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We live twice.

The first round is serious.

The second round is funny.

Interestingly, we are mixed together on Earth.
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Preface

In this book, we revise the vehicle dynamics based on a new mathematical model for
combined tire forces. The force system at the tireprint of a loaded, rolling, steered,
cambered tire includes forward, lateral, and vertical forces, as well as aligning, roll,
and pitch moment. The forward and lateral forces are the most significant forces in
vehicle maneuvering. Tire force modeling has been introduced more than a century
ago and improved in several steps through experiments and empirical modeling.

In dynamic modeling of tire forces and vehicles motion, it is traditional to
introduce the longitudinal force by slip ratio and lateral force by sideslip angle. Our
experiments as well as other available experiments conducted by other investigators
during the past decades show that there are decreasing interactions between the
lateral and longitudinal tire forces. We introduce a set of equations to model
interaction of the lateral and longitudinal tire forces and develop the equations of
motion of vehicles based on a new model. Such realistic tire force model has the
potential to improve the control strategies and increase the safety of vehicles at
critical conditions.

In summary, the vehicle dynamic models that are developed for combined
tire forces modeling, four-wheel planar, bicycle roll, and four-wheel roll are
new theories introduced in this book. Several examples have been included to
show the effectiveness of the mathematical equations as well as good results to
compare other analysis and projects. The newly developed equations of motion
and the mathematical modeling are perfect for investigation, study, predication, and
development of control strategy specially for vehicle drift, sliding, and skidding on
slippery, icy, snowy, wet, dirt pavements. The equations are also supporting the new
vehicle designs equipped with in-wheel electrical motors, and steering by wires, as
well as traditional vehicle designs.

I deeply appreciate the extensive helps from my colleagues, Hormoz Marzbani,
Sina Milani, Nguyen Dang Quy, and Amir Salemi, for their valuable comments and
reviews, simulation, and tests. This book would have not been prepared without
their contributions.
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X Preface
Level of the Book

This book has been developed from nearly a decade of research and experiments
in nonlinear vehicle dynamics and teaching courses in vehicle dynamics. It is
addressed primarily to the graduate student in engineering. Hence, it is an advanced
releaser book that may also be used as a textbook. It provides fundamental and
advanced topics needed in computerizing vehicle handling. The whole book can
be covered in one course in 12-16 weeks. Students are required to know the
fundamentals of vehicle dynamics, kinematics and dynamics, as well as have an
acceptable knowledge of numerical methods and differential equations.

The contents of the book have been kept at a fairly theoretical-practical level.
All concepts are deeply explained and their application emphasized, and most of the
related theories and formal proofs have been explained. The book places a strong
emphasis on the physical meaning and applications of the concepts. Topics that have
been selected are of high interest in the field. An attempt has been made to expose
students and researchers to the most important topics and applications.

Organization of the Book

The book is organized so it can be used for teaching or for self-study. Chapter 1,
“Tire Dynamics,” contains kinematics and coordinate frame transformation between
different frames in tire, wheel, and vehicle body. It also includes the main theory
behind combined tire force equations and their interactions. It also covers the
vehicle load transfer by forward and lateral acceleration. Chapter 2, “Vehicle Planar
Dynamics,” develops the equations of motion of a planar rigid vehicle, both bicycle
and four-wheel models. Several examples for normal and critical maneuvers are
presented. Chapter 3, “Vehicle Roll Dynamics,” follows the same method as the
Chap. 2 to present the equations of motion of a roll rigid vehicle, also for both
bicycle and four-wheel models. There are several new phenomena that appear only
in the roll model. Several examples for normal and critical maneuvers are presented.
Chapter 4, “Road Dynamics,” deals with the main concept of road design to help
vehicles move safer and smoother.

Method of Presentation

This book uses a “fact—reason—application” structure. The “fact” is the main subject
we introduce in each section. Then the reason is given as a “proof.” The application
of the fact is examined in some “examples.” The “examples” are a very important
part of the book as they show how to implement the “facts.” They also cover some
other facts that are needed to expand the “fact.”



Preface xi
Prerequisites

Since the book is written for researchers and advanced graduate level students of
engineering, the assumption is that users are familiar with matrix algebra, numerical
analysis, differential equations, as well as principles of kinematics and dynamics.
Therefore, the prerequisites are the fundamentals of kinematics, dynamics, vector
analysis, matrix theory, numerical methods, and differential equations.

Unit System

The system of units adopted in this book is, unless otherwise stated, the international
system of units (SI). The units of degree (deg) or radian (rad) are utilized for
variables representing angular quantities.

Symbols

* Lowercase bold letters indicate a vector. Vectors may be expressed in an n-
dimensional Euclidian space. Example:

r, S, d, a, b, c
p, q, v, W, Yy, z
o, o, €, 0, g, 3

» Uppercase bold letters indicate a dynamic vector or a dynamic matrix, such as
force and moment. Example:

F M

¢ Lowercase letters with a hat indicate a unit vector. Unit vectors are not bold.
Example:

L, J» s u, u, n
1, J, K, g, Ugp, Uy

» Lowercase letters with a tilde indicate a 3 x 3 skew symmetric matrix associated
with a vector. Example:

—apy a 0 as
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Preface

An arrow above two uppercase letters indicates the start and end points of a
position vector. Example:

WV = a position vector from point O to point N
The length of a vector is indicated by a non-bold lowercase letter. Example:
r=lr| a = |a| b =|b| s =|s|
Capital letter B is utilized to denote a body coordinate frame. Example:
B(oxyz) ~ B(Oxyz)  Bi(oix1yiz1)

Capital letter G is utilized to denote a global, inertial, or fixed coordinate frame.
Example:

G G(XYZ) G(0OXYZ)

Right subscript on a transformation matrix indicates the departure frames.
Example:

Rp = transformation matrix from frame B(oxyz)

Left superscript on a transformation matrix indicates the destination frame.
Example:

G Rp = transformation matrix from frame B(oxyz)

to frame G(OXY Z)

Capital letter R indicates rotation or a transformation matrix, if it shows the
beginning and destination coordinate frames. Example:

cosa —sina O
GRB = | sine cosa O
0 0 1

Whenever there is no subscript or superscript, the matrices are shown in a bracket.
Example:

cosae —sina O
[T]=| sina cosa O
0 0 1
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» Left superscript on a vector denotes the frame in which the vector is expressed.
That superscript indicates the frame that the vector belongs to, so the vector is
expressed using the unit vectors of that frame. Example:

Op = position vector expressed in frame G(O XY Z)

* Right subscript on a vector denotes the tip point that the vector is referred to.
Example:

Crp = position vector of point P
expressed in coordinate frame G(O XY Z)

» Right subscript on an angular velocity vector indicates the frame that the angular
vector is referred to. Example:

®p = angular velocity of the body coordinate frame B(oxyz)

» Left subscript on an angular velocity vector indicates the frame that the angular
vector is measured with respect to. Example:

c¢wp = angular velocity of the body coordinate frame B(oxyz)

with respect to the global coordinate frame G(O XY Z)

e Left superscript on an angular velocity vector denotes the frame in which the
angular velocity is expressed. Example:

gz wp, = angular velocity of the body coordinate frame B
with respect to the global coordinate frame G,

and expressed in body coordinate frame B;

Whenever the subscript and superscript of an angular velocity are the same, we
usually drop the left superscript. Example:

—_ G
GWB = gW®WB

Also for position, velocity, and acceleration vectors, we drop the left subscripts
if it is the same as the left superscript. Example:

B _ B
BVp: vp



Xiv Preface

» Left superscript on derivative operators indicates the frame in which the deriva-
tive of a variable is taken. Example:

Gq Gq B4
el _ "B _“G
ar a 7 dr B'F

If the variable is a vector function, and also the frame in which the vector is
defined is the same frame in which a time derivative is taken, we may use the
following short notation,

G B
—dGI'P = Gi‘p —d Bl‘p = Bl"p
dt dt’ ©

and write equations simpler. Example:

o If followed by angles, lowercase ¢ and s denote cos and sin functions in
mathematical equations. Example:

co = cosa s@ = sing
» Capital bold letter I indicates a unit matrix, which, depending on the dimension

of the matrix equation, could be a 3 x 3 or a 4 x 4 unit matrix. I3 or I4 are also
being used to clarify the dimension of I. Example:

1 0
I=I;=|0 1
0 0

- o O

* An asterisk s indicates a more advanced subject or example that is not designed
for undergraduate teaching and can be dropped in the first reading.

Melbourne, VIC, Australia Reza N. Jazar
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Chapter 1 ®
Tire Dynamics Qs

The dynamic performance of a vehicle is mainly determined by the interaction of
its tires and road. A vehicle can only move and maneuver by the force systems
generated under the tires. In this chapter, we review the generated forces by a tire as
well as the kinematics of a tire with respect to the vehicle body. Figure 1.1 illustrates
a steered and leaned tire along with the required coordinate frames to analyze its
orientation with respect to the vehicle body.

1.1 Wheel and Tire Coordinate Frames

By narrowing a tire, it becomes a flat disk in its mid-plane called the tire-plane. We
introduce three coordinate frames to express the orientation of such a flat disc with
respect to the vehicle. These coordinate frames are: the wheel frame W, wheel-body
frame C, and tire frame T. Figure 1.1 illustrates the W and T coordinate frames,
and Fig. 1.2 illustrates the W and C coordinate frames (Jazar 2017).

The wheel coordinate frame W (x,,, yy, Zw) is attached to the center of the wheel
and it follows every motion of the wheel except the spin. Therefore, the x,, and z,
axes are always in the tire-plane, and the y,,-axis is always on the spin axis.

When a wheel is straight and upright on the ground, it is at its neutral or rest
position. The W-frame at rest position becomes coincident with the wheel-body
coordinate frame C (x., y., z.) Which is attached to the center of the neutral wheel,
parallel to the vehicle coordinate axes, B. The wheel-body frame C is motionless
with respect to the vehicle and does not follow any motion of the wheel. The axes
X¢y Ve, Zc are always parallel to the axes of the body coordinate frame, B. The
vehicle or body coordinate frame B (x, y, z) is attached to the vehicle at its mass
center. The x-axis is the longitudinal forward axis of the vehicle parallel to the
ground, the y-axis is leftward and parallel to the ground, and the z-axis is the upward
axis. The body coordinate frame acts as a reference frame to determine the position
and orientation of any component of the vehicle.

© Springer Nature Switzerland AG 2019 1
R. N. Jazar, Advanced Vehicle Dynamics,
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Camber ang

Tire plane

Ground plane

Fig. 1.1 Tire frames T and W, sideslip, and camber angles

The tire coordinate frame T (x;, y;, z;) is set at the center of the tireprint, which
is assumed to be at the intersection of the tire-plane and the ground. The tireprint
or contact patch is the contact area of the tire and the ground. The z;-axis is always
perpendicular to the ground and upward. The x;-axis is along the intersection line
of the tire-plane and the ground and y; makes the T coordinate frame right handed.
The tire frame does not follow the spin and camber rotations of the tire; however, it
follows the steer angle rotation about the z.-axis (Jazar 2017).

Example 1 Transformation of W to T coordinate frame.

Let us assume that the tire is leaned by an angle y. The lean of tire is a rotation
about the x;-axis and is called the camber angle y. Camber angle generates some
lateral force. Figure 1.2 illustrates the relative configuration of a tire frame 7" and a
wheel frame W.

To determine transformation from W to T, we should begin by assuming W-
frame is sitting on the 7 -frame. Then W needs to go over a rotation and a translation
to come to its current position. It should rotate y about the x;-axis followed by a
displacement " dyy along the z,,-axis, where R is the radius of the tire. The rotation
transformation matrix 7 Ry and displacement Tdy are:

1 0 0
TRw=|0 cosy —siny (1.1)
0 siny cosy
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Fig. 1.2 Illustration of tire and wheel coordinate frames

Tdy =R TRy Yk (1.2)
and the total transformation from W-frame to 7 -frame is:
Te=TRy"r+ Tdy = "Ry "r+R "Ry "k (1.3)

where r is the position vector of a point of the tire in tire-plane.

The displacement 7 dy indicates the T-expression of the position vector of origin
of the wheel frame in the tire frame 7. If Wr » indicates the position vector of a point
P in the wheel frame,

Yep=[xr yo zp] (14)

T

then the coordinates of the point P in the tire frame ‘ rp are

Tep = TRwWrp+ Tdw = TRy Vrp + TRw 7" dw

xp
ypcosy — Rsiny —zpsiny (1.5)
Rcosy +zpcosy + ypsiny

where YWdW is the W-expression of the position vector of the wheel frame in the tire
frame.

