + Fy4 (2.188)

Mz ≈ a1Fy1 + a1Fy2 − a2Fy3 − a2Fy4 (2.189)

in which we assumed small steer angles and ignored the yaw moment caused by
imbalance longitudinal forces, Fxi

. Knowing that

vxi
= vx − yi r vyi

= vy + xi r (2.190)

and tire angles as

βi = arctan

(
vyi

vxi

)
= arctan

(
vy + xi r

vx − yi r

)
(2.191)

αi = βi − δi = arctan

(
vy + xi r

vx − yi r

)
− δi (2.192)

we find that

β1 = arctan

(
vy1

vx1

)
= arctan

(
vy + a1 r

vx − b1 r

)
(2.193)

β2 = arctan

(
vy2

vx2

)
= arctan

(
vy + a1 r

vx + b2 r

)
(2.194)
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β3 = arctan

(
vy3

vx3

)
= arctan

(
vy − a2 r

vx + b2 r

)
(2.195)

β4 = arctan

(
vy4

vx4

)
= arctan

(
vy − a2 r

vx − b1 r

)
(2.196)

Employing the vehicle sideslip angle β = arctan
(
vy/vx

)
and assuming small angles

for βf , βr , and β, the tire sideslip angles would be:

α1 = β1 − δ1 = vy + a1 r

vx − b1 r
− δ1 =

β + a1

vx

r

1 − b1

vx

r

− δ1 (2.197)

α2 = β2 − δ2 = vy + a1 r

vx + b2 r
− δ2 =

β + a1

vx

r

1 + b2

vx

r

− δ2 (2.198)

α3 = β3 = vy − a2 r

vx + b2 r
=

β − a2

vx

r

1 + b2

vx

r

(2.199)

α4 = β4 = vy − a2 r

vx − b1 r
=

β − a2

vx

r

1 − b1

vx

r

(2.200)

Modeling the longitudinal and lateral forces as

Fxi
= Fzi

Csi S (si − ss)

√
1 − Csα

(
S (αi − αs)

αs

)2

(2.201)

Fyi
= −Fzi

Cαi S (αi − αs)

√
1 − Cαs

(
S (si − ss)

ss

)
2 (2.202)

and assuming that the left and right wheels have similar lateral and longitudinal slip
coefficients we find the equations of motion (2.187)–(2.189).
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2.4 Two-Wheel Planar Vehicle Dynamics

We combine the planar equations of motion of the bicycle vehicle model (2.1)–(2.4)
with the force expressions (2.91)–(2.115) to derive the equations of motion of the
two-wheel rigid bicycle vehicle:

v̇x = 1

m
(Fx − FA) + r vy (2.203)

v̇y = 1

m
Fy − r vx (2.204)

ṙ = 1

Iz

Mz (2.205)

ω̇f = 1

If

Tf − Rg

If

Fxf
(2.206)

ω̇r = 1

Ir

Tr − Rg

Ir

Fxr (2.207)

Fx = Fxf
cos δ + Fxr − Fyf

sin δ (2.208)

Fy = Fyf
cos δ + Fyr + Fxf

sin δ (2.209)

FA = CA v2
x (2.210)

Mz = a1Fyf
cos δ + a1Fxf

sin δ − a2Fyr (2.211)

Fxf
= Fzf

Csf S
(
sf − ss

)
√√√√1 − Csα

(
S
(
αf − αs

)

αs

)
2 (2.212)

Fxr = Fzr Csr S (sr − ss)

√
1 − Csα

(
S (αr − αs)

αs

)
2 (2.213)

Fyf
= −Fzf

Cαf S
(
αf − αs

)
√√√√1 − Cαs

(
S
(
sf − ss

)
ss

)
2 (2.214)

Fyr = −Fzr Cαr S (αr − αs)

√
1 − Cαs

(
S (sr − ss)

ss

)
2 (2.215)
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Fzf
= Fz1 + Fz2 = mg

a2

l
− m

(
v̇x − r vy

) h

l
(2.216)

Fzr = Fz3 + Fz4 = mg
a1

l
+ m

(
v̇x − r vy

) h

l
(2.217)

l = a1 + a2 (2.218)

αf = arctan

(
vy + a1r

vx

)
− δ (2.219)

αr = arctan

(
vy − a2r

vx

)
(2.220)

β = arctan
vy

vx

(2.221)

sf = Rg ωf − vxTf

Rg ωf H(Rg ωf − vxTf
) + vxTf

H(vxTf
− Rg ωf )

(2.222)

sr = Rg ωr − vx

Rg ωr H(Rg ωr − vx) + vx H(vx − Rg ωr)
(2.223)

vxTf
= vx cos δ + (vy + a1r

)
sin δ (2.224)

Proof The Newton–Euler equations of motion for a rigid vehicle in the local
coordinate frame B, attached to the vehicle at its mass center C, are given in
Eqs. (2.1)–(2.4). Those equations for bicycle vehicle model will be:

Fx = m v̇x − mr vy + FA (2.225)

Fy = m v̇y + mr vx (2.226)

Mz = ṙ Iz (2.227)

Tf = Iwi
ω̇f + Rw Fxf

(2.228)

Ti = Iwi
ω̇r + Rw Fxr (2.229)

The force FA is the air resistance aerodynamic forces that we assume to be applied
only in longitudinal direction.

FA = 1

2
ρ CD Af v2

x = CA v2
x (2.230)

Considering ρ, CD , and Af to be constant for a vehicle, we may combine the
coefficients of the aerodynamic force to be CA.
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From (2.91) to (2.93), the vehicle body forces are

Fx = Fxf
cos δ + Fxr − Fyf

sin δ (2.231)

Fy = Fyf
cos δ + Fyr + Fxf

sin δ (2.232)

Mz = a1Fyf
cos δ + a1Fxf

sin δ − a2Fyr (2.233)

The force components Fxf
, Fxr , Fyf

, Fyr have been calculated in (2.96)–(2.99).
The vertical forces on front and rear wheels Fzf

, Fzr are also calculated in (2.139)–
(2.140) as are shown in (2.212)–(2.217).

The complexity of the equations of motion are hidden in the forward and lateral
forces Fxf

, Fxr , Fyf
, Fyr in (2.212)–(2.215). These forces are functions of two new

variables s and α. To be able to solve the equations of motions, we must be able to
relate these variables to the inputs δ, Fx or output variables vx , vy , r , of the vehicle
dynamic equations.

The tire side slip angle αi has been shown in (1.121)–(1.123) to be a function of
the input steer angle δi and the output wheel-body sideslip angle βi of the tire.

αi = βi − δi αi = arctan
T vyi

T vxi

βi = arctan
Cvyi

Cvxi

(2.234)

The tire side slip angle αi is defined based on the velocity components in T -frame
while the wheel-body sideslip angle βi is defined based on the velocity components
in C-frame. The wheel-body sideslip βi for the wheel i is shown in Eq. (2.150) to
be a function of vehicle velocity components.

βi = arctan

(
vyi

vxi

)
= arctan

(
vy + xi r

vx

)
(2.235)

β1 = arctan

(
vy + a1r

vx

)
(2.236)

β2 = arctan

(
vy − a2r

vx

)
(2.237)

Rewriting this equation for the front and rear wheels of the two-wheel vehicle model
will be (2.219) and (2.220).

The longitudinal slip ratio s is shown in (1.57) to be a function of the tire forward
velocity vxT

and the angular velocity of tire ωw.

s = Rg ωw − vxT

Rg ωw H(Rg ωw − vxT
) + vxT

H(vxT
− Rg ωw)

(2.238)
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According to (1.303), the longitudinal velocity of the vehicle at the wheels centers
is:

Bvi =
[

v cos β − ryi

v sin β + rxi

]
=
[

vx − ryi

vy + rxi

]
(2.239)

therefore,

Bvf =
[

vx

vy + ra1

]
Bvr =

[
vx

vy − ra2

]
(2.240)

and hence the velocity vxTf
at the center of the front wheel in the tire x-direction,

T i, is

vxTf
= vx cos δ + (vy + a1r

)
sin δ (2.241)

because

T vf = CRT
T

Bvf =
⎡
⎣

cos δ − sin δ 0
sin δ cos δ 0

0 0 1

⎤
⎦

T ⎡
⎣

vx

vy + ra1

0

⎤
⎦

=
⎡
⎣

vx cos δ + (vy + ra1
)

sin δ(
vy + ra1

)
cos δ − vx sin δ

0

⎤
⎦ (2.242)

T vrf = CRT
T

Bvr =
⎡
⎣

cos δ − sin δ 0
sin δ cos δ 0

0 0 1

⎤
⎦

T ⎡
⎣

vx

vy − ra2

0

⎤
⎦

=
⎡
⎣

vx cos δ + (vy − ra2
)

sin δ(
vy − ra2

)
cos δ − vx sin δ

0

⎤
⎦ (2.243)

and therefore

sf = Rg ωw − vxTf

Rg ωw H(Rg ωw − vxTf
) + vxTf

H(vxTf
− Rg ωw)

(2.244)

sr = Rg ωw − vx

Rg ωw H(Rg ωw − vx) + vx H(vx − Rg ωw)
(2.245)

Introducing ωw as a new kinematic variable requires to have a new equation to
determine ωw. The free-body-diagram of a wheel provided us with the equation of
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motion of the wheel (1.76). Ignoring the tire resistance force, the rotational equation
of motion of the wheel will be

Iw ω̇w = T − Rw Fx (2.246)

and therefore the tire longitudinal slip ratio si becomes a function of vxi
, ωi , Fxi

.
This equation must be written for the front and rear wheels of the two-wheel vehicle
model as shown in Eqs. (2.212) and (2.224).

These sets of equations of motion of bicycle vehicle model are nonlinear due to
several reasons such as:

1. Mathematical nonlinearities: The equations of motion relate kinematic variables
to applied forces. The force system also is a function of kinematic variables. For
example, vx is a variable and it appears in the denominators in Eqs. (2.234)–
(2.245).

2. Model nonlinearities: The tire forces are functions of parameters which have
saturation limits and therefore they show nonlinear characteristics. For example,
The lateral force Fy is proportional to the sideslip angle α as long as α < αs and
constant for α > αs . Therefore, all proportional equations and their coefficients
are modeled better by using nonlinear relationships. �

Example 67 Aerodynamic effect.
Consider a vehicle with the following data.

m = 1000 kg Iz = 2000 kg m2 If = Ir = 30 kg m2

Cαf = 8.5 Cαr = 8.5 αs = 5 deg

Csf = 7.5 Csr = 7.5 ss = 0.1 (2.247)

a1 = 1.35 m a2 = 1.5 m h = 0.9 m

Rg = 0.35 m Cαs = 0.5 Csα = 0.5

Assume the car initially is moving at

vx = 20 m/s δ = 0 Tf = Tr = 0 (2.248)

and

ωf = ωr = vx

Rg

= 20

0.35
= 57.143 rad/ s (2.249)

To show the effect of the aerodynamic resistance force, we determine the forward
velocity of the vehicle for a CD . Figure 2.10 illustrates how the forward velocity vx

will reduce with

CA = 0.8 (2.250)

Figure 2.11 depicts the angular velocities ωf and ωr of the front and rear wheels.
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Fig. 2.10 The effect of aerodynamic drag force FA = CAv2
x on forward velocity of a vehicle in

free straight motion

Fig. 2.11 The angular velocities ωf and ωr of the front and rear wheels

Example 68 Increasing rear torque, straight driving.
Consider a vehicle with the data given in (2.251).

m = 1000 kg Iz = 2000 kg m2 If = Ir = 30 kg m2

Cαf = Cαr = 8.5 αs = 5 deg CA = 0.8

Csf = Csr = 7.5 ss = 0.1 (2.251)

a1 = 1.35 m a2 = 1.5 m h = 0.9 m

Rg = 0.35 m Cαs = 0 Csα = 0

Assume the vehicle is moving slowly straight with

vx = 2 m/s ωf = ωr = vx

Rg

= 2

0.35
= 5.714 rad/s (2.252)

δ = 0 (2.253)
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Fig. 2.12 The longitudinal slip ratios of the front and rear tires

Fig. 2.13 The angular velocities of the front and rear wheels ωf and ωr

At time t = 0, we apply an increasing torque on the rear wheel.

Tf = 0 Tr = 100t N m (2.254)

This example shows how the rear longitudinal slip ratio will increase and reaches
its saturation, and how the rear wheel starts spinning after that. Figure 2.12 depicts
the longitudinal slip ratios. Considering that the saturation limit of the front and rear
tires are at ss = 0.1, we see that the slip ratio of the rear tire sr increases linearly
from zero up to the point that reaches ss = 0.1. At that point, tire starts sliding on the
ground and the applied torque increases the wheels’ angular velocity. As a result, the
slip ratio sr increases rapidly. There is no torque on the front wheel and therefore the
front wheel’s slip ratio sf remains unsaturated. Figure 2.13 illustrates the angular
velocities of the front and rear wheels ωf and ωr . At the beginning of applying
torque on the rear wheel, both angular velocities increase. At the point that the rear
wheel starts sliding and spinning, the rear wheel angular velocity increases rapidly.
The front angular velocity remains proportional to the vehicle velocity. Figure 2.14
depicts the forward velocity of the vehicle vx .
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Fig. 2.14 The forward velocity of the vehicle vx

Fig. 2.15 The torques on front and rear wheels Tf and Tr

The torques on front and rear wheels Tf and Tr are shown in Fig. 2.15. Because of
variable acceleration of the vehicle, the vertical load on the wheels are not constant.
Figure 2.16 illustrates how the vertical loads Fzf and Fzr will change, and the
traction forces Fxf and Fxr are shown in Fig. 2.17.

Example 69 Increasing front torque, straight driving.
Consider a vehicle with the data given in (2.251) and assume the vehicle is

moving slowly straight with

vx = 2 m/s ωf = ωr = vx

Rg

= 2

0.35
= 5.714 rad/s (2.255)

δ = 0 (2.256)

At time t = 0, we apply an increasing torque on the front wheel

Tf = 100t N m Tr = 0 (2.257)
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Fig. 2.16 The vertical load Fzf and Fzr on front and rear wheels

Fig. 2.17 The traction forces Fxf and Fxr on front and rear wheels

to investigate the differences of vehicle response to front or rear wheel drive.
Figure 2.18 depicts the longitudinal slip ratios sf and sr for the front and rear tires.
Figure 2.19 illustrates the angular velocities of the front and rear wheels ωf and
ωr . Figure 2.20 illustrates variation of the vertical loads Fzf and Fzr . Figure 2.21
depicts the forces Fx and Fy on the vehicle at its mass center. The force components
on front and rear wheels are slightly different. Figure 2.22 illustrates the longitudinal
forces Fxf and Fxr on front and rear tires. The acceleration components ax and ay

of the vehicle are plotted in Fig. 2.23.

Example 70 Increasing steer angle and front torque, slip saturation.
Consider a vehicle with the following data

m = 1000 kg Iz = 2000 kg m2 If = Ir = 30 kg m2

Cαf = Cαr = 8.5 αs = 5 deg CA = 0.8

Csf = Csr = 7.5 ss = 0.1 (2.258)
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Fig. 2.18 The longitudinal slip ratios sf and sr for the front and rear tires

Fig. 2.19 The angular velocities of the front and rear wheels ωf and ωr

Fig. 2.20 The vertical load Fzf and Fzr on front and rear wheels
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Fig. 2.21 The traction forces Fx and Fy on the vehicle at its mass center

Fig. 2.22 The traction forces Fxf and Fxr on front and rear tires

Fig. 2.23 The acceleration components ax and ay/g of the vehicle
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Fig. 2.24 The forward velocity components of the vehicle vx and vy

a1 = 1.35 m a2 = 1.5 m h = 0.9 m

Rg = 0.35 m Cαs = Csα = 0.5

and assume the vehicle is moving slowly straight.

vx = 2 m/s ωf = ωr = vx

Rg

= 2

0.35
= 5.714 rad/s (2.259)

At time t = 0, we apply a linearly increasing torque on the front wheel up to Tf =
1500 N m and keep constant after that. The steer angle is also linearly increasing at
a very low rate up to δ = 0.5 deg and remains constant after that.

Tf =
{

100t N m 0 < t < 15 s
1500 N m 15 s < t

Tr = 0 (2.260)

δ =
{

0.05t deg = 0.05π
180 t rad 0 < t < 10 s

0.5 deg = 0.5π
180 rad 10 s < t

(2.261)

The front torque increases and goes beyond the limit of front wheel capability in
producing traction force. As a result, the front tire slip ratio sf and hence its traction
force Fxf will become saturated.

Figure 2.24 depicts the velocity components of the vehicle vx and vy , measured
in body coordinate frame B. Figure 2.25 illustrates the angular velocities of the front
and rear wheels ωf and ωr . Figure 2.26 illustrates the sideslip angles of the front
and rear wheels αf and αr . Figure 2.27 depicts the longitudinal slip ratios sf and
sr for the front and rear tires. The acceleration components ax and ay of the vehicle
are plotted in Fig. 2.28. Figure 2.29 depicts the forces Fx and Fy on the vehicle at
its mass center. Figure 2.30 illustrates variation of the vertical loads Fzf and Fzr .
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Fig. 2.25 The angular velocities of the front and rear wheels ωf and ωr

Fig. 2.26 The sideslip angles of the front and rear wheels αf and αr

Fig. 2.27 The longitudinal slip ratios sf and sr for the front and rear tires
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Fig. 2.28 The acceleration components ax and ay of the vehicle

Fig. 2.29 The traction forces Fx and Fy on the vehicle at its mass center

Fig. 2.30 The vertical load Fzf and Fzr on front and rear wheels
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Fig. 2.31 The traction forces Fxf and Fxr on front and rear tires

Fig. 2.32 The lateral forces Fyf and Fyr on front and rear tires

Figure 2.31 illustrates the longitudinal forces Fxf and Fxr on front and rear tires.
Figure 2.32 shows the lateral forces Fyf and Fyr on front and rear tires.

The front wheel torque Tf is increasing from zero up to Tf = 1500 N m.
Increasing torque will increase the slip ratio; however, before Tf reaches its
maximum, the slip ratio reaches its saturation s = ss as it can be seen in Fig. 2.27.
The front tire slip ratio increases rapidly after saturation. The sideslips αf and
αr never get saturated in this maneuver. Hence the vehicle in this maneuver slips
longitudinally and sticks laterally to the road. Figure 2.33 illustrates the path of the
vehicle.

Example 71 Increasing steer angle and front torque, no combined forces.
Consider the vehicle in Example 70 with setting the tire slips not related by

Cαs = 0, Csα = 0. Ignoring the interaction between s and α makes both of them to
be higher and their associated forces to be more than real saturation. Figures 2.34
and 2.35 illustrate the sideslip angles α and slip ratios s of the front and rear tires to
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Fig. 2.33 Path of motion of the vehicle for 0 < t < 50 s by increasing steer angle and applying
front torque and having slip ratio saturation

Fig. 2.34 The sideslip angles of the front and rear wheels αf and αr

be compared with Figs. 2.26 and 2.27. Figure 2.36 illustrates the path of the vehicle
to be compared with Fig. 2.33. It can be seen that tire slip interaction has a big
impact in the path of vehicle. The lateral force drops significantly and the rotation
of the vehicle decreases.
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Fig. 2.35 The longitudinal slip ratios sf and sr for the front and rear tires

Fig. 2.36 Path of motion of the vehicle for 0 < t < 50 s by increasing steer angle and applying
front torque and having slip ratio saturation in case the sideslip and slip ratios were not connected

Example 72 Increasing steer angle and rear torque.
Consider a vehicle with the following parameters.

m = 1000 kg Iz = 2000 kg m2 If = Ir = 30 kg m2

Cαf = Cαr = 8.5 αs = 5 deg

Csf = Csr = 7.5 ss = 0.1 (2.262)

a1 = 1.35 m a2 = 1.5 m h = 0.9 m

Rg = 0.35 m Cαs = Csα = 0.5
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Fig. 2.37 The forward velocity components of the vehicle vx and vy

The vehicle is moving slowly straight with

ωf = ωr = vx

Rg

= 2

0.35
= 5.714 rad/ s

CA = 0.8 vx = 2 m/s (2.263)

At time t = 0, we apply an increasing torque on the rear wheel as well as an
increasing steer angle for limited times as expressed below.

Tr =
{

30t N m 0 < t < 10 s
300 N m 10 s < t

Tf = 0 (2.264)

δ =
{

0.1t deg = 0.1π
180 t rad 0 < t < 15 s

1.5 deg = 1.5π
180 rad 15 s < t

(2.265)

Figure 2.37 depicts the velocity components of the vehicle vx and vy . Figure 2.38
illustrates the angular velocities of the front and rear wheels ωf and ωr . Figure 2.39
illustrates the sideslip angles of the front and rear wheels αf and αr . Figure 2.40
depicts the longitudinal slip ratios sf and sr for the front and rear tires. The angular
accelerations of the front and rear wheels ω̇f and ω̇r are shown in Fig. 2.41.
Figure 2.42 depicts the resultant forces Fx and Fy on the vehicle at its mass center.
Figure 2.43 illustrates variation of the vertical loads Fzf and Fzr . Figure 2.44
illustrates the longitudinal forces Fxf and Fxr on front and rear tires. Figure 2.45
shows the lateral forces Fyf and Fyr on front and rear tires. Figure 2.46 illustrates
the path of the vehicle.
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Fig. 2.38 The angular velocities of the front and rear wheels ωf and ωr

Fig. 2.39 The sideslip angles of the front and rear wheels αf and αr

Fig. 2.40 The longitudinal slip ratios sf and sr for the front and rear tires
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Fig. 2.41 The angular accelerations of the front and rear wheels ω̇f and ω̇r

Fig. 2.42 The forward and lateral forces Fx and Fy on the vehicle at its mass center

Fig. 2.43 The vertical load Fzf and Fzr on front and rear wheels
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Fig. 2.44 The traction forces Fxf and Fxr on front and rear tires

Fig. 2.45 The lateral forces Fyf and Fyr on front and rear tires

2.5 Steady-State Turning

The conditions at which all variables remain still and do not changes with time is
called the steady-state conditions. To determine the steady-state relationships, it is
enough to eliminate all time derivative terms from the equations of motion and solve
the resultant algebraic equations for the steady-state values of the variables.

The steady-state output–input relationships of a front-wheel-steering two-wheel
vehicle are defined by the following responses:

1. Curvature response, Sκ

Sκ = κ

δ
= 1

ρδ
= DδCβ − DβCδ

lDβv2
x + DκCβ − DβCκ

(2.266)

= gCαf Cαr

lgCαf Cαr + v2
x

(
Cαr − Cαf

) (2.267)
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Fig. 2.46 Path of motion of the vehicle for 0 < t < 50 s by increasing steer angle up to 1.5 deg
and applying rear torque up to 300 N m

where

Cβ = −ga2Cαf − ga1Cαr (2.268)

Cκ = −ga1a2Cαf + ga1a2Cαr (2.269)

Cδ = ga2Cαf (2.270)

Dβ = Cαr − Cαf (2.271)

Dκ = −a2Cαr − a1Cαf (2.272)

Dδ = Cαf (2.273)

Curvature response Sκ determines the steady-state radius of rotation, ρ = 1/κ ,
of the vehicle for a given steer angle δ at a given vx .

2. Sideslip response, Sβ

Sβ = β

δ
= DκCδ − Dδ

(
Cκ − lv2

x

)

lDβv2
x + DκCβ − DβCκ

(2.274)

= v2
xCαf − ga2Cαf Cαr

lgCαf Cαr + v2
x

(
Cαr − Cαf

) (2.275)
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Sideslip response Sβ determines the steady-state angle of velocity vector, β =
vy/vx , of the vehicle for a given steer angle δ at a given vx (Marzbani and Jazar
2015).

Proof The equations of motion of two-wheel planar dynamics (2.203)–(2.207)

v̇x = 1

m
(Fx − FA) + r vy (2.276)

v̇y = 1

m
Fy − r vx (2.277)

ṙ = 1

Iz

Mz (2.278)

ω̇f = 1

If

Tf − Rg

If

Fxf
(2.279)

ω̇r = 1

Ir

Tr − Rg

Ir

Fxr (2.280)

will be simplified to the following at steady-state conditions and ignoring the
aerodynamic forces.

Fx = −mr vy (2.281)

Fy = mr vx (2.282)

Mz = 0 (2.283)

Fxf
= 1

Rg

Tf (2.284)

Fxr = 1

Rg

Tr (2.285)

The vehicle force system

Fx = Fxf
cos δ + Fxr − Fyf

sin δ (2.286)

Fy = Fyf
cos δ + Fyr + Fxf

sin δ (2.287)

Mz = a1Fyf
cos δ + a1Fxf

sin δ − a2Fyr (2.288)

will be approximated for small steer angles to:

Fx = Fxf
+ Fxr = 1

Rg

(
Tf + Tr

)
(2.289)

Fy = Fyf
+ Fyr (2.290)

Mz = a1Fyf
− a2Fyr (2.291)



166 2 Vehicle Planar Dynamics

The tire forces with combined slips effect

Fxf
= Fzf

Csf S
(
sf − ss

)
√√√√1 − Csα

(
S
(
αf − αs

)
αs

)
2 (2.292)

Fxr = Fzr Csr S (sr − ss)

√
1 − Csα

(
S (αr − αs)

αs

)
2 (2.293)

Fyf
= −Fzf

Cαf S
(
αf − αs

)
√√√√1 − Cαs

(
S
(
sf − ss

)
ss

)
2 (2.294)

Fyr = −Fzr Cαr S (αr − αs)

√
1 − Cαs

(
S (sr − ss)

ss

)
2 (2.295)

may be well approximated to the following equations

Fxf
= Fzf

Csf sf

(
1 − 1

2
Csα

(
αf

αs

)2
)

(2.296)

Fxr = Fzr Csr sr

(
1 − 1

2
Csα

(
αr

αs

)2
)

(2.297)

Fyf
= −Fzf

Cαf αf

(
1 − 1

2
Cαs

(
sf

ss

)2
)

(2.298)

Fyr = −Fzr Cαr αr

(
1 − 1

2
Cαs

(
sr

ss

)2
)

(2.299)

and the vertical load equations

Fzf
= Fz1 + Fz2 = mg

a2

l
− m

(
v̇x − r vy

) h

l
(2.300)

Fzr = Fz3 + Fz4 = mg
a1

l
+ m

(
v̇x − r vy

) h

l
(2.301)

l = a1 + a2 (2.302)

could be assumed to be equal to the following equation, ignoring weight transfer
effects.

Fzf
= mg

a2

l
(2.303)

Fzr = mg
a1

l
(2.304)
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The lateral slip angles αf and αr are assumed to be small.

αf = arctan

(
vy + a1r

vx

)
− δ (2.305)

αr = arctan

(
vy − a2r

vx

)
(2.306)

β = arctan
vy

vx

(2.307)

Introducing the curvature radius ρ and curvature κ = 1/ρ

ρ = 1

κ
= vx

r
(2.308)

we may rewrite the lateral slips as:

αf = vy + a1r

vx

− δ = β + a1

ρ
− δ = β + κa1 − δ (2.309)

αr = vy − a2r

vx

= β − a2

ρ
= β − κa2 (2.310)

β = vy

vx

(2.311)

Removing the braking case from the slip ratios sf and sr

sf = Rg ωf − vxTf

Rg ωf H(Rg ωf − vxTf
) + vxTf

H(vxTf
− Rg ωf )

(2.312)

sr = Rg ωr − vx

Rg ωr H(Rg ωr − vx) + vx H(vx − Rg ωr)
(2.313)

vxTf
= vx cos δ + (vy + a1r

)
sin δ (2.314)

provides us with the primary definition of slip ratios in traction condition.

sf = Rg ωf − vx

Rg ωf

(2.315)

sr = Rg ωr − vx

Rg ωr

(2.316)

Substituting (2.289)–(2.291) in (2.281)–(2.285)

1

Rg

(
Tf + Tr

) = Fxf
+ Fxr = −mr vy (2.317)



168 2 Vehicle Planar Dynamics

Fyf
+ Fyr = mr vx (2.318)

0 = a1Fyf
− a2Fyr (2.319)

Tf = RgFxf
(2.320)

Tr = Rg Fxr (2.321)

and then using (2.296)–(2.299) and (2.303)–(2.304) provides us with the following
equations.

1

Rg

(
Tf + Tr

) = −mr vy (2.322)

−mg
a2

l
Cαf αf

(
1 − 1

2
Cαs

(
sf

ss

)2
)

−mg
a1

l
Cαr αr

(
1 − 1

2
Cαs

(
sr

ss

)2
)

= mr vx (2.323)

−a1mg
a2

l
Cαf αf

(
1 − 1

2
Cαs

(
sf

ss

)2
)

+a2mg
a1

l
Cαr αr

(
1 − 1

2
Cαs

(
sr

ss

)2
)

= 0 (2.324)

Rgmg
a2

l
Csf sf

(
1 − 1

2
Csα

(
αf

αs

)2
)

= RgFxf
= Tf (2.325)

Rg mg
a1

l
Csr sr

(
1 − 1

2
Csα

(
αr

αs

)2
)

= Rg Fxr = Tr (2.326)

Substituting lateral slips (2.309)–(2.311) makes the equations

1

Rg

(
Tf + Tr

) = −mr vy (2.327)

−mg
a2

l
Cαf (β + κa1 − δ)

(
1 − 1

2
Cαs

(
sf

ss

)
2
)

−mg
a1

l
Cαr (β + κa2)

(
1 − 1

2
Cαs

(
sr

ss

)2
)

= mr vx (2.328)

−a1mg
a2

l
Cαf (β + κa1 − δ)

(
1 − 1

2
Cαs

(
sf

ss

)
2
)
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+a2mg
a1

l
Cαr (β + κa2)

(
1 − 1

2
Cαs

(
sr

ss

)
2
)

= 0 (2.329)

Rgmg
a2

l
Csf sf

(
1 − 1

2
Csα

(
β + κa1 − δ

αs

)2
)

= RgFxf
= Tf (2.330)

Rg mg
a1

l
Csr sr

(
1 − 1

2
Csα

(
β + κa2

αs

)2
)

= Rg Fxr = Tr (2.331)

Let us assume the slip ratios sf and sr to be very small such that the nonlinear terms
of Eqs. (2.298)–(2.299) may be ignored and the slip ratios si will not affect sideslip
angles αi . The tire slip interaction will be only due to αi reducing si . Therefore, the
equations will become simpler as the following.

1

Rg

(
Tf + Tr

) = −mκvxvy (2.332)

−ga2Cαf (β + κa1 − δ) − ga1Cαr (β − κa2) = κlv2
x (2.333)

−Cαf (β + κa1 − δ) + Cαr (β − κa2) = 0 (2.334)

Rgmg
a2

l
Csf sf

(
1 − 1

2
Csα

(
β + κa1 − δ

αs

)2
)

= RgFxf
= Tf (2.335)

Rg mg
a1

l
Csr sr

(
1 − 1

2
Csα

(
β − κa2

αs

)2
)

= Rg Fxr = Tr (2.336)

Equations (2.333) and (2.334) are linear functions of β, κ , δ, and may be
rearranged in the following forms

Cββ + Cκκ + Cδδ = κlv2
x (2.337)

Dββ + Dκκ + Dδδ = 0 (2.338)

where

Cβ = −ga2Cαf − ga1Cαr (2.339)

Cκ = −ga1a2Cαf + ga1a2Cαr (2.340)

Cδ = ga2Cαf (2.341)

Dβ = Cαr − Cαf (2.342)

Dκ = −a2Cαr − a1Cαf (2.343)

Dδ = Cαf (2.344)
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Equations (2.337) and (2.338) make a set of two linear algebraic equations
[

Cβ Cκ − lv2
x

Dβ Dκ

] [
β

κ

]
=
[

Cδ

Dδ

]
δ

which provides us with the following solutions as the steady-state responses.

Sκ = κ

δ
= 1

ρδ
= DδCβ − DβCδ

lDβv2
x + DκCβ − DβCκ

Sβ = β

δ
= DκCδ − Dδ

(
Cκ − lv2

x

)

lDβv2
x + DκCβ − DβCκ

Substituting (2.339)–(2.344) determines the steady-state responses as functions of
vehicle dynamic parameters.

Sκ = κ

δ
= gCαf Cαr

lgCαf Cαr + v2
x

(
Cαr − Cαf

)

Sβ = β

δ
= v2

xCαf − ga2Cαf Cαr

lgCαf Cαr + v2
x

(
Cαr − Cαf

)

�
Example 73 Under steering, over steering, neutral steering.

Curvature response Sκ indicates how the radius of turning will change with a
change in steer angle. Sκ can be expressed as

Sκ = κ

δ
= 1/ρ

δ
= 1

l

1

1 + Kv2
x

(2.345)

K = 1

gl

(
1

Cαf

− 1

Cαr

)
(2.346)

where K is called the stability factor. It determines if the vehicle is

Understeer K > 0
Neutral K = 0
Oversteer K < 0

(2.347)

To find K we may rewrite Sκ as

Sκ = κ

δ
= 1/ρ

δ
= gCαf Cαr

lgCαf Cαr + v2
x

(
Cαr − Cαf

)

= 1

lgCαf Cαr

gCαf Cαr

+
(
Cαr − Cαf

)
v2
x

gCαf Cαr
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= 1

l + 1

g

(
1

Cαf

− 1

Cαr

)
v2
x

= 1

l

1

1 + 1

gl

(
1

Cαf

− 1

Cαr

)
v2
x

= 1

l

1

1 + Kv2
x

(2.348)

Therefore,

K = 1

gl

(
1

Cαf

− 1

Cαr

)
(2.349)

The sign of stability factor K determines if Sκ is an increasing or decreasing
function of velocity vx . The sign of K depends on the relative weight of 1/Cαf

and 1/Cαr , which are dependent on the sideslip coefficients of the front and rear
tires Cαf , Cαr .

If K > 0, then

1

Cαf

>
1

Cαr

(2.350)

and Sκ = κ/δ and dSκ/dvx < 0. Hence, the curvature of the path κ = 1/ρ

decreases with speed for a constant δ. Decreasing κ indicates that the radius of
the steady-state circle of rotation, ρ, increases by increasing speed vx . A positive
stability factor is desirable. A vehicle with K > 0 is stable and is called understeer.
For an understeer vehicle, we need to increase the steering angle if we increase the
speed of the vehicle to keep the same turning circle.

If K < 0, then

1

Cαf

<
1

Cαr

(2.351)

and Sκ = κ/δ and dSκ/dvx > 0. Hence, the curvature of the path κ = 1/ρ increases
with speed for a constant δ. Increasing κ indicates that the radius of the steady-state
circle of rotation, ρ, decreases by increasing speed vx . A negative stability factor
is undesirable. A vehicle with K < 0 is unstable and is called oversteer. For an
oversteer vehicle, we need to decrease the steering angle when we increase the speed
of the vehicle, to keep the same turning circle.