Way =R"i=[0 0 R] (1.6)
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As an example, the center of the wheel W rp = "r, = 0 is the origin of the wheel

frame W and is always at Yr = W0 = W [O 0 O] in the W coordinate frame.
Therefore, in the T-frame, the center of the wheel will be at:

0
Ty =TRw Y0+ RTRy Wi = —Rsiny (1.7)
Rcosy

The transformation from the wheel W to tire T coordinate frame may also be
expressed by a 4 x 4 homogeneous transformation matrix 7 Ty,

T T
TI‘P = TTW Wl‘p = |: §W (}W:| er (1.8)

where (Jazar 2010a, 2011; Mason 2001),

1 0 0 0

Ty = 0 C?SV —siny —Rsiny (1.9)
0 siny cosy Rcosy
0 0 0 1

Example 2 Tire T to wheel W frame transformation.
Assume Trp to indicate the position vector of a point P in the tire coordinate
frame,

T
Trp=[xp yp zp] (1.10)
The position vector Wrp of the point P in the wheel coordinate frame is

WI‘p: WRTTl‘p— YWdW (111)

xp
= ypcosy + zpsiny
Zpcosy — R —ypsiny

because
1 0 0 0
WRr =0 cosy siny Ydy =-Ydr=| 0 (1.12)
0 —siny cosy R

We may also multiply both sides of Eq. (1.3) by TR%, to get the same result.

TR‘Y/{/ TI‘p = WI‘P + TR‘Y,{/ TdW = WI‘P + 7VydW (1.13)
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er = WRT Trp — ‘%de (1.14)

As an example, the center of tireprint in the wheel frame is at

10 o 1'To 0 0
Wrp=|0 cosy —siny o|l—-|lo|=]| o0 (1.15)
0 siny cosy 0 R —R

The corresponding homogeneous transformation matrix "W 77 from the tire to wheel
frame would be

W, = |:WRT WdT:| _

0 0 0
cosy siny O
—siny cosy —R

0 0 1

0 | (1.16)

oS O O =

We can check that WTT = TT‘;,], using the inverse of a homogeneous transforma-
tion matrix rule.

-1
TT‘;1:|:TRW TdW:| :|:TR17,;/ _TRg/TdW:|

0 1 0 1
w  Wp T w w
_ Rt Rridw | _ | "Rr dr (1.17)
0 1 0 1

Example 3 Tire T to wheel-body C frame transformation.

Figure 1.3 illustrates the relative configuration of a wheel-body frame C, a tire
frame T, and a wheel frame W (Jazar 2017).

To determine the transformation from 7 -frame to C-frame, we may assume 7 is
on C and find the required maneuvers that 7 needs to go to its current position. Let
us assume that the wheel steers about the z.-axis by the steer angle §. The T-frame
should go through a rotation of § about the z;-axis followed by a displacement of
Cdy. The rotation matrix € Ry and displacement Cdy are:

cosd —sind O

CRr = sind coss 0 (1.18)
0 0 1

Cdr = —R Ry Tk (1.19)

and therefore, the transformation between the tire 7 and wheel-body C frames
would be:

Cr=CRrTr+%dr = “Ry "r—RCR; Tk (1.20)
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Vertical plane
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Tire plane

Fig. 1.3 Illustration of tire, wheel, and body coordinate frames

where Tr is the position vector of a point in 7-frame and € is the same point in the
C-frame. As an example, the center of the wheel from (1.7) is always at

Tr=[0 —Rsiny Rcosy]T (1.21)
Therefore, in the C-frame, the center of the wheel will be at:

Rsiny siné
Cr= CRT Tr—RCRT Tk = —Rcosdsiny (1.22)
Rcosy — R

The origin of the tire frame is at “dz in the wheel-body frame.

Car=[0 0 —r] (1.23)

Therefore, the transformation between the tire and wheel-body frames can be
expressed equivalently, by a homogeneous transformation matrix € 7.

cosd —sinéd 0O O
CRr €d sind cos§ 0 O
c T T
Tr = = 1.24
! [o 1} 0 0 1 -R (1249
0 0 0 1
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Fig. 1.4 The tire, wheel, and wheel-body frames of a steered wheel

As an example, the wheel-body coordinates of the point P on the tread of a
negatively steered tire at the position shown in Fig. 1.4 are:

cos(—=6) —sin(=8) 0 O R
c Crm T sin(—8) cos(=6) O O 0
= T =
' rore 0 0 I —R||R
0 0 0 1 1
Rcosé
—Rsiné
_ 1.25
0 (1.25)

1

The homogeneous transformation matrix for wheel-body to tire frame 7 7¢ is:

-1
T I AR R

0 1 0 1
cos§ sind 0 O
CRT _Tq, —sind coss§ 0 0
— T c = 1.26
[ 0 1 ] 0 0 1 R ( )
0 0 0 1

Example 4 Wheel W to wheel-body C frame transformation.

The homogeneous transformation matrix € Ty to go from the wheel frame W to
the wheel-body frame C may be found by combined transformations of €77 and
T

Tw.



8 1 Tire Dynamics

CTw= T TTw (1.27)

[¢8 —s6 0 O 1 0 0 0

|6 ¢ 0 0 0 cy —sy —Rsiny

|l 0 1 —R 0 sy cy Rcosy
L0 0 0 1 0 O 0 1
[[cosd —cosysind  sinysind Rsiny siné

__ | sind cosycosd —cosdsiny —Rcosdsiny

1o siny cosy Rcosy — R
L O 0 0 1

If rp indicates the position vector of a point P in the wheel coordinate frame,

Yep=[xr yo zp] (1.28)

then the homogeneous position vector “rp of the point P in the wheel-body
coordinate frame would be:

Cl‘p = CTW WI'P

xpcosd —ypcosysind + (R4 zp)siny sin§
xpsind + ypcosy cosé — (R4 zp)cosdsiny
—R+ (R+zp)cosy + ypsiny
1

(1.29)

As an example, the position of the wheel center " r = 0 for a cambered and steered
wheel is at

Rsiny siné
Cp Cpo W — —Rcosdsiny (1.30)
- v = —R(1 —cosy) '
1

The z. = R (cos y — 1) indicates how far the center of the wheel moves down when
the wheel cambers.

If the wheel is not steerable, then § = 0 and the transformation matrix CTW
reduces to

0 0 0
cosy —siny —Rsiny
siny cosy R(cosy —1)
0 0 1

CTw = (1.31)

S O O
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x ON;
=

o
&

Fig. 1.5 The coordinate frames of the first and fourth tires of a four-wheel vehicle with respect to
the body frame

that shows

Cl‘p = CTW Wl‘p

xXp
_ ypcosy—l.?smy—zpsmy (1.32)
zpcosy +ypsiny + R (cosy — 1)

1

Example 5 Tire T to coordinate C frame transformation.

Figure 1.5 illustrates the first and fourth tires of a four-wheel vehicle. There is
a body coordinate frame B (x, y, z) attached to the mass center C of the vehicle.
There are also two tire coordinate frames T} (x,l, Virs z;l) and T (x;4, Vigs Zz4)
attached to the tires 1 and 4 at the center of their tireprints (Jazar 2017).

The origin of the tire coordinate frame 77 is at BdTl

T
Bar, = a1 b1 —h] (1.33)
where a; is the longitudinal distance between C and the front axle, b; is the lateral

distance between C and the tireprint of the tire 1, and % is the height of C from the
ground level. If P is a point in the tire frame at "1rp

iep=[xp yp zp] (1.34)
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then its coordinates in the body frame are

B B T B
rp = "Ry ''rp 4+ 7dp

xpcosdy — ypsind; + a;
= | ypcosd; + xpsind; + by (1.35)
zp—h

The transformation matrix 2 Rz, is a result of steering about the z;, -axis.

cosd; —sind; O
BRr, = | sind; cosé; O (1.36)
0 0 1

Employing Eq. (1.3), we may examine a wheel point P at Wrp

Yep=[xr yo zp] (137)
and find the body coordinates of the point
Brp = BRy, Trp + Bdy,
= BRy, (TIRW Wep + Tldw) + Bdy,

BRy, 'Ry Wrp + BRy, Tidy + Bdy,

= BRy Vrp 4+ BRy, Tdy + Bdyp, (1.38)

xpcosdy —ypcosysind; + (R + zp)siny sind; + a;
rp= | xpsind; + ypcosycosé; — (R+zp)cosd;siny + by (1.39)
(R+zp)cosy +ypsiny —h

B

where

BRW= BRTITIRW

cosdy —cosy sindi sin y sin §;

= | sind; cosycosd; —cosd;siny (1.40)
0 sin y cos y

Tidy =[0 —Rsiny Rcosy] (1.41)

As an example let us consider a point P on the z;, -axis at

Tiep=[0 0 2R] (1.42)
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The coordinates of P in the body B frame are:

B B T B
rp = "Ry, ''rp 4+ dp

[cosé; —sind; O 0 ap
= | sind; cosé; O 0 |+ | by
Lo o 1]|2r —h
- g
= b (1.43)
| 2R —h

Example 6 Wheel-body C to vehicle B transformation.
The wheel-body coordinate frame C is always parallel to the vehicle frame B.
The origin of the wheel-body coordinate frame of the wheel number 1 is at

T
Bdc, =[a1 b1 —h + R] (1.44)
Hence the transformation between the two frames is only a displacement.
By = B1¢, Cir + Bdg, (1.45)

As an example consider a point P on the x;, -axis at a distance R from the center
of the tire and assume that the tire is turning about y;, -axis with angular speed w.
Therefore,

. T
Cirp (1) = [Rcoswr 0 —Rsinwt | (1.46)
and the coordinates of the point P in the body coordinate frame B at time ¢ are:

Br(t) = B¢, “'rp (1) + Bdc,

100 R cos wt ay
=]1010 0 + by
1001 —R sin wt —h+R

a; + Rcostw
= b1 (1.47)
|l R—h — Rsintw

Example 7 Difference between tire and wheel frames.

As shown in Fig. 1.6, to express the orientation of a wheel and the force system,
three coordinate frames are needed: the wheel frame W, wheel-body frame C, and
tire frame 7. The wheel coordinate frame W (xy,, y, Zyw) is attached to the center of
the wheel and follows every motion of the wheel except the wheel spin. Therefore,
the x,, and z,, axes are always in the tire-plane, while the y,,-axis is always on the
spin axis.
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Fig. 1.6 Tire force system is expressed in T'-frame
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We also attach a wheel-body coordinate frame C (x., y., z¢) at the center of the
wheel parallel and fixed with respect to the vehicle coordinate axes B (x, v, z). The
wheel-body frame C is motionless with respect to the vehicle coordinate and does
not follow any motion of the wheel. When the wheel is upright straight, the W-frame
coincides with C-frame and becomes parallel to the vehicle coordinate frame B. The
W-frame makes the steer angle § and camber angle y with respect to the C-frame.

The tire coordinate frame T (x;, y;, z;) is set at the center of the tireprint with the
Zy-axis perpendicular to the ground and parallel to the z-axis. The x;-axis is along
the intersection line of the tire-plane and the ground. The tire frame follows the steer
angle rotation about the z.-axis but it does not follow the spin and camber rotations
of the tire.

To determine the difference between the T and W frames, let us use " dy to
indicate the T -expression of the position vector of the wheel frame origin relative
to the tire frame origin. Having the coordinates of a point P in the wheel frame, we
may find its coordinates in the tire frame by:

Tep = TRy Vrp + Tdy (1.48)

If Wrp indicates the position vector of a point P in the wheel frame,

Wep =[xp ypzp ] (1.49)
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T

then the coordinates of the point P in the tire frame ‘ rp are

Tep=TRYrep+ Td= TRy Vrp+ TR Wdw

xp
= | ypcosy — Rsiny — zpsiny (1.50)
Rcosy +zpcosy +ypsiny

because
1 0 0 0
T _ . w _
Rw =] Ocosy —siny rdw =10 (L.51)
0 siny cosy R

where 7WdW is the W-expression of the position vector of the wheel frame in the tire
frame, R is the radius of the wheel, and 7 Ry is the transformation matrix from the
WtoT.

The center of the wheel Wrp = Wr, = 0is the origin of the wheel frame W that
will be at Tr, in the tire coordinate frame 7.

w

0
Tvo=Tdy =TR Ydw = | —Rsiny (1.52)
Rcosy
If the camber angle is zero, y = 0, then
0
t,=|0|=Ydy y=0 (1.53)
R

1.2 Tire Force System

The resultant force system that a tire receives from the ground is assumed to be
located at the center of the tireprint and can be decomposed along x;, y;, and z;
axes of the tire coordinate frame 7 . Therefore, the interaction of a tire with the road
generates a three-dimensional (3D) force system including three forces and three
moments, as shown in Fig. 1.6. The components of the tire force system are:

1. Longitudinal force Fy. It is the force acting along the x-axis. The resultant
longitudinal force Fy > 0 in accelerating and F, < 0 in braking. Longitudinal
force is also called forward force or traction force.

2. Lateral force F). It is the force tangent to the ground and orthogonal to both F)
and F;. The resultant lateral force F, > 0 when it is in the y-direction.
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3. Normal force F;. It is the vertical force, normal to the ground plane. The resultant
normal force F, > O if it is upward. The traditional tires and pavements are
unable to provide F, < 0. Normal force is also called vertical force or wheel
load.

4. Roll moment M,. It is the longitudinal moment about the x-axis. The resultant
roll moment M, > 0 when it tends to turn the tire about the x-axis. The roll
moment is also called the bank moment, tilting torque, or overturning moment.

5. Pitch moment M,. It is the lateral moment about the y-axis. The resultant pitch
moment M, > 0 when it tends to turn the tire about the y-axis and move it
forward. The pitch moment is also called rolling resistance torque.

6. Yaw moment M. It is the upward moment about the z-axis. The resultant yaw
moment M, > 0 when it tends to turn the tire about the z-axis. The yaw moment
is also called the aligning moment, self-aligning moment, or bore torque.

This force system is applied on the tire from the ground. All other possible forces
on a wheel are assumed to be at the wheel axle. The driving or braking moment
applied to the tire from the vehicle about the tire axis is called wheel torque T
(Jazar 2011, 2017).

1.3 Tire Longitudinal Force

To accelerate or brake a vehicle, a longitudinal force must develop between the
tire and the ground. When a moment 7T is applied to the spin axis of the tire,
longitudinal slip ratio s occurs and a longitudinal force Fy is generated at the
tireprint proportional to s

F,=F 1 (1.54)
Fy
— =Cs S (s —s5) (1.55)
F;
1 aF
C; = — lim — >0 (1.56)
FZ s—0 08
R _
= g @w — Yx (1.57)
Re wy H(Rg wyy — vx) + vy H(vy — Ry wy)
Iyw =T — Ry Fyx (1.58)
F.
Ry =Ry — = (1.59)
k;

where S is the Saturation function, H is the Heaviside function, I,, is the mass
moment of the wheel about its spin axis, R, is the unloaded geometric radius of
tire, Ry, is the equivalent tire radius as are shown in Fig. 1.7, and k; is the vertical
stiffness of the tire (Jazar 2011, 2013). The w,, is tire’s angular velocity, and v, is
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Fig. 1.7 Geometric radius R, effective radius Ry, and tire center height R;, of loaded and rolling
tire

the tire’s forward velocity. Saturation is a linearly proportional function while the
variable is within a limit, and constant out of the limit. The Saturation function
S(x — xp) is defined as:

X0 X0 < X
S(x —x0) = X —Xp <X <X (1.60)
—X0 X < —X0

Heaviside is an on-off switching function that is defined as:

1 x> xo (1.61)

H(X_XO):{O X < Xp

Saturation function may be defined by Heaviside function (Andrzejewski and
Awrejcewicz 2005).

S(x —xo) =x H (xo — |x]) +x0 H (|x] — x0) (1.62)

The force Fy is proportional to the normal load F,, where the coefficient i, (s)
is called the longitudinal friction coefficient. If Fy,, is the maximum achievable
longitudinal tire force, then

Fyy =CsssFy =y F (1.63)

where s; is the saturation slip ratio.
The longitudinal slip ratio of a driving tire is defined by
Re wy — vy

§=——= R, wy > v 0<s <1 1.64
ngw g Wuw X ( )
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Fig. 1.8 Longitudinal friction coefficient as a function of slip ratio s, in driving and braking

and a braking tire with

szw Reww <vy —1<s5<0 (1.65)
X

Slip ratio s is positive for driving and is negative for braking. The longitudinal force
F,/F; is a function of slip ratio s as shown in Fig. 1.8. The longitudinal force
reaches a driving peak value Fy, at s = s; =~ 0.1, before dropping to an almost
constant steady-state saturated driving value Fy,,. The longitudinal force F (s) may
be assumed proportional to s when s is very small

Fy (s) _

F Css Is| < 0.1 (1.66)

where C; is called the longitudinal slip coefficient.

The tire will spin when s 2 0.1 and the traction force remains almost constant at
Fy,,- The same phenomena happens in braking and tire slides when s < —0.1 at the
values —Fy, and —Fy,,. Although the values of Fx, and Fy,, in accelerating and
decelerating might be different, we assume they are equal in this book.

A proportional-saturation simplification of the longitudinal tire force is exact
and safe enough to be used in computer calculation. Figure 1.9 illustrates the model.
To include the saturation behavior of the longitudinal force F as a function of s for
a constant vertical load F, we employ this model in which F) / F; is proportional to
s while s is less than the saturation sg, and remains constant at the saturated value

Fy = Fy,, equal to the maximum lateral force Fy = Fy,, fors > s;
F, Css —8s =8 = S8
— =3 Fyy, (1.67)

F, Iz =CsSs =Ly §>850rs < —Ss
Z
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Fig. 1.9 The proportional-saturation model of longitudinal tire force Fy /F; in vehicle dynamics
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Fig. 1.10 A turning tire on the ground to show the no slip travel distance dr, and the actual travel
distance da

where Fy,, = —C sy F; = u, F7 is the maximum longitudinal force that the tire can
support, which is set by the tire load and the longitudinal friction coefficient 1 .

Proof The longitudinal slip ratio s, or simply slip, is defined as the difference
between the actual speed of the tire v, and the theoretical tire speed Rgow,.
Figure 1.10 illustrates a rolling tire on the ground. The ideal distance that the tire
would freely travel with no slip is denoted by df, while the actual distance the tire
travels is denoted by d4. Thus, for a driving tire, dr > d4, and for a braking tire,
d F < d A

The difference dr — dy is the tire slip and therefore, the tire slip ratio of the
tire is

dp —da
§=—"

dF > dA (1.68)
dr
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dr —dy
§=—

dF < dA (1~69)
da

To have the instant value of s, we must measure the travel distances in an
infinitesimal time period, and therefore,

dr —da
dr

dr —dy
da

s drp > da (1.70)

dp < dy (1.71)

N

If the angular velocity of the tire is w,,, then dr = Rg wy, and djy = Ry wy = Uy,
where Rj is the geometric tire radius and R,, is the effective radius. Therefore, the
slip ratio s is defined based on the actual speed v, = Ry, @y, and the freely rolling
speed Rg wy,.

Ry 0y — Ry wy

Rg wy
R, wy — v v
=% *_q1_-_2 Rg wy > vy (1.72)
Rg wy R; wy
Re 0wy — Ry 0y
y§=———
Ry, wy
R, wy — v R, w
=80 T2 1 u>Roy (1.73)

Ux Ux

A tire can exert longitudinal force only if a longitudinal slip is present. During
acceleration, the actual velocity vy is less than the ideal free velocity R, w,,, and
therefore, s > 0. During braking, the actual velocity v, is higher than the free
velocity R, w,, and therefore, s < 0. We may combine the positive and negative slip
ratios and define it by a single equation as (1.57) to be used in computer analysis of
the equations of motion.

The frictional force F, between a tire and the road surface is a function of normal
load F,, vehicle speed vy, and wheel angular speed w,,. In addition to these variables
there are a number of parameters that affect F, such as tire pressure, tread design,
wear, and road surface conditions (Hartman et al. 2018). It has been determined
empirically that a contact friction force of the form

Fy, =, F. (1.74)

can effectively model experimental measurements obtained with constant vy, w,,
and other environmental conditions. Longitudinal slip is also called circumferential
or tangential slip.
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Fig. 1.11 Free-body-diagram of a wheel

Figure 1.11 illustrates free-body-diagram of a tire. In x-direction, there is a
traction (or braking) force F, and a rolling resistance force Fr. In z-direction there
is a tire load F, which will be in balance with the ground reaction as long as the tire
is touching the ground. About the y-axis there is a applied torque 7. The equations
of motion of such tire are:

My = Fy — FR (1.75)
Iyiw = T — (Fy — Fg) Ry (1.76)

where m,, is the wheel mass, 7, is the mass moment of the wheel, and R,, is the
tire effective radius.

An effective radius Ry, = vy/w,, is defined by measuring the tire’s angular
velocity @ = w,, and forward velocity v,. When the tire rolls, each part of the
circumference is flattened as it passes through the contact area. A practical estimate
of the effective radius R,, may be estimated by substituting the arc with the straight
length of tireprint as is shown in Fig. 1.7. The tire vertical deflection is

Ry — Ry = Ry (1 —cos ) (1.77)

and
Rp = Rgcos g (1.78)
a = Rgsing (1.79)

If the motion of the tire is compared to the rolling of a rigid disk with radius R,
then the tire must move a distance a & Ry, ¢ for an angular rotation ¢

a= Rgsing ~ Ry, ¢ (1.80)
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hence,
R si
R, = —¢M¢ (1.81)
¢
Expanding Si;‘” in a Taylor series shows that
_ _l 2 4
Ry =Ry |1 6<p 4+ 0o (1.82)
Using Eq. (1.77) we may approximate
1,
cosp ~ 1 — Ego (1.83)
2 Rh
p°~2(1—cosp)=2|1—— (1.84)
R
and therefore,
Ro~ R (1= 2(1-2n)) 22k, + L& (1.85)
v e 3 R,)) 3 ¢T3 '
As Ry, is a function of tire load F;,
F;
Ry, = Ry, (F;) = Ry — - (1.86)
Zz

the effective radius R,, is also a function of the tire load. The angle ¢ is called
tireprint angle or tire contact angle.

The vertical stiffness of radial tires &, is less than non-radial tires under the same
conditions. So, the loaded height of radial tires, Rj, is less than the non-radials’.
However, the effective radius of radial tires R, is closer to their unloaded radius
Rg. As a good estimate, for a non-radial tire, Ry, ~ 0.96R,, and R, ~ 0.94R,,
while for a radial tire, R, ~ 0.98R,, and R, ~ 0.92R,.

Generally speaking, the effective radius R,, depends on the type of tire, stiffness,
load conditions, inflation pressure, and tire’s forward velocity. ||

Example 8 Slip ratiois 0 < s < 1 in driving.
When we accelerate, a driving moment is applied to the tire axis. The tire is
moving slower than a free tire

Ry 0y < Ry wy, (1.87)

and therefore s > 0. The equivalent radius for a driving tire is less than the geometric
radius

Ry < Rq (1.88)
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Equivalently, we may express the condition using the equivalent angular velocity
wegq and deduce that a driving tire turns faster than a free tire

Ry weq < Ry wy (1.89)

The driving moment can be high enough to overcome the friction and turn the tire
on pavement while the vehicle is not moving. In this case v, = 0 and therefore,
s = 1. It shows that the longitudinal slip would be between 0 < s < 1 when a
driving torque is applied.

O<s<l1lforT >0 (1.90)

The tire speed Ry, w,, equals vehicle speed v, only if wheel torque T is zero.

Example 9 Slip ratiois —1 < s < 0 in braking.
When we brake, a braking moment is applied to the wheel axis. The tire is
moving faster than a free tire

Ry wy > Rg wy (1.91)

and therefore, s < 0. The equivalent radius for a braking tire is more than the free
radius

Ry > Rq (1.92)

Equivalently, we may express the condition using the equivalent angular velocity
weq and deduce that a braking tire turns slower than a free tire

R weq > Ry wy (1.93)

The brake moment can be high enough to lock the tire. In this case w,, = 0 and

therefore, s = —1. The longitudinal slip would be between —1 < s < 0 when
braking.

—1<s<O0forT <O (1.94)

Example 10 Slip ratio based on equivalent angular velocity weg.

It is possible to define an effective angular velocity w,, as an equivalent angular
velocity for a tire with radius R, to proceed with the actual speed vy = R, w.q.
Using w., we have

Uy = Rg weq = Ry wy (1.95)



22 1 Tire Dynamics

Table 1.1 Average of

Road surface | Peak value, Sliding value,
longitudinal friction Hox g My

coefficients Asphalt, dry | 0.8-0.9 0.75
Concrete, dry | 0.8-0.9 0.76
Asphalt, wet | 0.5-0.7 0.45-0.6
Concrete, wet | 0.8 0.7
Gravel 0.6 0.55
Snow, packed |0.2 0.15
Ice 0.1 0.07

and therefore,

R, wy — R w,
s= 0w T e Beq L0 > weg (1.96)
R, wy Wy
R, wy — R, 0,
s= 80T Te®eq B0y > o (1.97)
Rg weq Weq

Example 11 Maximum acceleration and longitudinal friction.

Consider a car with mass m = 1400kg that achieves v, = 40m/sin ¢t = 10s.
Assuming the car reaches v, = 10m/s in the first second, then we may assume a
maximum acceleration of @ = 10 m/s> which needs a traction force of F, = ma =
1400 x 10 = 14,000 N. Let us assume that the car is rear-wheel-drive and the rear
wheels are driving at the maximum traction under the load 4600 N on each rear tire,
then a longitudinal friction coefficient of

Fy 14,000 152 1.08
M= F T 2xa600 (198)
is required. Such a large friction needs small grain asphalt and special race car tires.
Table 1.1 shows the average values of longitudinal friction coefficients u, for a
passenger car tire 215/65R15.
In this book we accept a linear-saturation model for tire friction. Therefore, the
last column of the Table 1.1 depicts the maximum friction coefficients.