If K = 0, then

1

Cαf

= 1

Cαr

(2.352)

then Sκ = κ/δ is not a function of vx because dSκ/dvx = 0. Hence, the curvature
of the path κ = 1/ρ remains constant for a constant δ regardless of vx . Having a
constant κ indicates that the radius of the steady-state circle, R, will not change by
changing the speed vx . A zero stability factor is neutral and a vehicle with K = 0 is
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on the border of stability and is called a neutral steer. When driving a neutral steer
vehicle, we do not need to change the steering angle if we increase or decrease the
speed of the vehicle, to keep the same turning circle.

2.6 Four-Wheel Planar Vehicle Dynamics

The four-wheel planar vehicle model is an extension to the two-wheel planar vehicle
model to include the lateral weight transfer. The four-wheel planar model provides
us with better simulation of drifting vehicles.

Let us assume that the front and rear tracks are different.

b1f + b2f = wf (2.353)

b1r + b2r = wr (2.354)

The equations of motion of the four-wheel rigid planar vehicle are:

v̇x = 1

m
(Fx − FA) + r vy (2.355)

v̇y = 1

m
Fy − r vx (2.356)

ṙ = 1

Iz

Mz (2.357)

ω̇1 = 1

I1
T1 − Rg

I1
Fx1 (2.358)

ω̇2 = 1

I2
T2 − Rg

I2
Fx2 (2.359)

ω̇1 = 1

I3
T3 − Rg

I3
Fx3 (2.360)

ω̇1 = 1

I4
T4 − Rg

I4
Fx4 (2.361)

Fx = Fx1 cos δ1 + Fx2 cos δ2 + Fx3 + Fx4

−Fy1 sin δ1 − Fy2 sin δ2 (2.362)

Fy = Fy1 cos δ1 + Fy2 cos δ2 + Fy3 + Fy4

+Fx1 sin δ1 + Fx2 sin δ2 (2.363)

FA = CA v2
x (2.364)
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Mz = a1Fx1 sin δ1 + a1Fy1 cos δ1 + a1Fx2 sin δ2 + a1Fy2 cos δ2

−b1f Fx1 cos δ1 + b1f Fy1 sin δ1 − b2f Fy2 sin δ2 + b2f Fx2 cos δ2

−a2Fy3 − a2Fy4 − b1rFx3 + b2rFx4 (2.365)

Fxi
= Fzi

Csi S (si − ss)

√
1 − Csα

(
S (αi − αs)

αs

)
2 (2.366)

Fyi
= −Fzi

Cαi S (αi − αs)

√
1 − Cαs

(
S (si − ss)

ss

)
2 (2.367)

Fz1 = m

lwf g

(
a2g − h

(
v̇x − r vy

)) (
b2f g − h

(
v̇y + r vx

))
(2.368)

Fz2 = m

lwf g

(
a2g − h

(
v̇x − r vy

)) (
b1f g + h

(
v̇y + r vx

))
(2.369)

Fz3 = m

lwrg

(
a1g + h

(
v̇x − r vy

)) (
b2rg − h

(
v̇y + r vx

))
(2.370)

Fz4 = m

lwrg

(
a1g + h

(
v̇x − r vy

)) (
b1rg + h

(
v̇y + r vx

))
(2.371)

and tire slips as

αi = βi − δi = arctan

(
vy + xi r

vx − yi r

)
− δi (2.372)

βi = arctan

(
vyi

vxi

)
= arctan

(
vy + xi r

vx − yi r

)
(2.373)

β = arctan
vy

vx

(2.374)

x1 = x2 = a1 y1 = b1f y3 = b1r (2.375)

x3 = x4 = −a2 y2 = −b2f y4 = −b2r (2.376)

si = Rg ωi − vxT i

Rg ωi H(Rg ωi − vxT i
) + vxT i

H(vxT i
− Rg ωi)

(2.377)

vxT 1 = (vx − rb1f

)
cos δ1 + (vy + ra1

)
sin δ1 (2.378)
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vxT 2 = (vx + rb1f

)
cos δ2 + (vy + ra1

)
sin δ2 (2.379)

vxT 3 = vx − rb2r (2.380)

vxT 4 = vx + rb2r (2.381)

The left and right steer angles are related due to steering mechanism.

δ2 = f (δ1) (2.382)

Proof The equations of motion for a flat and rigid vehicle in the local coordinate
frame B, at its mass center C, are given in Eqs. (2.1)–(2.4). The equations for a
four-wheel vehicle model will be:

Fx = m v̇x − mr vy + FA (2.383)

Fy = m v̇y + mr vx (2.384)

Mz = ṙ Iz (2.385)

T1 = Iw1 ω̇1 + Rw Fx1 (2.386)

T2 = Iw2 ω̇2 + Rw Fx2 (2.387)

T3 = Iw3 ω̇r + Rw Fx3 (2.388)

T4 = Iw4 ω̇r + Rw Fx4 (2.389)

We add the aerodynamic force FA as the only resistance forces on the vehicle. We
assume FA to be effective only in the x-direction

FA = 1

2
ρ CD Af v2

x = CA v2
x (2.390)

where ρ is the air density, CD is the drag coefficient, and Af is the frontal area or
projected area of vehicle in x-direction. We combine the coefficients ρ, CD , and Af

into a single coefficient CA.
From (2.59) to (2.61), the applied forces on the vehicle are:

Fx =
∑

i

FxWi
cos δi −

∑
i

FyWi
sin δi

= Fx1 cos δ1 + Fx2 cos δ2 + Fx3 + Fx4

−Fy1 sin δ1 − Fy2 sin δ2 (2.391)
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Fy =
∑

i

FyWi
cos δi +

∑
i

FxWi
sin δi

= Fy1 cos δ1 + Fy2 cos δ2 + Fy3 + Fy4

+Fx1 sin δ1 + Fx2 sin δ2 (2.392)

and the moment in the z-direction is:

M =
∑

ri × Fi =
⎡
⎣

0
0

Mz

⎤
⎦ (2.393)

Mz =
∑

i

xiFyi
−
∑

i

yiFxi

= a1Fx1 sin δ1 + a1Fy1 cos δ1 + a1Fx2 sin δ2

+a1Fy2 cos δ2 − a2Fy3 − a2Fy4

−b1f Fx1 cos δ1 + b1f Fy1 sin δ1 − b2f Fy2 sin δ2

+b2f Fx2 cos δ2 − b1rFx3 + b2rFx4 (2.394)

because the forces and location of each tire is:

F1 =
⎡
⎣

Fx1 cos δ1 − Fy1 sin δ1

Fx1 sin δ1 + Fy1 cos δ1

0

⎤
⎦ F3 =

⎡
⎣

Fx3

Fy3

0

⎤
⎦ (2.395)

F2 =
⎡
⎣

Fx2 cos δ2 − Fy2 sin δ2

Fx2 sin δ2 + Fy2 cos δ2

0

⎤
⎦ F4 =

⎡
⎣

Fx4

Fy4

0

⎤
⎦ (2.396)

r1 =
⎡
⎣

a1

b1f

0

⎤
⎦ r2 =

⎡
⎣

a1

−b2f

0

⎤
⎦ (2.397)

r3 =
⎡
⎣

−a2

b1r

0

⎤
⎦ r4 =

⎡
⎣

−a2

−b2r

0

⎤
⎦ (2.398)

Employing the combined slip elliptical model, the tire tangential forces Fxi
and

Fyi
are:



176 2 Vehicle Planar Dynamics

Fxi
= Fzi

Csi S (si − ss)

√
1 − Csα

(
S (αi − αs)

αs

)
2 (2.399)

Fyi
= −Fzi

Cαi S (αi − αs)

√
1 − Cαs

(
S (si − ss)

ss

)
2 (2.400)

The vertical forces on front and rear wheels Fzi
are calculated in (1.431)–(1.434)

in which the acceleration components aX and aY must be expressed in body
coordinate B

aX = v̇x − r vy (2.401)

aY = v̇y + r vx (2.402)

to be used in Eqs. (2.399) and (2.400). Rearrangement of Eqs. (1.431)–(1.434) is:

Fz1 = m

lwf g

(
ga2 − hv̇x + hrvy

) (
hv̇y + gb2f − hrvx

)
(2.403)

Fz2 = m

lwf g

(
ga2 − hv̇x + hrvy

) (
hv̇y + gb1f + hrvx

)
(2.404)

Fz3 = m

lwrg

(
hv̇x + ga1 − hrvy

) (
hv̇y + gb2r − hrvx

)
(2.405)

Fz4 = m

lwrg

(
hv̇x + ga1 − hrvy

) (
hv̇y + gb1r + hrvx

)
(2.406)

where

wf = b1f + b2f (2.407)

wr = b1r + b2r (2.408)

l = a1 + a2 (2.409)

The tire side slip angle αi has been calculated in (1.121)–(1.123)

αi = βi − δi = arctan

(
vy + xi r

vx − yi r

)
− δi

where

βi = arctan

(
vyi

vxi

)
= arctan

(
vy + xi r

vx − yi r

)
(2.410)

vxi
= vx − yi r vyi

= vy + xi r (2.411)
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and therefore,

β1 = arctan

(
vy1

vx1

)
= arctan

(
vy + a1 r

vx − b1f r

)
(2.412)

β2 = arctan

(
vy2

vx2

)
= arctan

(
vy + a1 r

vx + b2f r

)
(2.413)

β3 = arctan

(
vy3

vx3

)
= arctan

(
vy − a2 r

vx + b2r r

)
(2.414)

β4 = arctan

(
vy4

vx4

)
= arctan

(
vy − a2 r

vx − b1r r

)
(2.415)

The longitudinal slip ratio si is calculated in (1.57) as a function of the tire
forward velocity vxT i

and its angular velocity ωi .

si = Rg ωi − vxT i

Rg ωi H(Rg ωw − vxT i
) + vxT i

H(vxT i
− Rg ωi)

(2.416)

According to (1.303), the forward velocity of the vehicle at the wheels centers is:

Bvi =
[

v cos β − ryi

v sin β + rxi

]
=
[

vx − ryi

vy + rxi

]
(2.417)

because

Bvi = Bv+ B
GωB × Bri (2.418)

=
⎡
⎣

vx

vy

0

⎤
⎦+

⎡
⎣

0
0
r

⎤
⎦×

⎡
⎣

xi

yi

0

⎤
⎦ =

⎡
⎣

vx − ryi

vy + rxi

0

⎤
⎦

and therefore,

Bv1 =
[

vx − rb1f

vy + ra1

]
Bv2 =

[
vx + rb1f

vy + ra1

]
(2.419)

Bv3 =
[

vx − rb2r

vy − ra2

]
Bv4 =

[
vx + rb2r

vy − ra2

]
(2.420)

Therefore, the velocity at the center of the front wheel in the tire x-direction, T ı̂,
will be

vxT 1 = (vx − rb1f

)
cos δ1 + (vy + ra1

)
sin δ1 (2.421)
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vxT 2 = (vx + rb1f

)
cos δ2 + (vy + ra1

)
sin δ2 (2.422)

vxT 3 = vx − rb2r (2.423)

vxT 4 = vx + rb2r (2.424)

because

T vi = CRT
T

Bvi =
⎡
⎣

cos δ − sin δ 0
sin δ cos δ 0

0 0 1

⎤
⎦

T ⎡
⎣

vx − ryi

vy + rxi

0

⎤
⎦

=
⎡
⎣

(vx − ryi) cos δ + (vy + rxi

)
sin δ(

vy + rxi

)
cos δ − (vx − ryi) sin δ

0

⎤
⎦ (2.425)

The tire angular velocity ωi comes from the equation of moment balance on each
wheel. Ignoring the tire resistance force, the rotational equation of motion of the
wheels is:

Iwi
ω̇i = Ti − Ri Fxi

(2.426)

The traditional four-wheel vehicles with the front steerable wheels need to
connect the left and right front wheels together such that only one steer angle is
the driver’s command and the other wheels steer according to the connection rule.
The connection might be mechanical, as a passive steering mechanism does the job.
Let us assume that the tire number 1 is the commander and all other steer angles are
follower. The connection provides us with a mathematical equation to calculate δ2
for a given δ1.

δ2 = f (δ1) (2.427)

The connection may also be virtual as steer by wire systems do the job. Such a smart
system receives commands from a central system and activates individual actuators
on each wheel to give them the required steer angles calculated by a computer
system based on an objective function.

The simplest mathematical relation is the low speed neutral kinematic condition
called the Ackerman condition

cot δo − cot δi = w

l
(2.428)

in which δi is the steer angle of the inner wheel, and δo is the steer angle of the
outer wheel. The inner and outer wheels are defined based on the turning center
of the vehicle. This equation is only a synthetic relation which theoretically works
at zero speed and impossible to make a simple low bar mechanisms to provide the
equation. However, it is a good starting point. �
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Fig. 2.47 The effect of aerodynamic drag force FA = CAv2
x on forward velocity of a four-wheel

planar vehicle in free straight motion

Example 74 Aerodynamic effect.
Consider a vehicle with the following data.

m = 1000 kg Iz = 2000 kg m2 I1 = I2 = I3 = I4 = 30 kg m2

Cα1 = Cα2 = Cα3 = Cα4 = 8.5 Rg = 0.35 m

Cs1 = Cs2 = Cs3 = Cs4 = 7.5 (2.429)

αs = 5 deg ss = 0.1 Cαs = 0.5 Csα = 0.5

a1 = 1.35 m a2 = 1.5 m l = 2.85 m h = 0.9 m

b1f = b1r = b2f = b2r = 0.9 m wf = wr = 1.8 m

Assume the car initially is moving at

vx = 20 m/s δ = 0 Ti = 0 (2.430)

and

ωi = vx

Rg

= 20

0.35
= 57.143 rad/s (2.431)

The effect of the aerodynamic resistance force in slowing down the vehicle can be
seen in the time history of the forward velocity as is shown in Fig. 2.47 for:

CA = 0.8 (2.432)
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Fig. 2.48 The longitudinal slip ratios of the tires of a four-wheel planar vehicle

Example 75 Increasing rear torque, straight driving.
Consider a vehicle with the data given below.

m = 1000 kg Iz = 2000 kg m2 I1 = I2 = I3 = I4 = 30 kg m2

Cα1 = Cα2 = Cα3 = Cα4 = 8.5 Cs1 = Cs2 = Cs3 = Cs4 = 7.5

αs = 5 deg ss = 0.1 Cαs = Csα = 0.5 (2.433)

a1 = 1.35 m a2 = 1.5 m l = 2.85 m h = 0.9 m

b1f = b1r = b2f = b2r = 0.9 m wf = wr = 1.8 m Rg = 0.35 m

Assume the vehicle is moving slowly straight with

vx = 2 m/s ωi = vx

Rg

= 2

0.35
= 5.714 rad/s (2.434)

δ = 0 (2.435)

At time t = 0, we apply an increasing torque on the rear wheel.

T1 = T2 = 0 T3 = T4 = 50t N m (2.436)

The rear longitudinal slip ratio will increase and reaches its saturation; then the rear
wheels start spinning. Figure 2.48 depicts the longitudinal slip ratios. The saturation
limit of the tires is at ss = 0.1. The slip ratio of the rear tires s3 and s4 increases
linearly from zero up to the point at ss = 0.1. At that point, tire starts spinning on the
ground and the applied torque increases the wheels’ angular velocity. Therefore, the
slip ratio sr increases rapidly. There is no torque on the front wheels and therefore
the front wheels’ slip ratio s1 and s2 remains unsaturated although it will not be
zero. Figure 2.49 depicts the forward velocity of the vehicle vx .
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Fig. 2.49 The forward velocity of the vehicle vx of a four-wheel planar vehicle

Fig. 2.50 The torques on the wheels of a four-wheel planar vehicle

The torques on the wheels are shown in Fig. 2.50. Because of variable accel-
eration of the vehicle, the vertical load on the wheels is not constant. Figure 2.51
illustrates the vertical loads, and the traction forces are shown in Fig. 2.52.

Example 76 Increasing front torque, straight driving.
Consider a vehicle with the data given in (2.429) and assume the vehicle is

moving slowly straight with

vx = 2 m/s ωi = vx

Rg

= 2

0.35
= 5.714 rad/s (2.437)

δ = 0 (2.438)
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Fig. 2.51 The vertical load on the wheels of a four-wheel planar vehicle

Fig. 2.52 The traction forces on the wheels of a four-wheel planar vehicle

At time t = 0, we apply an increasing torque on the front wheel

T1 = T2 = 50t N m T3 = T4 = 0 (2.439)

to discover the differences of planar four-wheel vehicle response to front or rear
wheel drive. Figure 2.53 depicts the longitudinal slip ratios si . Figure 2.54 illustrates
the angular velocities of the wheels ωi . Figure 2.55 depicts the velocity components
of the vehicle vx and vy . Figure 2.56 illustrates variation of the vertical loads Fzi

.
Figure 2.57 depicts the longitudinal forces Fxi

on tires.
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Fig. 2.53 The longitudinal slip ratios si of the tires of a four-wheel planar vehicle

Fig. 2.54 The angular velocities of the wheels ωi of a four-wheel planar vehicle

Example 77 Increasing steer angle and front torque, slip saturation.
Consider a vehicle with the following information

m = 1000 kg Iz = 2000 kg m2 I1 = I2 = I3 = I4 = 30 kg m2

Cα1 = Cα2 = Cα3 = Cα4 = 8.5 Cs1 = Cs2 = Cs3 = Cs4 = 7.5

αs = 5 deg ss = 0.1 Cαs = Csα = 0.5 (2.440)

a1 = 1.35 m a2 = 1.5 m l = 2.85 m h = 0.9 m

b1f = b1r = b2f = b2r = 0.9 m wf = wr = 1.8 m Rg = 0.35 m



184 2 Vehicle Planar Dynamics

Fig. 2.55 The forward velocity components vx and vy of a four-wheel planar vehicle

Fig. 2.56 The vertical load Fzi
on the wheels of a four-wheel planar vehicle

and assume the vehicle is moving very slowly straight.

vx = 2 m/s ωi = vx

Rg

= 2

0.35
= 5.714 rad/s (2.441)

At time t = 0, a linearly increasing torque will be applied on the front wheels up
to T1 = T2 = 750 N m and keep constant after that. The steer angle is also linearly
increasing at a very low rate up to δ = 0.5 deg and remains constant after that.

T1 = T2 =
{

50t N m 0 < t < 15 s
750 N m 15 s < t

T3 = T4 = 0 (2.442)

δ =
{

0.05t deg = 0.05π
180 t rad 0 < t < 10 s

0.5 deg = 0.5π
180 rad 10 s < t

(2.443)
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Fig. 2.57 The traction forces Fxi
on tires of a four-wheel planar vehicle

Fig. 2.58 The forward velocity components of a four-wheel planar vehicle vx and vy

The front torques increase and go beyond the limit of front wheels capability in
producing traction force. As a result, the front tire number 1 slip ratio s1 > s0 and
hence its traction force Fx1 will be saturated.

Figure 2.58 depicts the velocity components of the vehicle vx and vy , measured
in body coordinate B-frame. Figure 2.59 illustrates the angular velocities of the
wheels ωi . Figure 2.60 illustrates the sideslip angles of the wheels αi . Figure 2.61
depicts the longitudinal slip ratios si for the tires. The acceleration components aX

and aY of the vehicle are plotted in Fig. 2.62. Figure 2.63 depicts the forces Fx and
Fy on the vehicle at its mass center. Figure 2.64 illustrates variation of the vertical
loads Fzi

. Figure 2.65 illustrates the longitudinal forces Fxi
on tires. Figure 2.66

shows the lateral forces Fyi
on tires. Figure 2.67 illustrates the path of the vehicle.
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Fig. 2.59 The angular velocities of a four-wheel planar vehicle wheels ωi

Fig. 2.60 The sideslip angles of a four-wheel planar vehicle wheels αi

Fig. 2.61 The longitudinal slip ratios si of a four-wheel planar vehicle tires
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Fig. 2.62 The acceleration components aX and aY /g of a four-wheel planar vehicle

Fig. 2.63 The forces Fx and Fy on the vehicle at its mass center

Fig. 2.64 The vertical load Fzi
of a four-wheel planar vehicle wheels
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Fig. 2.65 The traction forces Fxi of a four-wheel planar vehicle tires

Fig. 2.66 The lateral forces Fyi
of a four-wheel planar vehicle tires

Example 78 Increasing steer angle and rear torque.
Consider a vehicle with the following parameters.

m = 1000 kg Iz = 2000 kg m2 I1 = I2 = I3 = I4 = 30 kg m2

Cα1 = Cα2 = Cα3 = Cα4 = 8.5 Cs1 = Cs2 = Cs3 = Cs4 = 7.5

αs = 5 deg ss = 0.1 Cαs = Csα = 0.5 (2.444)

a1 = 1.35 m a2 = 1.5 m l = 2.85 m h = 0.9 m

b1f = b1r = b2f = b2r = 0.9 m wf = wr = 1.8 m Rg = 0.35 m
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Fig. 2.67 Path of motion of a four-wheel planar vehicle for 0 < t < 50 s by increasing steer angle
and applying front torque and having slip ratio saturation

The vehicle is moving slowly straight with

vx = 2 m/s ωi = vx

Rg

= 2

0.35
= 5.714 rad/s (2.445)

CA = 0.8 (2.446)

At time t = 0, we apply an increasing torque on the rear wheel as well as an
increasing steer angle for limited times as expressed below.

T2 = T4 =
{

15t N m 0 < t < 10 s
150 N m 10 s < t

T1 = T3 = 0 (2.447)

δ =
{

0.1t deg = 0.1π
180 t rad 0 < t < 15 s

1.5 deg = 1.5π
180 rad 15 s < t

(2.448)

Figure 2.68 depicts the velocity components of the vehicle vx and vy . Figure 2.69
illustrates the angular velocities of the front and rear wheels ωi . Figure 2.70
illustrates the sideslip angles of the front and rear wheels αi . Figure 2.71 depicts
the longitudinal slip ratios si of tires. The acceleration components ax and ay of
the vehicle are plotted in Fig. 2.72. The angular accelerations of the wheels ω̇i

are shown in Fig. 2.73. Figure 2.74 depicts the resultant forces Fx and Fy on the
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Fig. 2.68 The velocity components of a four-wheel planar vehicle vx and vy

Fig. 2.69 The angular velocities ωi of a four-wheel planar vehicle

Fig. 2.70 The sideslip angles αi of a four-wheel planar vehicle
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Fig. 2.71 The longitudinal slip ratios si of a four-wheel planar vehicle

Fig. 2.72 The acceleration components aX and aY /g of a four-wheel planar vehicle

Fig. 2.73 The angular accelerations of the wheels ω̇i of a four-wheel planar vehicle
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Fig. 2.74 The forces Fx and Fy of a four-wheel planar vehicle at its mass center

Fig. 2.75 The longitudinal forces Fxi
on a four-wheel planar vehicle at its mass center

vehicle at its mass center. Figure 2.75 illustrates the longitudinal forces Fxi
and

Fig. 2.76 illustrates the lateral forces Fyi
on tires. Figure 2.77 illustrates variation of

the vertical loads Fzf and Fzr . Figure 2.78 illustrates the path of the vehicle.

Example 79 No friction on left side and applying rear torque.
To show that the four-wheel planar vehicle mathematical model is capable to

analyze special cases, we assume that left side of the vehicle is moving on a no
friction pavement while an increasing torque is applied on the rear wheels. The
friction coefficients of the tires number 1 and 3 would be zero.

Let us consider a vehicle with the following parameters.

m = 1000 kg Iz = 2000 kg m2 I1 = I2 = I3 = I4 = 30 kg m2

Cα1 = Cα3 = 0 Cα2 = Cα4 = 8.5 Cαs = Csα = 0.5
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Fig. 2.76 The lateral forces Fyi
on tires of a four-wheel planar vehicle

Fig. 2.77 The vertical load Fzi
on front and rear wheels of a four-wheel planar vehicle

Cs1 = Cs3 = 0 Cs2 = Cs4 = 7.5 αs = 5 deg ss = 0.1

a1 = 1.35 m a2 = 1.5 m (2.449)

b1f = b1r = b2f = b2r = 0.9 m l = 2.85 m h = 0.9 m

wf = 1.8 m wr = 1.8 m Rg = 0.35 m

The vehicle is moving slowly straight with

vx = 2 m/s ωi = vx

Rg

= 2

0.35
= 5.714 rad/s (2.450)

CA = 0 δ = 0 (2.451)
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Fig. 2.78 Path of motion of a four-wheel planar vehicle for 0 < t < 50 s by increasing steer angle
up to 1.5 deg and applying rear torque up to 300 N m

Fig. 2.79 Torque history on the wheels of a four-wheel vehicle with no friction on left side

At time t = 0, we apply an increasing torque on the rear wheels as expressed below.

T1 = T3 T4 = T2 = 7.5t N m (2.452)

Figure 2.79 depicts the applied torque history on the wheels of the vehicle, and
Fig. 2.80 illustrates the traction forces Fxi

under each wheel. Figure 2.81 depicts the
velocity components of the vehicle vx and vy . Figure 2.82 illustrates the angular
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Fig. 2.80 Fxi
of a four-wheel vehicle with no friction on left side

Fig. 2.81 vx and vy of a four-wheel vehicle with no friction on left side

Fig. 2.82 ωi of a four-wheel vehicle with no friction on left side
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Fig. 2.83 Fx and Fy on a four-wheel vehicle with no friction on left side

Fig. 2.84 Fyi
of a four-wheel vehicle with no friction on left side

velocities of the front and rear wheels ωi . Figure 2.83 depicts the resultant forces
Fx and Fy on the vehicle at its mass center. Figure 2.84 illustrates the lateral forces
Fyi

on tires. Figure 2.85 illustrates variation of the vertical loads Fzi
. Figure 2.86

illustrates the path of motion of the vehicle comparing a front-wheel-drive (FWD)
and rear-wheel-drive (RWD) cases.

Example 80 No friction on left side and braking rear torque.
In this example we assume a vehicle is moving at a high speed and that left side

of the vehicle is moving on a no friction pavement. We apply an increasing negative
rear torque. The friction coefficients of the tires number 1 and 3 would be zero. Let
us consider the vehicle with the following parameters.
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Fig. 2.85 Fzi
of a four-wheel vehicle with no friction on left side

Fig. 2.86 Path of motion of a four-wheel vehicle with no friction on left side
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Fig. 2.87 Torque history on the wheels of a four-wheel vehicle with no friction on left side and a
braking rear torque

m = 1000 kg Iz = 2000 kg m2 I1 = I2 = I3 = I4 = 30 kg m2

Cα1 = Cα3 = 0 Cα2 = Cα4 = 8.5 Cαs = Csα = 0.5

Cs1 = Cs3 = 0 Cs2 = Cs4 = 7.5 (2.453)

αs = 5 deg ss = 0.1 a1 = 1.35 m a2 = 1.5 m

l = 2.85 m h = 0.9 m b1f = b1r = b2f = b2r = 0.9 m

wf = wr = 1.8 m Rg = 0.35 m

The vehicle is moving fast straight.

vx = 20 m/s ωi = vx

Rg

= 20

0.35
= 57.14 rad/s (2.454)

CA = 0 δ = 0 (2.455)

At time t = 0, we apply an increasing negative torque on the rear wheels as below.

T1 = T2 T4 = T3 = −7.5t N m (2.456)

Figure 2.87 depicts the applied torque history on the wheels of the vehicle.
Figure 2.88 depicts the velocity components of the vehicle vx and vy . Figure 2.89
illustrates the angular velocities of the front and rear wheels ωi . Figure 2.90 depicts
the resultant forces Fx and Fy on the vehicle at its mass center. Figure 2.91 illustrates
the longitudinal forces Fxi

and Fig. 2.92 illustrates the lateral forces Fyi
on tires.

Figure 2.93 illustrates variation of the vertical loads Fzi
. Figure 2.94 illustrates

the path of motion of the vehicle comparing a front-wheel-brake (FWB) and rear-
wheel-brake (RWB) cases.
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Fig. 2.88 Velocities vx and vy of the four-wheel vehicle with no friction on left side and a braking
rear torque

Fig. 2.89 Wheel angular velocities ωi of the four-wheel vehicle with no friction on left side and a
braking rear torque

Example 81 Only one-wheel torque.
Let us examine a vehicle that due to some reasons, only one of the wheel

actuators is working. Let us consider the vehicle with the following parameters.

m = 1000 kg Iz = 2000 kg m2 I1 = I2 = I3 = I4 = 30 kg m2

Cα1 = Cα2 = Cα3 = Cα4 = 8.5 Cs1 = Cs2 = Cs3 = Cs4 = 7.5

αs = 5 deg ss = 0.1 Cαs = Csα = 0.5 (2.457)

a1 = 1.35 m a2 = 1.5 m l = 2.85 m h = 0.9 m

b1f = b1r = b2f = b2r = 0.9 m wf = wr = 1.8 m Rg = 0.35 m
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Fig. 2.90 Applied forces Fx and Fy on the four-wheel vehicle with no friction on left side and a
braking rear torque

Fig. 2.91 Wheel forces Fxi
on the four-wheel vehicle with no friction on left side and a braking

rear torque

The vehicle is moving slowly straight.

vx = 2 m/s ωi = vx

Rg

= 2

0.35
= 5.714 rad/s (2.458)

CA = 0.8 δ = 0 (2.459)

At time t = 0, we apply an increasing torque on the rear wheels as below.

T1 = T2 = T3 T4 = 7.5t N m (2.460)



2.6 Four-Wheel Planar Vehicle Dynamics 201

Fig. 2.92 Wheel forces Fyi
on the four-wheel vehicle with no friction on left side and a braking

rear torque

Fig. 2.93 Wheel forces Fzi
on the four-wheel vehicle with no friction on left side and a braking

rear torque

Figure 2.95 depicts the applied torque history on the wheels of the vehicle, and
Fig. 2.96 illustrates the traction forces Fxi

under each wheel. Figure 2.97 depicts the
velocity components of the vehicle vx and vy . Figure 2.98 illustrates the angular
velocities of the front and rear wheels ωi . The global acceleration components aX

and aY of the vehicle are plotted in Fig. 2.99. Figure 2.100 depicts the resultant
forces Fx and Fy on the vehicle at its mass center. Figure 2.101 illustrates the
lateral forces Fyi

on tires. Figure 2.102 illustrates variation of the vertical loads
Fzi

. Figure 2.103 illustrates the path of the vehicle.
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Fig. 2.94 Path of motion of the four-wheel vehicle with no friction on left side and a braking rear
torque

Fig. 2.95 Applied torques Ti on the wheels of a four-wheel planar vehicle with only T4 �= 0
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Fig. 2.96 Traction forces Fxi
on the wheels of a four-wheel planar vehicle with only T4 �= 0

Fig. 2.97 The velocity components of a four-wheel planar vehicle vx and vy with only T4 �= 0

Fig. 2.98 The angular velocities of a four-wheel planar vehicle ωi with only T4 �= 0
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Fig. 2.99 The global acceleration components of a four-wheel planar vehicle aX and aY /g with
only T4 �= 0

Fig. 2.100 The force components of a four-wheel planar vehicle Fx and Fy with only T4 �= 0

Fig. 2.101 The forces Fyi
of a four-wheel planar vehicle with only T4 �= 0
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Fig. 2.102 The forces Fzi
of a four-wheel planar vehicle with only T4 �= 0

Fig. 2.103 Path of motion of a four-wheel planar vehicle with only T4 �= 0

2.7 Chapter Summary

In this chapter we study the planar model of vehicles to examine maneuvering by
steering as well as the wheel torque control. The wheel torque and steer angle
are the inputs and the longitudinal velocity, lateral velocity, and yaw rate are the
main output variables of the planar vehicle dynamics model. The planar vehicle



206 2 Vehicle Planar Dynamics

dynamic model is the simplest applied modeling in which we assume the vehicle
remains parallel to the ground and has no roll, no pitch, and no bounce motions.
The planar motion of vehicles has three degrees of freedom: translation in the x and
y directions, and a rotation about the z-axis. The longitudinal velocity vx along the
x-axis, the lateral velocity vy along the y-axis, and the yaw rate r = ψ̇ about the
z-axis are the outputs of the dynamic equations of motion.

By ignoring the roll motion as well as the lateral load transfer between left and
right wheels, we define a simplified two-wheel model for the vehicle.

The four-wheel planar vehicle model is an extension to the two-wheel planar
vehicle model to include the lateral weight transfer. The four-wheel planar model
provides us with better simulation of drifting vehicles. This model is capable to
simulate drift of vehicles as well as simulation of different tire-wheel interaction for
all four tires of a vehicle.

2.8 Key Symbols

a ≡ ẍ Acceleration
ai Longitudinal distance of the axle number i from y-axis
Af Frontal area of vehicle
bi Lateral distance of tire number i from longitudinal x-axis
B(Cxyz) Vehicle coordinate frame
C Mass center
CA Aerodynamic coefficient
Cα Tire sideslip coefficient
Cαf Front sideslip coefficient
Cαi Sideslip coefficient of tire number i

Cαs Tire lateral force drop factor
Cαr Rear sideslip coefficient
Cγ Camber coefficient, camber stiffness
Cs Tire slip ratio coefficient
Csf Front slip ratio coefficient
Csr Rear slip ratio coefficient
Csα Tire longitudinal force drop factor
CD Drag coefficient
Csf Front slip ratio coefficient
Csi Slip ratio coefficient of tire number i
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Csr Rear slip ratio coefficient
Cβ Coefficient between Fy and β at steady-state
Cδ Coefficient between Fy and δ at steady-state
Cκ Coefficient between Fy and κ at steady-state
d Location vector
Dβ Coefficient between Mz and β at steady-state
Dδ Coefficient between Mz and δ at steady-state
Dκ Coefficient between Mz and κ at steady-state
FA Aerodynamic force
Fx Longitudinal force, forward force, traction force
Fi Force vector of tire number i

Fxi Longitudinal force of tire number i

Fy Lateral force of vehicle
Fyi Lateral force of tire number i

Fyf Front lateral force
Fyr Rear lateral force
Fzi Normal force, vertical force of tire number i

F, M Force system
g,g Gravitational acceleration
G(OXYZ) Global coordinate frame
h Height of mass center from the ground
H Heaviside function
I Mass moment
Ii, Iwi Wheel number i mass moment
K Stability factor
l Wheel base
L Moment of momentum
m Mass
Mx Roll moment, bank moment, tilting torque
My Pitch moment
Mz Yaw moment, aligning moment
o,O Origin of a coordinate frame
p = ϕ̇ Roll rate
p Momentum
q = θ̇ Pitch rate
qi Generalized coordinate
r = ψ̇ Yaw rate
r Position vector
R,Rg Tire radius
GRB Rotation matrix to go from B frame to G frame
s Longitudinal slip



208 2 Vehicle Planar Dynamics

ss Saturation value of longitudinal slip
S Saturation function
Sκ = κ/δ Curvature response
Sβ = β/δ Sideslip response
t Time
T Tire coordinate frame
Ti Wheel torque
v ≡ ẋ, v Velocity
vwind Wind velocity
vxi

Longitudinal velocity of wheel number i

vyi
Lateral velocity of wheel number i

w Wheelbase
wf Front wheelbase
wr Rear wheelbase
x, y, z, x Displacement
X, Y,Z Global displacement
α Sideslip angle
αs Sideslip angle saturation
β Global sideslip angle
β Vehicle sideslip angle, attitude angle
βf Sideslip angle of front wheel
βi Sideslip angle of wheel number i

βr Sideslip angle of rear wheel
β + ψ Cruise angle
δ Steer angle
δf Front steer angle
δi Front steer angle of wheel number i

δr Rear steer angle
θ Pitch angle
θ̇ = q Pitch rate
κ = 1/ρ Curvature
λ Eigenvalue
ρ Radius of rotation, air density
ϕ Roll angle
ϕ̇ = p Roll rate
ψ Yaw angle
ψ̇ = r Yaw rate
ψ Heading angle
ω,ω Angular velocity
ωi Angular velocity of wheel number i

ω̇, ω̇ Angular acceleration
ω̇i Angular acceleration of wheel number i
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Exercises

1. Graphical view of tire force and vehicle dynamics.
Consider a vehicle with the following data.

Cαf = 8.5 Cαr = 8.5 αs = 5 deg ss = 0.1

Csf = 7.5 Csr = 7.5 Cαs = 0.5 Csα = 0.5 (2.461)

and the tire force equations:

Fx

Fz

= Css

√
1 − Csα

(
α

αs

)2

|α| < αs |s| < ss (2.462)

Fy

Fz

= −Cαα

√
1 − Cαs

(
s

ss

)2

|α| < αs |s| < ss (2.463)

(a) Plot Fx/Fz as functions of α and s for −2αs < α < 2αs and −2ss < s <

2ss . Replot Fx/Fz for Cαs = 0 and Csα = 0 and compare the plots.
(b) Plot Fz/Fz as functions of α and s for −2αs < α < 2αs and −2ss < s <

2ss . Replot Fy/Fz for Cαs = 0 and Csα = 0 and compare the plots.
(c) If there are any sharp edges in any of the above plots, explain what would

you expect to see in the plot of Fx , Fy , Fz, Ti .
(d) Chose a set of inputs of δ and Ti to show your predictions.