Example 12 & Alternative slip ratio definitions.
In another alternative definition, the following equation is used for longitudinal
slip:

R n
s=1—(222%) Where n = + Rgww < v (1.99)
Uy —1 Ry wy > vy

s € [0, 1]
In this definition s is always between zero and one. When s = 1, then the tire is

either locked while the car is sliding, or the tire is spinning while the car is not
moving.
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Example 13 Y Acceleration-based longitudinal slip.
Employing Eq. (1.70), we may also define s as

dp —da

s = drp > da (1.100)

dr

dr —d .

s=4 "% <dy (1.101)

da

and therefore,
R —
g= gGw Ty Ry oy > ay (1.102)
Rg ayy Rg ayy

Ry cty — R

s=ogfw O Ry s Reay (1.103)

Ay Ay
where ay, is the tire’s angular acceleration, and ay is the tire’s forward acceleration.

Example 14 Velocity-dependent longitudinal force.

Experimental results show that the longitudinal force of a tire drops at higher
speeds for the same slip. This fact suggests a correction in the equation of
longitudinal force (1.55) as

Fy
— =Cs5 — Cy, vy (1.104)
F;
or
F
= =Cys —Cy, 02 (1.105)
FZ
or
Fy 2
— =Cy5 — Cy vy — Cy, vy (1.106)

where Cy, [ s/m] is the coefficient indication how much F) /F, will drop for every
I m/s of longitudinal velocity of the tire. Similarly, Cg, [ s?/m?] is the coefficient
indication how much F, /F. will drop for every 1[m/s]? of square of longitudinal
velocity of the tire.

Example 15 “Longitudinal slip ratio rate.
Time derivative of s shows that

d vy Ay Wy — Uy Uy Uy Oy Uy dy

© dtRywy Ry w2 " wyRywy  wyRg vy

I
~
—_—
|
©
~

("‘_w _ “_X> Reww > vs (1.107)
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dRga)w_Rgawvx—Rgaxa)w_Rga)waw Rg wy, ay

s =

dt vy U)% Uy Oy Uy  Ux
=(s—n<3ﬂ—fﬁ) vy > Ry wn (1.108)
Wy Uy
or
§ = <a_w _ a_x> (1 —5) H(Rg wyy — vx)
Wy Uy

Ay ay
+<———a—)@—1)wa—Rg@w (1.109)

Wy x

A better model for longitudinal tire force is to include the rate of s such as

F .
FZCSS—CS'S (1.110)

Z

where Cj is the coefficient indicating how F /F, drops because of the slip rate s.

Example 16 Activation functions.

Activation functions are utilized to change the level of a command signal from a
steady-state value to another steady-state value. The simplest activation function is
Heaviside function which act as a sudden on/off switch function.

1 x> xp

H@—mﬂz{ (1.111)

0 x <xp

The Saturation function (1.112) does the change with a constant rate between —xg
and xg.

X0 Xp < X

S(x —x9) = X —X0 <X <X (1.112)
—X0 X < —Xx

S(x —x9) =x H (xg — |x]) +x0 H (]Jx]| — x0) (1.113)

In reality, the signal will smoothly gain a rate of change and then smoothly get a
negative rate until its level changes to the new value. Therefore, all signals will
change their steady-state values on smoother curves. The most practical activation
function is the Logistic or Sigmoid function.

L

f(x) =Sig(x) = 1+ e ka—x0)

(1.114)
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The Sigmoid function may also be called Soft step. Tangent hyperbolic function is
another smooth activation function

X e—x

£ (x) = tanh (x) = Zu_rﬁ (1.115)

The arctan is another useful activation function.
f (x) = arctan (x) = tan"" (x) (1.116)

The soft sign,

X
1+ |x]

fx) = (1.117)

inverse square root

fx)= (1.118)

X
V1 +kx?
are other practical activation functions.

To have a more realistic change and saturation in longitudinal slip ratio and other
saturating characteristics in vehicle dynamics, we may use a continuous activation
function instead of the sharp changing Saturation function.

1.4 Tire Lateral Force

The capability of generating lateral force is the main advantage of using rubber tires.
Only few materials have the characteristics to make a flexible tire while sticking to
the ground and generate lateral force when steering. The lateral force is made by
sideslip and camber which will be studied in this section (Jazar 2017).

The tire lateral force F)y is the most important tire force in vehicle maneuvering.
The lateral force is mainly a function of two angles of the tire: sideslip angle « and
camber angle y as are shown in Fig. 1.6. The lateral force F)y is a linear combination
of the angles « and y assuming the lateral forces generated by « and y do not affect
each other.

F
Fy:—CaS(o{—aS)—CyS()/—ys) (1.119)
z

The Saturation function S(x — xq) is defined as:

X0 X0 < X
S(x —x9) = X —Xx0 <X <X (1.120)
—X0 X < —Xo
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Fig. 1.12 Camber and sideslip angles illustration. (a) Front view of a tire and measurement of the
camber angle. (b) Top view of a tire and measurement of the sideslip angle

The sideslip angle o and camber angle y are measured in radians [ rad] or degrees
[deg] and therefore, their associated coefficients C, and C,, are respectively in
[rad™!] or [deg™'].

To show the sideslip and camber angles, we assume a flat ground and attach
a Cartesian tire coordinate frame 7 at the center of the tireprint when the tire is
vertical and stationary. The x;-axis is along the intersection line of the tire-plane
and the ground. The z;-axis is upward perpendicular to the ground, and the y;-axis
makes the coordinate system a right-hand triad.

The camber angle y is the angle between the vertical plane and the tire-plane
measured from the z;-axis to the zy,-axis about the x;-axis. The camber angle can
be recognized better in a front view on x-axis as shown in Fig. 1.12a. The sideslip
angle « is the angle between the x;-axis and the tire velocity vector v, measured
about the z;-axis. Because the x;-axis of the 7-frame and is always parallel to the
xy-axis of the W-frame, we may also define « as the angle between x,,-axis and v
in a plane parallel to the ground. The sideslip can be recognized better in a top view,
as shown in Fig. 1.12b.

Figure 1.13a illustrates a tire, moving along the velocity vector v at a sideslip
angle «. The tire is steered by the steer angle . If the angle between the vehicle
x-axis and the tire velocity vector v is shown by B, then

a=p-35 (1.121)
T
o = arctan TUy (1.122)
Ux
B = arctan va (1.123)
= c .

Vx
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Fig. 1.13 Angular orientation of a moving tire along the velocity vector v at a sideslip angle « and
asteerangle §. (@) o > 0. (b)a <0

The angle B is called the wheel-body sideslip angle and « is the tire sideslip angle.
The lateral force F), generated by a tire, is proportional to the sideslip angle o for
small «.

F
Fy:_caaz_ca B-=8 ol <oy (1.124)
Z

Proof A wheel coordinate frame W (xy,, y,,) is attached to the wheel at the center
of the wheel as shown in Fig. 1.13a. The orientation of the wheel frame is measured
with respect to the wheel-body coordinate frame C (x., y.). The C-frame is always
parallel to the vehicle frame B(x, y). The angle between the x. and x,, axes is the
wheel steer angle &, measured about the z,,-axis. The wheel is moving along the tire
velocity vector v. The angle between the x;-axis and v is the tire sideslip angle o,
and the angle between the body x.-axis and v is the wheel-body sideslip angle B.
The angles «, B8, and § in Fig. 1.13a are all positive. The figure shows that

w=p—5 (1.125)

Practically, when a steered wheel is moving forward, the relationship between
the angles «, 8, and § is such that the velocity vector sits between the x¢ and x,,
axes. A practical situation is shown in Fig. 1.13b. A steer angle will turn the heading
of the wheel by a § angle. However, because of tire flexibility, the velocity vector
of the wheel is lazier than the heading and turns by a 8 angle, where 8 < 6. As a
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result, a positive steer angle § generates a negative sideslip angle «. Figure 1.13b,
shows that the relation (1.121) is correct under a practical situation.

Velocity vector of a tire may be decomposed and expressed in the tire frame T
or in the wheel-body frame C. The sideslip angle « is used to express v in T-frame

Tv=vcosa i +vsina Tj (1.126)
and therefore,
T
Uy
o = arctan (1.127)
Ty,

To express v in C-frame we use the wheel-body sideslip angle 8

Cv=vcosp ‘i +uvsing ¢J (1.128)
and therefore,
c
Uy
B = arctan c (1.129)
v

X
If we indicate the velocity vector 7v of a tire in 7-frame with

Tv=[ve v, 0] (1.130)

then velocity vector v in C-frame will be

Cy=CRp Ty (1.131)
vCcosSa cosd — vsinw siné cosd —sind 0 v CoS o
vcosasind +vcosdsinae | = | sinéd cosé O vsina
0 0 0 1 0

Therefore, the wheel-body sideslip angle 8 is

Cvy  cosasind + cosdsina
tan 8 = = - — = tan (o + §) (1.132)
Cyv, cosacosd —sinwsiné
B=a+$6 (1.133)

Existence of a sideslip angle is sufficient to generate a lateral force Fy, which is
proportional to « when the angle is small.

Fy

o= Caa=-Ca(f=0) ol <a, (1.134)
Z
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The sideslip angle « is a tire dynamic parameter and the angles § and & are
vehicle dynamic parameters. Equation (1.121) introduces the way we replace wheel
parameter with vehicle parameters in the equations of motion of the vehicle. ]

Example 17 Extreme velocity cases of a wheel.

Consider a wheel as is shown in Fig. 1.13b which has a spinning angular velocity
of w # 0 on a frictionless ground. Therefore, the velocity of the wheel center would
be zero, v = 0. The sideslip angle of such a wheel would be zero, « = 0.

Now consider the wheel which has a zero spinning angular velocity @ = 0 and
a nonzero translational velocity v # 0. The sideslip angle of such a wheel would
be as is shown in Fig. 1.13b. The sideslip angle of a wheel is not a function of the
spinning angular velocity of a wheel.

Example 18 Velocity vector from T to wheel-body C-frame.
We have seen the T to C coordinate frame transformation in Example 3 as

Cr=CRrTr+%r = Ry "r—RCR; Tk (1.135)
or by a homogeneous transformation matrix € 7.

cosd —sind 0 0O

CRr €d sind cos8 0 0
c T —dr
T+ = = 1.136
r [0 1} 0 0 1-R (1.136)
0 0 01
Cr-Cdar71" CRT _CRICq
T _ Cp—1_ T “ar _ T T 9T
Te = T, = =
¢ T [ 0 1 ] [ 0 1 }
cosd sind 0 0
CpT _ T .
Ry — cdr —sind cos§ 0 0
= = 1.137
[ 0o 1 ] 0 0 IR (1-137)
0 0 01

where T'r is the position vector of a point in 7-frame and € is the same point in the
C-frame.
If we indicate the velocity vector 7 v of a tire in T-frame with

v =[uv, v, 0]" (1.138)

then velocity vector v in C-frame will be

Cv=CRr Ty (1.139)
cosd —sind 0 Uy COS 8 — vy Siné
sin § cos8 0 Vy cos8+vxsm8

0



30 1

Tire Dynamics

\x\
A
T
U
ARNRRRANN
> F,
Back view Top view

Fig. 1.14 A lateral force F, generation in tireprint of a rolling tire under vertical and lateral forces

Knowing that

Tv=vcosa Ti+vsina 7j
makes
vCcosa Ccosd — vsina sind
Cv = vcosasind + vcosdsina
0
Therefore,
Cvy  cosasind + cosdsina
tanﬂ:c = - — = tan (o + J)
Uy cos o cosd — sina sin
B=a+$

consistent with Eq. (1.121).

1.4.1 Tire Sideslip

(1.140)

(1.141)

(1.142)

(1.143)

Consider a rolling tire that is under a vertical load F, and a side force F' at the tire
axis, as is shown in Fig. 1.14. Such a rolling tire will move laterally and a reaction
lateral force F, will be generated under the tire. The tire travel velocity v makes
an angle o with respect to the tire longitudinal x-axis as is shown in Fig. 1.15. The
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Fig. 1.15 The path of motion of a rolling tire under vertical and lateral forces
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Fig. 1.16 The cornering stiffness Cy, is the slope of the curve Fy = Fy (@) ata = 0 for a given F;

angle is called sideslip angle which is a reason for generating lateral force F. The
lateral force is proportional with « for small F, (Jazar 2017).

F,=FTj (1.144)
F
2L =—_C, S(ax—ay) (1.145)
F;
Tv
o = arctan = J (1.146)
v

X

The coefficient C,, is called the cornering stiffness or sideslip coefficient of the tire.
Cy is the slope of the curve Fy/F, = Fy (o) /F; at o = 0 at a constant F, as is
shown in Fig. 1.16.

a(—Fy/F 1
Cazlim—( /E) 1
a—0 do F,

aF,
lim —

1.147
a—0 Jdo ( )
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Fig. 1.18 Bottom view of a laterally deflected and turning tire

Proof When a tire is under a constant load F, and then a side lateral force F is
applied on the rim, the tire will deflect laterally while sticking to the ground. A static
lateral force Fy is generated at the tireprint as is shown in the back view of Fig. 1.14.
The wheel will start sliding laterally if the lateral force F), reaches a maximum value
Fy,,. At this point, the lateral force approximately remains constant. The maximum
lateral force is proportional to the vertical load

Fy, = iy F; (1.148)

where 41, is the tire friction coefficient in the y-direction. A bottom view of the
tireprint of a laterally deflected tire is shown in Fig. 1.17.