2. Wind force in B-frame.
Transform the result of the wind force GFA of Eq. (2.48) into B-frame and find
the result of Eq. (2.49).

(a) Determine the force system that applies on the two-wheel model of the car.

Fy = Cr r + Cβ β + Cδ δ (2.464)

Mz = Dr r + Dβ β + Dδ δ (2.465)

(b) Write the equations of motion of the car as

Fx = m v̇x − mr vy

Fy = m v̇y + mr vx (2.466)

Mz = ṙ Iz

(c) Derive the force system coefficient that the velocity is measured in km/h
instead of m/s.
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3. Velocity drop with aerodynamic resistance.

(a) Analytically determine if the forward velocity decreasing in Fig. 2.10 is
linear or is a curve?

(b) Analytically determine if the forward velocity decreasing in Fig. 2.47 is
linear or is a curve?

(c) Are the curves in Figs. 2.10 and 2.47 exactly the same?

4. Nonlinear tire behavior.
Let us assume that the sideslip coefficient of the tires of a vehicle is nonlinear
such that its lateral force generation capacity drops at high α according to:

Cα = C1 − C2α
2 (2.467)

(a) Develop the force system for the bicycle vehicle model.
(b) Derive the equations of motion for a front wheel steerable planar bicycle

vehicle model.

5. Nonlinear equation for Fy = Fy (α).
Accept the nonlinear functions of

Fyf
= −C1f αf + C2f α3

f Fyr = −C1r αr + C2r α3
r (2.468)

and develop the force system for the planar bicycle vehicle model.
6. 3D global wind force.

Assume the wind has a global velocity Gvwind and a vehicle is moving with a
velocity Gv.

Gvwind =
⎡
⎣

vwx

vwy

vwz

⎤
⎦ Gv =

⎡
⎣

vx

vy

0

⎤
⎦ (2.469)

The wind is blowing at angle η with respect to the ground XY -plane and angle
θ with respect to the global XZ-plane. The vehicle x-axis is at angle ψ with
respect to X-axis.

(a) Determine the wind velocity expression in G-frame in terms of vw..
(b) Determine the wind force on the vehicle in G-frame in terms of v and vw.

GFA = CA

(
Gv − Gvw

)
2 (2.470)

(c) Determine the wind force on the vehicle in B-frame in terms of v and vw.
(d) Determine the changes on Fzi

for two-wheel planar vehicle model.
(e) Determine the changes on Fzi

for four-wheel planar vehicle model.

7. �Initial camber set.
To increase directional stability of vehicles, specially the race cars, we design
their suspensions such that there exists a set inward camber angle γ 0. The
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inward camber means at δ = 0, we have γ 1 = γ 0, γ 2 = −γ 0, γ 3 = γ 0,
γ 4 = −γ 0, assuming front and rear suspensions initial cambers are equal.
Derive the total planar force system on the vehicle in the body coordinate frame
B expressed in Eqs. (2.59)–(2.61) with this suspension design.

8. Front and rear steer bicycle plane vehicle model.
Re-derive the bicycle plane vehicle force components equations in (2.91)–
(2.93) for a front δf and rear δr steerable bicycle vehicle.

9. Front and rear steer two-wheel plane vehicle model.
The equations of motion of the two-wheel plane vehicle model are given
in (2.203)–(2.207).

(a) Re-derive the equations for a front δf and rear δr steerable vehicle.
(b) Re-derive the equations for a front δr = δf /10. In this parallel steering

design, we will only have one input steer angle.
(c) Re-derive the equations for a front δr = −δf /10. In this opposite steering

design, we will only have one input steer angle.

10. Aerodynamic effect.
Consider a vehicle is moving in a windy environment with a wind velocity of:

Bvwind = −vwx ı̂ (2.471)

Assume the vehicle initially is moving at

vx = 20 m/s δ = 0 Tf = Tr = 0 (2.472)

ωf = ωr = vx

Rg

= 20

0.35
= 57.143 rad/s (2.473)

The other parameters of the vehicle are given in Eq. (2.247) and the wind force
on vehicle is calculated by

Fx = CA (vx − (−vwx sin ωt))2 (2.474)

(a) Assume CD = 0.8 and determine the forward velocity of the vehicle. Plot
the forward velocity vx to the time at which vx = 10 m/ s.

(b) �Indicating the time at which vx decreases to vx = 10 m/s by th. Plot th
versus CD .

11. Alternative aerodynamic effect.
Consider a vehicle is moving in a stormy environment with an alternative wind
velocity.

Bvwind = −vwx sin ωt ı̂ (2.475)

Assume the vehicle initially is moving at

vx = 20 m/s δ = 0 Tf = Tr = 0 (2.476)
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ωf = ωr = vx

Rg

= 20

0.35
= 57.143 rad/s (2.477)

The other parameters of the vehicle are given in Eq. (2.247) and the wind force
on vehicle is calculated by

Fx = CA (vx − (−vwx sin ωt))2 (2.478)

CD = 0.8 (2.479)

(a) Assume ω = 0.01/ s and determine the forward velocity of the vehicle.
Plot the forward velocity vx to the time at which vx = 10 m/s.

(b) �Indicating the time at which vx decreases to vx = 10 m/s by th, and plot
th versus ω.

12. �Front locked wheel.
Consider a vehicle with the data given in (2.251). Assume the vehicle is moving
slowly straight with

vx = 2 m/s ωr = vx

Rg

= 2

0.35
= 5.714 rad/s (2.480)

At time t = 0, we apply an increasing torque on the rear wheel

Tf = 0 Tr = 100t N m (2.481)

while the steer angle is kept at zero δ = 0 and the front wheel is locked at
ωf = 0.
Solve the equations of motion numerically and plot Tf , Tr , sf , sr , Ff , Fr ,
vx , ax, ωr , for 0 < t < 50 s.

13. �Rear locked wheel.
Consider a vehicle with the data given in (2.251). Assume the vehicle is moving
slowly straight with

vx = 2 m/s ωf = vx

Rg

= 2

0.35
= 5.714 rad/s (2.482)

At time t = 0, we apply an increasing torque on the front wheel

Tr = 0 Tf = 100t N m (2.483)

while the steer angle is kept at zero δ = 0 and the rear wheel is locked at
ωr = 0.
Solve the equations of motion numerically and plot Tf , Tr , Ff , Fr , sf , sr ,
vx , ax, ωf , for 0 < t < 50 s.
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14. Increasing steer angle and front torque.
Use the date in Example 70 and repeat the example for,

(a) Cαs = 0.2, Csα = 0.8
(b) Cαs = 0.8, Csα = 0.2

15. Increasing steer angle and rear torque.
Use the date in Example 72 and repeat the example for,

(a) Cαs = 0.2, Csα = 0.8
(b) Cαs = 0.8, Csα = 0.2

16. Steady-state stability condition.
Plot Sκ and Sβ versus vx for the vehicle of Example 70 if

(a) Cαf = 5Cαr , Cαr = 8.5.
(b) Cαf = Cαr/5, Cαr = 8.5.

17. Four-wheel plane vehicle, increasing rear torque, straight driving.
This exercise simulates changing one tire with a new or different tire.

(a) Repeat Example 75 assuming Cα1 = 10, Cα2 = 8.5, Cα3 = 8.5, Cα4 = 8.5.
(b) �Determine the required steer angle δ = δ (vx) such that the vehicle

moves straight.

18. Four-wheel plane vehicle, increasing steer angle and front torque.
Repeat Example 75 assuming Cα1 = 10, Cα2 = 8.5, Cα3 = 8.5, Cα4 = 8.5.

19. �Increasing steer angle and opposite rear torque.
Use the date in Example 78 and assume opposite left and right rear torques.

T3 =
{−30t N m 0 < t < 10 s

−300 N m 10 s < t
T1 = 0 (2.484)

T4 =
{

30t N m 0 < t < 10 s
300 N m 10 s < t

T2 = 0 (2.485)

(a) Does the vehicle move?
(b) Solve the equations of motion numerically and plot the same graphs of the

example to compare.

20. No friction on one tire and applying front torque.
In Example 80 assume the wheel number 1 has no friction.

Cα1 = 0 Cα2 = 8.5 Cα3 = 8.5 Cα4 = 8.5

Cs1 = 0 Cs2 = 7.5 Cs3 = 7.5 Cs4 = 7.5 (2.486)

(a) Repeat the example and plot the same graphs to compare.
(b) �Determine the required steer angle δ = δ (vx) such that the vehicle

moves straight.



Chapter 3
Vehicle Roll Dynamics

We study the roll vehicle dynamic model in this chapter. The roll dynamic model of
vehicles has forward, lateral, yaw, and roll motions. The model of a rollable rigid
vehicle is more exact and more realistic compared to the vehicle planar model. Using
this model, we are able to analyze the roll behavior of a vehicle while maneuvering.

3.1 Equations of Motion and Degrees of Freedom

The Newton–Euler equations of motion of the roll vehicle dynamics in the body
coordinate frame B are:

Fx = m v̇x − mr vy (3.1)

Fy = m v̇y + mr vx (3.2)

Mz = Iz ω̇z = Iz ṙ (3.3)

Mx = Ix ω̇x = Ix ṗ (3.4)

Ti = Iwi
ω̇wi

+ Rw Fxi
(3.5)

The roll vehicle dynamic model is well expressed by four kinematic variables: the
forward motion x, the lateral motion y, the roll angle ϕ, and the yaw angle ψ ,
plus four equations for the dynamics of each wheel. In the roll model of vehicle
dynamics, we do not consider vertical movement z and pitch motion θ (Jazar 2017,
2011).

Figure 3.1 illustrates a roll vehicle model with a body coordinate frame B(xyz) at
the mass center C, its force system, and its kinematic variables. The body coordinate
frame is assumed to be the principal coordinate frame of the vehicle. The x-axis
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Fig. 3.1 The roll vehicle dynamic model has four degrees of freedom indicated by: x, y, ϕ, ψ

is a longitudinal axis passing through C and directed forward. The y-axis goes
laterally to the left from the driver’s viewpoint. The z-axis makes the coordinate
system a right-hand triad. The z-axis is perpendicular to the ground, opposite to the
gravitational acceleration g on a flat horizontal road (Cossalter 2002; Dai et al. 2016,
2017a,b).

Angular orientation of the vehicle is expressed by three angles: roll ϕ, pitch θ ,
and yaw ψ , and the vehicle angular velocities are expressed by their rates: roll rate
p, pitch rate q, and yaw rate r .

p = ϕ̇ = ωx (3.6)

q = θ̇ = ωy (3.7)

r = ψ̇ = ωz (3.8)

The vehicle force system (F, M) is the resultant of external forces and moments
that the vehicle receives from the ground and environment. The forces in the body
coordinate frame are expressed by:

BF = Fxı̂ + Fyĵ + Fzk̂ (3.9)

BM = Mxı̂ + Myĵ + Mzk̂ (3.10)

In roll vehicle dynamic model we assume:

θ = 0 (3.11)

q = θ̇ = ωy = 0 (3.12)
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Fig. 3.2 The vehicle roll dynamic model and its degrees of freedom and force system

Proof Consider the vehicle in Fig. 3.2. A global coordinate frame G is fixed on the
ground, and a local coordinate frame B is attached to the vehicle at its mass center
C. The orientation of the frame B can be expressed by the heading angle ψ between
the X and x axes measured from X, and the roll angle ϕ about the x-axis, between
the Z and z axes measured from Z. The global position vector of the mass center is
denoted by Gd.

The force system in the body coordinate frame is:

BF = BRG
GF = BRG

(
m GaB

)
= m B

GaB

= m B v̇B + m B
GωB × BvB (3.13)

BM =
Gd

dt

BL = B
GL̇B = B L̇ + B

GωB × BL (3.14)

= BI B
Gω̇B + B

GωB ×
(

BI B
GωB

)
(3.15)

Ignoring the vertical movement at the mass center, the velocity Bv and acceleration
B v̇ of the vehicle, expressed in the body coordinate frame are:

Bv = [ vx vy 0
]T

(3.16)

B v̇ = [ v̇x v̇y 0
]T

(3.17)

where vx is the forward component and vy is the lateral component of the vehicle
velocity vector Bv. Ignoring pitch motion of the vehicle, the angular velocity and its
rate are:



218 3 Vehicle Roll Dynamics

B
GωB =

⎡
⎣

ωx

0
ωz

⎤
⎦ =

⎡
⎣

ϕ̇

0
ψ̇

⎤
⎦ =

⎡
⎣

p

0
r

⎤
⎦ (3.18)

B
Gω̇B =

⎡
⎣

ω̇x

0
ω̇z

⎤
⎦ =

⎡
⎣

ṗ

0
ṙ

⎤
⎦ (3.19)

Assuming the body coordinate frame B to be the principal coordinate frame of the
vehicle, the mass moment matrix of the vehicle will be diagonal:

BI =
⎡
⎣

Ix 0 0
0 Iy 0
0 0 Iz

⎤
⎦ =

⎡
⎣

I1 0 0
0 I2 0
0 0 I3

⎤
⎦ (3.20)

Substituting the above vectors and matrices in the Eqs. (3.13) and (3.15) provides us
with the following equations:

BF = m B v̇B + m B
GωB × BvB (3.21)

⎡
⎣

Fx

Fy

Fz

⎤
⎦ = m

⎡
⎣

v̇x

v̇y

0

⎤
⎦+ m

⎡
⎣

p

0
r

⎤
⎦×

⎡
⎣

vx

vy

0

⎤
⎦

=
⎡
⎣

mv̇x − mrvy

mv̇y + mrvx

mpvy

⎤
⎦ (3.22)

BM = BI B
Gω̇B + B

GωB ×
(

BI B
GωB

)
(3.23)

⎡
⎣

Mx

My

Mz

⎤
⎦ =

⎡
⎣

I1 0 0
0 I2 0
0 0 I3

⎤
⎦
⎡
⎣

ṗ

0
ṙ

⎤
⎦

+
⎡
⎣

p

0
r

⎤
⎦×

⎛
⎝
⎡
⎣

I1 0 0
0 I2 0
0 0 I3

⎤
⎦
⎡
⎣

p

0
r

⎤
⎦
⎞
⎠

=
⎡
⎣

I1ṗ

(I1 − I3) pr

I3ṙ

⎤
⎦ (3.24)



3.1 Equations of Motion and Degrees of Freedom 219

The first two equations of (3.22) are the translational equations of motion in the
x and y directions.

[
Fx

Fy

]
=
[

mv̇x − mrvy

mv̇y + mrvx

]
(3.25)

and the first and third Euler equations (3.24) are the rotational equations of motion
about the x and z axes.

[
Mx

Mz

]
=
[

I1ω̇x

I3ω̇z

]
(3.26)

The third Newton’s equation

mpvy = Fz (3.27)

provides the compatibility condition to keep the vehicle on the road and calculates
the change in Fz because of motion. The second Euler equation

(I1 − I3) pr = My (3.28)

is another compatibility condition that provides the required pitch moment to keep
the vehicle on the road.

The last equation (3.5) is the result of analysis of individual wheels of the vehicle.
The free-body-diagram of the wheel number i is shown in Fig. 2.3. The traction
force Fx and a roll resistance force FR are applied on the tire in the x-direction.
Employing the in-wheel torque Ti and a resultant traction force Fxi

, the moment
equation of motion of the wheel number i would be:

Ti = Iwi
ω̇wi

+ Rwi
Fxi

(3.29)

where Iw is the mass moment of the wheel about its spin axis, ωw is the angular
velocity of the wheel about its spin axis, and Rw is the equivalent tire radius. For
simplicity, we may replace Rw with tire geometric radius Rg considering them to
be close to each other. �
Example 82 Five degrees of freedom vehicle motion.

Assume a vehicle that has forward, lateral translations along the x-axis, y-axis as
well as rotations about the x-axis, y-axis and the z-axis. Such a vehicle will have five
degrees of freedom, and its mathematical model is considered full vehicle dynamic
model for handling study. To develop the equations of motion of such a vehicle, we
need to define the kinematic characteristics as follows:

Bv = [ vx vy 0
]T

(3.30)

B v̇ = [ v̇x v̇y 0
]T

(3.31)



220 3 Vehicle Roll Dynamics

B
GωB = [ωx ωy ωz

]T
(3.32)

B
Gω̇B = [ ω̇x ω̇y ω̇z

]T
(3.33)

The acceleration vector of the vehicle in the body coordinate is (Jazar 2010a):

BF = BRG
GF = BRG

(
m GaB

)
= m B

GaB

= m B v̇B + m B
GωB × BvB (3.34)

BM =
Gd

dt

BL = B
GL̇B = B L̇ + B

GωB × BL (3.35)

= BI B
Gω̇B + B

GωB ×
(

BI B
GωB

)
(3.36)

Ba = B v̇B + B
GωB × BvB =

⎡
⎣

v̇x + ωyvz − ωzvy

v̇y + ωzvx − ωxvz

v̇z + ωxvy − ωyvx

⎤
⎦ (3.37)

and therefore, the Newton’s equations of motion for the vehicle are:

BF = m Ba = m B v̇B + m B
GωB × BvB

⎡
⎣

Fx

Fy

Fz

⎤
⎦ = m

⎡
⎣

v̇x + ωyvz − ωzvy

v̇y + ωzvx − ωxvz

v̇z + ωxvy − ωyvx

⎤
⎦ (3.38)

Similarly, the Euler’s equations of motion will be:

BM = BI B
Gω̇B + B

GωB ×
(

BI B
GωB

)

⎡
⎣

Mx

My

Mz

⎤
⎦ =

⎡
⎣

ω̇xI1 − ωyωzI2 + ωyωzI3

ω̇yI2 + ωxωzI1 − ωxωzI3

ω̇zI3 − ωxωyI1 + ωxωyI2

⎤
⎦ (3.39)

in which we assumed the mass moment matrix to be principal.

BI =
⎡
⎣

I1 0 0
0 I2 0
0 0 I3

⎤
⎦ (3.40)

Equations (3.38) and (3.39) are the force system expression of a vehicle with five
degrees of freedom.
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Fig. 3.3 The force system at the tireprint of tire number 1, and their resultant force system at C

3.2 Tire Force System

Figure 3.3 depicts the wheel number 1 of a vehicle and its force system(
Fx1, Fy1 ,Mz1

)
. The force components are generated at the center of tireprint in the

T -frame
(
FxT1

, FyT1
,MzT1

)
and will be transformed to the C-frame (x1, y1, z1)

at the tire center. Then the forces in C-frames of all wheels will be transformed to
the B-frame (x, y, z) at the mass center of the vehicle to determine the resultant
applied forces on the vehicle (Jazar 2017; Popp and Schiehlen 2010). Let the force
system at the tireprint in the tire coordinate frame T to be:

T Fw =
[
FxTi

FyTi
FzTi

]T
(3.41)

T Mw =
[
MxTi

MyTi
MzTi

]T
(3.42)

then the force system at the center of the wheel in W -frame will be:

W Fw = WRT
T Fw =

⎡
⎢⎣

FxWi

FyWi

FzWi

⎤
⎥⎦ =

⎡
⎢⎣

FxTi

FyTi
cos γ i + FzTi

sin γ i

FzTi
cos γ i − FyTi

sin γ i

⎤
⎥⎦ (3.43)
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W Mw =
⎡
⎢⎣

MxWi

MyWi

MzWi

⎤
⎥⎦ =

⎡
⎢⎣

MxTi
+ RFyTi

cos γ + RFzTi
sin γ

MyTi
cos γ − RFxTi

+ MzTi
sin γ

MzTi
cos γ − MyTi

sin γ

⎤
⎥⎦ (3.44)

where R is the tire radius.
The force system at the center of the wheel number i in the wheel-body

coordinate frame C is:

CFw =
⎡
⎣

Fxi

Fyi

Fzi

⎤
⎦ =

⎡
⎢⎣

FxWi
cos δ1 − FyWi

sin δ1

FyWi
cos δ1 + FxWi

sin δ1

FzWi

⎤
⎥⎦ (3.45)

CMw =
⎡
⎣

Mxi

Myi

Mzi

⎤
⎦ =

⎡
⎢⎣

MxWi
cos δ1 − MyWi

sin δ1

MyWi
cos δ1 + MxWi

sin δ1

MzWi

⎤
⎥⎦ (3.46)

In this analysis, we ignored the components of the tire moment at the tireprint Mywi

compared to other moments.
The total important force system on the rigid vehicle in the body coordinate frame

to analyze the roll model of rigid vehicle is

BFx =
∑

i

Fxi
=
∑

i

FxWi
cos δi −

∑
i

FyWi
sin δi (3.47)

BFy =
∑

i

Fyi
=
∑

i

FyWi
cos δi +

∑
i

FxWi
sin δi (3.48)

BMx =
∑

i

Mxi
+
∑

i

yiFzi
−
∑

i

ziFyi
(3.49)

BMz =
∑

i

Mzi
+
∑

i

xiFyi
−
∑

i

yiFxi
(3.50)

Proof A tire coordinate frame T is set at the center of the tireprint at the intersection
of tire-plane and the ground. The zT -axis is always perpendicular to the ground and
upward. The tire T -frame follows the steer angle rotation about the zT -axis but it
does not follow the spin and camber rotations of the tire. A W -frame is also attached
to the center of the wheel that follows every motion of the wheel except the spin. The
C-frame is set at the center of the neutral wheel and is parallel to the body coordinate
frame B. The W -frame and C-frame will be coincident when the wheel is at the rest
position. The C-frame is motionless with respect to the B-frame and does not follow
any motion of the wheel. The vehicle body coordinate frame B (x, y, z) is attached
to the vehicle at its mass center. The wheel force system that are generated in T -
frame must be transformed to the C-frame and then B-frame to develop the vehicle
equations of motion.
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Let us assume that the force system in the T -frame at the tireprint of the wheel
number i to be:

T Fw =
[
FxTi

FyTi
FzTi

]T
(3.51)

T Mw =
[
MxTi

MyTi
MzTi

]T
(3.52)

The rotation matrix between T -frame and W -frame is:

WRT =
⎡
⎣

1 0 0
0 cos γ i sin γ i

0 − sin γ i cos γ i

⎤
⎦ (3.53)

and the rotation matrix between the W -frame and the C-frame is:

CRW =
⎡
⎣

cos δi − sin δi 0
sin δi cos δi 0

0 0 1

⎤
⎦ (3.54)

Therefore, the force system in the W -frame is:

W Fw = WRT
T Fw =

⎡
⎢⎣

FxTi

FyTi
cos γ i + FzTi

sin γ i

FzTi
cos γ i − FyTi

sin γ i

⎤
⎥⎦ =

⎡
⎢⎣

FxWi

FyWi

FzWi

⎤
⎥⎦ (3.55)

W Mw = WRT
T Mw + W R × W

T Fw

= WRT
T Mw + (−R) W k̂ × WRT

T Fw

= WRT

⎡
⎢⎣

MxTi

MyTi

MzTi

⎤
⎥⎦+

⎡
⎣

0
0

−R

⎤
⎦× WRT

⎡
⎢⎣

FxTi

FyTi

FzTi

⎤
⎥⎦

=
⎡
⎢⎣

MxTi
+ RFyTi

cos γ + RFzTi
sin γ

MyTi
cos γ − RFxTi

+ MzTi
sin γ

MzTi
cos γ − MyTi

sin γ

⎤
⎥⎦ =

⎡
⎢⎣

MxWi

MyWi

MzWi

⎤
⎥⎦ (3.56)

where W R is the position vector of the T -frame in W -frame which is equal to radius
of the wheel.

W R = −R W k̂ = [0 0 −R
]T

(3.57)
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The force system in the C-frame is then calculated by transformation.

CFw = CRW
W Fw (3.58)

⎡
⎣

Fxi

Fyi

Fzi

⎤
⎦ =

⎡
⎣

cos δi − sin δi 0
sin δi cos δi 0

0 0 1

⎤
⎦
⎡
⎢⎣

FxWi

FyWi

FzWi

⎤
⎥⎦

=
⎡
⎢⎣

FxWi
cos δi − FyWi

sin δi

FyWi
cos δi + FxWi

sin δi

FzWi

⎤
⎥⎦ (3.59)

CMw = CRW
W Mw

⎡
⎣

Mxi

Myi

Mzi

⎤
⎦ =

⎡
⎣

cos δi − sin δi 0
sin δi cos δi 0

0 0 1

⎤
⎦
⎡
⎢⎣

MxWi

MyWi

MzWi

⎤
⎥⎦

=
⎡
⎢⎣

MxWi
cos δi − MyWi

sin δi

MyWi
cos δi + MxWi

sin δi

MzWi

⎤
⎥⎦ (3.60)

We transform the force system of each tire to the body coordinate frame B,
located at the vehicle mass center to calculate the total applied force system on
the vehicle.

BF =
∑

i

CFw =
∑

i

Fxi
ı̂ +
∑

i

Fyi
ĵ +

∑
i

Fzi
k̂ (3.61)

BM =
∑

i

CMw +
∑

i

Bri × BFwi
(3.62)

=
∑

i

Mxi
ı̂ +
∑

i

Myi
ĵ +

∑
i

Mzi
k̂ +

∑
i

⎡
⎣

yiFzi
− ziFyi

ziFxi
− xiFzi

xiFyi
− yiFxi

⎤
⎦

where Bri is the position vector of the wheel number i in B-frame.

Bri = [xi yi zi

]T = [ai bi zi

]T
(3.63)

zi 
 0 (3.64)
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Assuming

T Fw 

[
FxTi

FyTi
0
]T

(3.65)

T Mw 

[
MxTi

0 MzTi

]T
(3.66)

and expanding Eqs. (3.61) and (3.62) provide us with the total force system on the
roll vehicle dynamic model.

BFx =
∑

i

FxWi
cos δi −

∑
i

FyWi
sin δi (3.67)

BFy =
∑

i

FyWi
cos δi +

∑
i

FxWi
sin δi (3.68)

BMx =
∑

i

Mxi
+
∑

i

yiFzi
−
∑

i

ziFyi
(3.69)

BMz =
∑

i

Mzi
+
∑

i

xiFyi
−
∑

i

yiFxi
(3.70)

�
Example 83 Tire force system in W -frame.

If the force system at the tireprint is

T F = FxTi

T ı̂ + FyTi

T ĵ + FzTi

T k̂ (3.71)

T M = MxTi

T ı̂ + MzTi

T k̂ (3.72)

then the force system in the W -frame at the center of the wheel would be

W Fw = WRT
T Fw = T RT

W
T Fw (3.73)

⎡
⎢⎣

FxWi

FyWi

FzWi

⎤
⎥⎦ =

⎡
⎣

1 0 0
0 cos γ − sin γ

0 sin γ cos γ

⎤
⎦

T
⎡
⎢⎣

FxTi

FyTi

FzTi

⎤
⎥⎦

=
⎡
⎢⎣

FxTi

FyTi
cos γ + FzTi

sin γ

FzTi
cos γ − FyTi

sin γ

⎤
⎥⎦ (3.74)

W M = T RT
W

(
T M − T ro × T F

)
(3.75)
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⎡
⎢⎣

MxWi

MyWi

MzWi

⎤
⎥⎦ =

⎡
⎢⎣

MxTi
+ RFyTi

cos γ i + RFzTi
sin γ i

MzTi
sin γ i − RFxTi

MzTi
cos γ i

⎤
⎥⎦ (3.76)

where

T ro =
⎡
⎣

0
−R sin γ i

R cos γ i

⎤
⎦ (3.77)

The wheel force system at zero camber, γ = 0, reduces to

W Fw = WRT
T Fw =

⎡
⎢⎣

FxTi

FyTi

FzTi

⎤
⎥⎦ (3.78)

W M = T RT
W

(
T M − T ro × T F

)
=
⎡
⎢⎣

MxTi
+ RFyTi

−RFxTi

MzTi

⎤
⎥⎦ (3.79)

Example 84 Tire force system in C-frame.
Considering force T F under the tire number i in the T -frame is:

T Fw =
[
FxTi

FyTi
FzTi

]T
(3.80)

then the force in W -frame would be (3.74)

W Fw = WRT
T Fw =

⎡
⎢⎣

FxTi

FyTi
cos γ i + FzTi

sin γ i

FzTi
cos γ i − FyTi

sin γ i

⎤
⎥⎦ (3.81)

and the force in C-frame would be

CFw = CRW
W Fw (3.82)

⎡
⎣

Fxi

Fyi

Fzi

⎤
⎦ =

⎡
⎢⎢⎣

FxTi
cos δi −

(
FyTi

cos γ i + FzTi
sin γ i

)
sin δi

FxTi
sin δi +

(
FyTi

cos γ i + FzTi
sin γ i

)
cos δi

FzTi
cos γ i − FyTi

sin γ i

⎤
⎥⎥⎦

The moment T M under the tire number i in the T -frame is:

T Mw =
[
MxTi

MyTi
MzTi

]T
(3.83)
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Therefore, the moment in W -frame is

W M = WRT
T M + W R × W

T F

= WRT
T M − R W k̂ × WRT

T F

=
⎡
⎢⎣

MxTi
+ RFyTi

cos γ + RFzTi
sin γ

MyTi
cos γ − RFxTi

+ MzTi
sin γ

MzTi
cos γ − MyTi

sin γ

⎤
⎥⎦ (3.84)

and the moment in C-frame would be

CM = CRW
W M (3.85)

=

⎡
⎢⎢⎢⎢⎢⎣

−
(
MyTi

cos γ − RFxTi
+ MzTi

sin γ
)

sin δ1(
MxTi

+ RFyTi
cos γ + RFzTi

sin γ
)

sin δ1

+
(
MyTi

cos γ − RFxTi
+ MzTi

sin γ
)

cos δ1

MzTi
cos γ − MyTi

sin γ

⎤
⎥⎥⎥⎥⎥⎦

3.3 Bicycle Roll Vehicle Force Components

Figure 3.4 illustrates the force system of each wheel in the wheel-body coordinate
frame C, as well as the force system on the roll vehicle model in the body coordinate
frame B. The wheel forces are acting at the wheel center of a front-wheel-steering
vehicle. When we ignore the pitch motions of the vehicle, the angle between the z

and Z axes is the roll angle ϕ. The z and Z axes are parallel at ϕ = 0.
Ignoring the lateral load transfer between left and right wheels, we may define a

simplified two-wheel model for the roll vehicle model as is shown in Fig. 3.5. The
two-wheel roll vehicle model is also called the bicycle roll model. However, the
two-wheel roll vehicle model does not act similar to the roll behavior of traditional
bicycles (Ellis 1994; Jazar 2017).

The force system applied on a bicycle roll model of vehicle at its mass center C

is:

Fx = Fxf
cos
(
δ + δϕf

)
+ Fxr cos δϕr

−Fyf
sin
(
δ + δϕf

)
− Fyr sin δϕr

(3.86)

Fy = Fyf
cos
(
δ + δϕf

)
+ Fyr cos δϕr

+Fxf
sin
(
δ + δϕf

)
+ Fxr sin δϕr

(3.87)
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Fig. 3.4 The acting forces at the wheel center of a front-wheel-steering four-wheel roll model
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Fig. 3.5 A two-wheel model for a roll vehicle model
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Mx = CTf
Fyf

+ CTr Fyr − kϕϕ − cϕϕ̇ (3.88)

Mz = a1

(
Fxf

sin
(
δ + δϕf

)
+ Fyf

cos ϕ cos
(
δ + δϕf

))

−a2
(
Fxr sin δϕr

+ Fyr cos δϕr
cos ϕ

)
(3.89)

Tf = If ω̇f + Rw Fxf
(3.90)

Tr = Ir ω̇r + Rw Fxr (3.91)

where

Fxf
= Fzf

Csf S
(
sf − ss

)
√√√√1 − Csα

(
S
(
αf − αs

)
αs

)
2 (3.92)

Fxr = Fzr Csr S (sr − ss)

√
1 − Csα

(
S (αr − αs)

αs

)
2 (3.93)

Fyf
= −Fzf

Cαf S
(
αf − αs

)
√√√√1 − Cαs

(
S
(
sf − ss

)
ss

)
2 − Cϕf

ϕ (3.94)

Fyr = −Fzr Cαr S (αr − αs)

√
1 − Cαs

(
S (sr − ss)

ss

)
2 − Cϕr

ϕ (3.95)

and S is the saturation function (1.60).

S(x − x0) =
⎧⎨
⎩

x0 x0 < x

x −x0 < x < x0

−x0 x < −x0

(3.96)

The tire force characteristics are:

Cαf = Cα1 = Cα2 (3.97)

Cαr = Cα3 = Cα4 (3.98)

Csf = Cs1 = Cs2 (3.99)

Csr = Cs3 = Cs4 (3.100)

αf = arctan

(
vy

vx

+ a1

vx

r − Cβf

p

vx

)
− δ − Cδϕf

ϕ (3.101)
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αr = arctan

(
vy

vx

− a2

vx

r − Cβr

p

vx

)
− Cδϕr

ϕ (3.102)

β = arctan
vy

vx

(3.103)

βi = arctan
vy + xi r − Cβi

p

vx

(3.104)

αi = βi − δa = βi − δi − δϕi
= βi − δi − Cδϕi

ϕ (3.105)

sf = Rg ωf − vxTf

Rg ωf H(Rg ωf − vxTf
) + vxTf

H(vxTf
− Rg ωf )

(3.106)

sr = Rg ωr − vx

Rg ωr H(Rg ωr − vx) + vx H(vx − Rg ωr)
(3.107)

vxTf
= vx cos

(
δ + δϕf

)
+ (vy + a1r

)
sin
(
δ + δϕf

)
(3.108)

ω̇f = Tf − Rwf Fxf

If

(3.109)

ω̇r = Tr − RwrFxr

Ir

(3.110)

Cβi
is the wheel slip coefficient to determine the effect of vehicle roll on sideslip

angles.
The vertical load on front and rear wheels is:

Fzf
= Fz1 + Fz2 = mg

a2

l
− m

(
v̇x − r vy

) h

l
(3.111)

Fzr = Fz3 + Fz4 = mg
a1

l
+ m

(
v̇x − r vy

) h

l
(3.112)

l = a1 + a2 (3.113)

The applied torques on front and rear wheels are Tf and Tr . The front and rear
wheels’ mass moments about their spin axes are indicated by If and Ir . The forces(
Fxf

, Fyf

)
and

(
Fxr , Fyr

)
are the planar forces at the tireprint of the front and rear

wheels and we assume them to be at the wheel center.
If the steer angle of the steering mechanism is denoted by δ, then the actual steer

angle δa is:

δa = δ + δϕ (3.114)

where δϕ is the roll-steering angle.
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δϕ = Cδϕϕ (3.115)

The roll-steering angle δϕ is proportional to the roll angle ϕ and the coefficient
Cδϕ is called the roll-steering coefficient. The roll steering happens because of the
suspension mechanisms that generates some steer angle when deflected. The tire
sideslip angle αi of each tire of a rollable vehicle is then equal to:

αi = βi − δa = βi − δi − δϕi
= βi − δi − Cδϕi

ϕ (3.116)

where the wheel sideslip angle βi is the angle between the wheel velocity vector vi

and the vehicle body x-axis.

Proof Employing tire force equations (3.47) and (3.48) and rewriting them for
a bicycle vehicle provide us with Eqs. (3.86) and (3.87). To derive the force
equations (3.86)–(3.89) on the bicycle roll vehicle model, we begin by defining the
cot-average δ of the outer δo and inner δi steer angles or δ2 and δ1 as the only steer
angle of the vehicle.

cot δ = cot δo + cot δi

2
= cot δ2 + cot δ1

2
(3.117)

We also define sideslip coefficients Cαf and Cαr and slip ratio coefficients Csf and
Csr for the front and rear tires as the average between the left and right tires.

Cαf = (Cα1 + Cα2

)
/2 (3.118)

Cαr = (Cα3 + Cα4

)
/2 (3.119)

Csf = (Cs1 + Cs2

)
/2 (3.120)

Csr = (Cs3 + Cs4

)
/2 (3.121)

Assuming the left and right tires to be identical, we have:

Cαf = Cα1 = Cα2 (3.122)

Cαr = Cα3 = Cα4 (3.123)

Csf = Cs1 = Cs2 (3.124)

Csr = Cs3 = Cs4 (3.125)

We may also assume similar force components to be equal on the left and right
tires and adding them up to make the longitudinal and lateral forces

(
Fxf

, Fyf

)
and(

Fxr , Fyr

)
on front and rear tires.

Fxf
= Fx1 + Fx2 Fx1 = Fx2 (3.126)

Fxr = Fx3 + Fx4 Fx3 = Fx4 (3.127)
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Fyf
= Fy1 + Fy2 Fy1 = Fy2 (3.128)

Fyr = Fy3 + Fy4 Fy3 = Fy4 (3.129)

Fzf
= Fz1 + Fz2 Fz1 = Fz2 (3.130)

Fzr = Fz3 + Fz4 Fz3 = Fz4 (3.131)

The longitudinal and lateral forces on front and rear wheels will be expanded to the
following equations by employing the elliptical combined tire force models (1.202)
and (1.203), and proportional-saturation tire force behaviors (1.67) and (1.152).

Fxf
= Fx1 + Fx2

= Fzf
Csf S

(
sf − ss

)
√√√√1 − Csα

(
S
(
αf − αs

)
αs

)2

(3.132)

Fxr = Fx3 + Fx4

= Fzr Csr S (sr − ss)

√
1 − Csα

(
S (αr − αs)

αs

)2

(3.133)

Fyf
= Fy1 + Fy2

= −Fzf
Cαf S

(
αf − αs

)
√√√√1 − Cαs

(
S
(
sf − ss

)
ss

)2

− Cϕf
ϕ (3.134)

Fyr = Fy3 + Fy4

= −Fzr Cαr S (αr − αs)

√
1 − Cαs

(
S (sr − ss)

ss

)2

− Cϕr
ϕ (3.135)

Assuming

Fz1 = Fz2 Fz3 = Fz4 (3.136)

and using the vertical weight transfer equations in body frame (1.462)–(1.465), the
vertical load on front and rear tires are:

Fzf
= Fz1 + Fz2 = m

(
a2

l
g − h

l

(
v̇x − r vy

))
(3.137)

Fzr = Fz3 + Fz4 = m

(
a1

l
g + h

l

(
v̇x − r vy

))
(3.138)

l = a1 + a2 (3.139)
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A rolled vehicle introduces some new reactions in the tires of the vehicle that
must be considered in development of the dynamic equations of motion. The most
important reactions are:

1. Roll-thrust Fyϕ .
An extra lateral force appears because of the vehicle roll. Tire roll-thrust is
assumed to be proportional to the vehicle roll angle ϕ.

Fyϕ = −Cϕϕ (3.140)

Cϕ = lim
ϕ−→0

d
(−Fy

)
dϕ

(3.141)

2. Roll-steer angle δϕ .
An extra steer angle appears because of the wheel roll. The roll steer is a result of
suspension mechanisms that provide some steer angle when the vehicle rolls and
the mechanism deflects. The wheel roll steering is assumed to be proportional to
the vehicle roll angle ϕ.

δϕ = Cδϕϕ (3.142)

Cδϕ = lim
ϕ−→0

dδ

dϕ
(3.143)

Therefore, the actual steer angle δa of such a tire will be:

δa = δ + δϕ (3.144)

Depending on the design of suspension and steering mechanism, the coefficient
Cδϕ may be positive or negative.

Assume the wheel number i of a vehicle is located at:

Bri = [xi yi zi

]T
(3.145)

The velocity of the wheel number i is

Bvi = Bv + B
GωB × Bri (3.146)

where Bv is the velocity vector of the vehicle at its mass center C, and B
GωB is the

angular velocity of the vehicle expressed in the B-frame.

Bω = ϕ̇ı̂ + ψ̇ k̂ = pı̂ + rk̂ (3.147)

Equation (3.146) provides us with the following velocity vector for the wheel
number i expressed in the vehicle coordinate frame at B.
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⎡
⎣

vxi

vyi

vzi

⎤
⎦ =

⎡
⎣

vx

vy

0

⎤
⎦+

⎡
⎣

ϕ̇

0
ψ̇

⎤
⎦×

⎡
⎣

xi

yi

zi

⎤
⎦ =

⎡
⎣

vx − ψ̇yi

vy − ϕ̇zi + ψ̇xi

ϕ̇yi

⎤
⎦ (3.148)

Consider a bicycle model for the rollable vehicle to have

Brf = [a1 0 zf

]T
(3.149)

Brr = [−a2 0 zr

]T
(3.150)

therefore we have
⎡
⎢⎣

vxf

vyf

vzf

⎤
⎥⎦ =

⎡
⎣

vx

vy − zf p + a1r

0

⎤
⎦ (3.151)

⎡
⎣

vxr

vyr

vzr

⎤
⎦ =

⎡
⎣

vx

vy − zrp − a2r

0

⎤
⎦ (3.152)

The wheel slip angle βi for the wheel i is defined as the angle between the wheel
velocity vector vi and the vehicle x-axis.

βi = arctan

(
vyi

vxi

)
= arctan

vy − ϕ̇zi + ψ̇xi

vx

(3.153)

If the tire number i has a steer angle δi , then its sideslip angle αi would be:

αi = βi − δa = arctan

(
vy − ϕ̇zi + ψ̇xi

vx

)
− (δi + Cδϕi

ϕ
)

(3.154)

The wheel slip angle βi for the front and rear wheels of a two-wheel vehicle, βf

and βr , is

βf = arctan

(
vyf

vxf

)
= arctan

vy − zf p + a1r

vx

(3.155)

βr = arctan

(
vyr

vxr

)
= arctan

vy − zrp − a2r

vx

(3.156)

We will use the vehicle slip angle β to relate βi to the vehicle’s dynamic variables.



3.3 Bicycle Roll Vehicle Force Components 235

β = arctan

(
vy

vx

)
(3.157)

Although we may assume that the center of the wheels is on the xy-plane and the
zi coordinate of the wheels of vehicle to zero, they are not constant for a rollable
vehicle. To show the effect of variation of zi , we substitute it by coefficient Cβi

called the tire roll rate coefficient, and define coefficients Cβf
and Cβr

to express
the change in vyi

because of roll rate p.

vyi
= vy + rxi − Cβi

p (3.158)

The coefficient Cβi
should be determined by experiment for any given vehicle.

Cβi
= lim

p−→0

dvyi

dp
(3.159)

Therefore,

βf = arctan

(
vy + a1 r − Cβf

p

vx

)
(3.160)

βr = arctan

(
vy − a2 r − Cβr

p

vx

)
(3.161)

and

αf = βf − δf = arctan

(
vy + a1 r − Cβf

p

vx

)
−
(
δ + Cδϕf

ϕ
)

(3.162)

αr = βr − δr = arctan

(
vy − a2 r − Cβr

p

vx

)
− Cδϕr

ϕ (3.163)

Assuming small angles for slip angles βf , β, and βr , then the tire sideslip angles
for the front and rear wheels, αf and αr , may be approximated as

αf = 1

vx

(
vy + a1r − zf p

)− δ − δϕf

= β + a1
r

vx

− Cβf

p

vx

− δ − Cδϕf
ϕ (3.164)

αr = 1

vx

(
vy − a2r − zrp

)− δϕr

= β − a2
r

vx

− Cβr

p

vx

− Cδϕr
ϕ (3.165)

Also we substitute s from (1.57),
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s = Rg ωw − vx

Rg ωw H(Rg ωw − vx) + vx H(vx − Rg ωw)
(3.166)

however, the slip ratio of the front tire needs to be adapted as the steer angle will
change velocity of the tire in the xT -direction as is shown in Fig. 1.13. The velocity
of the front wheel center in the x-direction of its local C-frame is

vxTf
= vx cos

(
δ + δϕf

)
+ (vy + a1r

)
sin
(
δ + δϕf

)
(3.167)

Therefore, the longitudinal slip ratios of the front and rear tires are:

sf = Rg ωf − vxTf

Rg ωf H(Rg ωf − vxTf
) + vxTf

H(vxTf
− Rg ωf )

(3.168)

sr = Rg ωr − vx

Rg ωr H(Rg ωr − vx) + vx H(vx − Rg ωr)
(3.169)

Backward substitution of these equations completes Eqs. (3.86) and (3.87).
To derive Eqs. (3.88) and (3.89), we calculate the resultant roll and yaw moments

Mx , Mz because of tire forces.

BM =
2∑

i=1

ri × BFi =
2∑

i=1

ri × CRT
T Fi

=
2∑

i=1

BMi +
⎡
⎣

a1

0
0

⎤
⎦× CRTf

⎡
⎣

Fxf

Fyf

0

⎤
⎦+

⎡
⎣

−a2

0
0

⎤
⎦× CRTr

⎡
⎣

Fxr

Fyr

0

⎤
⎦

=

⎡
⎢⎢⎢⎣

Mxf
+ Mxr

Myf
+ Myr + a1Fyf

sin ϕ − a2Fyr sin ϕ

a1

(
Fxf

sin
(
δ + δϕf

)
+ Fyf

cos ϕ cos
(
δ + δϕf

))

−a2
(
Fxr sin δϕr

+ Fyr cos δϕr
cos ϕ

)

⎤
⎥⎥⎥⎦ (3.170)

where

CRT = CRW
WRT =

⎡
⎣

cos δa − sin δa 0
sin δa cos δa 0

0 0 1

⎤
⎦
⎡
⎣

1 0 0
0 cos ϕ sin ϕ

0 − sin ϕ cos ϕ

⎤
⎦

=
⎡
⎣

cos δa − cos ϕ sin δa − sin δa sin ϕ

sin δa cos δa cos ϕ cos δa sin ϕ

0 − sin ϕ cos ϕ

⎤
⎦ (3.171)
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and therefore,

CRTf
=

⎡
⎢⎢⎣

cos
(
δ + δϕf

)
− cos ϕ sin

(
δ + δϕf

)
− sin

(
δ + δϕf

)
sin ϕ

sin
(
δ + δϕf

)
cos
(
δ + δϕf

)
cos ϕ cos

(
δ + δϕf

)
sin ϕ

0 − sin ϕ cos ϕ

⎤
⎥⎥⎦

(3.172)

CRTr =
⎡
⎣

cos δϕr
− cos ϕ sin δϕr

− sin δϕr
sin ϕ

sin δϕr
cos δϕr

cos ϕ cos δϕr
sin ϕ

0 − sin ϕ cos ϕ

⎤
⎦ (3.173)

The Mxf
and Mxr are the moments appeared at the tireprint because of lateral

shift of the resultant vertical force Fzi
, and also because of the lateral forces under

each tire. Let us assume that the slip and camber moments are proportional to the
wheels’ lateral forces and write them as

Mxf
= CTf

Fyf
(3.174)

Mxr = CTr Fyr (3.175)

where CTf
and CTr are the overall torque coefficient of the front and rear wheels,

respectively.

CTf
= lim

Fyf
−→0

dMx

dFyf

CTr = lim
Fyr −→0

dMx

dFyr

(3.176)

The contribution in Mx would also be the effect of the left and right suspension
stiffness and damping characteristics due to roll angle of the vehicle body. To
keep the effect of roll moment for the bicycle model, we introduce the suspension
deflection roll moments −wcf ϕ̇ − wkf ϕ, assuming w = wf = wr . This part of
roll moment is due to change in normal force of the left and right wheels as a result
of force change in springs and dampers. These unbalanced forces generate a roll
stiffness moment that is proportional to the vehicle’s roll angle and roll rate,

Mxk
= −kϕϕ (3.177)

Mxc = −cϕϕ̇ (3.178)

where kϕ and cϕ are the roll stiffness and roll damping of the vehicle.

kϕ = wk = w
(
kf + kr

) = lim
ϕ−→0

d (−Mx)

dϕ
(3.179)

cϕ = wc = w
(
cf + cr

) = lim
ϕ̇−→0

d (−Mx)

dϕ̇
(3.180)



238 3 Vehicle Roll Dynamics

w is the track of the vehicle and k and c are sum of the front and rear springs’
stuffiness and shock absorbers damping. The coefficients kϕ and cϕ are called the
roll stiffness and roll damping, respectively. Therefore, the applied roll moment on
the vehicle can be summarized as

Mx = Mxf
+ Mxr + Mxc + Mxk

= CTf
Fyf

+ CTr Fyr − w
(
cf + cr

)
ϕ̇ − w

(
kf + kr

)
ϕ

≈ CTf
Fyf

+ CTr Fyr − kϕϕ − cϕϕ̇ (3.181)

We ignore the generated Myi
at the tireprint; then, we conclude the force

equations (3.86) and (3.89).
In majority of maneuvers we may assume ϕ and δ to be very small such that the

force equations may be approximated by the following equations.

Fx ≈ Fxf
+ Fxr (3.182)

Fy ≈ Fyf
+ Fyr (3.183)

Mx = CTf
Fyf

+ CTr Fyr − kϕϕ − cϕϕ̇ (3.184)

Mz ≈ a1Fyf
− a2Fyr

Tf = If ω̇f + Rw Fxf
(3.185)

Tr = Ir ω̇r + Rw Fxr (3.186)

�
Example 85 The tireprint position vector in the B-frame.

In Eq. (3.170)

BM =
2∑

i=1

ri × CRT
T Fi

the ri are supposed to be position vectors in the B-frame.

Br1 =
⎡
⎣

a1

0
0

⎤
⎦ Br2 =

⎡
⎣

−a2

0
0

⎤
⎦ (3.187)

because we moved T Fi into the B-frame using transformation matrix CRT .
However, we could have done the calculation in the T -frame and move the resultant
moment into the B-frame. To do that calculation we needed to calculate the position
vectors in the T -frame.
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3.4 Two-Wheel Roll Vehicle Dynamics

We combine the equations of motion (2.1)–(2.4) with (3.86)–(3.91) for a two-wheel
roll vehicle model, and express its motion by the following set of equations (Ellis
1994; Jazar 2017).

There are 6 first order differential equations of motion:

Fx − FA = m v̇x − mr vy (3.188)

Fy = m v̇y + mr vx (3.189)

Mz = Iz ṙ (3.190)

Mx = Ix ṗ (3.191)

Tf = If ω̇f + Rw Fxf
(3.192)

Tr = Ir ω̇r + Rw Fxr (3.193)

The left-hand sides of the force system are:

Fx = Fxf
cos
(
δ + δϕf

)
+ Fxr cos δϕr

−Fyf
sin
(
δ + δϕf

)
− Fyr sin δϕr

(3.194)

Fy = Fyf
cos
(
δ + δϕf

)
+ Fyr cos δϕr

+Fxf
sin
(
δ + δϕf

)
+ Fxr sin δϕr

(3.195)

Mx = CTf
Fyf

+ CTr Fyr − kϕϕ − cϕϕ̇ (3.196)

Mz = a1

(
Fxf

sin
(
δ + δϕf

)
+ Fyf

cos ϕ cos
(
δ + δϕf

))

−a2
(
Fxr sin δϕr

+ Fyr cos δϕr
cos ϕ

)
(3.197)

The longitudinal and lateral forces on the front and rear wheels of the bicycle vehicle
model are:

Fxf
= Fzf

Csf S
(
sf − ss

)
√√√√1 − Csα

(
S
(
αf − αs

)

αs

)2

(3.198)

Fxr = Fzr Csr S (sr − ss)

√
1 − Csα

(
S (αr − αs)

αs

)2

(3.199)
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Fyf
= −Fzf

Cαf S
(
αf − αs

)
√√√√1 − Cαs

(
S
(
sf − ss

)
ss

)2

− Cϕf
ϕ (3.200)

Fyr = −Fzr Cαr S (αr − αs)

√
1 − Cαs

(
S (sr − ss)

ss

)2

− Cϕr
ϕ (3.201)

The longitudinal and lateral forces Fxi
and Fyi

are proportional to Fzf
and Fzr which

are:

Fzf
= Fz1 + Fz2 = mg

a2

l
− m

(
v̇x − r vy

) h

l
(3.202)

Fzr = Fz3 + Fz4 = mg
a1

l
+ m

(
v̇x − r vy

) h

l
(3.203)

l = a1 + a2 (3.204)

The tire forces Fxi
and Fyi

are also functions of the sideslip angles αi

αf = βf − δf = arctan

(
vy

vx

+ a1

vx

r − Cβf

p

vx

)
− δ − Cδϕf

ϕ (3.205)

αr = βr − δr = arctan

(
vy

vx

− a2

vx

r − Cβr

p

vx

)
− Cδϕr

ϕ (3.206)

where

β = arctan
vy

vx

(3.207)

βf = arctan

(
vy + a1 r − Cβf

p

vx

)
(3.208)

βr = arctan

(
vy − a2 r − Cβr

p

vx

)
(3.209)

The tire forces Fxi
and Fyi

are also functions of the slip ratios si .

sf = Rg ωf − vxTf

Rg ωf H(Rg ωf − vxTf
) + vxTf

H(vxTf
− Rg ωf )

(3.210)

sr = Rg ωr − vxT r

Rg ωr H(Rg ωr − vxT r
) + vxT r

H(vxT r
− Rg ωr)

(3.211)

vxTf
= vx cos

(
δ + δϕf

)
+
(
vy + a1r − Cβf

p
)

sin
(
δ + δϕf

)
(3.212)

vxT r
= vx cos δϕr

+ (vy − a2 r − Cβr
p
)

sin δϕr
(3.213)
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Proof The Newton–Euler equations of motion for roll vehicle model in the local
coordinate frame B, attached to the vehicle at its mass center C, are given in
Eqs. (3.188)–(3.193). The right-hand side of the equations are B-expression of the
vehicle translational and rotational accelerations, as well as the torque equations of
the wheels of the vehicle.

The right-hand side of the equations are made of an equation chain starting with
the B-expression of the applied forces on the vehicle (3.194)–(3.197) and end up
with substituting the tire forces Fxf

, Fxr , Fyf
, Fyr , and followed by vertical forces

Fzf
, Fzr , and tire slips αf , αr , sf , sr . �

Example 86 Two-wheel roll, increasing steer angle and front torque, slip saturation.
Consider a vehicle with the following data

m = 1000 kg If = Ir = 30 kg m2 Rg = 0.35 m

Ix = 300 kg m2 Iz = 2000 kg m2 CA = 0.8

Cαf = Cαr = 8.5 αs = 5 deg Cαs = Csα = 0.5

Csf = Csr = 7.5 ss = 0.1 wf = wr = 1.8 m

a1 = 1.35 m a2 = 1.5 m h = 0.9 m (3.214)

kϕ = 26,612 N m/rad cϕ = 1700 N m s/rad

Cβf
= −0.4 Cβr

= −0.1 CTf
= CTr = 0.4

Cδϕf
= Cδϕr

= 0.01 Cϕf
= 3200 Cϕr

= 0

and assume the vehicle is moving slowly straight.

vx = 2 m/s ωf = ωr = vx

Rg

= 2

0.35
= 5.714 rad/s (3.215)

At time t = 0, we apply a linearly increasing torque on the front wheel up to Tf =
1500 N m and keep constant after that. The steer angle is also linearly increasing at
a very low rate up to δ = 0.5 deg and remains constant after that.

Tf =
{

100t N m 0 < t < 15 s
1500 N m 15 s ≤ t

Tr = 0 (3.216)

δ =
{

0.05t deg = 0.05π
180 t rad 0 < t < 10 s

0.5 deg = 0.5π
180 rad 10 s ≤ t

(3.217)

The front torque increases and goes beyond the limit of front wheel capability in
producing traction force. Therefore, the front tire slip ratio sf and hence its traction
force Fxf will become saturated. This vehicle will have sf to be saturated and all
other slips unsaturated.
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Fig. 3.6 The forward velocity components vx and vy of a bicycle roll vehicle model under front
torque and steer angle

Fig. 3.7 The angular velocity components ωf and ωr of a bicycle roll vehicle model under front
torque and steer angle

Figure 3.6 depicts the velocity components of the vehicle vx and vy , measured
in body coordinate frame B. Figure 3.7 illustrates the angular velocities of the front
and rear wheels ωf and ωr . Figure 3.8 illustrates the sideslip angles of the front
and rear wheels αf and αr . Figure 3.9 depicts the longitudinal slip ratios sf and sr
for the front and rear tires. The acceleration components aX and aY of the vehicle
are plotted in Fig. 3.10. Figure 3.11 depicts the forces Fx and Fy on the vehicle at
its mass center. Figure 3.12 illustrates variation of the vertical loads Fzf and Fzr .
Figure 3.13 illustrates the longitudinal forces Fxf and Fxr on front and rear tires.
Figure 3.14 shows the lateral forces Fyf and Fyr on front and rear tires. The roll
angle ϕ and roll rate p are shown in Figs. 3.15 and 3.16 respectively. Figure 3.17
depicts the angular accelerations ω̇f and ω̇r of the front and rear wheels. Figure 3.18
illustrates the path of the vehicle.
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Fig. 3.8 The sideslip angles αf and αr of a bicycle roll vehicle model under front torque and steer
angle

Fig. 3.9 The slip ratios sf and sr of a bicycle roll vehicle model under front torque and steer angle

Fig. 3.10 The global acceleration components aX and aY of a bicycle roll vehicle model under
front torque and steer angle
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Fig. 3.11 The force components Fx and Fy of a bicycle roll vehicle model under front torque and
steer angle

Fig. 3.12 The vertical forces Fzf
and Fzr of a bicycle roll vehicle model under front torque and

steer angle

Fig. 3.13 The longitudinal forces Fxf
and Fxr of a bicycle roll vehicle model under front torque

and steer angle
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Fig. 3.14 The lateral forces Fyf
and Fyr of a bicycle roll vehicle model under front torque and

steer angle

Fig. 3.15 The roll angle ϕ of a bicycle roll vehicle model under front torque and steer angle

Fig. 3.16 The roll rate p of a bicycle roll vehicle model under front torque and steer angle
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Fig. 3.17 The angular acceleration components ω̇f and ω̇r of a bicycle roll vehicle model under
front torque and steer angle

Fig. 3.18 Path of motion of a bicycle roll vehicle model under front torque and steer angle

Example 87 Two-wheel roll vehicle, increasing steer angle and front torque, no
combined forces.

To compare the effect of the combined tire force model with no combined
forces, let us consider the same Example 86 with Cαs = 0, Csα = 0. Ignoring
the interaction between s and α makes them to go higher than real and therefore
their associated forces to be higher as well. The vehicle of this example will have
saturated sf and unsaturated other slips, similar to Example 86.
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Fig. 3.19 The forward velocity components vx and vy of a bicycle roll vehicle model under front
torque and steer angle and no combined tire forces

Fig. 3.20 The angular velocity components ωf and ωr of a bicycle roll vehicle model under front
torque and steer angle and no combined tire forces

Figure 3.19 depicts the velocity components of the vehicle vx and vy , measured
in body coordinate frame B. Figure 3.20 illustrates the angular velocities of the front
and rear wheels ωf and ωr . Figure 3.21 illustrates the sideslip angles of the front
and rear wheels αf and αr . Figure 3.22 depicts the longitudinal slip ratios sf and sr
for the front and rear tires. The acceleration components aX and aY of the vehicle
are plotted in Fig. 3.23. Figure 3.24 depicts the forces Fx and Fy on the vehicle at
its mass center. Figure 3.25 illustrates variation of the vertical loads Fzf and Fzr .
Figure 3.26 illustrates the longitudinal forces Fxf and Fxr on front and rear tires.
Figure 3.27 shows the lateral forces Fyf and Fyr on front and rear tires. The roll
angle ϕ and roll rate p are shown in Figs. 3.28 and 3.29 respectively. The yaw rate
r is shown in Fig. 3.30. Figure 3.31 depicts the angular accelerations ω̇f and ω̇r of
the front and rear wheels. Figure 3.32 illustrates the path of the vehicle.
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Fig. 3.21 The sideslip angles αf and αr of a bicycle roll vehicle model under front torque and
steer angle and no combined tire forces

Fig. 3.22 The slip ratios sf and sr of a bicycle roll vehicle model under front torque and steer
angle and no combined tire forces

Fig. 3.23 The global acceleration components aX and aY of a bicycle roll vehicle model under
front torque and steer angle and no combined tire forces
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Fig. 3.24 The force components Fx and Fy of a bicycle roll vehicle model under front torque and
steer angle and no combined tire forces

Fig. 3.25 The vertical forces Fzf
and Fzr of a bicycle roll vehicle model under front torque and

steer angle and no combined tire forces

Fig. 3.26 The longitudinal forces Fxf
and Fxr of a bicycle roll vehicle model under front torque

and steer angle and no combined tire forces
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Fig. 3.27 The lateral forces Fyf
and Fyr of a bicycle roll vehicle model under front torque and

steer angle and no combined tire forces

Fig. 3.28 The roll angle ϕ of a bicycle roll vehicle model under front torque and steer angle and
no combined tire forces

Fig. 3.29 The roll rate p of a bicycle roll vehicle model under front torque and steer angle and no
combined tire forces



3.4 Two-Wheel Roll Vehicle Dynamics 251

Fig. 3.30 The yaw rate r of a bicycle roll vehicle model under front torque and steer angle and no
combined tire forces

Fig. 3.31 The angular acceleration components ω̇f and ω̇r of a bicycle roll vehicle model under
front torque and steer angle and no combined tire forces

Example 88 Two-wheel roll vehicle, increasing steer angle and rear torque.
Consider a vehicle with the following data

m = 1000 kg If = Ir = 30 kg m2 CA = 0.8

Ix = 300 kg m2 Iz = 2000 kg m2 Rg = 0.35 m

Cαf = Cαr = 8.5 αs = 5 deg Csf = Csr = 7.5

Cαs = Csα = 0.5 ss = 0.1 wf = wr = 1.8 m (3.218)

Cβf
= −0.4 Cβr

= −0.1 CTf
= CTr = 0.4

Cδϕf
= Cδϕr

= 0.01 Cϕf
= 3200 Cϕr

= 0

a1 = 1.35 m a2 = 1.5 m h = 0.9 m

kϕ = 26,612 N m/rad cϕ = 1700 N m s/rad
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Fig. 3.32 Path of motion of a bicycle roll vehicle model under front torque and steer angle and no
combined tire forces

and assume the vehicle is moving slowly straight.

vx = 2 m/s ωf = ωr = vx

Rg

= 2

0.35
= 5.714 rad/s (3.219)

At time t = 0, we apply a linearly increasing torque on the rear wheel up to Tf =
300 N m and keep it constant after that. The steer angle is also linearly increasing at
a very low rate up to δ = 1.5 deg and remains constant after that.

Tr =
{

30t N m 0 < t < 10 s
300 N m 10 s ≤ t

Tf = 0 (3.220)

δ =
{

0.1t deg = 0.1π
180 t rad 0 < t < 15 s

1.5 deg = 1.5π
180 rad 15 s ≤ t

(3.221)

We solve the equations of motion numerically and plot the vehicle dynamic
variables. Figure 3.33 illustrates the applied torque history. Figure 3.34 depicts the
forward velocity components of the vehicle vx and vy , measured in body coordinate
frame B. Figure 3.35 illustrates the angular velocities of the front and rear wheels
ωf and ωr . Figure 3.36 illustrates the sideslip angles of the front and rear wheels
αf and αr . Figure 3.37 depicts the longitudinal slip ratios sf and sr for the front
and rear tires. The acceleration components aX and aY of the vehicle are plotted
in Fig. 3.38. Figure 3.39 depicts the forces Fx and Fy on the vehicle at its mass
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Fig. 3.33 The applied torque history Tf and Tr of a two-wheel roll vehicle model under rear
torque and steer angle

Fig. 3.34 The velocity components vx and vy of a two-wheel roll vehicle model under rear torque
and steer angle

Fig. 3.35 The angular velocity ωf and ωr of a two-wheel roll vehicle model under rear torque
and steer angle
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Fig. 3.36 The angular acceleration αf and αr of a two-wheel roll vehicle model under rear torque
and steer angle

Fig. 3.37 The slip ratios sf and sr of a two-wheel roll vehicle model under rear torque and steer
angle

Fig. 3.38 The global acceleration aX and aY of a two-wheel roll vehicle model under rear torque
and steer angle
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Fig. 3.39 The force components Fx and Fy of a two-wheel roll vehicle model under rear torque
and steer angle

Fig. 3.40 The vertical forces Fzf and Fzr of a two-wheel roll vehicle model under rear torque and
steer angle

center. Figure 3.40 illustrates variation of the vertical loads Fzf and Fzr . Figure 3.41
illustrates the longitudinal forces Fxf and Fxr on front and rear tires. Figure 3.42
shows the lateral forces Fyf and Fyr on front and rear tires. The roll angle ϕ and
roll rate p are shown in Figs. 3.43 and 3.44 respectively. Figure 3.45 depicts the yaw
rate r of vehicle. Figure 3.46 illustrates the path of the vehicle.

3.5 Four-Wheel Roll Vehicle Dynamics

The four-wheel roll vehicle model is the best practical vehicle mathematical model.
This model provides us with in-wheel torques Ti , tire slips αi, si , βi , tire and vehicle
forces Fx, Fy, Fxi

, Fyi
, Fzi

, velocity components of the vehicle vx, vy, ωi , as well
as yaw and roll angular variables ϕ,ψ, p, r . This model is an extension to the two-
wheel roll vehicle model to include the lateral weight transfer as well as roll effects
on vehicle dynamics. The four-wheel roll vehicle model is an excellent model to
simulate drifting of vehicles.
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Fig. 3.41 The longitudinal forces Fxf and Fxr of a two-wheel roll vehicle model under rear torque
and steer angle

Fig. 3.42 The lateral forces Fyf and Fyr of a two-wheel roll vehicle model under rear torque and
steer angle

Fig. 3.43 The roll angle ϕ of a two-wheel roll vehicle model under rear torque and steer angle
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Fig. 3.44 The roll rate p of a two-wheel roll vehicle model under rear torque and steer angle

Fig. 3.45 The yaw rate r of a two-wheel roll vehicle model under rear torque and steer angle

Let us assume that the front and rear tracks are different.

b1f + b2f = wf (3.222)

b1r + b2r = wr (3.223)

The differential equations of motion of the four-wheel roll vehicle are:

v̇x = 1

m
(Fx − FA) + r vy (3.224)

v̇y = 1

m
Fy − r vx (3.225)

ṙ = 1

Iz

Mz (3.226)

ω̇1 = 1

I1
T1 − Rg

I1
Fx1 (3.227)
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Fig. 3.46 Path of motion of a two-wheel roll vehicle model under rear torque and steer angle

ω̇2 = 1

I2
T2 − Rg

I2
Fx2 (3.228)

ω̇1 = 1

I3
T3 − Rg

I3
Fx3 (3.229)

ω̇1 = 1

I4
T4 − Rg

I4
Fx4 (3.230)

The resultant force system on the vehicle is:

Fx = Fx1 cos
(
δ1 + δϕ1

)+ Fx2 cos
(
δ2 + δϕ2

)

+Fx3 cos δϕ3 + Fx4 cos δϕ4 − Fy3 sin δϕ3 − Fy4 sin δϕ4

−Fy1 sin
(
δ1 + δϕ1

)− Fy2 sin
(
δ2 + δϕ2

)
(3.231)

Fy = Fy1 cos
(
δ1 + δϕ1

)+ Fy2 cos
(
δ2 + δϕ2

)

+Fy3 cos δϕ3 + Fy4 cos δϕ4 + Fx3 sin δϕ3 + Fx4 sin δϕ4

+Fx1 sin
(
δ1 + δϕ1

)+ Fx2 sin
(
δ2 + δϕ2

)
(3.232)

FA = CA v2
x (3.233)
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Mx = CT1 Fy1 + CT2 Fy2 + CT3 Fy3 + CT4 Fy4 − kϕϕ − cϕϕ̇ (3.234)

Mz = a1Fx1 sin
(
δ1 + δϕ1

)+ a1Fy1 cos
(
δ1 + δϕ1

)

+a1Fx2 sin
(
δ2 + δϕ2

)+ a1Fy2 cos
(
δ2 + δϕ2

)

−b1f Fx1 cos
(
δ1 + δϕ1

)+ b1f Fy1 sin
(
δ1 + δϕ1

)

−b2f Fy2 sin
(
δ2 + δϕ2

)+ b2f Fx2 cos
(
δ2 + δϕ2

)

−a2Fy3 − a2Fy4 − b1rFx3 + b2rFx4 (3.235)

where

δϕi
= Cδϕi

ϕ (3.236)

The tire force components are:

Fxi
= Fzi

Csi S (si − ss)

√
1 − Csα

(
S (αi − αs)

αs

)2

(3.237)

Fyi
= −Fzi

Cαi S (αi − αs)

√
1 − Cαs

(
S (si − ss)

ss

)2

− Cϕi
ϕ (3.238)

where S is the Saturation function (1.60).