If the laterally deflected tire is rolling forward on the road by pushing its spin axis
forward, the tireprint will also flex longitudinally. A bottom view of the tireprint for
such a laterally deflected and rolling tire is shown in Fig. 1.18. Although the tire-
plane of such a tire remains perpendicular to the road, the path of the wheel makes
an angle o with tire-plane. The path of the tire is indicated by the velocity vector v
which sits between wheel x,,-axis and body x-axis as is shown in Fig. 1.19.

As the wheel rolls forward, un-deflected treads enter the tireprint region and
deflect laterally as well as longitudinally while its normal contact force from the
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Fig. 1.19 The orientation of the tire velocity vector v with respect to the tire and body coordinate
frames in a steered wheel

road increases. When a tread moves from the head to the tail of the tireprint, its
lateral deflection as well as its normal force increase from zero until it reaches the
sliding line. The point where the laterally deflected tread starts sliding back is called
sliding line. When the tread passes the sliding line and enters the tail region, the
deflection and the normal force decrease. They approach zero when tread goes to
the tailing edge of the tireprint. As the normal contact force from the road decreases
at the tail region of the tireprint, the friction force also decreases and the tread slides
back to its original position when leaving the tireprint region. In practical situations,
the velocity vector of the center of a steered wheel will be between wheel x,,-
axis and the vehicle body x-axis, as is shown in Fig. 1.19. The steering angle §,
tire sideslip angle «, and wheel sideslip angle 8 are indicated in the figure. The
wheel-body sideslip angle § is the angle between the tire velocity v and the vehicle
longitudinal x-axis, measured from the x-axis about the z-axis.

The slip angle o increases by increasing the lateral force Fy as long as Fy is
not saturated, Fy < Fy,, . It is assumed that the slip angle o and lateral force Fy
act as action and reaction. A lateral force generates a slip angle, and a slip angle
generates a lateral force. Hence, we can steer the tires of a car to make a slip angle
and generate a lateral force to turn the car. Steering causes a slip angle in the tires
and creates a lateral force. The slip angle is positive @ > 0 if the tire should be
turned about the z-axis to be aligned with the velocity vector v. A positive slip angle
a generates a negative lateral force Fy. Hence, steering to the left about the z-axis
makes a negative slip angle and produces a positive lateral force to move the tire to
the left (Jazar 2017).

Using the velocity vector of the tire in the wheel coordinate frame W, and its
components, Vv =v,7 + vy ], we may also define the sideslip angle as

o = arctan Yy (1.149)
Ux

A sample of measured lateral force F)/F, as a function of slip angle o is
plotted in Fig. 1.16. The lateral force Fy/F; increases linearly for small slip angles;
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Fig. 1.20 The proportional-saturation model for the lateral force Fy as a function of a, F\, =
Fy (a), for a constant vertical load F,

however, the rate of increasing Fy/F, decreases for higher . The lateral force
remains constant or drops slightly when « reaches a critical value at which the
tire slides on the road. For practical purposes, we may accept different simplified
models for the function Fy/F, = F) (a) / F;.

1.

2.

Linear model: We assume the lateral force F), is proportional to the slip angle «
for low values of «.

Fy
— =—Cy S (0 —ay) (1.150)
Fy
| y
Co=——1Ilm—>0 (1.151)
F, «—0 da

Figure 1.16 illustrates the linear model.

Proportional-saturation model: To include the saturation behavior of the lateral
force F), as a function of o for a constant vertical load F,, we employ a
proportional-saturation model in which Fy,/F;, is proportional to o while « is
less than the saturation o, and remains constant at the saturated value Fy = Fj
equal to the maximum lateral force Fy = Fy = F),, fora > aj.

F, —Coa —os <o <
= ={F, 1.152
. ﬂ:—Caaszuya>asora<—as ( )
F;
The Fy, = —CyoasF; = p,F; is the maximum lateral force that the tire

can support. The Fy,, is set by the tire load and the lateral friction coefficient
wy. Figure 1.20 illustrates the proportional-saturation model and Eq. (1.152)
expresses the proportional-saturation function.
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Fig. 1.21 Two nonlinear models for the lateral force F)/F, as a function of o, F\,/F, =
tanh (Cya) and Fy/F, = arctan (Cy o)

3. Nonlinear-saturation model: A nonlinear saturating function may also be used
for better approximation of the behavior of the lateral force Fy as a function of
«. Two practical approximate functions are:

F)
— = —tanh (&) (1.153)
r;
Fy
— = —arctan («) (1.154)
r;

Figure 1.21 illustrates the nonlinear-saturation models. |

Example 19 Lateral force modeling.

There are many mathematical and approximate functions introduced by many
researchers to model the lateral force F) of tires as function of sideslip angle
o and F,. However, none of them can exactly model all tire behaviors in all
conditions. This is because Fy is a function of many more parameters, namely:
tire size and pattern, speed of the vehicle, tire load, tire air pressure, pavement,
ambient temperature and humidity, time history of tire operation, etc. As a result,
keeping all parameters constant, only a physical measurement can exactly express
Fy = F, (a). However, such data also cannot be recovered and used for another
experiment, as it is practically impossible to keep the conditions the same. Linear
approximations are the easiest function for control purposes. Interestingly the
linear and proportional-saturation approximations are exact enough for most normal
practical driving conditions.

A more exact approximation of the function Fy = Fy () is to use a trilinear
model as is shown in Fig. 1.22. The first part of the function F\/F, = Fy (&) /F, =
—Cya is applied for all low-speed low-steering maneuvers of vehicles. By increas-
ing speed or higher sideslip angle, the rate of the proportionality decreases and Fy
will follow another line, Fy/F; = Fy (a) /F; = —Ci1a — C».
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Fig. 1.23 A sample of trilinear model of tire lateral force compared with the linear and nonlinear
models

The mathematical expression of the function F, = F), (a) is:

Cyo o <o
F. Cya — F,,, /F
- 2= O”—W/Z(a—oel)+caa1 o] <o < ag (1.155)
F, o] —
—-Fy,/F; oy < o

Figure 1.23 illustrates a sample of trilinear model of tire lateral force compared with
the linear and nonlinear models. Figure 1.23 illustrates a comparison for different
models.

Example 20 Cubic model of tire lateral force.
Based on a parabolic normal stress distribution on the tireprint, a third-degree
function was presented in the 1950s to calculate the lateral force
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Fig. 1.24 A cubic curve model for lateral force as a function of the sideslip angle

Fy 1 2
Do a4 (& (1.156)
F, oy 3 \og
Let us show the sideslip angle at which the lateral force F, reaches its maximum
value Fy,, by ay. Equation (1.156) shows that

3 F
oy = —— M (1.157)
Cy F,
and therefore,
Fy 3a o 1/a)\?
—_— = — 1——+—<—> (1.158)
F}’M A Uy 3 a5

Figure 1.24 shows the cubic curve model for lateral force as a function of sideslip
angle. The equation is applicable only for 0 < o < ay.

Example 21 Aligning moments and pneumatic trails.

A rolling tire under lateral force and the associated sideslip angle o are
shown in Fig. 1.25. Lateral distortion of the tire treads is a result of a tangential
stress distribution 7, over the tireprint. Assuming that the tangential stress 7 is
proportional to the distortion, the resultant lateral force Fy over the tireprint area A p

Fy = / TydA, (1.159)
Ap
is at a distance a,, behind the center line.

1
Ay, = = xtydA, (1.160)
y JAp
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Lateral Stress Tireprint Bottom view

Fig. 1.25 The stress distribution 7, the resultant lateral force F) and longitudinal F), and the
pneumatic trails ay and a, for a turning tire going on a negative slip angle o

The distance ay, < 0 is called the pneumatic trail, and the resultant moment M; is
called the aligning moment, M, = Fy ay, k. Fora rolling forward tire, the distance
ay, < 0 for Va. The aligning moment tends to turn the tire about the z-axis and
make it align with the direction of tire velocity vector v.

A slight shift, ay, , of the longitudinal force F, will also contribute in the aligning
moment to make the tire parallel to v, M, = —Fy a,, k. Fora rolling forward tire,
the distance a,, < 0 for o > 0, and F, > 0 when a positive moment is applied on
the wheel to turn it forward. Therefore the total aligning moment of a rolling tire is:

~

M, = (Fyax, — Fxay,) k (1.161)

The stress distributions 7, and 7, the resultant lateral and longitudinal forces F),
and F), and the pneumatic trails a,, and ay, are illustrated in Fig. 1.25.

There is also a lateral shift in the vertical force F, under the tire because of slip
angle o, which generates a slip moment M, about the forward x-axis, and break
moment M, about the y-axis.

M, = —F.ay,1 (1.162)
M, = —F,ay, j (1.163)

The aligning moments for tires are as illustrated in Fig. 1.26. The pneumatic trails
ay, and a,, increase for small slip angles up to a maximum value, and decrease to
zero and negative values for high slip angles.

The lateral force Fy/F, = —Cy a may be decomposed to F) sinc, parallel to
the path of motion v, and Fy cos a, perpendicular to v as shown in Fig. 1.27. The
component F) cosa, normal to the path of motion, is called cornering force, and
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Fig. 1.27 The cornering and drag components of a lateral force F),
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the component F), sin«, along the path of motion, is called drag force. The lateral
force F) is also called side force or grip. We may combine the lateral forces of all
tires of a vehicle and have them acting at the car’s mass center C.

Example 22 Effect of velocity.

The curve of lateral force Fy () as a function of the sideslip angle o decreases as
velocity increases. Hence, we need to increase the sideslip angle at higher velocities
to generate the same lateral force. Sideslip angle increases by increasing the steer
angle. Figure 1.28 illustrates the effect of velocity on Fy for a radial passenger tire.
Because of this behavior, the curvature of trajectory of a one-wheel-car at a fixed
steer angle decreases by increasing the driving speed.



40 1 Tire Dynamics

7000 | — v:]Om/s‘

6000 v=15 rr‘l/s
5000 v= 20‘ m/s —
i\ 4000 —v=30m/s ~ |
.4

' 3000
2000
1000
0

0 2 4 6 8 10 12

afdeg]
Fig. 1.28 Effect of velocity on F), for a radial tire
To model the experimental results of lateral force dependency with speed, we
suggest a correction in the equation of lateral force (1.145) as

Fy

2= —Cha+ Cy v, (1.164)
F;
or
F7
L= —Cpa+ Cyyv? (1.165)
F;
or
F.
Fy = —Cy @ 4 Cy, Uy 4 Cq, V2 (1.166)
Zz

where Cy, [ s/m] is the coefficient indication how much Fy/F, will drop for every
1 m/s of longitudinal velocity of the tire. Similarly, Cq, [ s2/m?] is the coefficient
indication how much F), / F, will drop for every 1 [ m/ s]* of longitudinal velocity of
the tire.

Example 23 Effect of tire load on lateral force.

When the tire load F, increases, the tire treads stick to the road better. Hence,
the lateral force increases at a constant slip angle o, and the slippage occurs at
a higher slip angles. Figure 1.29 illustrates the lateral force behavior of a sample
tire for different normal loads. Increasing the load not only increases the maximum
attainable lateral force, but also pushes the maximum of the lateral force to higher
slip angles.
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Fig. 1.29 Lateral force behavior of a sample tire for different normal loads as a function of slip
angle o
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Fig. 1.30 A tireprint

Example 24 Tireprint.

The contact area between a tire and the road is called the fireprint and is shown by
A. At any point of a tireprint, the normal and friction forces are transmitted between
the road and tire. The effect of the contact forces can be described by a resulting
force system including force and torque vectors applied at the center of the tireprint.
The tireprint is also called contact patch, contact region, or tire footprint. A model
of tireprint is shown in Fig. 1.30.

The area of the tireprint is inversely proportional to the tire pressure. Lowering
the tire pressure is a technique used for off-road vehicles in sandy, muddy, or snowy
areas, and for drag racing. Decreasing the tire pressure causes the tire to slump, so
more of the tire is in contact with the surface, giving better traction in low friction
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Fig. 1.31 The lateral tire force F) is proportional to the sideslip angle o assuming the coefficient
C,, to remain constant

conditions. It also helps the tire grip small obstacles as the tire conforms more to the
shape of the obstacle, and makes contact with the object in more places. The shape
of tireprint may be expressed by

xZn y2n

where n = 2 or n = 3 are showing the tireprint shape for radial tires better.

Example 25 Saturation of lateral force.

Consider a tire that is rolling forward with constant velocity vy,. Applying a
constant lateral force F at the wheel center will generate a tire lateral reaction
force Fy at the tireprint that causes the tire path to make an angle o with the
straightforward x-axis as is shown by label 1 in Fig. 1.31. The tire is in lateral
equilibrium force balance. Increasing the applied force F' will increase the tire
lateral reaction force F as well as the angle . The tire with label 2 in Fig. 1.31
illustrates this situation. The lateral force F) is proportional to the sideslip angle «
and we may assume the coefficient C, to remain constant.