S(x − x0) =
⎧⎨
⎩

x0 x0 < x

x −x0 < x < x0

−x0 x < −x0

(3.239)

The vertical force of tires is:

Fz1 = m

lwf g

(
a2g − h

(
v̇x − r vy

)) (
b2f g − h

(
v̇y + r vx

))
(3.240)

Fz2 = m

lwf g

(
a2g − h

(
v̇x − r vy

)) (
b1f g + h

(
v̇y + r vx

))
(3.241)

Fz3 = m

lwrg

(
a1g + h

(
v̇x − r vy

)) (
b2rg − h

(
v̇y + r vx

))
(3.242)

Fz4 = m

lwrg

(
a1g + h

(
v̇x − r vy

)) (
b1rg + h

(
v̇y + r vx

))
(3.243)

and tire slips as

αi = βi − δi − δϕi
= arctan

(
vy + xi r − Cβi

p

vx − yi r

)
− δi − Cδϕi

ϕ (3.244)
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βi = arctan

(
vyi

vxi

)
= arctan

(
vy + xi r − Cβi

p

vx − yi r

)
(3.245)

β = arctan
vy

vx

(3.246)

x1 = x2 = a1 y1 = b1f y3 = b1r (3.247)

x3 = x4 = −a2 y2 = −b2f y4 = −b2r (3.248)

si = Rg ωi − vxT i

Rg ωi H(Rg ωw − vxT i
) + vxT i

H(vxT i
− Rg ωi)

(3.249)

vxT i
= vxi

cos
(
δi + δϕi

)+ vyi
sin
(
δi + δϕi

)
(3.250)

vxT 1 = (vx − rb1f

)
cos
(
δ1 + δϕ1

)

+ (vy + ra1 − Cβ1p
)

sin
(
δ1 + δϕ1

)
(3.251)

vxT 2 = (vx + rb1f

)
cos
(
δ2 + δϕ2

)

+ (vy + ra1 − Cβ2p
)

sin
(
δ2 + δϕ2

)
(3.252)

vxT 3 = (vx − rb2r ) cos δϕ3 + (vy − ra2 − Cβ3p
)

sin δϕ3 (3.253)

vxT 4 = (vx + rb2r ) cos δϕ4 + (vy − ra2 − Cβ4p
)

sin δϕ4 (3.254)

where H is the Heaviside function (1.61).
The front left and right steer angles δ1, δ2 are related due to steering mechanism.

δ2 = f (δ1) (3.255)

Proof The equations of motion for a roll vehicle model in the local coordinate frame
B, at its mass center C, are given in Eqs. (3.1)–(3.5). The equations for a four-wheel
roll vehicle model will be:

Fx = m v̇x − mr vy + FA (3.256)

Fy = m v̇y + mr vx (3.257)

Mz = Iz ω̇z = Iz ṙ (3.258)

Mx = Ix ω̇x = Ix ṗ (3.259)

Ti = Iwi
ω̇wi

+ Rw Fxi
(3.260)

T1 = Iw1 ω̇1 + Rw Fx1 (3.261)

T2 = Iw2 ω̇2 + Rw Fx2 (3.262)

T3 = Iw3 ω̇r + Rw Fx3 (3.263)

T4 = Iw4 ω̇r + Rw Fx4 (3.264)
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The aerodynamic force FA is the environment resistance forces on the vehicle. The
FA is assumed to be effective only in the x-direction.

FA = 1

2
ρ CD Af v2

x = CA v2
x (3.265)

We combine the coefficients ρ, CD , and Af into a single coefficient CA.
Suspension of vehicles are supposed to provide flexibility to the sprung mass with

respect to unsprung mass. Although there are several members connected to both
sprung and unsprung masses, the vehicle body is the main sprung mass and wheels
including in-wheel motors are the main unsprung masses. Besides suspending the
vehicle body, suspensions need to provide some motion freedom to the wheels with
respect to the vehicle body and lock some other motions. Wheels with respect to
the vehicle body must be locked for translation in the x and y directions and be
able to move in the z-direction. They also must be able to rotate about the x, y,
and z directions. Rotation about the y-direction is the spin of the wheels. Rotation
about the z-direction is the steer angle that is controlled by actuators or mechanisms
connected to the steer wheel. Rotation about the x-direction is camber of the wheel.
Because of these flexibility, the roll angle ϕ of the body is different than the camber
angle γ , although we may assume ϕ = γ as long as we are not separating sprung and
unsprung masses in dynamic analysis. Due to steering and suspension mechanism
interaction, the body roll may generate some steer angles. Such a roll-steer action
may be designed on purpose or be an unavoidable mechanism function. Due to the
roll-steer phenomenon, the actual steer angle δa of such a tire will be:

δa = δ + δϕ (3.266)

The wheel roll steering is assumed to be proportional to the vehicle roll angle ϕ.

δϕ = Cδϕϕ (3.267)

Cδϕ = lim
ϕ−→0

dδ

dϕ
(3.268)

Depending on the design of suspension and steering mechanism, the roll-steering
coefficient Cδϕ may be positive or negative, although a positive Cδϕ is desirable.

From (3.47) to (3.49), the applied forces on the vehicle are:

BFx =
∑

i

FxWi
cos
(
δi + δϕi

)−
∑

i

FyWi
sin
(
δi + δϕi

)

= Fx1 cos
(
δ1 + δϕ1

)+ Fx2 cos
(
δ2 + δϕ2

)

+Fx3 cos δϕ3 + Fx4 cos δϕ4 − Fy3 sin δϕ3 − Fy4 sin δϕ4

−Fy1 sin
(
δ1 + δϕ1

)− Fy2 sin
(
δ2 + δϕ2

)
(3.269)
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BFy =
∑

i

FyWi
cos
(
δi + δϕi

)+
∑

i

FxWi
sin
(
δi + δϕi

)

= Fy1 cos
(
δ1 + δϕ1

)+ Fy2 cos
(
δ2 + δϕ2

)

+Fy3 cos δϕ3 + Fy4 cos δϕ4 + Fx3 sin δϕ3 + Fx4 sin δϕ4

+Fx1 sin
(
δ1 + δϕ1

)+ Fx2 sin
(
δ2 + δϕ2

)
(3.270)

FA = CA v2
x (3.271)

BMx =
∑

i

Mxi
+
∑

i

yiFzi
−
∑

i

ziFyi
(3.272)

= CT1 Fy1 + CT2 Fy2 + CT3 Fy3 + CT4 Fy4 − kϕϕ − cϕϕ̇ (3.273)

BMz =
∑

i

Mzi
+
∑

i

xiFyi
−
∑

i

yiFxi

= a1Fx1 sin
(
δ1 + δϕ1

)+ a1Fy1 cos
(
δ1 + δϕ1

)
(3.274)

+a1Fx2 sin
(
δ2 + δϕ2

)+ a1Fy2 cos
(
δ2 + δϕ2

)

−b1f Fx1 cos
(
δ1 + δϕ1

)+ b1f Fy1 sin
(
δ1 + δϕ1

)

−b2f Fy2 sin
(
δ2 + δϕ2

)+ b2f Fx2 cos
(
δ2 + δϕ2

)

−a2Fy3 − a2Fy4 − b1rFx3 + b2rFx4 (3.275)

A lateral reaction force will be generated under tires or a rolled vehicle called tire
roll-thrust. Tire roll-thrust is assumed to be proportional to the vehicle roll angle ϕ.

Fyϕ = −Cϕϕ (3.276)

Cϕ = lim
ϕ−→0

d
(−Fy

)
dϕ

(3.277)

Therefore, employing the combined slip elliptical model, the tire tangential forces
Fxi

and Fyi
are:

Fxi
= Fzi

Csi S (si − ss)

√
1 − Csα

(
S (αi − αs)

αs

)2

(3.278)

Fyi
= −Fzi

Cαi S (αi − αs)

√
1 − Cαs

(
S (si − ss)

ss

)2

− Cϕi
ϕi (3.279)
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The vertical forces on front and rear wheels Fzi
are calculated in (1.431)–(1.434)

in terms of global accelerations aX, aY . To make the equations suitable to be
substituted in (3.278) and (3.279) we need to express aX and aY in body coordinate
frame B.

aX = v̇x − r vy (3.280)

aY = v̇y + r vx (3.281)

Therefore, the vertical force of tires will be:

Fz1 = m

lwf g

(
ga2 − hv̇x + hrvy

) (
hv̇y + gb2f − hrvx

)
(3.282)

Fz2 = m

lwf g

(
ga2 − hv̇x + hrvy

) (
hv̇y + gb1f + hrvx

)
(3.283)

Fz3 = m

lwrg

(
hv̇x + ga1 − hrvy

) (
hv̇y + gb2r − hrvx

)
(3.284)

Fz4 = m

lwrg

(
hv̇x + ga1 − hrvy

) (
hv̇y + gb1r + hrvx

)
(3.285)

where

wf = b1f + b2f (3.286)

wr = b1r + b2r (3.287)

l = a1 + a2 (3.288)

The tire side slip angle αi is defined as:

αi = βi − δi − Cδϕi
ϕ (3.289)

βi = arctan

(
vyi

vxi

)
(3.290)

We determine the velocity components vxi
and vyi

of wheels, using velocity of the
vehicle, Bv.

Bvi = Bv + B
GωB × Bri (3.291)

Substituting the position vector of wheel number i, and the angular velocity of the
vehicle B

GωB ,

Bri =
⎡
⎣

xi

yi

zi

⎤
⎦ B

GωB =
⎡
⎣

p

0
r

⎤
⎦
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we find

vxi
= vx − yir (3.292)

vyi
= vy + xir − zip (3.293)

To compensate the assumption of having no roll difference between sprung and
unsprung masses, we substitute the term zip with Cβi

p in which the tire roll rate
coefficient Cβi

is determined by experiments. The zi is vertical distance of the wheel
center number i from the xy-plane. Although zi is very small, it may vary because of
ψ �= γ . Considering the variation of zip due to roll rate, we simplify it by Cβi

p and
determine Cβi

by experiment. Depending on the design of suspension mechanisms,
Cβi

may be positive or negative. Therefore, the lateral velocity component because
of roll rate p is assumed to be proportional to p.

Cβi
= lim

p−→0

dvyi

dp
(3.294)

Hence, the velocity components of wheel number i will be

vxi
= vx − yir (3.295)

vyi
= vy + rxi − Cβi

p (3.296)

and therefore,

αi = βi − δi − δϕi

= arctan

(
vy + xi r − Cβi

p

vx − yi r

)
− δi − Cδϕi

ϕ (3.297)

βi = arctan

(
vyi

vxi

)
= arctan

(
vy + xi r − Cβi

p

vx − yi r

)
(3.298)

β = arctan
vy

vx

(3.299)

From Eq. (1.57), the longitudinal slip ratio si is calculated as a function of the
tire forward velocity vxT i

and its angular velocity ωi .

si = Rg ωi − vxT i

Rg ωi H(Rg ωw − vxT i
) + vxT i

H(vxT i
− Rg ωi)

(3.300)

vxT i
= vxi

cos
(
δi + δϕi

)+ vyi
sin
(
δi + δϕi

)
(3.301)

The forward velocity vxT i
of the four-wheels in the tire forward direction, T ı̂i ,

will be
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vxT 1 = (vx − rb1f

)
cos
(
δ1 + δϕ1

)

+ (vy + ra1 − Cβ1p
)

sin
(
δ1 + δϕ1

)
(3.302)

vxT 2 = (vx + rb1f

)
cos
(
δ2 + δϕ2

)

+ (vy + ra1 − Cβ2p
)

sin
(
δ2 + δϕ2

)
(3.303)

vxT 3 = (vx − rb2r ) cos δϕ3 + (vy − ra2 − Cβ3p
)

sin δϕ3 (3.304)

vxT 4 = (vx + rb2r ) cos δϕ4 + (vy − ra2 − Cβ4p
)

sin δϕ43 (3.305)

because

T vi = CRT
T

Bvi (3.306)

=
⎡
⎣

cos
(
δi + δϕi

) − sin
(
δi + δϕi

)
0

sin
(
δi + δϕi

)
cos
(
δi + δϕi

)
0

0 0 1

⎤
⎦

T ⎡
⎣

vx − ryi

vy + rxi − Cβi
p

0

⎤
⎦

�
Example 89 Four-wheel roll vehicle model, steer angle and front torque.

Consider a vehicle with the following characteristics

m = 1000 kg I1 = Ir = I3 = I4 = 30 kg m2

Ix = 300 kg m2 Iz = 2000 kg m2 CA = 0.8

Cα1 = Cα2 = Cα3 = Cα4 = 8.5 αs = 5 deg

Cs1 = Cs2 = Cs3 = Cs4 = 7.5 ss = 0.1

Rg = 0.35 m Cαs = 0.5 Csα = 0.5

a1 = 1.35 m a2 = 1.5 m h = 0.9 m (3.307)

Cϕ1 = Cϕ2 = 1600 Cϕ3 = Cϕ4 = 0

kϕ = 26,612 N m/rad cϕ = 1700 N m s/rad

Cβ1 = Cβ2 = −0.4 Cβ3 = Cβ4 = −0.1

Cδϕ1 = Cδϕ2 = Cδϕ3 = Cδϕ4 = 0.01

CT1 = CT2 = CT3 = CT4 = 0.4 wf = wr = 1.8 m

The vehicle is moving very slowly straight.

vx = 2 m/s ωi = vx

Rg

= 2

0.35
= 5.714 rad/s (3.308)
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Fig. 3.47 The torques Ti of a four-wheel roll vehicle with active front torques and steer angle

Fig. 3.48 The vehicle velocity vx and vy of a four-wheel roll vehicle with active front torques and
steer angle

At time t = 0, an increasing torque will be applied on the front wheels up to T1 =
T2 = 1500 N m and constant after that. The steer angle is also increasing at a very
low rate up to δ = 0.5 deg and remains constant after that.

T1 = T2 =
{

50t N m 0 < t < 15 s
750 N m 15 s ≤ t

T3 = T4 = 0 (3.309)

δ =
{

0.05t deg = 0.05π
180 t rad 0 < t < 10 s

0.5 deg = 0.5π
180 rad 10 s ≤ t

(3.310)

The torques Ti of the four-wheel roll vehicle are shown in Fig. 3.47. Figure 3.48
depicts the velocity components of the vehicle vx and vy , measured in body
coordinate B-frame. Figure 3.49 illustrates the angular velocities of the wheels ωi .
Figure 3.50 illustrates the sideslip angles of the wheels αi . Figure 3.51 depicts the
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Fig. 3.49 The wheels angular velocity ωi of a four-wheel roll vehicle with active front torques
and steer angle

Fig. 3.50 The sideslip angles of the wheels αi of a four-wheel roll vehicle with active front torques
and steer angle

Fig. 3.51 The slip ratios of the wheels si of a four-wheel roll vehicle with active front torques and
steer angle
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Fig. 3.52 The vehicle acceleration aX and aY /g of a four-wheel roll vehicle with active front
torques and steer angle

Fig. 3.53 The force components Fx and Fy of a four-wheel roll vehicle with active front torques
and steer angle

longitudinal slip ratios si for the tires. The acceleration components aX and aY of
the vehicle are plotted in Fig. 3.52. Figure 3.53 depicts the forces Fx and Fy on the
vehicle at its mass center. Figure 3.54 illustrates variation of the vertical loads Fzi

.
Figure 3.55 illustrates the longitudinal forces Fxi

on tires. Figure 3.56 shows the
lateral forces Fyi

on tires. The roll angle ϕ and roll rate p are shown in Figs. 3.57
and 3.58, respectively. Figure 3.59 depicts the angular accelerations ω̇f and ω̇r of
the front and rear wheels. Figure 3.60 depicts the yaw rate r of vehicle. Figure 3.61
illustrates the path of the vehicle.
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Fig. 3.54 The vertical forces of the wheels Fzi of a four-wheel roll vehicle with active front
torques and steer angle

Fig. 3.55 The longitudinal forces of the wheels Fxi of a four-wheel roll vehicle with active front
torques and steer angle

Fig. 3.56 The lateral forces of the wheels Fyi of a four-wheel roll vehicle with active front torques
and steer angle
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Fig. 3.57 The roll angle ϕ of a four-wheel roll vehicle with active front torques and steer angle

Fig. 3.58 The roll rate p of a four-wheel roll vehicle with active front torques and steer angle

Fig. 3.59 The wheels angular accelerations ω̇i of a four-wheel roll vehicle with active front
torques and steer angle
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Fig. 3.60 The yaw rate r of a four-wheel roll vehicle with active front torques and steer angle

Fig. 3.61 Path of motion of a four-wheel roll vehicle with active front torques and steer angle

Example 90 Four-wheel roll vehicle model, steer angle and rear torque.
Consider a vehicle with the following data

m = 1000 kg I1 = Ir = I3 = I4 = 30 kg m2

Ix = 300 kg m2 Iz = 2000 kg m2 CA = 0.8

Cα1 = Cα2 = Cα3 = Cα4 = 8.5 αs = 5 deg

Cs1 = Cs2 = Cs3 = Cs4 = 7.5 ss = 0.1
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Fig. 3.62 The torques Ti of a four-wheel roll vehicle with active rear torques and steer angle

Rg = 0.35 m Cαs = 0.5 Csα = 0.5

a1 = 1.35 m a2 = 1.5 m h = 0.9 m (3.311)

Cϕ1 = Cϕ2 = 1600 Cϕ3 = Cϕ4 = 0

kϕ = 26,612 N m/rad cϕ = 1700 N m s/rad

Cβ1 = Cβ2 = −0.4 Cβ3 = Cβ4 = −0.1

Cδϕ1 = Cδϕ2 = Cδϕ3 = Cδϕ4 = 0.01

CT1 = CT2 = CT3 = CT4 = 0.4 wf = wr = 1.8 m

and assume the vehicle is moving slowly straight.

vx = 2 m/s ωf = ωr = vx

Rg

= 2

0.35
= 5.714 rad/s (3.312)

At time t = 0, we apply an increasing torque on the rear wheels up to Tr = 300 N m
and keep it constant after that. The steer angle is also increasing at a very low rate
up to δ = 1.5 deg and remains constant after that.

T3 = T4 =
{

15t N m 0 < t < 10 s
150 N m 10 s ≤ t

T1 = T2 = 0 (3.313)

δ =
{

0.1t deg = 0.1π
180 t rad 0 < t < 10 s

1.5 deg = 1.5π
180 rad 10 s ≤ t

(3.314)

Figure 3.62 illustrates the applied torque history. Figure 3.63 depicts the forward
velocity components of the vehicle vx and vy , measured in body coordinate frame B.
Figure 3.64 illustrates the angular velocities of the wheels ωi . Figure 3.65 illustrates
the sideslip angles of the wheels αi . Figure 3.66 depicts the longitudinal slip ratios
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Fig. 3.63 The vehicle velocity vx and vy of a four-wheel roll vehicle with active rear torques and
steer angle

Fig. 3.64 The wheels angular velocity ωi of a four-wheel roll vehicle with active rear torques and
steer angle

Fig. 3.65 The sideslip angles of the wheels αi of a four-wheel roll vehicle with active rear torques
and steer angle
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Fig. 3.66 The slip ratios of the wheels si of a four-wheel roll vehicle with active rear torques and
steer angle

Fig. 3.67 The vehicle acceleration aX and aY of a four-wheel roll vehicle with active rear torques
and steer angle

si for the tires. The acceleration components aX and aY of the vehicle are plotted in
Fig. 3.67. Figure 3.68 depicts the forces Fx and Fy on the vehicle at its mass center.
Figure 3.69 illustrates variation of the vertical loads Fzi . Figure 3.70 illustrates the
longitudinal forces Fxi on front and rear tires. Figure 3.71 shows the lateral forces
Fyi on front and rear tires. The roll angle ϕ and roll rate p are shown in Figs. 3.72
and 3.73, respectively. Figure 3.74 depicts the yaw rate r of vehicle. Figure 3.75
illustrates the path of the vehicle.

Example 91 Four-wheel roll model, no friction on left side, rear torque.
Let us assume that left side of the vehicle is moving on a no friction pavement

while an increasing torque is applied on the rear wheels. The friction coefficients of
the tires number 1 and 3 would be zero.
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Fig. 3.68 The force components Fx and Fy of a four-wheel roll vehicle with active rear torques
and steer angle

Fig. 3.69 The vertical forces of the wheels Fzi of a four-wheel roll vehicle with active rear torques
and steer angle

Fig. 3.70 The longitudinal forces of the wheels Fxi of a four-wheel roll vehicle with active rear
torques and steer angle
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Fig. 3.71 The lateral forces of the wheels Fyi of a four-wheel roll vehicle with active rear torques
and steer angle

Fig. 3.72 The roll angle ϕ of a four-wheel roll vehicle with active rear torques and steer angle

Fig. 3.73 The roll rate p of a four-wheel roll vehicle with active rear torques and steer angle
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Fig. 3.74 The yaw rate r of a four-wheel roll vehicle with active rear torques and steer angle

Fig. 3.75 Path of motion of a four-wheel roll vehicle with active rear torques and steer angle

Consider a vehicle with the following data

m = 1000 kg I1 = Ir = I3 = I4 = 30 kg m2

Ix = 300 kg m2 Iz = 2000 kg m2 CA = 0

Cα1 = Cα3 = 0 Cα2 = Cα4 = 8.5 αs = 5 deg

Cs1 = Cs3 = 0 Cs2 = Cs4 = 7.5 ss = 0.1

Rg = 0.35 m Cαs = 0.5 Csα = 0.5
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Fig. 3.76 The torques Ti of a four-wheel roll vehicle with rear torques and no friction on left side

a1 = 1.35 m a2 = 1.5 m h = 0.9 m (3.315)

Cϕ2 = 1600 Cϕ1 = Cϕ3 = Cϕ4 = 0

kϕ = 26,612 N m/rad cϕ = 1700 N m s/rad

Cβ1 = Cβ2 = −0.4 Cβ3 = Cβ4 = −0.1

Cδϕi
= 0.01 CTi

= 0.4 wf = wr = 1.8 m

and assume the vehicle is moving slowly straight. The vehicle is moving slowly
straight with

vx = 2 m/s ωi = vx

Rg

= 2

0.35
= 5.714 rad/s (3.316)

δ = 0 (3.317)

At time t = 0, we apply an increasing torque on the rear wheels as expressed below.

T1 = T2 = 0 T4 = T3 = 15t N m (3.318)

Figure 3.76 illustrates the applied torques. Figure 3.77 depicts the forward velocity
components of the vehicle vx and vy , measured in body coordinate frame B.
Figure 3.78 illustrates the angular velocities of the wheels ωi . Figure 3.79 illustrates
the sideslip angles of the wheels αi . Figure 3.80 depicts the longitudinal slip ratios
si for the tires. The acceleration components aX and aY of the vehicle are plotted in
Fig. 3.81. Figure 3.82 depicts the forces Fx and Fy on the vehicle at its mass center.
Figure 3.83 illustrates variation of the vertical loads Fzi . Figure 3.84 illustrates the
longitudinal forces Fxi on front and rear tires. Figure 3.85 shows the lateral forces
Fyi on front and rear tires. The roll angle ϕ and roll rate p are shown in Figs. 3.86
and 3.87, respectively. Figure 3.88 depicts the yaw rate r of vehicle. The angular
accelerations ω̇i of the wheels are shown in Fig. 3.89. Figure 3.90 illustrates the
path of motion of the vehicle.
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Fig. 3.77 The vehicle velocity vx and vy of a four-wheel roll vehicle with rear torques and no
friction on left side

Fig. 3.78 The angular velocity ωi of a four-wheel roll vehicle with rear torques and no friction on
left side

Fig. 3.79 The sideslip angles αi of a four-wheel roll vehicle with rear torques and no friction on
left side
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Fig. 3.80 The slip ratios si of a four-wheel roll vehicle with rear torques and no friction on left
side

Fig. 3.81 The vehicle accelerations aX and aY of a four-wheel roll vehicle with rear torques and
no friction on left side

Fig. 3.82 The vehicle forces Fx and Fy of a four-wheel roll vehicle with rear torques and no
friction on left side
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Fig. 3.83 The vertical forces of the wheels Fzi of a four-wheel roll vehicle with rear torques and
no friction on left side

Fig. 3.84 The longitudinal forces of the wheels Fxi of a four-wheel roll vehicle with rear torques
and no friction on left side

Fig. 3.85 The lateral forces of the wheels Fyi of a four-wheel roll vehicle with rear torques and
no friction on left side
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Fig. 3.86 The roll angle ϕ of a four-wheel roll vehicle with rear torques and no friction on left
side

Fig. 3.87 The roll rate p of a four-wheel roll vehicle with rear torques and no friction on left side

Fig. 3.88 The yaw rate r of a four-wheel roll vehicle with rear torques and no friction on left side
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Fig. 3.89 The angular acceleration ω̇i of a four-wheel roll vehicle with rear torques and no friction
on left side

Fig. 3.90 Path of motion of a four-wheel roll vehicle with rear torques and no friction on left side

Example 92 Only one-wheel torque.
We examine a vehicle that due to some reasons, only one of the wheel actuators

is working. Consider a vehicle with the following data

m = 1000 kg I1 = Ir = I3 = I4 = 30 kg m2

Ix = 300 kg m2 Iz = 2000 kg m2 CA = 0.8

Cαi
= 8.5 αs = 5 deg Csi = 7.5 ss = 0.1
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Fig. 3.91 The torques Ti of a four-wheel roll vehicle with only torque T4

Rg = 0.35 m Cαs = 0.5 Csα = 0.5

a1 = 1.35 m a2 = 1.5 m h = 0.9 m (3.319)

Cϕ1 = Cϕ2 = 1600 Cϕ3 = Cϕ4 = 0

kϕ = 26,612 N m/rad cϕ = 1700 N m s/rad

Cβ1 = Cβ2 = −0.4 Cβ3 = Cβ4 = −0.1

CTi
= 0.4 Cδϕi

= 0.01 wf = wr = 1.8 m (3.320)

and assume the vehicle is moving slowly straight.

vx = 2 m/s ωf = ωr = vx

Rg

= 2

0.35
= 5.714 rad/s (3.321)

δ = 0 (3.322)

At time t = 0, we apply an increasing torque on the wheel number 4.

T1 = T2 = T3 = 0 T4 = 7.5t N m (3.323)

Figure 3.91 illustrates the applied torques. Figure 3.92 depicts the forward velocity
components of the vehicle vx and vy , measured in body coordinate frame B.
Figure 3.93 illustrates the angular velocities of the wheels ωi . Figure 3.94 illustrates
the sideslip angles of the wheels αi . Figure 3.95 depicts the longitudinal slip ratios
si for the tires. The acceleration components aX and aY of the vehicle are plotted in
Fig. 3.96. Figure 3.97 depicts the forces Fx and Fy on the vehicle at its mass center.
Figure 3.98 illustrates variation of the vertical loads Fzi . Figure 3.99 illustrates the
longitudinal forces Fxi on front and rear tires. Figure 3.100 shows the lateral forces
Fyi on front and rear tires. The roll angle ϕ and roll rate p are shown in Figs. 3.101
and 3.102, respectively. Figure 3.103 depicts the yaw rate r of vehicle. The angular
accelerations ω̇i of the wheels are shown in Fig. 3.104. Figure 3.105 illustrates the
path of motion of the vehicle.
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Fig. 3.92 The vehicle velocity vx and vy of a four-wheel roll vehicle with only torque T4

Fig. 3.93 The angular velocity ωi of a four-wheel roll vehicle with only torque T4

Fig. 3.94 The sideslip angles αi of a four-wheel roll vehicle with only torque T4
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Fig. 3.95 The slip ratios si of a four-wheel roll vehicle with only torque T4

Fig. 3.96 The vehicle acceleration aX and aY of a four-wheel roll vehicle with only torque T4

Fig. 3.97 The angular velocity ωi of a four-wheel roll vehicle with only torque T4
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Fig. 3.98 The vertical forces of the wheels Fzi of a four-wheel roll vehicle with only torque T4

Fig. 3.99 The longitudinal forces of the wheels Fxi of a four-wheel roll vehicle with only
torque T4

Fig. 3.100 The lateral forces of the wheels Fyi of a four-wheel roll vehicle with only torque T4
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Fig. 3.101 The roll angle ϕ of a four-wheel roll vehicle with only torque T4

Fig. 3.102 The roll rate p of a four-wheel roll vehicle with only torque T4

Fig. 3.103 The yaw rate r of a four-wheel roll vehicle with only torque T4
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Fig. 3.104 The angular acceleration ω̇i of a four-wheel roll vehicle with only torque T4

Fig. 3.105 Path of motion of a four-wheel roll vehicle with only torque T4

3.6 Chapter Summary

The roll vehicle dynamic model is well expressed by four kinematic variables: the
forward motion x, the lateral motion y, the roll angle ϕ, and the yaw angle ψ ,
plus four equations for the dynamics of each wheel. In the roll model of vehicle
dynamics, we do not consider vertical movement z and pitch motion θ . The model
of a rollable rigid vehicle is more exact and more realistic compared to the vehicle
planar model. Using roll dynamic model, we are able to analyze the roll behavior
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of a vehicle in maneuvers. Angular orientation of the vehicle is expressed by three
angles: roll ϕ, pitch θ , and yaw ψ , and the vehicle angular velocities are expressed
by their rates: roll rate p, pitch rate q, and yaw rate r .

A rolled vehicle introduces new reactions in the tires of the vehicle that must be
considered in development of the dynamic equations of motion. The most important
reactions are:

1. Roll-thrust Fyϕ .
An extra lateral force appears because of the vehicle roll. Tire roll-thrust is
assumed to be proportional to the vehicle roll angle ϕ.

2. Roll-steer angle δϕ .
An extra steer angle appears because of the wheel roll. The roll steer is a result of
suspension mechanisms that provide some steer angle when the vehicle rolls and
the mechanism deflects. The wheel roll steering is assumed to be proportional to
the vehicle roll angle ϕ. Therefore, the actual steer angle δa of such a tire will be
δa = δ + δϕ .

In this chapter we introduce bicycle as well as four-wheel roll models with
independent in-wheel motors. The four-wheel roll vehicle model is the best practical
vehicle mathematical model. This model provides us with in-wheel torques Ti , tire
slips αi, si , βi , tire and vehicle forces Fx , Fy , Fxi

, Fyi
, Fzi

, velocity components
of the vehicle vx , vy , ωi , as well as yaw and roll angular variables ϕ, ψ , p, r . This
model is an extension to the two-wheel roll vehicle model to include the lateral
weight transfer as well as roll effects on vehicle dynamics. The four-wheel roll
vehicle model is an excellent model to simulate drifting of vehicles.

3.7 Key Symbols

a ≡ ẍ Acceleration
ai Longitudinal distance of the axle number i from lateral y-axis
Af Frontal area of vehicle
bi Lateral distance of tire number i from longitudinal x-axis
B(Cxyz) Vehicle coordinate frame
cϕ Roll damping of vehicle
C Mass center
CA Aerodynamic coefficient
Cα Tire sideslip coefficient
Cαf Front sideslip coefficient
Cαi Sideslip coefficient of tire number i

Cαs Tire lateral force drop factor
Cαr Rear sideslip coefficient
Cγ Camber coefficient, camber stiffness
Cs Tire slip ratio coefficient
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Csf Front slip ratio coefficient
Csr Rear slip ratio coefficient
Csα Tire longitudinal force drop factor
CD Drag coefficient
Csf Front slip ratio coefficient
Csi Slip ratio coefficient of tire number i

Csr Rear slip ratio coefficient
CT Torque coefficient
CTf

Torque coefficient of front wheel
CTr Torque coefficient of rear wheel
CTi

Torque coefficient of wheel number i

Cβ Coefficient between Fy and β at steady-state
Cβi

Wheel slip coefficient of number i

Cδ Coefficient between Fy and δ at steady-state
Cκ Coefficient between Fy and κ at steady-state
Cδϕ Roll-steering coefficient
Cδϕi

Roll-steering coefficient of wheel number i

Cϕ Roll-thrust coefficient
d Location vector
Dβ Coefficient between Mz and β at steady-state
Dδ Coefficient between Mz and δ at steady-state
Dκ Coefficient between Mz and κ at steady-state
FA Aerodynamic force
Fx Longitudinal force, forward force, traction force
Fxi Longitudinal force of tire number i

Fy Lateral force of vehicle
Fyi Lateral force of tire number i

Fyf Front lateral force
Fyr Rear lateral force
Fyϕ Roll-thrust
Fzi Normal force, vertical force of tire number i

Fi Force vector of tire number i

F, M Force system
g,g Gravitational acceleration
G(OXYZ) Global coordinate frame
h Height of mass center from the ground
H Heaviside function
I Mass moment
Ii, Iwi Wheel number i mass moment
kϕ Roll stiffness of vehicle
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K Stability factor
l Wheel base
L Moment of momentum
m Mass
Mx Roll moment, bank moment, tilting torque
My Pitch moment
Mz Yaw moment, aligning moment
o,O Origin of a coordinate frame
p = ϕ̇ Roll rate
p Momentum
q = θ̇ Pitch rate
qi Generalized coordinate
r = ψ̇ Yaw rate
r Position vector
R,Rg Tire radius
GRB Rotation matrix to go from B frame to G frame
s Longitudinal slip
ss Saturation value of longitudinal slip
S Saturation function
Sκ = κ/δ Curvature response
Sβ = β/δ Sideslip response
t Time
T Tire coordinate frame
Ti Wheel torque
v ≡ ẋ, v Velocity
vwind Wind velocity
vxi

Longitudinal velocity of wheel number i

vyi
Lateral velocity of wheel number i

w Wheelbase
wf Front wheelbase
wr Rear wheelbase
x, y, z, x Displacement
X, Y,Z Global displacement
α Tire sideslip angle between vw and xw-axis
αs Sideslip angle saturation
β = vy/vx Vehicle slip angle between v and x-axis
β Attitude angle
βf Sideslip angle of front wheel
βi Sideslip angle of wheel number i

βr Sideslip angle of rear wheel
β + ψ Cruise angle
δ Steer angle
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δa Actual steer angle
δf Front steer angle
δi Front steer angle of wheel number i

δr Rear steer angle
δϕ Roll-steer angle
θ Pitch angle
θ̇ = q Pitch rate
κ = 1/ρ Curvature
λ Eigenvalue
ρ Radius of rotation, air density
ϕ Roll angle
ϕ̇ = p Roll rate
ψ Yaw angle
ψ̇ = r Yaw rate
ψ Heading angle
ω,ω Angular velocity
ωi Angular velocity of wheel number i

ω̇, ω̇ Angular acceleration
ω̇i Angular acceleration of wheel number i

Exercises

1. Global equations of motion
The equation of motion of a vehicle, expressed in the global coordinate frame, is
called the G-expression.