Fy, = —Cqa1 F; (1.168)
Fy, = —CqasF; (1.169)
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The lateral forces are in balance as long as F < F),,. If the applied force F is
greater than F),,, then the tire lateral force F, will saturate and reach its maximum
value Fy,, and remain at F, = F),, for any ' > F),,. The lateral forces will
not be balanced and the extra force will accelerate the tire laterally at a constant
acceleration ay,

F —Fy, =ma, (1.170)

where m; is the mass of tire and ay is the lateral acceleration. This situation is
labeled 3 in Fig. 1.31. Assuming a given forward velocity vy, the tire will be moving
along vector v.

Vi=1vy I +uctanay J =wv; cosayl + vysinay J (1.171)

Vo =vy I +uctanay J = vy cosap i+ vpsinay J (1.172)
At the moment where the lateral force is saturated, we have
V=, I +u,tanog J (1.173)

and when F > F), the tire will be sliding on the ground along the velocity
vector vs3.

V3 =1+ <vx tan oy + / ay dt) j (1.174)

When a tire has an acceleration in a direction and constant velocity in the orthogonal
direction, the tire force is saturated in the direction of acceleration. In this case, the
tire force is saturated in the y direction and the tire force remains at the maximum
in the y direction, F\ = Fy,,.

1.4.2 Tire Camber

Camber angle y is the tilting angle of tire-plane about the longitudinal x-axis.
Camber angle generates a lateral force F called camber thrust or camber force.
Figure 1.32 illustrates the front view of a positively cambered tire and the generated
camber force Fy. Camber angle is considered positive y > 0, if it is in the positive
direction of the x-axis, measured from the z-axis to the tire-plane. A positive camber
angle generates a camber force along the y-axis (Jazar 2017).

The camber force is proportional to y at low camber angles and depends
proportionally on the wheel load F_. Therefore,

F,=F,j (1.175)

F

Fy :—C)/S(y—ys) (1.176)
z
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Fig. 1.32 A front view of a cambered tire and the generated camber force

where C, is called the camber stiffness of tire.

a(—F
Cyzihmu

1.177
FZ y—0 3)/ ( )

In the presence of both camber y and sideslip «, the overall lateral force Fy on a
tire is a superposition of the corner force and camber thrust.
Fy

?:—ny—caa Yl < vy, || < ag (1.178)
z

Proof Consider a tire under a constant load while a camber angle is applied on the
rim. The tire will deflect laterally such that the tireprint area will be longer in the
cambered side. Figure 1.33 compares the tireprint of a straight and a cambered tire
on a flat road. As the wheel rolls forward, un-deflected treads enter the tireprint
region and deflect laterally as well as longitudinally. The shape of the tireprint
depicts that the treads entering the tireprint closer to the cambered side have more
time to bestretched laterally. Because the developed lateral stress is proportional
to the lateral stretch, the nonuniform tread stretching generates an asymmetric
stress distribution and more lateral stress will be developed on the cambered side.
The resultant of the nonuniform lateral stress distribution over the tireprint of the
cambered tire makes the camber thrust force F in the cambered direction.

F,=F,j F =frydA (1.179)
A
The camber thrust is proportional to the camber angle for small angles.

F
= ==Cv Irl<y, (1.180)
Z
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Fig. 1.33 The tireprint of a straight and a cambered tire, turning slowly on a flat road

When the tire is rolling, the resultant camber thrust F, shifts forward by a
distance a Xy - The resultant moment in the z-direction is called camber torque, and
the distance a Xy is called camber trail.

M.=M.k M.=Fya,, (1.181)

Camber trail is usually very small, and hence the camber torque is usually ignored
in linear analysis of vehicle dynamics.

Because the tireprint of a cambered tire is longer in the cambered side, the
resultant vertical force F, that supports the wheel load

Fzzf o,dA (1.182)
Ap

shifts laterally by a distance ay, from the center of the tireprint.

1
ay, = E/f;yasz (1.183)
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Fig. 1.34 The camber force Fy of a tire as a function of camber angle y at a constant tire load
F, =4500N

The distance a Yy is called the camber arm, and the resultant moment M, is called
the camber moment.

N

M, =Mk M,=-F.a,, (1.184)

The camber moment tends to turn the tire about the x-axis and tries to make the
tire-plane align with the z-axis. The camber arm ay, is proportional to the camber
angle y for small angles.

ay, =Cy, v (1.185)

Figure 1.34 shows the camber force Fy as a function of camber angle y at a
constant tire load F, = 4500 N. The lateral force because of camber behaves similar
to the lateral force because of sideslip. A linearly increasing and saturating function
is a simple and effective model of camber force behavior.

Figure 1.35 depicts the variation of camber force Fy as a function of normal load
F, at different camber angles for a sample radial tire.

The tireprint of a rolling tire will have a longitudinally distortion. Camber will
distort the tireprint laterally. Apply a slip angle « to a rolling cambered tire will
distort the tireprint laterally in a nonuniform way such that the resultant lateral force
would be at a distance ay, and ay,, from the center of the tireprint. Both distances
ay, and ay, are functions of angles o and y. Camber force due to y, along with
the corner force due to «, gives the total lateral force applied on a tire (Clark 1971).
Therefore, the overall lateral force will be calculated as

F

o Cha—Cyy (1.186)
F;
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Fig. 1.35 The variation of camber force Fy as a function of normal load F, at different camber
angles for a sample radial tire
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Fig. 1.36 An experimental example for lateral force as a function of y and « at a constant load

F. = 4000N

that is acceptable for y < 10deg and o < 5deg. Presence of both camber angle
y and slip angle « makes the situation interesting because the total lateral force
can be positive or negative according to the directions of y and «. Figure 1.36
illustrates an example of lateral force as a function of y and « at a constant load
F, = 4000 N. Similar to lateral force, the aligning moment M, can be approximated
as a combination of the slip and camber angle effects.

MZZCMQ(X-FCMVV

(1.187)
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The coefficient Cy, is the aligning moment generated by 1rad sideslip « at a zero
v, and the coefficient Cyy, is the aligning moment generated by 1rad camber y at
zero «. For aradial tire, Cp, &~ 0.013 N m/ deg and CMy ~ 0.0003 Nm/ deg, while
for a non-radial tire, Cp,, ~ 0.01 Nm/ deg and Cp;,, ~ 0.001 Nm/ deg. |

Example 26 Camber importance and tireprint model.

Cambering of a tire creates a lateral force, even though there is no sideslip. The
effects of cambering are particularly important for motorcycles that produce a large
part of the lateral force by camber. The following equations are presented to model
the lateral deviation of a cambered tireprint from the straight tireprint, and express
the lateral stress 7, due to camber

y:-siny<\/R§—x2—\/R§—a2) (1.188)

7y = —yk (= x?) (1.189)

where a is half of the longitudinal length of tireprint and the coefficient & is chosen
such that the average camber defection is correct in the tireprint.

a a
f rydx=/ ydx (1.190)
—da —a

4
—Zyka® = —siny <R§ sin”! — —a,/R? —a2> (1.191)
3 R,
Therefore,
f = 2simy <R2 in~! L _ 4 /R2 2) (1.192)
= Sin — —a —da .
4a3y 8 R, 8
R,./R2 — a2
3 Rgy/ g
N —— 1.193
4 a? ( )
and

Ry /R —d?
U:—%ya—i(aﬁ—ﬁ) (1.194)
Example 27 Banked road.

Consider a vehicle moving on a road with a transversal slope 8, while its tires
remain vertical. There is a downhill component of weight, F1 = mgsin 8, that
pulls the vehicle down. There is also an uphill camber force due to camber y =~ g
of tires with respect to the road F, = C, y F,. The resultant lateral force F, =
C, y F; — mgsin B depends on camber stiffness C;, and determines if the vehicle
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goes uphill or downhill, considering the vehicle to be neutral steering. Since the
camber stiffness C,, is higher for non-radial tires, it is more possible for a non-radial
than a radial tire to go uphill.

The effects of cambering are particularly important for motorcycles that produce
a large part of their lateral force by cambering. For cars and trucks, the camber
angles are much smaller and in many applications their effect can be negligible.
However, some suspensions are designed to make the wheels cambered when the
axle load varies, or when they steered.

1.5 Tire Combined Force

The force system at the tireprint of a loaded, rolling, steered, cambered tire includes:
forward force Fy, lateral force Fy, vertical force F, aligning moment M, roll
moment M,, and pitch moment M,. The forward force F, and lateral force Fy
are the most significant forces in vehicle maneuvering. The Fy and F), take the tire
load F,, sideslip «, longitudinal slip s, and the camber angle y as input,

F

S =F(a,5,y)=CsS(s —s5) (1.195)

FZ

F,

F} = Fy(a,s, y):—CaS(a—as)—CyS(y—yS) (1.196)
z

where S is the saturation functions. The saturation function S has been introduced
in (1.60) and (1.62).

X0 X0 < X
S(x —x9) = X —Xxp <X <X (1.197)
—X0 X < —X0

S(x —x0) = x H (xo — |x|) +x0 H (x| — x0) (1.198)
H(x—xg) = | L ¥ > %0 (1.199)
0 x <xg

The longitudinal slip coefficient Cs, the lateral stiffness Cy, and the camber stiffness
C, are all assumed to be constant. The forward or longitudinal force Fy and the
lateral force F) are in tireprint and tangent to the ground. The tangential forces Fy
and Fy may be combined to make a resultant tangetial force called the shear force
(Pacejka 2012; Abe 2009; Dai et al. 2017a,b).

When the tire has a combination of tire inputs, «, s, y, the tire forces are called
tire combined force. The most important tire combined force is the shear force
because of longitudinal slip and sideslip. However, as long as the angles and slips are
very small within the linear range of tire behavior, a superposition can be utilized to
estimate the output forces. When the tire is under both longitudinal slip and sideslip,
the tire is under combined slip.
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Fig. 1.37 The longitudinal force F,/F; drops in the (o, Fy/F;)plane, when sideslip « introduces
and increases to a tire

It is known that introducing both, longitudinal slip and sideslip together, will
reduce their effect and their associated forces. In this section, we study the lateral
and longitudinal forces when both of them are present.

1.5.1 Elliptic Model

We adopt the proportional-saturation model for longitudinal and sideslip of tire.
When o = 0, a small longitudinal slip s < s, generates the longitudinal force
F,/F, = Cys, and when s = 0, a small sideslip angle « < o generates a lateral
force of Fy/F, = —Cya. When there exists a longitudinal slip s < sy and then we
also introduce a sideslip o < «y, the longitudinal force will reduce by

P ()
— =Cs8,/1 —Cse | — lo| < o ls| < s (1.200)
F; o
where s and s are respectively the saturation values of « and s for the tire, and
Csq is the tire longitudinal drop factor for reduction of F in the presence of sideslip
«. The tire longitudinal drop factor Cs, is determined by experiment. Figure 1.37
illustrates how the longitudinal force reduces in the («, Fy/F;)-plane when sideslip
« is introduced to a tire with constant longitudinal slip s.

When there exists a longitudinal slip s < sy, the lateral force will drop from its
level of Fy/F, = —Cya to

X

2
2~ _Cya 1= Cyy (i> ol <, |s] < s (1.201)
F; Ss
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Fig. 1.38 The lateral force drops in the (a, —F,/F Z)-plane when longitudinal slip « introduces to
a tire with constant sideslip s
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Fig. 1.39 The longitudinal and lateral forces drop in the (—Fy, FX) plane, when respectively
sideslip and longitudinal slip are introduced to a tire

and Cyy is the tire lateral drop factor for reduction of F) in the presence of
longitudinal slip s. The tire lateral drop factor C,s is determined by experiment.
Figure 1.38 illustrates how the lateral force drops in the (a, —Fy /FZ)—plane when
longitudinal slip is introduced to a tire with constant sideslip and then increases.

A proper way to show the effect of combined slips on tire forces is to plot Fy/F;
and F)/F, against each other. Figure 1.39 illustrates both lateral and longitudinal
forces when longitudinal slip and sideslip are introduced in the tire dynamics.

Including positive and negative ranges of « and s and plotting the curves for
0>s > s;and 0 > o > «; for different values of tire drop factors, Cys, Cse,
makes the relationship of F, and F, as shown in Fig. 1.40 justifying elliptic model.
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Fig. 1.40 The longitudinal and lateral forces at the limits in the (F y, F, x) plane, when sideslip and
longitudinal slip are introduced to a tire. At any point on limit shape one of the slips, « or s, is
saturated. There are four points on the limit shape where both « and s are saturated

Including the saturation in lateral and longitudinal forces, we define F, and F),
mathematically by the following equations.

2
B e st— sy \/1 —C,, <M> (1.202)
FZ Uy
2
5 s@—ay \/1 —Cy, <M> (1.203)
FZ Ss
S(s —s5) =5 H(ss —Is]) + 55 H(s| —s5) (1.204)
Sla—oy) =a H(as — |a]) +as H (laf| —ay) (1.205)

Figures 1.41 and 1.42 illustrate the elliptic proportional-saturation model for
longitudinal and lateral forces indicating the effect of sideslip o on longitudinal
force F\/F; and the effect of longitudinal slip s on lateral force F /F.