FX = m
d

dt
Ẋ = mv̇X (3.324)

FY = m
d

dt
Ẏ = mv̇Y (3.325)

MZ = IZ

d

dt
ψ̇ = IZz ω̇Z (3.326)

MX = IX

d

dt
ϕ̇ = IX ω̇X (3.327)

ω̇x = ṗ Î (3.328)

ω̇z = ṙ K̂ (3.329)

These are not practical because the force systems F, M are dependent on the
orientation of the vehicle. Transform these equations into the B-frame and derive
the vehicle roll model equations of motion.
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2. Lane-change maneuver.
Passing and lane-change maneuvers are two standard tests to examine a vehicle’s
dynamic responses. Lane-change may be expressed by a half-sine or a sine-
squared function for steering input. Two examples of such functions are

δ (t) =
⎧⎨
⎩

δ0 sin2 ωt t1 < t <
π

ω

0
π

ω
< t < t1

rad (3.330)

δ (t) =
⎧⎨
⎩

δ0 sin ωt t1 < t <
π

ω

0
π

ω
< t < t1

rad (3.331)

ω = πL

vx

(3.332)

where L is the moving length during the lane-change and vx is the forward speed
of the vehicle.
Examine a vehicle with the characteristics given below

m = 1000 kg I1 = Ir = I3 = I4 = 30 kg m2

Ix = 300 kg m2 Iz = 2000 kg m2 CA = 0.8

Cα1 = Cα2 = Cα3 = Cα4 = 8.5 αs = 5 deg

Cs1 = Cs2 = Cs3 = Cs4 = 7.5 ss = 0.1

Rg = 0.35 m Cαs = 0.5 Csα = 0.5

a1 = 1.35 m a2 = 1.5 m h = 0.9 m (3.333)

Cϕ1 = Cϕ2 = 1600 Cϕ3 = Cϕ4 = 0

kϕ = 26,612 N m/rad cϕ = 1700 N m s/rad

Cβ1 = Cβ2 = −0.4 Cβ3 = Cβ4 = −0.1

Cδϕ1 = Cδϕ2 = Cδϕ3 = Cδϕ4 = 0.01 wf = wr = 1.8 m

vx = 2 m/s ωi = vx

Rg

= 2

0.35
= 5.714 rad/s (3.334)

and a change in half-sine steering input δ (t).

δ (t) =

⎧⎪⎨
⎪⎩

0.2 sin
πL

vx

t 0 < t <
vx

L

0
vx

L
< t < 0

rad (3.335)

L = 100 m vx = 40 m/s (3.336)
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Solve the equations of motion numerically and plot kinematic variables, vx , vy ,
αi , si , ax , ay , ωi , ω̇i , ϕ, ψ , p, r , and forces Fx , Fy , Fzi , Fxi , Fyi , and path of
motion of the vehicle.

3. �Front locked wheel.
Consider a two-wheel roll model vehicle with the data given in (3.214). Assume
the vehicle is moving slowly straight with

vx = 2 m/s ωr = vx

Rg

= 2

0.35
= 5.714 rad/s (3.337)

At time t = 0, we apply an increasing torque on the rear wheel

Tf = 0 Tr = 100t N m (3.338)

while the steer angle is kept at zero δ = 0 and the front wheel is locked at
ωf = 0.
Solve the equations of motion numerically and plot Tf , Tr , sf , sr , αf , αr , Ff , Fr ,
Fz, vx , ax , ωr , ω̇r , for 0 < t < 50 s.

4. �Rear locked wheel.
Consider a two-wheel roll model vehicle with the data given in (3.214). Assume
the vehicle is moving slowly straight with

vx = 2 m/s ωr = vx

Rg

= 2

0.35
= 5.714 rad/s (3.339)

At time t = 0, we apply an increasing torque on the rear wheel

Tr = 0 Tf = 100t N m (3.340)

while the steer angle is kept at zero δ = 0 and the rear wheel is locked at ωr = 0.
Solve the equations of motion numerically and plot Tf , Tr , sf , sr , αf , αr , Ff , Fr ,
Fz, vx , ax , ωr , ω̇r , for 0 < t < 50 s.

5. Increasing steer angle and front torque.
Repeat Example 86 for,

(a) Cαs = 0.2, Csα = 0.8
(b) Cαs = 0.8, Csα = 0.2

6. Increasing steer angle and rear torque.
Repeat Example 87 for,

(a) Cα = 0.2, Cs = 0.8
(b) Cα = 0.8, Cs = 0.2
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7. Four-wheel roll vehicle, increasing rear torque, straight driving.
This exercise simulates changing one tire with a new or different tire. Repeat
Example 89 assuming Cα1 = 10, Cα2 = 8.5, Cα3 = 8.5, Cα4 = 8.5.

8. Four-wheel roll vehicle, a different tire.
Repeat Example 90 assuming Cα1 = 10, Cα2 = 8.5, Cα3 = 8.5, Cα4 = 8.5.

9. No friction on one tire and applying front torque.
In Example 89 assume the wheel number 1 has no friction.

Cα1 = 0 Cα2 = 8.5 Cα3 = 8.5 Cα4 = 8.5

Cs1 = 0 Cs2 = 7.5 Cs3 = 7.5 Cs4 = 7.5 (3.341)

Repeat the example and plot the same graphs to compare.



Chapter 4
Road Dynamics

Passenger cars are developed to move on smooth paved pre-designed roads. To keep
vehicles on road, we need a steering mechanism to provide steer angle as an input to
the vehicle dynamic system. Ideally, all wheels of a vehicle should be able to steer
independently such that the vehicle follows the desired path at the given speed. In
this chapter we review steer and road dynamics.

4.1 Road Design

Roads are made by continuously connecting straight and circular paths by proper
transition turning sections. Having a continuous and well-behaved curvature is a
necessary criterion in road design. The clothoid spiral is the best smooth transition
connecting curve in road design which is expressed by parametric equations called
Fresnel Integrals:

X (t) = a

∫ t

0
cos
(π

2
u2
)

du (4.1)

Y (t) = a

∫ t

0
sin
(π

2
u2
)

du (4.2)

The curvature of the clothoid curve varies linearly with arc length and this linearity
makes clothoid the smoothest driving transition curve.

Figure 4.1 illustrates the clothoid curve for the scaling parameter a = 1 and
variable −π ≤ t ≤ π . The scaling parameter a is a magnification factor that shrinks
or magnifies the curve. The range of t determines the variation of curvature within
the clothoid, as well as the initial and final tangent angles of the clothoid curve.

The arc length, s, of a clothoid for a given value of t is
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Fig. 4.1 The clothoid curve for a = 1 and −π ≤ t ≤ π

s = at (4.3)

If the variable t indicates time, then a would be the speed of motion along the path.
The curvature κ and radius of curvature ρ of a clothoid at a given t are:

κ = πt

a
(4.4)

ρ = 1

κ
= a

πt
(4.5)

The tangent angle θ of a clothoid at a given value of t is:

θ = π

2
t2 (4.6)

Having a road with linearly increasing curvature is equivalent to entering the path
with a steering wheel at the neutral position and turning the steering wheel with a
constant angular velocity. This is a desirable and natural driving action (Jazar 2017;
Marzbani et al. 2015a).

Proof Arc length s of a parametric planar curve X = X (t), Y = Y (t) between t1
and t2 is calculated by

s =
∫ t2

t1

√(
dX

dt

)2

+
(

dY

dt

)2

dt (4.7)

Substituting the clothoid spiral parametric expression (4.1)–(4.2), we have
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s =
∫ t2

t1

√(
dX

du

)2

+
(

dY

du

)2

dt

= a

∫ t

0

√
cos2

(π

2
u2
)

+ sin2
(π

2
u2
)
dt = a

∫ t

0
dt = at (4.8)

Curvature κ of a planar curve X = X (s), Y = Y (s) that is expressed
parametrically by its arc length s is

κ =
√(

d2X

ds2

)2

+
(

d2Y

ds2

)2

(4.9)

Using the result of (4.8), we can replace the variable t with arc length s

t = s

a
(4.10)

and define the clothoid spiral parametric equations (4.1)–(4.2) as:

X (s) = a

∫ s/a

0
cos
(π

2
u2
)

du (4.11)

Y (s) = a

∫ s/a

0
sin
(π

2
u2
)

du (4.12)

Therefore, the curvature of clothoid spiral is

κ = πs

a2

√
cos2

(
π

2

s2

a2

)
+ sin2

(
π

2

s2

a2

)
= πs

a2 = πt

a
(4.13)

The slope of the tangent to clothoid spiral tan θ at a point t is

tan θ = dY

dX
= dY/dt

dX/dt
=

a sin
(π

2
t2
)

a cos
(π

2
t2
) = tan

(π

2
t2
)

(4.14)

and therefore, the slope angle θ of the tangent line is

θ = π

2
t2 = π

2

s2

a2 (4.15)

The clothoid curve approaches the point (a/2, a/2) at infinity, t → ∞,
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X (t) = lim
t→∞

(
a

∫ t

0
cos
(π

2
u2
)

du

)
= a

2
(4.16)

Y (t) = lim
t→∞

(
a

∫ t

0
sin
(π

2
u2
)

du

)
= a

2
(4.17)

Combining the equations for arc length (4.8) and curvature (4.13), we can express
the curvature κ of a clothoid curve such that it varies linearly with its arc-length s.
The curvature of such a curve is

κ (s) = π

a2
s = ks (4.18)

k = π

a2 (4.19)

where s is the arc length and k is the sharpness or the rate of change of curvature.
Using

t = κa

π
(4.20)

we can also define the parametric equations of the transition clothoid road as:

X (κ) = a

∫ κa/π

0
cos
(π

2
u2
)

du (4.21)

Y (κ) = a

∫ κa/π

0
sin
(π

2
u2
)

du (4.22)

Figure 4.2 illustrates a design graph of the relationship between the clothoid and
parameters of scaling or magnification factor a, curvature κ , and slope θ . The higher
the magnification factor a the larger the clothoid. The clothoid curves of different a

are intersecting with the constant slope lines of θ . The curves for constant curvature
k intersect both the constant a and constant θ curves.

The clothoid transition equation is a proper solution for any required change in
any parameter of a road. As an example the change of the bank angle from a flat
straight road to a tilted road on a circular path needs a clothoid transition bank
angle. �
Example 93 Derivative of a clothoid spiral.

Differentiation of a definite integral is based on the Leibniz formula

d

dt

∫ b(t)

a(t)

f (u, t) du =
∫ b(t)

a(t)

df

dt
du + f (b (t) , t)

db

dt
− f (a (t) , t)

da

dt
(4.23)
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Fig. 4.2 A design graph of the relationship between the clothoid and parameters of magnification
factor a, curvature κ , and slope θ

Taking derivative of the clothoid spiral parametric equations in calculating the arc
length s of (4.7) is based on the Leibniz formula.

dX

dt
= a

d

dt

∫ t

0
cos
(π

2
u2
)

du = a cos
(π

2
t2
)

(4.24)

dY

dt
= a

d

dt

∫ t

0
sin
(π

2
u2
)

du = a sin
(π

2
t2
)

(4.25)

The calculation of the curvature κ of (4.9) is also based on the Leibniz formula
(Jazar 2010b, 2012).

dX

ds
= a

d

dt

∫ s/a

0
cos
(π

2
u2
)

du = cos

(
π

2

s2

a2

)
(4.26)

dY

ds
= a

d

dt

∫ s/a

0
sin
(π

2
u2
)

du = sin

(
π

2

s2

a2

)
(4.27)
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d2X

ds2
= d

ds
cos

(
π

2

s2

a2

)
= −πs

a2
sin

(
π

2

s2

a2

)
(4.28)

d2Y

ds2
= d

ds
sin

(
π

2

s2

a2

)
= πs

a2
cos

(
π

2

s2

a2

)
(4.29)

Therefore,

√(
d2X

ds2

)2

+
(

d2Y

ds2

)2

= π

a2
= κ (s) (4.30)

Example 94 A connecting road with given a and κ .
Let us set a = 200 and plot a clothoid road starting from (0, 0) and end up at a

point with a given curvature of κ = 0.01 equal to a radius of curvature of ρ = 100 m.
Using

t = κa

π
(4.31)

we can define the parametric equations of the transition road (4.1)–(4.2) as

X (κ) = a

∫ κa/π

0
cos
(π

2
u2
)

du (4.32)

Y (κ) = a

∫ κa/π

0
sin
(π

2
u2
)

du (4.33)

The coordinates of the clothoid road at κ = 0.01 and a = 200 are

X0 = 122.2596310 Y0 = 26.24682756 (4.34)

The slope of the road at the point is

θ = 1

2π
a2κ2 = 0.6366197722 rad = 36.475 deg (4.35)

and therefore, the tangent line to the road is

Y = −64.14007833 + 0.7393029502X (4.36)

and the normal line to the road is

Y = 191.6183183 − 1.352625469X (4.37)



4.1 Road Design 303

Fig. 4.3 The tangent line, normal line, and the tangent circle to the clothoid at the point where
κ = 0.01 for a given a = 200. The clothoid is plotted up to κ = 0.025

Having the radius of the tangent curvature circle, ρ = 1/κ = 100 m, we are able to
find the coordinates of the center C of the tangent circle on the line (4.37).

XC = 62.81155414 YC = 106.6578104 (4.38)

Figure 4.3 illustrates the tangent line, normal line, and the tangent circle to the
clothoid at the point where κ = 0.01. The clothoid is plotted up to κ = 0.025.

Example 95 Connecting a straight road to a circle.
Assume that we need to define a clothoid road to begin with zero curvature and

meet a given circular curve. Let us consider the road to be on the X-axis and the
circle of ρ = 100 m at center C (62.811, 106.658).

(X − 62.811)2 + (Y − 106.658)2 = 1002 (4.39)

Therefore, the transition road must begin with κ = 0 on the X-axis and touch the
circle at a point when its curvature is κ = 1/100. Because of

κ = πs

a2
= πt

a
(4.40)

we can define the parametric equations of the transition road (4.1)–(4.2) by κ .

X (κ) = a

∫ κa/π

0
cos
(π

2
u2
)

du

Y (κ) = a

∫ κa/π

0
sin
(π

2
u2
)

du (4.41)
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Fig. 4.4 The error e = arctan
− (X − 62.811)

Y − 106.658
− 1.5915 × 10−5a2 as a function of a

Having κ = 0.01 at the destination point, we find the coordinates of the end point
of the clothoid as functions of a.

X (a) = a

∫ 0.01a/π

0
cos
(π

2
u2
)

du

Y (a) = a

∫ 0.01a/π

0
sin
(π

2
u2
)

du (4.42)

We need to find the magnifying factor a, such that the clothoid (4.41) touches the
circle (4.39) with the same slope. The slope of the circle at (X, Y ) is

Y ′ = tan θ = − (X − 62.811)

(Y − 106.658)
(4.43)

and the slope angle of the clothoid is

θ = π

2
t2 = 1

2π
a2κ2 = 1.5915 × 10−5a2 (4.44)

To make the clothoid have the same slope, we derive an equation that relates the
magnification factor a to the components of the final point of the clothoid.

arctan θ = arctan
− (X − 62.811)

Y − 106.658
= 1.5915 × 10−5a2 (4.45)

Equations (4.45), (4.42), and (4.39) provide us with an equation to find a. Let us
define and plot an error equation e versus a in Fig. 4.4
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e = arctan θ − θ = arctan
− (X − 62.811)

Y − 106.658
− 1.5915 × 10−5a2

= arctan
− (X − 62.811)√

1002 − (X − 62.811)2
− 1.5915 × 10−5a2

= arctan
−
(
a
∫ 0.01a/π

0 cos
(π

2
u2
)

du − 62.811
)

√
1002 −

(
a
∫ 0.01a/π

0 cos
(π

2
u2
)

du − 62.811
)2

−1.5915 × 10−5a2 (4.46)

and solve the equation for a that makes e = 0.

a = 200 (4.47)

Therefore, the clothoid equation is

X (κ) = a

∫ κa/π

0
cos
(π

2
u2
)

du

Y (κ) = a

∫ κa/π

0
sin
(π

2
u2
)

du (4.48)

where at κ = 0.01 reaches to:

X0 = 122.2596310 Y0 = 26.24682756 (4.49)

The slope of the road at the point, the tangent line to the road, and the normal line
to the road are

θ = 1

2π
a2κ2 = 0.6366197722 rad = 36.475 deg (4.50)

Y = −64.14007833 + 0.7393029502X (4.51)

Y = 191.6183183 − 1.352625469X (4.52)

Figure 4.3 illustrates the clothoid, tangent line, normal line, and the tangent circle to
the clothoid at the point where κ = 0.01. The clothoid is plotted up to κ = 0.025.

Example 96 Connecting a straight road to another circle.
Assume that we need to determine a transition clothoid road to begin with zero

curvature on the X-axis and meet a given circular curve of R = 80 m at center
C (100, 100).

(X − 100)2 + (Y − 100)2 = 802 (4.53)
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The expression of the transition road (4.1)–(4.2) by κ is:

X (κ) = a

∫ κa/π

0
cos
(π

2
u2
)

du

Y (κ) = a

∫ κa/π

0
sin
(π

2
u2
)

du (4.54)

Using κ = 1/R = 0.0125 at the destination point determines the coordinates of the
end of the clothoid as functions of a.

X (a) = a

∫ 0.0125a/π

0
cos
(π

2
u2
)

du

Y (a) = a

∫ 0.0125a/π

0
sin
(π

2
u2
)

du (4.55)

The slope of the tangent to the circle (4.53) at a point (X, Y ) is

Y ′ = tan θ = − (X − 100)

Y − 100
(4.56)

and the slope angle of the clothoid as a function of a is

θ = π

2
t2 = 1

2π
a2κ2 = 2.4868 × 10−5a2 (4.57)

The clothoid should have the same slope, therefore,

arctan
− (X − 100)

Y − 100
= 2.4868 × 10−5a2 (4.58)

Equations (4.58) and (4.53) along with (4.55) provide us with an equation to
find a. However, substituting Y = Y (X) and replacing tan and arctan generate
four equations to be solved for possible a. To visualize the possible solutions, let us
define two error equations (4.59)–(4.60).

e = arctan
− (X − 100)

±
√

802 − (X − 100)2
− 2.4868 × 10−5a2 (4.59)

e = − (X − 100)

±
√

802 − (X − 100)2
− tan

(
2.4868 × 10−5a2

)
(4.60)

Figure 4.5 depicts Eq. (4.59) and Fig. 4.6 shows Eq. (4.60). Equation (4.59)
provides the solutions of

a = 230.7098693 a = 130.8889343 (4.61)
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Fig. 4.5 Plot of e = arctan
− (X − 100)

±
√

802 − (X − 100)2
− 2.4868 × 10−5a2 versus a

Fig. 4.6 Plot of e = − (X − 100)

±
√

802 − (X − 100)2
− tan

(
2.4868 × 10−5a2

)
versus a

and Eq. (4.60) provides the solutions of

a = 230.7098693 a = 130.8889343

a = 394.0940573 a = 463.5589702 (4.62)

The correct answer is a = 230.7098693 and Fig. 4.7 depicts the circle and the
proper clothoid. Using a, we define the clothoid equation

X (κ) = a

∫ κa/π

0
cos
(π

2
u2
)

du

Y (κ) = a

∫ κa/π

0
sin
(π

2
u2
)

du (4.63)



308 4 Road Dynamics

Fig. 4.7 The transition road starting on the X-axis and goes to a circle of radius R = 80 m at
center C (100 m, 100 m)

which at κ = 0.0125 reaches

X0 = 177.5691613 Y0 = 82.38074640 (4.64)

at angle

θ = 1

2π
a2κ2 = 1.3236 rad ≈ 75.84 deg (4.65)

Example 97 Using the design chart.
Assume we are asked to find a clothoid transition road to connect a straight road

to a circle of radius R = 58.824 m. Having R is equivalent to have the destination
curvature κ = 1/R = 0.017. The desired circle must be tangent to a clothoid with a
given a at the point that the clothoid is intersecting the curve of κ = 0.017.

The clothoid for a = 250 m hits the curve of κ = 0.017 at a point for which we
have

X = 147.3884878 m Y = 176.4421850 m (4.66)

θ = 164.7102491 deg s = 338.2042540 m (4.67)

The clothoid for a = 210 m hits the curve of κ = 0.017 at a point for which we
have

X = 157.4739501 m Y = 119.7133227 m (4.68)

θ = 116.2195518 deg s = 238.6369216 m (4.69)
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Fig. 4.8 A few clothoid transition road to connect a straight road to a circle of radius R =
58.824 m

The clothoid for a = 180 m hits the curve of κ = 0.017 at a point for which we
have

X = 140.1918463 m Y = 74.21681673 m (4.70)

θ = 85.38579313 deg s = 175.3250853 m (4.71)

The clothoid for a = 150 m hits the curve of κ = 0.017 at a point for which we
have

X = 109.3442240 m Y = 38.89541829 m (4.72)

θ = 59.29568967 deg s = 121.7535314 m (4.73)

The clothoid for a = 120 m hits the curve of κ = 0.017 at a point for which we
have

X = 74.57259185 m Y = 16.67204291 m (4.74)

θ = 37.94924139 deg s = 77.92226012 m (4.75)

Figure 4.8 illustrates these solutions. The number of solutions is practically infinite
and the best solution depends on safety, cost, and physical constraints of the field.
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Example 98 � Clothoid spiral as an optimal curve problem.
Clothoid spiral is the shortest curve connecting two given points with given initial

and final tangent angles and curvatures. The angle and curvature are varying. The
problem can be formulated as follows:

Given two points (X1, Y1) and (X2, Y2) and two angles θ1 and θ2, find a curve
(clothoid segment) which satisfies:

X (0) = X1 Y (0) = Y1 tan θ1 = dY (0)

dX (0)
= dY (0) /dt

dX (0) /dt
(4.76)

X (s) = X2 Y (s) = Y2 tan θ2 = dY (s)

dX (s)
= dY (s) /dt

dX (s) /dt
(4.77)

with minimal arc length s.

Example 99 Clothoid shift to meet a given circle.
It is not generally possible to design a clothoid starting at the origin and meet

a given circle at an arbitrary center and radius. However, it is possible to start the
clothoid from other points on the x-axis to meet the given circle.

Assume we need to design a clothoid starting on the x-axis to meet a given circle

(x − xC)2 + (y − yC)2 = R2 (4.78)

where (xC, yC) indicates the coordinates of the center of the circle, and R is the
radius of the circle. Substituting t in terms of a and R

t = a

πR
= aκ

π
(4.79)

we define the equation of clothoid to have the same radius of curvature as the circle
at the end point.

x (κ) = a

∫ a/(Rπ)

0
cos
(π

2
u2
)

du

y (κ) = a

∫ a/(Rπ)

0
sin
(π

2
u2
)

du (4.80)

Let us assume there is a y at which the slope of the clothoid

tan θ = tan

(
πt2

2

)
= tan

(
a2

2πR2

)
(4.81)

and the circle

tan θ = −x − xC

y − yC

(4.82)
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are equal.

tan

(
a2

2πR2

)
= −x − xC

y − yC

(4.83)

Searching for a match point in the right half circle

y − yC =
√

R2 − (x − xC)2 (4.84)

makes the slope equation to be a function of a

tan

(
a2

2πR2

)√
R2 − (x − xC)2 + x − xC

y − yC

= 0 (4.85)

or

tan

(
a2

2πR2

)√√√√
R2 −

(
a

∫ a/(Rπ)

0
cos
(π

2
u2
)

du − xC

)2

+a

∫ a/(Rπ)

0
cos
(π

2
u2
)

du − xC = 0 (4.86)

Solution of this equation provides us with an a for which the clothoid ends at a point
with the same curvature as the circle. At the same y of the end point, the slope of
the clothoid is also equal to the slope of the circle. A proper shift of the clothoid on
the x-axis will match the clothoid and the circle.

As an example, let us assume that the circle is

(x − 60)2 + (y − 60)2 = 502 (4.87)

and therefore, the slope equation will be

tan

(
a2

2π502

)√√√√502 −
(

a

∫ a/(50π)

0
cos
(π

2
u2
)

du − 60

)2

+a

∫ a/(50π)

0
cos
(π

2
u2
)

du − 60 = 0 (4.88)

Numerical solution of the equation is

a = 132.6477323 (4.89)

The plot of the clothoid and the circle at this moment are shown in Fig. 4.9.
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Fig. 4.9 A clothoid starting at origin ends at a point with the same slope and curvature as the given
circle, at the same y

For the calculated a, the value of t at the end point of the clothoid is

t = a

πR
= 2.652954646

π
= 0.84446 (4.90)

and therefore, the coordinates of the end point are

x (κ) = 132.6
∫ 0.84

0
cos
(π

2
u2
)

du = 98.75389126

y (κ) = 132.6
∫ 0.84

0
sin
(π

2
u2
)

du = 38.22304651 (4.91)

At the point, the radius of curvature of the clothoid is

R = 1

κ
= a

πt
= 132.6477323

0.84446π
= 50 (4.92)

and the slope is

θ = π

2
t2 = π

2
0.844462 = 1.1202 rad (4.93)

The x-coordinate of the circle at the same y = 38.22304651

38.22304651 − 60 =
√

502 − (x − 60)2 (4.94)

is

xcircle = 105.0084914 (4.95)
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Fig. 4.10 A shifted clothoid starting on a point on the x-axis ends at a point on the given circle
with the same slope and curvature

If we shift the clothoid by the difference between xcircle and xclothoid

xdis = xcircle − xclothoid

= 105.0084914 − 98.75389126 = 6.2546 (4.96)

then the clothoid and circle meet at a point on the circle with all requirements to
have a smooth transition. Figure 4.10 illustrates the result.

Example 100 Complex expression and proof of curvature.
Let us define a curve in complex plane as

C (s) = a

∫ s/a

0
eiπu2/2du (4.97)

The derivative of the curve is an equation with absolute value of a.

dC (s)

ds
= eiπs2/

(
2a2
)

(4.98)

The curvature of the curve is

κ =
∣∣∣∣
d2C (s)

ds2

∣∣∣∣ =
∣∣∣i πs

a2
eiπs2/

(
2a2
)∣∣∣ = πs

a2
(4.99)

Example 101 Parametric form of a straight road.
The equation of a straight road that connects two points P1(x1, y1, z1) and

P2(x2, y2, z3) is

x − x1

x2 − x1
= y − y1

y2 − y1
= z − z1

z2 − z1
(4.100)
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This line may also be expressed by the following parametric equations.

x = x1 + (x2 − x1) t

y = y1 + (y2 − y1) t

z = z1 + (z2 − z1) t (4.101)

Example 102 Arc length of a planar road.
A planar road in the (x, y)-plane

y = f (x) (4.102)

can be expressed vectorially by

r = xı̂ + y (x) ĵ (4.103)

The displacement element on the curve

dr
dx

= ı̂ + dy

dx
ĵ (4.104)

provides us with

(
ds

dx

)2

= dr
dx

· dr
dx

= 1 +
(

dy

dx

)2

(4.105)

Therefore, the arc length of the curve between x = x1 and x = x2 is

s =
∫ x2

x1

√
1 +

(
dy

dx

)2

dx (4.106)

In case the curve is given parametrically,

x = x(t) y = y(t) (4.107)

we have

(
ds

dt

)2

= dr
dt

· dr
dt

=
(

dx

dt

)2

+
(

dy

dt

)2

(4.108)

and hence,

s =
∫ t2

t1

∣∣∣∣
dr
dt

∣∣∣∣ =
∫ t2

t1

√(
dx

dt

)2

+
(

dy

dt

)2

dt (4.109)
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Let us show a circle with radius R by its polar expression using the angle θ as a
parameter, as an example:

x = R cos θ y = R sin θ (4.110)

The arc length between θ = 0 and θ = π/2 would then be one-fourth the perimeter
of the circle. Therefore, the equation for calculating the perimeter of a circle with
radius R is

s = 4
∫ π/2

0

√(
dx

dθ

)2

+
(

dy

dθ

)2

dθ = R

∫ π/2

0

√
sin2 θ + cos2 θ dθ

= 4R

∫ π/2

0
dθ = 2πR (4.111)

Using Eq. (4.106), we can define the equation of the road as

y =
∫ x2

x1

√(
ds

dx

)2

− 1 dx (4.112)

Example 103 A figure 8 as an approximately correct road.
Sometimes, matching slopes, instead of matching curvatures, can be used to

design an approximately correct road. Let us make a closed road in the shape of
a symmetric figure 8 with two 180 deg circular paths. Assuming

a = 200 (4.113)

the equations of the clothoid road starting from the origin are:

X (t) = 200
∫ t

0
cos
(π

2
u2
)

du (4.114)

Y (t) = 200
∫ t

0
sin
(π

2
u2
)

du (4.115)

The slope (4.6) of the curve would be parallel to the symmetric line Y = X when

θ = π

4
t =

√
2θ

π
=

√
2

2
= t0 (4.116)

At t = t0 the clothoid is at

X0 = 200
∫ √

2/2

0
cos
(π

2
u2
)

du = 132.943 (4.117)
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Fig. 4.11 A clothoid between two point at which the tangent lines are parallel to Y = X

Y0 = 200
∫ √

2/2

0
sin
(π

2
u2
)

du = 35.424 (4.118)

where the tangent and perpendicular lines respectively are

Y = 35.424 + (X − 132.943) tan θ = −97.519 + X (4.119)

Y = 35.424 − (X − 132.943) / tan θ = 168.37 − X (4.120)

as are shown in Fig. 4.11 for the clothoid from t = −t0 to t = t0.
The perpendicular line hits the symmetric line Y = X at

XC = YC = 84.184 (4.121)

which would be the center of a circular path with

R =
√

(X0 − XC)2 + (Y0 − YC)2 = 68.956 (4.122)

to connect (X0, Y0) to its mirror point with respect to Y = X at

X1 = 35.424 Y1 = 132.943 (4.123)

The mirror clothoid

X = 200
∫ √

2/2

−√
2/2

sin
(π

2
u2
)

du (4.124)

Y = 200
∫ √

2/2

−√
2/2

cos
(π

2
u2
)

du (4.125)

will complete the figure 8 road as is shown in Fig. 4.12.
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Fig. 4.12 A slope match symmetric figure 8 road based on two clothoid and two circular parts

Therefore, the parametric equations of the road beginning from the origin and
moving in the X-direction are as follows. The parameter t is not continuous and not
with the same dimension in all equations.

X (t) = 200
∫ t

0
cos
(π

2
u2
)

du 0 ≤ t ≤
√

2

2
(4.126)

Y (t) = 200
∫ t

0
sin
(π

2
u2
)

du 0 ≤ t ≤
√

2

2
(4.127)

X (t) = XC + R cos t − π

4
≤ t ≤ 2.3562 (4.128)

Y (t) = YC + R sin t − π

4
≤ t ≤ 2.3562 (4.129)

X (t) = 200
∫ t

0
sin
(π

2
u2
)

du

√
2

2
≤ t ≤ −

√
2

2
(4.130)

Y (t) = 200
∫ t

0
cos
(π

2
u2
)

du

√
2

2
≤ t ≤ −

√
2

2
(4.131)

X (t) = XC + R cos t 2.3562 ≤ t ≤ 5.4978 (4.132)

Y (t) = YC + R sin t 2.3562 ≤ t ≤ 5.4978 (4.133)
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X (t) = 200
∫ t

0
cos
(π

2
u2
)

du −
√

2

2
≤ t ≤ 0 (4.134)

Y (t) = 200
∫ t

0
sin
(π

2
u2
)

du −
√

2

2
≤ t ≤ 0 (4.135)

Using s as the road length, we may define the equations with a smooth and
continuous parameter.

X (t) = 200
∫ s/200

0
cos
(π

2
u2
)

du (4.136)

Y (t) = 200
∫ s/200

0
sin
(π

2
u2
)

du (4.137)

0 ≤ s ≤ 100
√

2 (4.138)

X (t) = XC + R cos

(
s − 100

√
2

R
− π

4

)
(4.139)

Y (t) = YC + R sin

(
s − 100

√
2

R
− π

4

)
(4.140)

100
√

2 ≤ s ≤ 358.05 (4.141)

X (t) = 200
∫ (499.47−s)/200

0
sin
(π

2
u2
)

du (4.142)

Y (t) = 200
∫ (499.47−s)/200

0
cos
(π

2
u2
)

du (4.143)

358.05 ≤ s ≤ 640.89 (4.144)

X (t) = −XC + R cos

(
640.89 − s

R
− π

4

)
(4.145)

Y (t) = −YC + R sin

(
640.89 − s

R
− π

4

)
(4.146)

640.89 ≤ s ≤ 857.52 (4.147)

X (t) = 200
∫ (

s−857.52−100
√

2
)
/200

0
cos
(π

2
u2
)

du (4.148)
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Fig. 4.13 The variation of X and Y for 0 ≤ s ≤ 998.94 of the figure 8 road

Y (t) = 200
∫ (

s−857.52−100
√

2
)
/200

0
sin
(π

2
u2
)

du (4.149)

857.52 ≤ s ≤ 998.94 (4.150)

The variation of X and Y for 0 ≤ s ≤ 998.94 is depicted in Fig. 4.13.

Example 104 A figure 8 correct road.
Let us design a closed road in the shape of a symmetric figure 8 with a curvature

transition between the clothoids and the circular paths. Assuming

a = 200 (4.151)

the equations of the clothoid road starting from the origin are:

X (t) = 200
∫ t

0
cos
(π

2
u2
)

du (4.152)

Y (t) = 200
∫ t

0
sin
(π

2
u2
)

du (4.153)

The slope (4.6) at t of the curve is

θ = π

2
t2 (4.154)

where the tangent and perpendicular lines respectively are:

Y = Y (t) + (X − X (t)) tan θ (4.155)

Y = Y (t) − (X − X (t)) / tan θ (4.156)
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The radius of curvature of the clothoid at t is

R = 1

κ
= a

πt
(4.157)

If a clothoid point (X, Y ) exists at which the radius of curvature is equal to the
distance of the point from the line Y = X on the perpendicular line, then we can
have a circular path starting at the point. The intersection of the clothoid point (X, Y )

and the symmetric line Y = X is the point YC = XC where

YC = XC =
X (t) + Y (t) tan

πt2

2

tan
πt2

2
+ 1

(4.158)

The distance of the clothoid and the point (XC, YC) on the perpendicular line is

d =
√

(Y (t) − YC)2 + (X (t) − XC)2

=

√√√√√√√

⎛
⎜⎜⎝

Y (t) − X (t)

tan
πt2

2
+ 1

⎞
⎟⎟⎠

2

+

⎛
⎜⎜⎝

(X (t) − Y (t)) tan
πt2

2

tan
πt2

2
+ 1

⎞
⎟⎟⎠

2

(4.159)

Equating d and R provides us with an equation to be solved for the t at which the
clothoid terminates and a circle with the same curvature starts.

d − a

πt
= 0 (4.160)

As is shown in Fig. 4.14, the equation has multiple solutions, and the first solution
is at

t = t0 = 0.9371211755 (4.161)

At t = t0 the clothoid and its kinematics are

X0 = 200
∫ 0.9371211755

0
cos
(π

2
u2
)

du = 154.77 (4.162)

Y0 = 200
∫ 0.9371211755

0
sin
(π

2
u2
)

du = 75.154 (4.163)

R = 1

κ
= 67.93355959 (4.164)

θ = 1.379467204 rad = 79.038 deg (4.165)
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Fig. 4.14 Plot of the equation d − R = d − a

πt
= 0 to find a t at which the curvature of the

clothoid matches with a symmetric circle

The intersection of the perpendicular to the clothoid at (X0, Y0) with Y = X is at

XC = 88.0724138 < X0 (4.166)

YC = 88.0724138 > Y0 (4.167)

We can check the distance of (X0, Y0) and (XC, YC) to be equal to R.
Therefore, using the parametric s as the road length, the equations of the road

beginning from the origin and moving in the X-direction can be expressed as

X (t) = 200
∫ s/a

0
cos
(π

2
u2
)

du 0 ≤ s ≤ s0 (4.168)

Y (t) = 200
∫ s/a

0
sin
(π

2
u2
)

du 0 ≤ s ≤ s0 (4.169)

s0 = at0 = 187.42 (4.170)

X (t) = XC + R cos

(
s − s0

R
− θ0

)
s0 ≤ s ≤ s1 (4.171)

Y (t) = YC + R sin

(
s − s0

R
− θ0

)
s0 ≤ s ≤ s1 (4.172)

θ0 = arctan
YC − Y0

X0 − XC

= 0.19132 rad = 10.962 deg (4.173)

s1 = s0 + R
(π

2
+ 2θ0

)
= 320.12 (4.174)
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Fig. 4.15 A curvature match symmetric figure 8 road based on two clothoid and two circular parts

X (t) = 200
∫ (s1+s0−s)/a

0
sin
(π

2
u2
)

du s1 ≤ s ≤ s2 (4.175)

Y (t) = 200
∫ (s1+s0−s)/a

0
cos
(π

2
u2
)

du s1 ≤ s ≤ s2 (4.176)

s2 = s1 + 2s0 = 694.96 (4.177)

X (t) = −XC + R cos

(
s2 − s

R
−
(π

2
− θ0

))
s2 ≤ s ≤ s3 (4.178)

Y (t) = −YC + R sin

(
s2 − s

R
−
(π

2
− θ0

))
s2 ≤ s ≤ s3 (4.179)

s3 = s2 + R
(π

2
+ 2θ0

)
= 827.66 (4.180)

X (t) = 200
∫ (s−s3−s0)/200

0
cos
(π

2
u2
)

du s3 ≤ s ≤ s4 (4.181)

Y (t) = 200
∫ (s−s3−s0)/200

0
sin
(π

2
u2
)

du s3 ≤ s ≤ s4 (4.182)

s4 = s3 + s0 = 1015.1 (4.183)

The road is shown in Fig. 4.15.
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Example 105 � Spatial road.
If the position vector GrP of a moving car is such that each component is a

function of a variable t ,

Gr = Gr (t) = x (t) ı̂ + y (t) ĵ + z (t) k̂ (4.184)

then the end point of the position vector indicates a curve C in G. The curve Gr =
Gr (t) reduces to a point on C if we fix the parameter t . The functions

x = x (t) y = y (t) z = z (t) (4.185)

are the parametric equations of the curve. When the parameter t is the arc length s,
the infinitesimal arc distance ds on the curve is

ds2 = dr · dr (4.186)

The arc length s of a curve is defined as the limit of the diagonal of a rectangular
box as the length of the sides uniformly approaches zero.

When the space curve is a straight line that passes through point P(x0, y0, z0)

where x0 = x(t0), y0 = y(t0), z0 = z(t0), its equation can be shown by

x − x0

α
= y − y0

β
= z − z0

γ
(4.187)

α2 + β2 + γ 2 = 1 (4.188)

where α, β, and γ are the directional cosines of the line. The equation of the tangent
line to the space curve (4.185) at a point P(x0, y0, z0) is

x − x0

dx/dq
= y − y0

dy/dq
= z − z0

dz/dq
(4.189)

(
dx

dq

)2

+
(

dy

dq

)2

+
(

dz

dq

)2

= 1 (4.190)

To show this, let us consider a position vector Gr = Gr (s) that describes a space
curve using the length parameter s:

Gr = Gr (s) = x (s) ı̂ + y (s) ĵ + z (s) k̂ (4.191)

The arc length s is measured from a fixed point on the curve. By a very small change
ds, the position vector will move to a very close point such that the increment in the
position vector would be

dr = dx (s) ı̂ + dy (s) ĵ + dz (s) k̂ (4.192)
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The lengths of dr and ds are equal for infinitesimal displacement:

ds =
√

dx2 + dy2 + dz2 (4.193)

The arc length has a better expression in the square form:

ds2 = dx2 + dy2 + dz2 = dr · dr (4.194)

If the parameter of the space curve is q instead of s, the increment arc length would
be

(
ds

dt

)2

= dr
dt

· dr
dt

(4.195)

Therefore, the arc length between two points on the curve can be found by
integration:

s =
∫ t2

t1

√
dr
dt

· dr
dt

dt =
∫ t2

t1

√(
dx

dt

)2

+
(

dy

dt

)2

+
(

dz

dt

)2

dt (4.196)

Let us expand the parametric equations of the curve (4.185) at a point
P(x0, y0, z0),

x = x0 + dx

dt
�t + 1

2

d2x

dt2
�t2 + · · ·

y = y0 + dy

dt
�t + 1

2

d2y

dt2 �t2 + · · · (4.197)

z = z0 + dz

dt
�t + 1

2

d2z

dt2 �t2 + · · ·

and ignore the nonlinear terms to find the tangent line to the curve at the point:

x − x0

dx/dt
= y − y0

dy/dt
= z − z0

dz/dt
= �t (4.198)

Example 106 Length of a spatial road.
Consider a spatial closed road with the following parametric equations:

x = (a + b sin θ) cos θ

y = (a + b sin θ) sin θ

z = b + b cos θ (4.199)
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The total length of the road can be found by the integral of ds for θ from 0 to 2π :

s =
∫ θ2

θ1

√
dr
dθ

· dr
dθ

dθ =
∫ θ2

θ1

√(
∂x

∂θ

)2

+
(

∂x

∂θ

)2

+
(

∂x

∂θ

)2

dθ

=
∫ 2π

0

√
2

2

√
2a2 + 3b2 − b2 cos 2θ + 4ab sin θdθ (4.200)

Example 107 History of clothoid.
The clothoid spiral is also called Cornu spiral, referring to Alfred Cornu (1841–

1902), a French physicist who rediscovered the clothoid spiral. It may also be
called Euler spiral, as Leonard Euler (1707–1783) was the first codiscoverer of the
curve with Jacques Bernoulli (1654–1705) who formulated the clothoid spiral on
deformations of elastic members. It is also called Fresnel spiral credited to Augustin-
Jean Fresnel spiral (1788–1827) who independently rediscovered the curve in his
work on the fringes of diffraction of light through a slot. In vehicle dynamics and
road design industry it may also be called the transition spiral to refer to the road
connections corners.

In the 19th century it became clear that we need a track shape with gradually
varying curvature. Although circles were being used for most of the path, a correct
transition curve was needed to gradually change the curvature from one path
to the other. Arthur Talbot (1857–1942) in 1880 derived the same integrals as
Bernoulli and Fresnel and introduced the railway transition spirals. Because of this
contribution in railroad practical design, the clothoid spiral is also called Talbot
curve. Talbot curve has been used in railways and road construction since.

It is said that Clotho was one of the three Fates who spun the thread of human
life, by winding it around the spindle. At the beginning of the 20th century, the
Italian mathematician Ernesto Cesàro (1859–1906), from this poetic reference gave
the name “clothoid” to the curve with a double spiral shape.

4.2 Static Steering

Figure 4.16 illustrates a front-wheel-steering (FWS) vehicle that is turning to the
left. There is a kinematic condition between the inner and outer wheels that allows
them to turn slip-free at very low speed. The kinematic condition is called the
Ackerman condition and is expressed by

cot δ2 − cot δ1 = wf

l
(4.201)

where δ1 and δ2 are the steer angles of the wheel number 1 of the front left and
the wheel number 2 of the front right wheel. In this equation the steer angles are
measured from the x-axis and is positive if it is about positive z-axis (Jazar 2017).
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Fig. 4.16 A front-wheel-steering vehicle and the static steering condition

Ideally, perpendicular lines to all four wheels of a vehicle intersect at a single
point called the kinematic center of rotation. When a vehicle is moving very slowly,
we may assume the velocity vector of each wheel is in their tire plane. Therefore,
the perpendicular lines to the tire planes intersect at the kinematic center of rotation
of the vehicle, somewhere on the rear axis.

The distance between the tire planes of the left and right wheels is called the
track and is shown by w. The distance between the front and real axles is called the
wheelbase and is shown by l. Track w and wheelbase l are the kinematic width and
length of the vehicle.

It is common to use one single steer angle command δ and calculate all other
required steer angles based on that. When we employ the bicycle vehicle model the
single steer angle is the cot-average of the inner and outer steer angles.

cot δ = cot δ2 + cot δ1

2
(4.202)

The angle δ is the equivalent steer angle of a bicycle having the same wheelbase l

and radius of rotation ρ.

Proof To have all wheels turning freely on a curved road at very low speed, all the
tire axes must intersect at a point. This criteria is the static steering condition. The
tire axis is the perpendicular line to the tire-plane at the center of the tire.
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Fig. 4.17 A front-wheel-steering vehicle and steer angles of the inner and outer wheels, and
equivalent bicycle model

Figure 4.17 illustrates a vehicle turning left about the turning center O. The inner
and outer steer angles δ1 and δ2 may be calculated from the triangles �OAD and
�OBC as:

tan δ1 = l

R1 − w

2

(4.203)

tan δ2 = l

R1 + w

2

(4.204)

Eliminating R1

R1 = 1

2
w + l

tan δ1
= −1

2
w + l

tan δ2
(4.205)

provides us with the static steering condition (4.201). The static steering condition
is better defined by inner and outer steer angles.

cot δo − cot δi = w

l
(4.206)
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β βw

d

R

Fig. 4.18 Illustration of a trapezoidal steering mechanism

To find the vehicle’s turning radius ρ, we look at the equivalent bicycle model,
shown in Fig. 4.17. The radius of rotation ρ is perpendicular to the vehicle’s velocity
vector v at the mass center C.

ρ2 = a2
2 + R2

1 (4.207)

cot δ = R1

l
= 1

2
(cot δi + cot δo) (4.208)

and therefore,

ρ =
√

a2
2 + l2 cot2 δ (4.209)

A device that provides steering according to the static condition (4.201) is called
static steering mechanism, Ackerman mechanism, or Ackerman geometry. There
is no practical mechanical linkage steering mechanism that can provide the static
steering condition perfectly for every angle. However, we may design a multi-bar
linkages to work close to the static condition and be exact at few angles. The ideal
solution, however, would be steering by wires and controlling every wheel’s steer
angle independently. �
Example 108 Trapezoidal steering mechanism.

The simplest practical steering mechanism that provides more steer angle to the
inner wheel than the outer wheel is the trapezoidal steering mechanism as shown
in Fig. 4.18. The trapezoidal mechanism is a symmetric four-bar linkage that has
been used for more than 100 years as a steering connection. The mechanism is
indicated by two parameters: angle β and offset arm length d. A steered position
of the trapezoidal mechanism is shown in Fig. 4.19 to illustrate the inner and outer
steer angles δi and δo (Genta 2007; Soni 1974; Hunt 1978).
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Fig. 4.19 A trapezoidal steering mechanism in steered position
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Fig. 4.20 Trapezoidal steering triangle ABC

The relationship between the inner and outer steer angles of a trapezoidal steering
mechanism is given by:

sin (β + δi) + sin (β − δo)

= w

d
−
√(w

d
− 2 sin β

)2 − (cos (β − δo) − cos (β + δi))
2 (4.210)

To prove this equation, we examine Fig. 4.20. In the triangle �ABC we can write

(w − 2d sin β)2 = (w − d sin (β − δo) − d sin (β + δi))
2

+ (d cos (β − δo) − d cos (β + δi))
2 (4.211)

and derive Eq. (4.210) with some manipulation.
Usually the functionality of a steering mechanism is tested by comparing the

mechanism with the static steering condition (4.201). Figure 4.21 illustrates the
inner-outer relationship of Eq. (4.210) for l = 2.93 m ≈ 9.61 ft, w = 1.66 m ≈
5.45 ft and respectively for d = 0.4 m ≈ 1.3 ft and d = 0.2 m ≈ 0.65 ft. The
horizontal axis shows the inner steer angle and the vertical axis shows the outer
steer angle. It shows that for given l and w, a mechanism with 18 deg � β � 22 deg
is the best simulator of the Ackerman mechanism if δi < 50 deg.
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Fig. 4.21 Behavior of a trapezoidal steering mechanism, compared to the associated Ackerman
mechanism d = 0.4 m

Fig. 4.22 A positive four-wheel steering vehicle

4.3 Four-Wheel Steering

At very low speeds, the kinematic steering condition that the perpendicular lines to
each tire meet at one point must be applied. The intersection point is the turning
center of the vehicle (Jazar et al. 2012).

Figure 4.22 illustrates a positive four-wheel steering vehicle, and Fig. 4.23
illustrates a negative 4WS vehicle. In a positive 4WS configuration the front and
rear wheels steer in the same direction, and in a negative 4WS configuration the
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Fig. 4.23 A negative four-wheel steering vehicle

front and rear wheels steer opposite to each other. The kinematic condition between
the steer angles of a 4WS vehicle is

cot δof − cot δif = wf

l
− wr

l

cot δof − cot δif

cot δor − cot δir

(4.212)

where wf and wr are the front and rear tracks, δif and δof are the steer angles of the
front inner and outer wheels, δir and δor are the steer angles of the rear inner and
outer wheels, and l is the wheelbase of the vehicle. We may also use the following
more general equation for the kinematic condition between the steer angles of a
4WS vehicle

cot δf r − cot δf l = wf

l
− wr

l

cot δf r − cot δf l

cot δrr − cot δrl

(4.213)

where δf l and δf r are the steer angles of the front left and front right wheels, and
δrl and δrr are the steer angles of the rear left and rear right wheels.

If we define the steer angles according to the sign convention shown in Fig. 4.24,
then Eq. (4.213) expresses the kinematic condition for both positive and negative
4WS systems. Employing the wheel coordinate frame (xw, yw, zw), we define the
steer angle as the angle between the vehicle x-axis and the wheel xw-axis, measured
about the z-axis. Therefore, a steer angle is positive when the wheel is turned to the
left, and it is negative when the wheel is turned to the right.

Proof The slip-free condition for wheels of a 4WS in a turn requires that the
normal lines to the center of each tire-plane intersect at a common point. This is
the kinematic steering condition.
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Fig. 4.24 Sign convention for steer angles

Figure 4.25 illustrates a positive 4WS vehicle in a left turn. The inner wheels
are the left wheels that are closer to the turning center O. The longitudinal distance
between point O and the axles of the car are indicated by c1 and c2 measured in the
body coordinate frame.

The front inner and outer steer angles δif , δof may be calculated from the
triangles �OAE and �OBF , while the rear inner and outer steer angles δir , δor

may be calculated from the triangles �ODG and �OCH as follows.

tan δif = c1

R1 − wf

2

(4.214)

tan δof = c1

R1 + wf

2

(4.215)

tan δir = c2

R1 − wr

2

(4.216)

tan δor = c2

R1 + wr

2

(4.217)
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Fig. 4.25 Illustration of a positive four-wheel steering vehicle in a left turn

Eliminating R1

R1 = 1

2
wf + c1

tan δif

= −1

2
wf + c1

tan δof

(4.218)

between (4.214) and (4.215) provides the kinematic condition between the front
steering angles δif and δof .

cot δof − cot δif = wf

c1
(4.219)

Similarly, we may eliminate R1

R1 = 1

2
wr + c2

tan δir

= −1

2
wr + c2

tan δor

(4.220)

between (4.216) and (4.217) to provide the kinematic condition between the rear
steering angles δir and δor .

cot δor − cot δir = wr

c2
(4.221)
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Fig. 4.26 Illustration of a negative four-wheel steering vehicle in a left turn

Using the constraint

c1 − c2 = l (4.222)

we may combine Eqs. (4.219) and (4.221)

wf

cot δof − cot δif

− wr

cot δor − cot δir

= l (4.223)

to find the kinematic condition (4.212) between the steer angles of the front and rear
wheels for a positive 4WS vehicle.

Figure 4.26 illustrates a negative 4WS vehicle in a left turn. The inner wheels
are the left wheels that are closer to the turning center O. The front inner and outer
steer angles δif , δof can be calculated from the triangles �OAE and �OBF , while
the rear inner and outer steer angles δir , δor may be calculated from the triangles
�ODG and �OCH as follows.

tan δif = c1

R1 − wf

2

(4.224)

tan δof = c1

R1 + wf

2

(4.225)
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− tan δir = −c2

R1 − wr

2

(4.226)

− tan δor = −c2

R1 + wr

2

(4.227)

Eliminating R1

R1 = 1

2
wf + c1

tan δif

= −1

2
wf + c1

tan δof

(4.228)

between (4.224) and (4.225) provides us with the kinematic condition between the
front steering angles δif and δof .

cot δof − cot δif = wf

c1
(4.229)

Similarly, we may eliminate R1

R1 = 1

2
wr + c2

tan δir

= −1

2
wr + c2

tan δor

(4.230)

between (4.226) and (4.227) to provide the kinematic condition between the rear
steering angles δir and δor .

cot δor − cot δir = wr

c2
(4.231)

Using the constraint

c1 − c2 = l (4.232)

we may combine Eqs. (4.229) and (4.231)

wf

cot δof − cot δif

− wr

cot δor − cot δir

= l (4.233)

to find the kinematic condition (4.212) between the steer angles of the front and rear
wheels for a negative 4WS vehicle.

Using the sign convention of Fig. 4.24, we may re-examine Figs. 4.25 and 4.26.
When the steer angle of the front wheels are positive, then the steer angle of the rear
wheels are negative in a negative 4WS system, and are positive in a positive 4WS

system. Therefore, Eq. (4.213)

cot δf r − cot δf l = wf

l
− wr

l

cot δf r − cot δf l

cot δrr − cot δrl

(4.234)

expresses the kinematic condition for both positive and negative 4WS systems.
Similarly, the following equations can uniquely determine c1 and c2 regardless of
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the positive or negative 4WS system.

c1 = wf

cot δf r − cot δf l

(4.235)

c2 = wr

cot δrr − cot δrl

(4.236)

Four-wheel steering or all wheel steering AWS may be applied on vehicles to
improve steering response, increase the stability at high speed maneuvering, or
decrease turning radius at low speeds. A negative 4WS has shorter turning radius R

than a front-wheel steering (FWS) vehicle.
For a FWS vehicle, the perpendicular to the front wheels meet at a point on the

extension of the rear axle. However, for a 4WS vehicle, the intersection point can be
any point in the xy plane. The point is the turning center of the car and its position
depends on the steer angles of the wheels. Positive steering is also called same steer,
and a negative steering is also called counter steer. �
Example 109 Steering angles relationship.

Consider a car with the following dimensions.

l = 2.8 m wf = 1.35 m wr = 1.4 m (4.237)

The set of Eqs. (4.214)–(4.217) which are the same as (4.224)–(4.227) must be used
to find the kinematic steer angles of the wheels. Assume one of the angles, such as

δif = 15 deg (4.238)

is known as an input steer angle. To find the other steer angles, we need to know
the position of the turning center O. The position of the turning center can be
determined if we have one of the three parameters c1, c2, R1. To clarify this fact,
let us assume that the car is turning left and we know the value of δif . Therefore,
the perpendicular line to the front left wheel is known. The turning center can be
any point on this line. When we pick a point, the other wheels can be adjusted
accordingly.

The steer angles for a 4WS system is a set of four equations, each with two
variables.

δif = δif (c1, R1) δof = δof (c1, R1) (4.239)

δir = δir (c2, R1) δor = δor (c2, R1) (4.240)

If c1 and R1 are known, we will be able to determine the steer angles δif , δof , δir ,
and δor uniquely. However, a practical situation is when we have one of the steer
angles, such as δif , and we need to determine the required steer angle of the other
wheels, δof , δir , δor . It can be done if we know c1 or R1.
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The turning center is the curvature center of the path of motion. If the path of
motion is known, then at any point of the road, the turning center can be found in
the vehicle coordinate frame.

In this example, let us assume

R1 = 50 m (4.241)

therefore, from Eq. (4.214), we have

c1 =
(
R1 − wf

2

)
tan δif =

(
50 − 1.35

2

)
tan

π

12
= 13.217 m (4.242)

Because c1 > l and δif > 0 the vehicle is in a positive 4WS configuration and the
turning center is behind the rear axle of the car.

c2 = c1 − l = 13.217 − 2.8 = 10.417 m (4.243)

Now, employing Eqs. (4.215)–(4.217) provides us the other steer angles.

δof = tan−1 c1

R1 + wf

2

= tan−1 13.217

50 + 1.35

2
= 0.25513 rad ≈ 14.618 deg (4.244)

δir = tan−1 c2

R1 − wr

2

= tan−1 10.417

50 − 1.4

2
= 0.20824 rad ≈ 11.931 deg (4.245)

δor = tan−1 c2

R1 + wr

2

= tan−1 10.417

50 + 1.4

2
= 0.20264 rad ≈ 11.61 deg (4.246)

Example 110 Position of the turning center.
The turning center of a vehicle, in the vehicle body coordinate frame, is at a point

with coordinates (xO, yO). The coordinates of the turning center are

xO = −a2 − c2 = −a2 − wr

cot δor − cot δir

(4.247)

yO = R1 =
l + 1

2

(
wf tan δif − wr tan δir

)

tan δif − tan δir

(4.248)
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Equation (4.248) is found by substituting c1 and c2 from (4.228) and (4.230)
in (4.232), and defining yO in terms of δif and δir . It is also possible to define
yO in terms of δof and δor .

Equations (4.247) and (4.248) can be used to define the coordinates of the turning
center for both positive and negative 4WS systems.

As an example, let us examine a car with

l = 2.8 m wf = 1.35 m wr = 1.4 m a1 = a2 (4.249)

δif = 0.26180 rad ≈ 15 deg

δof = 0.25513 rad ≈ 14.618 deg

δir = 0.20824 rad ≈ 11.931 deg

δor = 0.20264 rad ≈ 11.61 deg (4.250)

and find the position of the turning center.

xO = −a2 − wr

cot δor − cot δir

= −2.8

2
− 1.4

cot 0.20264 − cot 0.20824
= −11.802 m (4.251)

yO =
l + 1

2

(
wf tan δif − wr tan δir

)

tan δif − tan δir

=
2.8 + 1

2
(1.35 tan 0.26180 − 1.4 tan 0.20824)

tan 0.26180 − tan 0.20824
= 50.011 m (4.252)

The position of turning center for a FWS vehicle is at

xO = −a2 yO = 1

2
wf + l

tan δif

(4.253)

and for a RWS vehicle is at

xO = a1 yO = 1

2
wr + l

tan δir

(4.254)

Example 111 Curvature radius.
Consider a road as a path of motion that is expressed mathematically by a

function Y = f (X), in a global coordinate frame. The radius of curvature Rκ of
such a road at point X is
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Rκ =
(
1 + Y ′2)3/2

Y ′′ (4.255)

where

Y ′ = dY

dX
Y ′′ = d2Y

dX2 (4.256)

Consider a road with a given equation

Y = X2

200
Y ′ = X

100
Y ′′ = 1

100
(4.257)

where both X and Y are measured in meter [ m]. The curvature radius of the road is.

Rκ =
(
1 + Y ′2)3/2

Y ′′ = 100

(
1

10,000
X2 + 1

)3/2

(4.258)

At X = 30 m, we have

Y = 9

2
m Y ′ = 3

10
Y ′′ = 1

100
m−1 (4.259)

and therefore,

Rκ = 113.80 m (4.260)

Example 112 Autodriver.
Consider a car at the global position (X, Y ) that is moving on a road, as shown in

Fig. 4.27. Point C indicates the center of curvature of the road at the car’s position.
The center of curvature of the road is supposed to be the turning center of the car at
the instant of consideration (Jazar 2010b; Bourmistrova et al. 2011).

There is a global coordinate frame G attached to the ground, and a vehicle
coordinate frame B attached to the car at its mass center C. The z and Z axes are
parallel and the angle ψ indicates the angle between the X and x axes. If (XC, YC)

are the coordinates of C in the global coordinate frame G, then the coordinates of
C in B would be

BrC = Rz,ψ

(
GrC − Gd

)
(4.261)

⎡
⎣

xC

yC

0

⎤
⎦ =

⎡
⎣

cos ψ sin ψ 0
− sin ψ cos ψ 0

0 0 1

⎤
⎦
⎛
⎝
⎡
⎣

XC

YC

0

⎤
⎦−

⎡
⎣

X

Y

0

⎤
⎦
⎞
⎠
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Fig. 4.27 Illustration of a car that is moving on a road at the point that O is the center of curvature

=
⎡
⎣

(XC − X) cos ψ + (YC − Y ) sin ψ

(YC − Y ) cos ψ − (XC − X) sin ψ

0

⎤
⎦ (4.262)

Having coordinates of C in the vehicle coordinate frame is enough to determine R1,
c1, and c2.

R1 = yC = (YC − Y ) cos ψ − (XC − X) sin ψ (4.263)

c2 = −a2 − xC = − (XC − X) cos ψ − (YC − Y ) sin ψ − a2 (4.264)

c1 = c2 + l = − (XC − X) cos ψ − (YC − Y ) sin ψ + a1 (4.265)

Then, the required steer angles of the wheels can be uniquely determined by
Eqs. (4.214)–(4.217).

It is possible to define a road by a mathematical function Y = f (X) in a global
coordinate frame. At any point X of the road, the position of the vehicle and the
position of the turning center in the vehicle coordinate frame can be determined.
The required steer angles can accordingly be set to keep the vehicle on the road
and run the vehicle in the correct direction. This principle may be used to design an
autodriver.

As an example, let us consider a car that is moving tangent to a road with a given
equation

Y = X2

200
(4.266)
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where both X and Y are measured in meter [ m]. At X = 30 m, we have Y = 4.5 m
and Y ′ = 0.3, Y ′′ = 0.01, and therefore

ψ = arctan
dY

dX
= arctan 0.3 = 0.29146 rad ≈ 16.7 deg (4.267)

The curvature radius at (30, 4.5), from Example 111, is

Rκ = 113.80 m (4.268)

The tangent line to the road is

Y − 4.5 = 0.3 (X − 30) (4.269)

and therefore the perpendicular line to the road is

Y − 4.5 = −10

3
(X − 30) (4.270)

Having Rκ = 113.80 m,

Rκ =
(
1 + Y ′2)3/2

Y ′′ =
(
1 + 0.32

)3/2

0.01
= 113.8 m (4.271)

we have

(X − XC)2 + (Y − YC)2 = R2
κ (4.272)

and we can find the global coordinates of the curvature center (XC, YC) at the proper
intersection of the line (4.270) and circle (4.272).

XC = −2.7002 m YC = 113.5 m (4.273)

The coordinates of the turning center in the body frame would then be

⎡
⎣

xC

yC

0

⎤
⎦ =

⎡
⎣

cos ψ sin ψ 0
− sin ψ cos ψ 0

0 0 1

⎤
⎦
⎛
⎝
⎡
⎣

XC

YC

0

⎤
⎦−

⎡
⎣

X

Y

0

⎤
⎦
⎞
⎠ =

⎡
⎣

0
113.8

0

⎤
⎦ (4.274)

Example 113 Curvature equation.
Consider a vehicle that is moving on a path Y = f (X) with velocity v and

acceleration a. The curvature κ = 1/R of the path that the vehicle is moving on is

κ = 1

R
= an

v2 (4.275)
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where an is the normal component of the acceleration a. The normal component an

is toward the rotation center and is equal to

an =
∣∣∣v
v

× a
∣∣∣ = 1

v
|v × a|

= 1

v
(aY vX − aXvY ) = Ÿ Ẋ − ẌẎ√

Ẋ2 + Ẏ 2
(4.276)

and therefore,

κ = Ÿ Ẋ − ẌẎ(
Ẋ2 + Ẏ 2

)3/2 = Ÿ Ẋ − ẌẎ

Ẋ3

1
(

1 + Ẏ 2

Ẋ2

)3/2 (4.277)

However,

Y ′ = dY

dX
= Ẏ

Ẋ
(4.278)

Y ′′ = d2Y

dX2 = d

dx

(
Ẏ

Ẋ

)
= d

dt

(
Ẏ

Ẋ

)
1

Ẋ
= Ÿ Ẋ − ẌẎ

Ẋ3
(4.279)

and we find the equation for the curvature of the path and radius of the curvature
based on the equation of the path (Jazar 2011).

κ = Y ′′
(
1 + Y ′2)3/2 (4.280)

Rκ = 1

κ
=
(
1 + Y ′2)3/2

Y ′′ =
(
Ẋ2 + Ẏ 2

)3/2

Ÿ Ẋ − ẌẎ
(4.281)

As an example, let us consider a road with a given equation

Y = X2

200
(4.282)

At a point with X = 30 m, we have

Y = 9

2
m Y ′ = 3

10
Y ′′ = 1

100
m−1 (4.283)
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and therefore,

κ = 8.7874 × 10−3 m−1 Rκ = 113.80 m (4.284)

Example 114 Center of curvature in global coordinate frame.
Assume a planar road being expressed by a parametric equation in a global frame

as

X = X (t) Y = Y (t) (4.285)

The perpendicular line to the road at a point (X0, Y0) is:

Y = Y0 − (X − X0) / tan θ (4.286)

tan θ = dY

dX
= dY/dt

dX/dt
= Ẏ

Ẋ
(4.287)

The curvature center (XC, YC) is on the perpendicular line and is at a distance Rκ

from the point (X, Y ) = (X0, Y0). Therefore,

XC = X − Ẏ
(
Ẋ2 + Ẏ 2

)

Ÿ Ẋ − ẌẎ
YC = Y + Ẋ

(
Ẋ2 + Ẏ 2

)

Ÿ Ẋ − ẌẎ
(4.288)

Employing Eq. (4.274), the curvature center in the body coordinate frame of a
moving vehicle that its x-axis makes the angle ψ with the global X-axis is

xC = (XC − X) cos ψ + (YC − Y ) sin ψ

= (Ẋ sin ψ − Ẏ cos ψ
) Ẋ2 + Ẏ 2

Ÿ Ẋ − ẌẎ
(4.289)

yC = (YC − Y ) cos ψ − (XC − X) sin ψ

= (Ẋ cos ψ + Ẏ sin ψ
) Ẋ2 + Ẏ 2

Ÿ Ẋ − ẌẎ
(4.290)

As an example, the global coordinate frame of a parabolic path

X = t Y = t2

200
(4.291)
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would be

XC = X − Ẋ2 + Ẏ 2

Ÿ Ẋ − ẌẎ
Ẏ = 2.5244 × 10−29t − 0.0001t3 (4.292)

YC = Y + Ẋ2 + Ẏ 2

Ÿ Ẋ − ẌẎ
Ẋ = 0.015 t2 + 100 (4.293)

Example 115 An elliptic path and curvature center.
Consider an elliptic path with equations

X = a cos t Y = b sin t (4.294)

a = 100 m b = 65 m (4.295)

The curvature center of the road in the global coordinate frame is at

XC = X − Ẏ
(
Ẋ2 + Ẏ 2

)

Ÿ Ẋ − ẌẎ
= a2 − b2

a
cos3 t = 231

4
cos3 t (4.296)

YC = Y + Ẋ
(
Ẋ2 + Ẏ 2

)

Ÿ Ẋ − ẌẎ
= −a2 − b2

b
sin3 t = −1155

13
sin3 t (4.297)

Therefore, the curvature center in the vehicle coordinate frame would be

xC = (Ẋ sin ψ − Ẏ cos ψ
) Ẋ2 + Ẏ 2

Ÿ Ẋ − ẌẎ

=
(

a2 − b2

a
cos3 t − a cos t

)
cos ψ

−
(

a2 − b2

b
sin3 t + b sin t

)
sin ψ (4.298)

yC = (Ẋ cos ψ + Ẏ sin ψ
) Ẋ2 + Ẏ 2

Ÿ Ẋ − ẌẎ

= −
(

a2 − b2

a
sin3 t + b sin t

)
cos ψ

−
(

a2 − b2

a
cos3 t − a cos t

)
sin ψ (4.299)

Figure 4.28 illustrates the elliptic path and its curvature center.
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Fig. 4.28 An elliptic path and its curvature center

4.4 Chapter Summary

Passenger cars are developed to move on smooth paved pre-designed roads. To keep
vehicles on road, we need a steering mechanism to provide steer angle as an input to
the vehicle dynamic system. Ideally, all wheels of a vehicle should be able to steer
independently such that the vehicle follows the desired path at the given speed. In
this chapter we review steer and road dynamics.

Roads are made by continuously connecting straight and circular paths by proper
transition turning sections. Having a continuous and well-behaved curvature is a
necessary criterion in road design. The clothoid spiral is the best smooth transition
connecting curve in road design which is expressed by parametric equations called
Fresnel Integrals. The curvature of the clothoid curve varies linearly with arc length
and this linearity makes clothoid the smoothest driving transition curve. Having
a road with linearly increasing curvature is equivalent to entering the path with a
steering wheel at the neutral position and turning the steering wheel with a constant
angular velocity. This is a desirable and natural driving action.