Proof Assuming o« = 0, a small longitudinal slip s < s, generates the longitudinal
force Fy/F, = Cgs. When we have longitudinal slip s and then a sideslip « is
introduced into the system, the longitudinal force will drop. To have a mathematical
model that simulates experimental data, the following nonlinear function is intro-
duced to model the phenomenon

Fy a\?
— =Cs,/1 —=Cyso | — lo| < o ls] < s (1.206)
F, o

s
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Fig. 1.41 The effect of sideslip angle « on longitudinal force Fy/F; in saturating model
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Fig. 1.42 The effect of longitudinal slip ratio s on lateral force F) /F; in saturating model

where o is the saturation point of « for the tire. The coefficient Cy, is the
longitudinal drop factor that indicates the percentage of reduction in Fy/F, when o
is changing from o = 0 to & = «y, for a constant s.

Similarly, when s = 0 and a small sideslip angle ¢ < o« is applied, the tire
generates a lateral force of F/F, = —Cya. The lateral force Fy /F, will drop when
longitudinal slip s is added to the dynamics of the tire. The following nonlinear
function models this phenomenon

£y
F;

2
= —Cyay|1 = Cys (i> lal <as  |s| < s (1.207)
S

s

where s; is the saturation point of s for the tire. The coefficient Cy; is the lateral
drop factor that determines the percentage of reduction in Fy/F; when s is changing
from s = 0 tos = s, for a constant ««. Figures 1.37 and 1.38 illustrate how the
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Fig. 1.43 C;q = 0.5 means that F,,/F, drops | —+/1 — Csq = 30% when « increases from o = 0
toa = ay. If Cyq = 0.3 then Fy/F, drops (1 —0.3) x 100 = 70% when « increases from o = 0
too = ay

functions (1.206) and (1.207) work. Although « and s may go beyond o and s
will saturate at Fy/F, = Cgs+/1 — Cyq and Fy/F, = —Cqa/T — Cgs.

Employing proportional-saturation model for longitudinal and lateral forces, we
may use saturation and Heaviside functions (1.60) and (1.61) to express the forces
in a single equation to cover proportional and saturation parts of Fy/F; and Fy/F;.
Equations (1.202) and (1.203) are expressing the longitudinal and lateral forces of
tires using proportional-saturation in elliptic model. |

Example 28 Measuring of Cg,.

Figure 1.43 illustrates a sample of the effect of increasing o on F,/F, using
elliptic model (1.200) from o = 0 to @ = «y, for a constant s = 0.04. When o = 0
then, F,/F, = 0.4 for the given values of C; = 10, oy = Sdeg, C, = 0.24. By
increasing o the value of F)/F, drops as is shown in the figure. Knowing that when
a = ay, then F/F; = 0.283 and F,/F, = —1.15, we have,

F o \?
— =Css5,/1 —Cso | — (1.208)
F; o

0.283 = 0.4y/1 — Cyq (1.209)

Csoq = 0.499 (1.210)
which indicates, Cyq = 0.499, and F,/F, drops by (1 —4/1-=0.5) x 100 >~ 30%

approximately.
In general, when o = 0 we have

X Cys (1.211)
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Fig. 1.44 The effect of the longitudinal drop factor Cy, on percentage reduction of longitudinal
force AF,/Cysg

and when we @ = «, then
22 = Cysy/1 = Cyq (1.212)

therefore,

F
2 = /1 - Cyy (1.213)

Fy,

and therefore, the reduction will be

AF, Fy, —F
T B /1 —Cye (1.214)

Cysg Fx1

In case of Cy, = 0.3 then Fy/F, drops (1 —4/1—=0.3) x 100 = 16% when «
increases from o = 0 to o = «.

Figure 1.44 illustrates the effect of the longitudinal drop factor Cy, on percentage
reduction of longitudinal force AF, /Cyss.

Example 29 The limit slip curve.
Let us begin with @ = 0, s = s, and

s5=01 Cy=10 Cy=0.5
oy =5deg  Cy =024  Coqs =05 (1.215)

The longitudinal force of the tire is saturated and is at its maximum F,/F, =
Fy, /F; = Cs sy = 1. This situation is indicated by point A in Fig. 1.45. Increasing
sideslip angle o from o« = 0 to @« = o will generate a lateral force according
to Eq.(1.201) and decreases the magnitude of the longitudinal force according to
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Fig. 1.45 The saturation line. At any point on the saturation line, at least one of s or « is at its
saturation level. Only at point C, both s and « are at their saturation levels

Eq. (1.200). The nominal point B is a sample point indicating the tire force vector
with a saturated longitudinal component and unsaturated lateral component. The
tire at point B is considered to be in longitudinal sliding on the ground and laterally
sticking to the ground.

The curve from point A to C indicates how the forces Fy/F; and Fy/F; will
change when « increases from o = 0 at A to @ = o5 at C while s = s;. This is true
for all points between A and C at which the longitudinal force is saturated and the
lateral force is undersaturated and their values are:

Fy,

Z

F?
= —Cuay/1 — Cyy < ;M (1.217)

Z

2
= Cys0/1 = Cya <ﬁ) (1.216)

A

Sl B el P

At a nominal point B between A and C, at which Fy/F, = 0.9, we have

2
FXM _ o _ o 2_
3 = Cys5¢/1 = Cya (aT) =./1-05 (5) =09 (1.218)

a = 3.08deg (1.219)

and therefore,
F, s\2
E = —Cqo, |1 — Cgys ;
=0.24 x 3.0841 — 0.5 =0.522 (1.220)
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At point C where @ = oy, the lateral force will also be saturated and the force
conditions become

o
X

= = Csssm (1.221)

!

=M — _Chay/1 — Cay (1.222)
F;

z?’ |\<ﬁ !\?1 | :q
A

Having Cy, = 0.5, the magnitude of Fy/F, will drop from Fy,,/F, =1 at point A
to Fy,,/F, = 0.707 at point C.

F, F o\
= M — Cys54] 1 — Cyg (-S)
F, F, A

/ 5
10 x 0.1,/ 1 — 0.5 x 3= 0.707 (1.223)

The curve AC is the limit line of generating force on which the longitudinal force
remains saturated. The point C is the absolute terminating point at which both
longitudinal and lateral forces are saturated. No matter how much s and o are more
than their saturation values of s; and oy, the resultant tire tangential force of the
tireprint will not move from point C.

Let us now begin with ¢ = «, s = 0, for the same tire (1.215). The lateral force
of the tire is saturated and it is at its maximum possible value F/F, = —F),, /F, =
Cq s = 1.2. This situation is shown by point D in Fig. 1.45. Let us increase the
longitudinal slip of the tire s from s = 0 to generate longitudinal force in addition to
the lateral force. The lateral force reduces and the tangential tire force vector moves
from point D towards C. Point E is a nominal point between D and C at which
the lateral force of the tire is saturated while the longitudinal force is unsaturated.
The tire at E slides laterally on the ground while remaining stuck to the ground in
longitudinally direction. The line from point D to point C indicates how the forces
Fy/F; and Fy/F; will change when s increases from s = 0 to s = s.

Example 30 Possible tire force zone.

Let us assume a tire that is at conditions that at least one of the longitudinal slips
or sideslip « is saturated. Considering both, negative and positive values of s and
o and plotting the limit slip curves make a closed elliptic shape that divides the
plane of (F x/Fz, Fy/F Z) into possible and impossible zones of tangential tire force
vectors. Figure 1.40 illustrates a sample of the possible force zone. Any resultant
tangential force vector at the tireprint of the tire starts at the origin of the coordinate
at the center of tireprint and ends to a point inside the friction limit shape or on its
boundary.

Let us analytically determine the equation of the closed limit shape of Fig. 1.40.

ss = 0.1 Cs =10 Csq =05
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@y =5deg  Coy =024  Cos =05 (1.224)

The curve AC in Fig. 1.45 is a part of the shape on which we have

F 2
2 Cose 1 = Ca <i> = V1-0.022 (1.225)
F, oy
—Fy S 2
= Coa 1= Cos [2) ~0.17 (1.226)
FZ Ss

These are parametric equations of the curve AC. The other parts of the shape would
have similar parametric equations. Although Fig. 1.40 shows an elliptic shape, the
limit shape may not be an actual ellipse.

Example 31 Ellipse condition.
It is common to use the following ellipse as an approximation for the limit of tire
force.

Fy/F.\* | (F:/F.\*
e 2R =1 1.227
( Coosy ) + Cysg ( )

Substituting elliptical model of Fy /F; and Fy /F; from (1.200) and (1.201) provide
us with

2\ 2 2\ 2
« 1—cas(§) s 1—Cm(o%)
n : —1 (1.228)
oy Ss
and then,
@ 2 s e (1.229)
a2 52 a2s? S aZs? o '

This is the condition to have the tire force limit to be the ellipse (1.227).
On the partial curve AC of Fig. 1.45, the longitudinal slip is saturated, s = s;.
Therefore, the condition (1.229) simplifies to

Csa + Cas =1 (1230)
It means that if we have Cy, + Cys = 1, then the curve AC of Fig. 1.45 is a part

of ellipse (1.227). Equation (1.230) is the condition to have the limit shape as an
ellipse.
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Fig. 1.46 Location and orientation of friction ellipse compared to the tire

Similarly, on the partial curve DC of Fig. 1.45, the sideslip is saturated and
therefore, « = ;. The condition (1.229) simplifies to the same ellipse limit
condition (1.230). Therefore, the ellipse (1.227) matches well with elliptical tire
force model if (1.230) is correct.

Figure 1.46 illustrates the friction ellipse compared to the orientation of the tire.
The tire friction force or shear force Fpqqr 1S saturated as it is touching the friction
ellipse. This tire is either sliding longitudinally or laterally, or both, and the tire
forces are calculated by (1.202) and (1.203). In case the tire force is within the
friction ellipse, then the tire sticks to the ground and we have

als sSs

Figure 1.47 illustrates a stuck to the ground tire.

Example 32 Different Cgq and Cys with Cgq + Cys = 1.
Let us assume a tire with different values of C,, and Cy; satisfying the ellipse
limit condition (1.230).

@y =5deg s, =01 C,=10 C, =024 (1.232)

Figure 1.48 illustrates the friction ellipse for Cyq = 0.1, Cos = 0.9, and Cso = 0.3,
Cys = 0.7, and Cyq = 0.7, Cos = 0.3, and Cy = 0.9, Cys = 0.1. The friction
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Fig. 1.47 A tire with unsaturated shear tire force on the ground. When the point (Fy, Fy) is inside
the friction ellipse of the tire, then the calculated forces F), F) are not saturated

FylF, FylF,

\-h Jl02s 0751 >
D _Fy/Fz

o, =5 [deg] 0 < oL < 0 5,=0.1C,=10C,=0.24

Fig. 1.48 The effects of changing Cs and Cy; with the ellipse condition Csq + Cos = 1 on the
friction limit
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Fig. 1.49 The effects of changing Cy, and Cgs with condition Cgy 4+ Cys < 1 on the friction limit

ellipse remains the same as long as the limit condition Cg, + Cys = 1 is fulfilled.
Changing the values of Cyy, Cys will move the point at which both Fy/F, and
Fy/ F; are saturated. The coordinate of the full saturation point C may be calculated
from the Eqgs. (1.200) and (1.201) are:

(FXM s FyM) = (icsss\/ 1 — Cso, FCos/1 — Cas) (1.233)

F,

To determine the loci of the full saturation points (1.233), we need to substitute
Csa =1 —Cqys in(Fy/F;, Fy/F;) and eliminate Cyg between them. The loci of full
saturation points will end up to be the same ellipse (1.227) when 0 < Cgy < 1 —Clyy
and 1 — Cyy < Cyq < 0.

Example 33 Breaking the ellipse limit condition.
Let us consider a tire with Csy + Cos 7 1 and therefore its force limit breaks the
ellipse condition (1.230). Let us consider

Cyq + Cos = 0.7 (1.234)

Figure 1.49 illustrates the friction limit for Cyq = 0.1, Cys = 0.6, and Cgq = 0.3,
Cys = 04, and Cy, = 0.5, Cos = 0.2, and Cyy = 0.6, Cys = 0.1. The friction
limit is not an ellipse anymore when Csy + Cys # 1, however, the friction limit is
still a closed shape. Changing the values of Csy, Cys Will move the point at which
both Fy/F, and F\,/F;, are saturated as shown in the figure.
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Fig. 1.50 The effects of changing Cy, and Cgs with condition Cgy 4+ Cys > 1 on the friction limit

To study the case of Cs + Cys > 1, we should consider that there are two
conditions to have real numbers for the forces:

2
1—Cy, (1> >0 (1.235)
U
s 2
1= Cy (-) >0 (1.236)
Ss

which puts the following conditions on Cyy, Cgs-

2 S2
Cow <=5 Cos <=5 (1.237)
o N

The minimum value of both a? /a2 and ss2 /s2 is one. Therefore, none of Cyy, Cyy
can be greater than one while Csy + Cgs > 1.
Let us try

Cyo + Cos = 1.3 (1.238)

Figure 1.50 illustrates the friction limit for C5q = 0.4, Cys = 0.9, and Cso = 0.55,
Cys = 0.75, and Cyq = 0.75, Cys = 0.55, and Cy = 0.9, Cys = 0.4.
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Example 34 Y Velocity dependency of combined forces.