Ideally, perpendicular lines to all wheels of a vehicle intersect at a single point
called the kinematic center of rotation. When a vehicle is moving very slowly, we
may assume the velocity vector of each wheel is in their tire plane. Therefore, the
perpendicular lines to the tire planes intersect at the kinematic center of rotation
of the vehicle, somewhere on the rear axis. However, when the vehicle moves
faster, the actual center of rotation will move away from the kinematic center of
rotation. Steering mechanism relates the left and right steerable wheels and provide
a mathematical relationship to calculate all steer angles based on the angle of the
steering wheel or the steer angle one of the wheels.
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4.5 Key Symbols

4WS Four-wheel-steering
a, b, c, d Lengths of the links of a four-bar linkage
ai Distance of the axle number i from the mass center
A,B,C Input angle parameters of a four-bar linkage
AWS All-wheel-steering
b1 Distance of the hinge point from rear axle
b2 Distance of trailer axle from the hinge point
c Stability index of a trailer motion
c1 Longitudinal distance of turn center and front axle
c2 Longitudinal distance of turn center and rear axle
cs 4WS factor
C Mass center, curvature center
C1, C2, · · · Constants of integration
d Arm length in trapezoidal steering mechanism
e Error
e Length of the offset arm
FWS Front-wheel-steering
g Overhang distance
J Link parameters of a four-bar linkage
l Wheelbase
ls Steering length
n Number of increments
O Center of rotation in a turn, curvature center
p Perturbation in u

q Perturbation in v

r Yaw velocity of a turning vehicle
r Position vector of a car at the hinge
R Radius of rotation at mass center
R1 Radius of rotation at the center of the rear axle for FWS

R1 Horizontal distance of O and the center of axles
Rc Trailer’s radius of rotation
Rt Radius of rotation at the center of the trailer axle
Rw Radius of the rear wheel
Rκ Curvature radius
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RWS Rear wheel steering
s Position vector of a trailer at the axle center
t Time
u Temporary variable in car-trailer analysis
uR Steering rack translation
û Unit vector
v ≡ ẋ, v Vehicle velocity, temporary variable in car-trailer analysis
vri Speed of the inner rear wheel
vro Speed of the outer rear wheel
w Track
wf Front track
wr Rear track
x, y, z, x Displacement
z = r − s Position vector of a trailer relative to the car

β Arm angle in trapezoidal steering mechanism
δ cot-average of the inner and outer steer angles
δ1 = δf l Front left wheel steer angle
δ2 = δf r Front right wheel steer angle
δAc Steer angle based on Ackerman condition
δf l Front left wheel steer angle
δf r Front right wheel steer angle
δi Inner wheel
δrl Rear left wheel steer angle
δrr Rear right wheel steer angle
δo Outer wheel
δS Steer command
� = δ2 − δAc Steer angle difference
θ Angle between trailer and vehicle longitudinal axes
κ Curvature of a road
λ Eigenvalue
ω Angular velocity
ωi = ωri Angular velocity of the rear inner wheel
ωo = ωro Angular velocity of the rear outer wheel
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Fig. 4.29 Two straight roads need to be connected. The connecting clothoids must meet at a given
middle point

Exercises

1. Radius of rotation.
In Fig. 4.16 show that the mass center of the steered vehicle will turn on a circle
with radius ρ,

ρ =
√

a2
2 + l2 cot2 δ (4.300)

2. 90 deg connection to straight roads.
In Fig. 4.29, connect road A at point (40, 0) m to road B at point (100, 40) m. The
connecting road will be made by two pieces of clothoids. The first one begins
from road A to a designed point at a certain slop angle, and the second piece
starts from the middle point and ends to the road B. Assume the middle point is:

(a) point C at (90, 10) m and at slope 45 deg.
(b) point D at (80, 10) m and at slope 35 deg.

3. Radius of rotation.
Consider a two-axle truck that is offered in different wheelbases.

l = 109 in l = 132.5 in l = 150.0 in l = 176.0 in (4.301)



4.5 Key Symbols 349

Fig. 4.30 Two circular roads need to be connected. The connecting clothoids must meet at a given
middle point

If the front track of the vehicles is

w = 70 in (4.302)

and a1 = a2, calculate the radius of rotations for δ = 30 deg.
4. Connecting road with given a and κ .

Assume a = 200. determine the clothoid connecting road from point (0, 0) m to
a point at which the slope is as below. Determine the coordinate of the end point,
slope, and coordinate of the curvature center of the road at the end point.

(a) κ = 0.05
(b) κ = 0.01
(c) κ = 0.02

5. 90 deg connection to circular roads.
In Fig. 4.30, assume the road A and B to be circular path with given center of
rotation. Connect road A at point (40, 0) m to road B at point (100, 40) m. The
connecting road will be made by two pieces of clothoids. The first begins from
road A to a designed point at a certain slop angle, and the second piece starts
from the middle point and ends to the road B. Assume the middle point is:

(a) point C at (90, 10) m and at slope 45 deg.
(b) point D at (80, 10) m and at slope 35 deg.
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Fig. 4.31 A straight load needs to be connected to a circular road

6. Using design chart.
Use the design chart to connect a straight road to a circular path with

(a) radius R = 100 m for a = 200.
(b) radius R = 100 m for a = 100.
(c) radius R = 200 m for a = 100.
(d) radius R = 200 m for a = 200.

7. Bank angle of the road.
The straight road A in Fig. 4.31 will be connected to road B using clothoid
connecting curve. Determine the required clothoid road.

8. Trapezoidal steering mechanism.
Derive the steering equations for the trapezoidal steering mechanism of Fig. 4.19
if the d link is unequal for left and right, df = 0.9dr .



Appendix A
Trigonometric Formulas

Definitions in Terms of Exponentials

cos z = eiz + e−iz

2
(A.1)

sin z = eiz − e−iz

2i
(A.2)

tan z = eiz − e−iz

i
(
eiz + e−iz

) (A.3)

eiz = cos z + i sin z (A.4)

e−iz = cos z − i sin z (A.5)

Angle Sum and Difference
sin(α ± β) = sin α cos β ± cos α sin β (A.6)

cos(α ± β) = cos α cos β ∓ sin α sin β (A.7)

tan(α ± β) = tan α ± tan β

1 ∓ tan α tan β
(A.8)

cot(α ± β) = cot α cot β ∓ 1

cot β ± cot α
(A.9)
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Symmetry
sin(−α) = − sin α (A.10)

cos(−α) = cos α (A.11)

tan(−α) = − tan α (A.12)

Multiple Angles

sin(2α) = 2 sin α cos α = 2 tan α

1 + tan2 α
(A.13)

cos(2α) = 2 cos2 α − 1 = 1 − 2 sin2 α = cos2 α − sin2 α (A.14)

tan(2α) = 2 tan α

1 − tan2 α
(A.15)

cot(2α) = cot2 α − 1

2 cot α
(A.16)

sin(3α) = −4 sin3 α + 3 sin α (A.17)

cos(3α) = 4 cos3 α − 3 cos α (A.18)

tan(3α) = − tan3 α + 3 tan α

−3 tan2 α + 1
(A.19)

sin(4α) = −8 sin3 α cos α + 4 sin α cos α (A.20)

cos(4α) = 8 cos4 α − 8 cos2 α + 1 (A.21)

tan(4α) = −4 tan3 α + 4 tan α

tan4 α − 6 tan2 α + 1
(A.22)

sin(5α) = 16 sin5 α − 20 sin3 α + 5 sin α (A.23)

cos(5α) = 16 cos5 α − 20 cos3 α + 5 cos α (A.24)

sin(nα) = 2 sin((n − 1)α) cos α − sin((n − 2)α) (A.25)
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cos(nα) = 2 cos((n − 1)α) cos α − cos((n − 2)α) (A.26)

tan(nα) = tan((n − 1)α) + tan α

1 − tan((n − 1)α) tan α
(A.27)

Half Angle

cos
(α

2

)
= ±

√
1 + cos α

2
(A.28)

sin
(α

2

)
= ±

√
1 − cos α

2
(A.29)

tan
(α

2

)
= 1 − cos α

sin α
= sin α

1 + cos α
= ±

√
1 − cos α

1 + cos α
(A.30)

sin α = 2 tan α
2

1 + tan2 α
2

(A.31)

cos α = 1 − tan2 α
2

1 + tan2 α
2

(A.32)

Powers of Functions

sin2 α = 1

2
(1 − cos(2α)) (A.33)

sin α cos α = 1

2
sin(2α) (A.34)

cos2 α = 1

2
(1 + cos(2α)) (A.35)

sin3 α = 1

4
(3 sin(α) − sin(3α)) (A.36)

sin2 α cos α = 1

4
(cos α − 3 cos(3α)) (A.37)

sin α cos2 α = 1

4
(sin α + sin(3α)) (A.38)



354 A Trigonometric Formulas

cos3 α = 1

4
(cos(3α) + 3 cos α)) (A.39)

sin4 α = 1

8
(3 − 4 cos(2α) + cos(4α)) (A.40)

sin3 α cos α = 1

8
(2 sin(2α) − sin(4α)) (A.41)

sin2 α cos2 α = 1

8
(1 − cos(4α)) (A.42)

sin α cos3 α = 1

8
(2 sin(2α) + sin(4α)) (A.43)

cos4 α = 1

8
(3 + 4 cos(2α) + cos(4α)) (A.44)

sin5 α = 1

16
(10 sin α − 5 sin(3α) + sin(5α)) (A.45)

sin4 α cos α = 1

16
(2 cos α − 3 cos(3α) + cos(5α)) (A.46)

sin3 α cos2 α = 1

16
(2 sin α + sin(3α) − sin(5α)) (A.47)

sin2 α cos3 α = 1

16
(2 cos α − 3 cos(3α) − 5 cos(5α)) (A.48)

sin α cos4 α = 1

16
(2 sin α + 3 sin(3α) + sin(5α)) (A.49)

cos5 α = 1

16
(10 cos α + 5 cos(3α) + cos(5α)) (A.50)

tan2 α = 1 − cos(2α)

1 + cos(2α)
(A.51)

Products of sin and cos

cos α cos β = 1

2
cos(α − β) + 1

2
cos(α + β) (A.52)
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sin α sin β = 1

2
cos(α − β) − 1

2
cos(α + β) (A.53)

sin α cos β = 1

2
sin(α − β) + 1

2
sin(α + β) (A.54)

cos α sin β = 1

2
sin(α + β) − 1

2
sin(α − β) (A.55)

sin(α + β) sin(α − β) = cos2 β − cos2 α = sin2 α − sin2 β (A.56)

cos(α + β) cos(α − β) = cos2 β + sin2 α (A.57)

Sum of Functions

sin α ± sin β = 2 sin
α ± β

2
cos

α ± β

2
(A.58)

cos α + cos β = 2 cos
α + β

2
cos

α − β

2
(A.59)

cos α − cos β = −2 sin
α + β

2
sin

α − β

2
(A.60)

tan α ± tan β = sin(α ± β)

cos α cos β
(A.61)

cot α ± cot β = sin(β ± α)

sin α sin β
(A.62)

sin α + sin β

sin α − sin β
= tan α+β

2

tan α−+β
2

(A.63)

sin α + sin β

cos α − cos β
= cot

−α + β

2
(A.64)

sin α + sin β

cos α + cos β
= tan

α + β

2
(A.65)

sin α − sin β

cos α + cos β
= tan

α − β

2
(A.66)
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Trigonometric Relations

sin2 α − sin2 β = sin(α + β) sin(α − β) (A.67)

cos2 α − cos2 β = − sin(α + β) sin(α − β) (A.68)



Appendix B
Unit Conversions

General Conversion Formulas

Na mb sc ≈ 4.448a × 0.3048b × lba ftb sc

≈ 4.448a × 0.0254b × lba inb sc

lba ftb sc ≈ 0.2248a × 3.2808b × Na mb sc

lba inb sc ≈ 0.2248a × 39.37b × Na mb sc

Conversion Factors

Acceleration

1 ft/s2 ≈ 0.3048 m/s2 1 m/ s2 ≈ 3.2808 ft/s2

Angle
1 deg ≈ 0.01745 rad 1 rad ≈ 57.307 deg
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Area

1 in2 ≈ 6.4516 cm2 1 cm2 ≈ 0.155 in2

1 ft2 ≈ 0.09290304 m2 1 m2 ≈ 10.764 ft2

1 acre ≈ 4046.86 m2 1 m2 ≈ 2.471 × 10−4 acre
1 acre ≈ 0.4047 ha 1 ha ≈ 2.471 acre

Damping

1 N s/m ≈ 6.85218 × 10−2 lb s/ ft 1 lb s/ft ≈ 14.594 N s/ m
1 N s/m ≈ 5.71015 × 10−3 lb s/ in 1 lb s/in ≈ 175.13 N s/ m

Energy and Heat

1 Btu ≈ 1055.056 J 1 J ≈ 9.4782 × 10−4 Btu
1 cal ≈ 4.1868 J 1 J ≈ 0.23885 cal
1 kW h ≈ 3600 kJ 1 MJ ≈ 0.27778 kW h
1 ft lbf ≈ 1.355818 J 1 J ≈ 0.737562 ft lbf

Force
1 lb ≈ 4.448222 N 1 N ≈ 0.22481 lb

Fuel Consumption

1 l/100 km ≈ 235.214583 mi/gal 1 mi/gal ≈ 235.214583 l/100 km
1 l/100 km = 100 km/l 1 km/l = 100 l/100 km
1 mi/gal ≈ 0.425144 km/l 1 km/l ≈ 2.352146 mi/gal
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Length

1 in ≈ 25.4 mm 1 cm ≈ 0.3937 in
1 ft ≈ 30.48 cm 1 m ≈ 3.28084 ft
1 mi ≈ 1.609347 km 1 km ≈ 0.62137 mi

Mass

1 lb ≈ 0.45359 kg 1 kg ≈ 2.204623 lb
1 slug ≈ 14.5939 kg 1 kg ≈ 0.068522 slug
1 slug ≈ 32.174 lb 1 lb ≈ 0.03.1081 slug

Moment and Torque

1 lb ft ≈ 1.35582 N m 1 N m ≈ 0.73746 lb ft
1 lb in ≈ 8.85075 N m 1 N m ≈ 0.11298 lb in

Mass Moment

1 lb ft2 ≈ 0.04214 kg m2 1 kg m2 ≈ 23.73 lb ft2

Power

1 Btu/h ≈ 0.2930711 W 1 W ≈ 3.4121 Btu/h
1 hp ≈ 745.6999 W 1 kW ≈ 1.341 hp
1 hp ≈ 550 lb ft/s 1 lb ft/ s ≈ 1.8182 × 10−3 hp
1 lb ft/h ≈ 3.76616 × 10−4 W 1 W ≈ 2655.2 lb ft/h
1 lb ft/min ≈ 2.2597 × 10−2 W 1 W ≈ 44.254 lb ft/min
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Pressure and Stress

1 lb/in2 ≈ 6894.757 Pa 1 MPa ≈ 145.04 lb/in2

1 lb/ft2 ≈ 47.88 Pa 1 Pa ≈ 2.0886 × 10−2 lb/ft2

1 Pa ≈ 0.00001 atm 1 atm ≈ 101,325 Pa

Stiffness

1 N/m ≈ 6.85218 × 10−2 lb/ft 1 lb/ft ≈ 14.594 N/m
1 N/m ≈ 5.71015 × 10−3 lb/in 1 lb/in ≈ 175.13 N/m

Temperature

◦C = ( ◦F − 32)/1.8
◦F = 1.8 ◦C + 32

Velocity

1 mi/h ≈ 1.60934 km/h 1 km/ h ≈ 0.62137 mi/h
1 mi/h ≈ 0.44704 m/s 1 m/s ≈ 2.2369 mi/h
1 ft/s ≈ 0.3048 m/s 1 m/s ≈ 3.2808 ft/s
1 ft/min ≈ 5.08 × 10−3 m/s 1 m/s ≈ 196.85 ft/min

Volume

1 in3 ≈ 16.39 cm3 1 cm3 ≈ 0.0061013 in3

1 ft3 ≈ 0.02831685 m3 1 m3 ≈ 35.315 ft3

1 gal ≈ 3.785 l 1 l ≈ 0.2642 gal
1 gal ≈ 3785.41 cm3 1 l ≈ 1000 cm3



References

Abe, M. (2009). Vehicle handling dynamics: Theory and application. Oxford, UK: Butterworth
Heinemann.

Andrzejewski, R., & Awrejcewicz, J. (2005). Nonlinear dynamics of a wheeled vehicle. New York:
Springer.

Beatty, M. F. (1986). Principles of engineering mechanics: Kinematics—the geometry of motion
(Vol. 1). New York: Plenum Press.

Bourmistrova, A., Simic, M., Hoseinnezhad, R., & Jazar, R. N. (2011). Autodriver algorithm.
Journal of Systemics, Cybernetics and Informatics, 9(1), 56–66.

Bottema, O., & Roth, B. (1979). Theoretical kinematics. Amsterdam: North-Holland Publication.
Clark, S. K. (1971). Mechanics of pneumatic tires. Washington, DC: US Government Printing

Office.
Cossalter, V. (2002). Motorcycle dynamics. Greendale, WI: Race Dynamic Publishing.
Dai, Q. V., Marzbani H., Fard M., & Jazar, R. N. (2016). Caster–Camber relationship in vehicles.

In R. N. Jazar & L. Dai (Eds.), Nonlinear approaches in engineering applications (Vol. 4). New
York: Springer.

Dai, Q. V., Jazar, R. N., & Fard M. (2017a). Kinematics of a steering tyre with adjustable caster.
International Journal of Vehicle Design, 24(2), 1741–5314. https://doi.org/10.1504/IJVD.2017.
085448

Dai, Q. V., Marzbani H., Fard M., & Jazar, R. N. (2017b). Variable caster steering in vehicle
dynamics. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of
Automobile Engineering. https://doi.org/10.1177/0954407017728650

Dieter, S., Hiller, M., & Bardini, R. (2018). Vehicle dynamics, modeling and simulation (2nd ed.).
Berlin: Springer.

Dixon, J. C. (1996). Tire, suspension and handling. Warrendale, PA: SAE.
Dukkipati, R. V., Pang, J. Qatu, M. S., Sheng, G., & Shuguang, Z. (2008). Road vehicle dynamics.

Warrendale, PA: SAE.
Ellis, J. R. (1994). Vehicle handling kinematics. London: Mechanical Engineering Publications.
Fenton, J. (1996). Handbook of vehicle design analysis. Warrendale, PA: Society of Automotive

Engineers International.
Genta, G. (2007). Motor vehicle dynamics, modeling and simulation. Singapore: World Scientific.
Genta, G., & Morello, L. (2009a). The automotive chassis: Components design (Vol. 1). New York:

Springer.
Genta, G., & Morello, L. (2009b). The automotive chassis: System design (Vol. 2). New York:

Springer.

© Springer Nature Switzerland AG 2019
R. N. Jazar, Advanced Vehicle Dynamics,
https://doi.org/10.1007/978-3-030-13062-6

361

https://doi.org/10.1504/IJVD.2017.085448
https://doi.org/10.1504/IJVD.2017.085448
https://doi.org/10.1177/09544 07017728650
https://doi.org/10.1007/978-3-030-13062-6


362 References

Goldstein, H., Poole, C., & Safko, J. (2002). Classical mechanics (3rd ed.). New York: Addison
Wesley.

Haney, P. (2003). The racing and high-performance tire. Warrendale, PA: SAE.
Hartman, J. C., Marzbani, H., Alam, F., Fard, M., & Jazar, R. N. (2018). Friction coefficient of

pneumatic tires and Bitumen roads. In L. Dai & R. N. Jazar (Eds.), Nonlinear approaches in
engineering applications energy: Vibrations, and modern applications. New York: Springer.

Hunt, K. H. (1978). Kinematic geometry of mechanisms. London: Oxford University Press.
Jazar, R. N. (2010a). Theory of applied robotics: Kinematics, dynamics, and control (2nd ed.). New

York: Springer.
Jazar, R. N. (2010b). Mathematical theory of autodriver for autonomous vehicles. Journal of

Vibration and Control, 16(2), 253–279.
Jazar, R. N. (2011). Advanced dynamics: Rigid body, multibody, and aerospace applications. New

York: Wiley.
Jazar, R. N. (2012). Derivative and coordinate frames. Journal of Nonlinear Engineering, 1(1),

25–34. https://doi.org/10.1515/nleng-2012-0001
Jazar, R. N. (2013). Advanced vibrations: A modern approach. New York: Springer.
Jazar, R. N., Subic A., & Zhong N. (2012). Kinematics of a smart variable caster mechanism for a

vehicle steerable wheel. Vehicle System Dynamics, 50(12), 1861–1875.
Jazar, R. N. (2017). Vehicle dynamics: Theory and application (3rd ed.). New York: Springer.
Karnopp, D. (2013). Vehicle dynamics, stability, and control (2nd ed.). London, UK: CRC Press.
MacMillan, W. D. (1936). Dynamics of rigid bodies. New York: McGraw-Hill.
Marzbani, H., & Jazar, R. N. (2015). Steady-state vehicle dynamics. In L. Dai & R. N. Jazar (Eds.),

Nonlinear approaches in engineering applications (Vol. 3). New York: Springer.
Marzbani, H., Simic, M., Fard, M., & Jazar, R.N. (2015). Better road design for autonomous

vehicles using clothoids. In E. Damiani, R. Howlett, L. Jain, L. Gallo & G. De Pietro
(Eds.), Intelligent interactive multimedia systems and services. Smart innovation, systems and
technologies (Vol. 40). Cham: Springer.

Mason, M. T. (2001). Mechanics of robotic manipulation. Cambridge, MA: MIT Press.
Milliken, W. F., & Milliken, D. L. (1995). Race car vehicle dynamics. Warrendale, PA: SAE.
Milliken, W. F., & Milliken, D. L. (2002). Chassis design. Warrendale, PA: SAE.
Pacejka, H. (2012). Tire and vehicle dynamics (3rd ed.). Oxford, UK: Butterworth-Heinemann.
Popp, K., & Schiehlen, W. (2010). Ground vehicle dynamics. Berlin: Springer.
Schiehlen, W. O. (1982). Dynamics of high-speed vehicles. Wien-New York: Springer.
Soni, A. H. (1974). Mechanism synthesis and analysis. New York: McGraw-Hill.
Yang, S., Chen, L., & Li, S. (2015). Dynamics of vehicle-road coupled system. Berlin: Springer.

https://doi.org/10.1515/nleng-2012-0001


Index

A
Ackerman

geometry, 328
mechanism, 328
steering, 178, 325, 328

Ackerman condition, 178, 325
Activation functions, 24
Aerodynamic force, 122
Aligning moment, 37, 38
Angle

body-wheel sideslip, 27
camber, 26
sideslip, 26
steering, 326
tire contact, 20
tireprint, 20
tire sideslip, 27
wheel-body sideslip, 27

Arc length, 314
Arctan function, 25
Attitude angle, 80

B
Bernoulli, Jacques, 325
B-frame, 2, 11
Bicycle model, 131, 143, 163, 172, 239

body force components, 131
coefficient matrix, 240
control variables, 147, 240, 241
coordinate frame, 78, 79
curvature response, 163
equations of motion, 239, 241

force system coefficients, 238
global sideslip angle, 136
input vector, 147, 241
kinematic steering, 138
neutral steer, 170
Newton–Euler equations, 144, 174
oversteer, 170
roll damping, 237, 238
roll stiffness, 237, 238
sideslip coefficient, 238
sideslip response, 164
stability factor, 170, 171
torque coefficient, 237
understeer, 170
vehicle velocity vector, 136

Body
frame, 1, 11

Body-wheel sideslip, 27

C
Camber

angle, 26, 43, 46
force, 43
moment, 46
stiffness, 44, 49
torque, 45
trail, 45
trust, 43

Cesàro, Ernesto, 325
C-frame, 2, 5, 7, 9, 11, 130
Circumferential slip, 18
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364 Index

Clothoid, 297
arc length, 297
curvature, 298
figure 8, 315, 319
history, 325
radius, 298
road, 297
scaling parameter, 297
sharpness, 300
tangent angle, 298

Combined force, 49, 63, 65, 68
approximate elliptic model, 68
camber effect, 68
diamond mode, 69
elliptic model, 50
experimental data, 65
velocity dependency, 63

Combined slip, 50
Contact patch, 2
Coordinate frame

body, 80
global, 80
tire, 12
vehicle, 12, 78, 80, 215
wheel, 12, 127
wheel-body, 12, 127

Cornering stiffness, 31
Cornu, Alfred, 325
Cornu spiral, 325
Crouse angle, 80
Cubic

function, 36
Curvature response, 163

D
Differential geometry

space curve, 314
Directional

cosine, 323
Dynamics

lateral force, 25
tire, 1, 13, 15, 17, 25, 31, 40–44, 48–50, 68,

69

E
Effective tire radius, 19
Ellipse condition, 58, 59
Euler, Leonard, 325

F
Force

aerodynamic, 122
bicycle roll vehicle, 227
gravitation, 124
longitudinal, 16
shear, 49
tangetial, 49
wind, 123

Force system
planar, 125
unsaturated, 139

Formula
Leibniz, 300

Four-wheel model
Newton–Euler equations, 260

Four wheel steering, 330
Four-wheel vehicle, 140

dynamics, 140
Newton–Euler equations, 260

Frame
body, 1, 11
tire, 1, 4, 5, 9, 11
wheel, 1, 5, 11
wheel-body, 1, 5, 9, 11

Fresnel Integrals, 297
Friction ellipse, 58
Front-wheel-steering, 325
Function

activation, 24
arctan, 25
cubic, 36
Heaviside, 15, 24
logistic, 24
nonlinear-saturation, 35
proportional-saturation, 16, 34
saturation, 15, 24, 25, 49
Sigmoid, 24
TV-shaped, 65

G
Global sideslip angle, 27, 136, 137
Gravitation force, 124
Grip, 39

H
Heading angle, 80
Heaviside function, 15, 24



Index 365

L
Lateral

tire force, 25
Lateral force

cubic model, 36
Lateral stiffness, 49
Leibniz formula, 300
Logistic function, 24
Longitudinal

tire force, 14, 16
Longitudinal force, 15

velocity-dependent, 23
Longitudinal friction, 16
Longitudinal slip, 15–18
Longitudinal slip ratio

rate, 23

M
Mechanism

steering, 328
trapezoidal steering, 328

N
Neutral steer, 170–172
Nonlinear-saturation

function, 35

O
Oversteer, 170–172

P
Pitch moment, 79
Planar

vehicle dynamics, 115, 119, 122, 125, 139
Planar dynamics, 143, 172

body force components, 131
control variables, 147
coordinate frame, 78, 79
curvature response, 163
global sideslip angle, 136
input vector, 147
kinematic steering, 138
neutral steer, 170
Newton–Euler equations, 115, 144, 174
oversteer, 170
sideslip response, 164
stability factor, 170, 171
steady-state turning, 163
understeer, 170
vehicle velocity vector, 136
wheel number, 84

Pneumatic trail, 37, 38
Proportional-saturation

function, 34

R
Road

bank angle, 94, 96
banked, 96, 97
clothoid, 297, 298, 315, 319
curvature, 298
design, 297, 302, 303, 305, 308–310, 314,

315, 319, 323, 324
history, 325
radius, 298
sharpness, 300
spatial, 323, 324
spiral, 297
tangent angle, 298

Road design, 297
Road dynamics, 297
Roll angle, 79, 216
Roll dynamics, 215

coefficient matrix, 240
control variables, 240, 241
equations of motion, 239, 241
force system coefficients, 238
input vector, 241
lateral force, 230
Newton–Euler equations, 215, 219, 260
roll-steering angle, 231
roll damping, 237, 238
roll stiffness, 237, 238
sideslip angle, 231
sideslip coefficient, 238
tire slip coefficient, 230
torque coefficient, 237
vehicle slip coefficient, 234
wheel force system, 221

Roll moment, 79
Roll thrust, 233, 290
Roll-steer, 261
Roll-steer angle, 233, 290
Rotation

radius of, 326

S
Saturation function, 15, 16, 24, 25, 49
Sideslip angle, 26, 27, 80

tire, 27
wheel-body, 27

Sideslip coefficient, 28
Sideslip response, 164



366 Index

Sideslip stiffness, 31
Sigmoid function, 24
Slip moment, 38
Slip ratio, 15, 18
Space

curve, 314
Spatial

road, 323, 324
Spiral

clothoid, 310
Cornu, 325
Fresnel, 325

Stability factor, 170, 171
Stall, 93
Steady state

center of rotation, 170
curvature response, 163
sideslip response, 164
stability factor, 170

Steering, 178, 297, 325, 326, 331
Ackerman condition, 178, 325
autodriver, 339
bicycle model, 326, 328
counter steer, 336
four wheel, 330–339
front wheel, 178, 325
inner-outer relationship, 326, 329
inner steer angle, 178, 325, 326, 331
inner wheel, 178, 325, 326, 331
kinematic, 297
kinematic condition, 178, 325
mechanism, 328
outer steer angle, 325, 326, 331
outer wheel, 178, 325, 326, 331
radius of curvature, 338
same steer, 336
sign convection, 336
sign convention, 331
static steering, 326
static steering condition, 326
steer angle, 326
trapezoidal mechanism, 328, 329
turning center, 325, 330, 336–338
turning radius, 326, 328, 335, 336

Stiffness
camber, 49
lateral, 49

Symbols, xi

T
T-frame, 2, 4, 5, 9, 11
Talbot, Arthur, 325
Talbot curve, 325

Tangential slip, 18
Taylor series, 20
Tire

aligning moment, 14, 38, 47
bank moment, 14
bore torque, 14
camber angle, 26, 46, 47, 49
camber arm, 46
camber effect, 68
camber force, 43, 46
camber moment, 46
camber stiffness, 44, 49
camber torque, 45
camber trail, 45
camber trust, 43
circumferential slip, 18
combined force, 49, 50, 58, 68, 69
combined slip, 58
contact angle, 20
coordinate frame, 26
cornering force, 39
cornering stiffness, 31
drag force, 39
dynamics, 1, 31, 43, 49, 50, 68, 69
effective radius, 19, 20
ellipse condition, 58, 59
equivalent radius, 20
equivalent speed, 17
force system, 13, 40–42, 44, 48, 49
forward force, 13
forward velocity, 19
frame, 1, 4, 5, 9, 11
friction, 22
friction coefficient, 16, 32
friction ellipse, 58
geometric radius, 19, 20
grip, 39
impossible force zones, 76
lateral drop factor, 51, 54, 59, 70, 74
lateral force, 13, 31, 33, 35, 36, 39, 40,

42–44, 46, 50, 51
laterally deflected, 32
lateral stiffness, 32, 49
limit slip curve, 55
limit slip line, 75
load, 20
longitudinal drop factor, 50, 54, 59, 69,

74, 75
longitudinal force, 13–15, 50, 68, 69
longitudinal friction, 22
longitudinally deflected, 33
longitudinal slip, 15, 16, 49
maximum force, 76
maximum velocity, 22
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neutral position, 1
non-radiale, 49
normal force, 14
overturning moment, 14
pitch moment, 14
plane, 26
pneumatic trail, 38
possible tire force zone, 57
radiale, 49
rest position, 1
rolling resistance torque, 14
roll moment, 14
saturation force, 43
saturation values, 50, 51, 69, 70
self aligning moment, 14
shear force, 49
side force, 39
sideslip angle, 26, 27, 31, 46
sliding, 64
sliding line, 33
slip coefficient, 16
slip factors, 50, 51
slip models, 22, 23
slip moment, 38
slip ratio, 15, 17, 18, 20–23, 65
stiffness, 32
stress distributions, 38
tangential slip, 18
tangetial force, 49
tilting torque, 14
tireprint, 2, 41
tireprint angle, 20
tireprint model, 48
traction force, 13
vertical force, 14
wheel load, 14
yaw moment, 14

Tireprint, 2, 26, 41, 42, 48
angle, 20

Track, 326
Transformation

homogeneous, 6, 7, 29
tire to vehicle frame, 9
tire to wheel-body frame, 5–7, 29
tire to wheel frame, 4, 5
wheel-body to vehicle frame, 11
wheel to tire frame, 2, 5
wheel to wheel-body frame, 7

Trapezoidal steering, 328, 329
Turning center, 330, 336–338
TV-shaped function, 65
Two-wheel vehicle, 131, 138, 143, 163, 172,

239
body force components, 131

coefficient matrix, 240
control variables, 147, 240, 241
coordinate frame, 78, 79
curvature response, 163
equations of motion, 239, 241
force system coefficients, 238
global sideslip angle, 136
input vector, 147, 241
kinematic steering, 138
neutral steer, 170
Newton–Euler equations, 144, 174
oversteer, 170
roll damping, 237, 238
roll stiffness, 237, 238
sideslip coefficient, 238
sideslip response, 164
stability factor, 170, 171
torque coefficient, 237
understeer, 170
vehicle velocity vector, 136

U
Understeer, 170–172
Unit system, xi

V
Vehicle

accelerating, 88, 90–92
banked road, 94, 96
longitudinal dynamics, 88, 90–92, 94, 96
maximum acceleration, 90, 92
stall, 93

Vehicle dynamics, 115, 172
aerodynamic effect, 147
aerodynamic force, 122
aligning moment, 80
attitude angle, 80
bank moment, 79
bicycle model, 131, 135, 143, 163, 172
bicycle roll model, 227
body force components, 131
body force system, 125, 139
coefficient matrix, 147, 240
comments, 122
control variables, 147, 240, 241
crouse angle, 80
curvature response, 163
equations of motion, 136, 238, 239, 241
force system, 79
force system coefficients, 238
forward force, 79
four-wheel planar, 172
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Vehicle dynamics (cont.)
four-wheel roll, 255
global equations, 119
heading angle, 80
input vector, 147, 241
Lagrange method, 121
lateral force, 27, 79, 142, 230
lateral moment, 79
longitudinal force, 79
longitudinally weight transfer, 88
neutral, 171, 172
neutral steer, 170
Newton–Euler equations, 115, 144, 174,

215, 260
normal force, 79
oversteer, 170–172
overturning moment, 79
path of motion, 88
pitch angle, 79, 216
pitch moment, 79
pitch rate, 79, 216
planar, 78, 115, 119, 125, 139
planar four-wheel, 172
rigid vehicle, 78, 215
roll angle, 79, 216
roll damping, 237, 238
roll dynamics, 215, 216
roll moment, 79
roll rate, 79, 216
roll-steering angle, 231
roll stiffness, 237, 238
roll vehicle model, 227
sideslip angle, 80, 231
sideslip coefficient, 28, 238
sideslip response, 164
six DOF, 219
stability factor, 170, 171
steady-state turning, 163
steer angle, 134, 231
tilting torque, 79
tire force system, 125, 139
tire lateral force, 26
tire slip coefficient, 230
torque coefficient, 237

traction force, 79
two-wheel model, 131, 135, 143, 163, 172
understeer, 170–172
vehicle load, 79
vehicle slip coefficient, 234
vehicle velocity vector, 136
vertical force, 79
weight transfer, 88
wheel force system, 221
wheel frame, 127
wheel number, 84
yaw angle, 79, 216
yaw moment, 80
yaw rate, 79, 216

Vehicle kinematics
velocity distribution, 87

W
Weight transfer, 88, 91–94, 97, 98, 102, 103

banked road, 94, 97
inclined road, 91
lateral acceleration, 93
linearized, 102
local frame, 103
longitudinal and lateral acceleration, 98
longitudinally, 88
maximum acceleration, 92

W-frame, 2, 4, 5, 7, 11, 129, 130
Wheel

extreme velocity, 29
forward velocity, 19
frame, 1, 5, 11
neutral position, 1
rest position, 1

Wheel-body
frame, 1, 5, 9, 11

Wheelbase, 326
Wheel number, 84
Wind force, 123

Y
Yaw moment, 80
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