Experimental results show that the longitudinal and lateral forces are also
velocity dependent as expressed in Egs.(1.104)—(1.106) for longitudinal force
and (1.164)—(1.166) for lateral force when the slips are very small |¢| < «y, |s] <
ss. In a combined force situation, same model applies and the following equations
express how the velocity of a car affects the combined lateral and longitudinal
forces.

F, a\?
= = (Cys = Cqvx) /1= Coa | — (1.239)
F;

53

Fy s \2
2 = (—Ca o+ Cy, Ux) 1 — Cys (—) (1.240)
F; Ss

Lateral velocity also affects inversely both, longitudinal and lateral forces. The
effect of lateral velocity may be included in the force equations as:

F /
FX (Css — Csyvx — Cyvy) 1 — Cm (1.241)
z

F
Fy (=Co ot + Cq vy + Cyvy) Cys (1.242)
4

Experiments also show that the saturation values of sy and ¢ reduce with associated
velocity.

2
F
ZE o (Cys— Coyvx — Cyvy) | 1= Cog [ —— (1.243)
F; o (1 - Cayvx)
By o (CChat Coyve +Cyy) 1 - ( o )2 (1.244)
— = \— o v v — — .
z “ “ar v « ss (1 — Csxvy)

Including all of the above velocity dependency, we may use the following models
for tire forces.

F
= = (CS S(S — Sy (1 - Csxvx)) - CS1 Ux — Cy U}’)

2
S (o —ay)
x |1— Csa (m) (1245)
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Fig. 1.51 A tire with saturated tire force

Fy

Fz = (_Ca N (O[ — O (1 - Cayvx)) + Coyvx +Cy UY)

2
x\/l — Cys <M> (1.246)
ss (1 — Csxvy)

Example 35 Ts a tire sliding longitudinally or laterally?

—
Figure 1.51 illustrates a tire with saturated tire force. The tire force F/F, = OC
—
has the longitudinal component F,/F, = O H and the lateral component F\/F, =
—
—OE. Let us assume that tire parameters Cs, Cy, Cyq, Cys, s, Sg are given.

5s=0.1 Cy=10 Cu=024
Coq =05  Coy =05 oy =5deg
F/F, =1.134  F,/F,=0595 F,/F,=0966  (1.247)

Therefore, the only unknowns in the force equations (1.200) and (1.201) are the
longitudinal and side slips s and .

F o 2
X = Cs5./1 = Cyq <—> (1.248)
F;

N
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F

y s\
= = —Caa |1 —=Cgqs | — (1.249)
F;

Ss

Knowing that for a vector at the limit ellipse, either s or & must be saturated. We
may assume that s = s, and, from F, /F,

2
0.5935 = 10 (0.1) /1 — 0.5 (%) (1.250)
we find
o =5.6884 (1.251)
which is more than «; and impossible. Therefore we must have ¢ = o, and
calculate s.
0.5935 = 10s+/1 — 0.5 (1.252)
s = 0.083934 < s; (1.253)

Therefore, this tire is saturated laterally and unsaturated longitudinally. We may use
Eq. (1.201) to examine the results

Y= _C 1-C )
—_— o f— p—
FZ o as ss

0.08934\
—0.24 (5)\/1 —0.5( o ) = 0.966 (1.254)

Example 36 Combined force experimental data.

Figure 1.52 illustrates how a sideslip « affects the longitudinal force ratio Fy /F;
as a function of slip ratio s. Figure 1.53 illustrates the effect of sideslip @ on the
lateral force ratio Fy/F; as a function of slip ratio s. Figure 1.54 shows how the
lateral force Fy/F, will affect by longitudinal slip s at constant sideslip (Genta
2007; Genta and Morello 2009a,b; Haney 2003).

Example 37 % T V-shaped model.
To model experimental data of race car tires better, we may use a more
rectangular function such as the 7'V -shaped equation

FJFN\* | (FJ/F
- =) =1 1.255
< Cyog > + Css; ( )
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Fig. 1.52 Longitudinal force ratio F, /F; as a function of slip ratio s for different sideslip «

Fy!F,

I
-0.5 -0.3 0.1 0.1 0.3 0.5
Braking Driving

Fig. 1.53 Lateral force ratio Fy/F; as a function of slip ratio s for different sideslip o

The below suggested force equations for the combined effect of longitudinal slip
and sideslip for small values of the longitudinal slip ratio s < s, and sideslip angle
o < oy although more complicated, matches with experimental data of race car tires
better than elliptical model:

F 4
—X=C5s41—Cm <i) o < g s < S (1.256)
F, oy

Fy 4 S 4
— = —Cqa, |1 —Cu | — o< o s < S (1.257)
F; S
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Fig. 1.54 Experimental results on a tire showing how the lateral force F/F, will be affected by
longitudinal slip s at constant sideslip angles

where o and s are respectively the saturation values of o and s for the tire, and
Csq and Cyy are the tire longitudinal drop TV-factor for reduction of Fy and F) in
the presence of sideslip « and s. The tire drop TV-factor Cyy and Cy are determined
by experiment.

Substituting the suggested model of Fy and F), in the 7'V -shape equation provide

us with
4 4
2 4
a1 = Cus (Si) s = Ca (g)
=1 (1.258)

at st atst ats

2 Cc.,.——"C,. =1 1.259
e 1 (1259
On the limit condition, either s = s; or @ = «. Substituting s = s, simplifies the

above equation to
Csoq + Cos =1 (1.260)

Therefore, if we have C, + Cos = 1, then the shape of tire force limit will be the
TV -shaped limit condition (1.255).
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Example 38 The camber effects.
In case camber y is also included in longitudinal and lateral forces then, the
following equations may be used.

F, o 2 % 2
= 1-Cu (=) =Gy (& 1.261
F, Ss\/ - (%) v (V.;) (1200

o] < g Is| < s5 lyl <vys
F 2 2
2o Cuu[1=Cas (=) —Cay (L) -,y (1.262)
F, Ss Vs
o] < g Is| < s5 lyl <vys

Introducing a camber y in a tire will increase the lateral force Fy/F, by —C, y
and decrease it by square root of Cy, (¥/ ys)z. The longitudinal force F,/F, will

decrease by square root of Cy, (v /y s)z. The Cy, and Cq,, are the longitudinal
camber drop factor and lateral camber drop factor respectively. The Cy) and Cg,,
factors are determined experimentally.

Example 39 Approximate elliptic tire model.
We may expand the elliptical equation in series and approximate it with a second
order polynomial.

Ji—Cx2=1- %sz 10 (x3) (1.263)

Following this approximation, we may use simpler equations for tire force compo-

nents.
F, S(e—ay))
— =Cs S (s —s5) 1—Cm<—>
F; oy

~ C, S (s —s5) (1 —_ %cm (M) 2) (1.264)

A

2
—CyS (@ — ay) \/1 —Cy, <M)

2
~ —CyS (o — ay) (1 - %cas <M) ) (1.265)

Ss

|
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Fig. 1.55 The longitudinal force F,/F, drops in the («, Fy/F;)-plane when sideslip « introduces
and increases to a tire with constant longitudinal slip s
In case the tire slips are not saturated, then the equations will be simplifies to:

(-3e(2))
Css|1—=Cso | — (1.266)
2 o

(1.267)

12

sl

::qlkﬁ.j
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|
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N
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1.5.2 Diamond Model

A linear model for interaction of tire forces is the simplest model and acts as the
principal model for comparison purposes. We assume the proportional-saturation

model for longitudinal and sideslip of tire. When ¢ = 0, a small longitudinal
slip s generates the longitudinal force Fy/F; = Cgs, and when s = 0, a small
sideslip angle a generates a lateral force of F)/F, = —Cya. When there exists a

longitudinal slip s and we also introduce a sideslip «, the longitudinal force will
decreases as

Fy |ex|
— =Cys[1 —Cso— la| < ag Is] < s (1.268)
F; A

where og and s are respectively the saturation values of o and s for the tire, and
Cjq is the tire longitudinal drop factor for reduction of F) in the presence of sideslip
a. The tire longitudinal drop factor Cyy is determined by experiment for tires and is
usually 0.2 < C,, < 0.9. Figure 1.55 illustrates the longitudinal force reduction in
the (o, Fy/F;)-plane when sideslip is introduced to a tire with constant longitudinal
slip and then increased.
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Fig. 1.56 The lateral force —F)/F, drops in the (s, —Fy/ Fz)—plane when longitudinal slip s
introduces and increases to a tire with constant sideslip «
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Fig. 1.57 The longitudinal force drops in the (—E,., F, x) plane, when sideslip introduces and
increases to a tire

In the presence of longitudinal slip s, the lateral force will also drop from its level
of Fy = —Cya to

Fy ||
7= —Cpa |l —Cys— lo| < o Is| < ss (1.269)
Z

Ss

where Cyy is the tire lateral drop factor for reduction of Fy in the presence of
longitudinal slip s. The tire lateral drop factor Cy is determined by experiment for
the tire and is usually 0.2 < Cy < 0.9. Figure 1.56 illustrates how the lateral force
reduces in the (a, Fy/ FZ)—plane when longitudinal slip is introduced to a tire with
constant sideslip and then increased.

Combining Figs. 1.55 and 1.56, we may draw Fig. 1.57 to illustrate the longi-
tudinal force reduction in the (Fy /F,, Fx/ FZ)—plane, when sideslip is introduced
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Fig. 1.58 The lateral force drops in the (— Fy, F X) plane, when longitudinal slip introduces and

increases to a tire
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Fig. 1.59 The longitudinal and lateral forces drop in the (—Fy, FX) plane, when respectively

sideslip and longitudinal slip are introduce

d to a tire

to a tire with constant longitudinal slip and then increased. Similarly, Fig. 1.58
illustrates how the lateral force reduces in the (Fy, Fx)-plane, when longitudinal
slip is introduced to a tire with constant sideslip. Figure 1.59 depicts both lateral
and longitudinal forces when longitudinal slip and sideslip are introduced in the tire

dynamics.

Including positive and negative ranges of o and s and plotting the curves for
—s5 <8 <8y and —a < @ < oy for different values of tire drop factors, Cys, Csq,s
make the relationship of F, and Fy as shown in Fig. 1.60 justifying diamond model.
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F./F,

-1.0

Fig. 1.60 The longitudinal and lateral forces at the limits in the (—F y, F, X) plane, when respec-
tively sideslip and longitudinal slip are introduced to a tire and increased up to their saturation
values

Including the saturation in lateral and longitudinal forces, we define them
mathematically by the following equations.

Fy |o|
— =CsS(s—s5)|1—Cys— (1.270)
F, Uy
Fy ||
— = —CyS (¢ — ay) — Cos— (1.271)
F, S

Figures 1.61 and 1.62 illustrate the diamond proportional-saturation model for
longitudinal and lateral forces indicating the effect of sideslip & on longitudinal
force Fy/F; and the effect of longitudinal slip s on lateral force Fy/F;.

Proof Assume that « = 0 and a small longitudinal slip s < s; generates the
longitudinal force F,/F, = Cgs. When we have longitudinal slip s and then
introduce a sideslip «, the longitudinal force will drop. The following linear function
is the simplest representation of the phenomenon

Fy ]
— =Css |1 —Cso— (1.272)
F; s

where o is the saturation point of « for the tire. The coefficient Cy, is called the
longitudinal drop factor that indicates the percentage of drop in Fy/F; from o = 0
to o = «ay, for a constant s.
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Fig. 1.61 The effect of sideslip angle « on longitudinal force Fy/F; in saturating model
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Fig. 1.62 The effect of longitudinal slip ratio s on lateral force — Fy / F; in saturating model

Similarly, assume that s = O and a small sideslip angle @ < o generates a
lateral force of Fy/F; = —Cya. The lateral force will also be dropped when a
small longitudinal slip s is added to the dynamics of the tire. The following linear
function expresses this phenomenon

A s
B caf1- ! (1.273)
F; Ss

where s; is the saturation point of s for the tire. The coefficient Cy; is the lateral
drop factor that indicates the percentage of drop in Fy/F; from s = 0 to s = sy, for
a constant «. Figures 1.57 and 1.58 illustrate how the functions (1.272) and (1.273)
work.

Employing linear saturation model for longitudinal and lateral forces, we may
use Saturation function (1.60) or Heaviside function (1.62) to express the forces
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Fig. 1.63 C;, = 0.5 means that F,/F, drops 50% when « increases from o« = 0 to @ = . If
Csoq = 0.3, then Fy /F; drops 30% when « increases from o = 0to o = g

in a single equation to cover proportional and saturation parts of F\/F, and Fy/F;.
Equations (1.270) and (1.271) express the longitudinal and lateral forces of tires
using proportional-saturation models of figures (1.20).

In order to have a unified function for computer simulation, we may rewrite the
force equations as:

F
L =CS(s—s5) (1 — cmm> (1.274)
F, o
Fy Is|
L= CuS@—ay) (1 —Cos— (1.275)
FZ Ss

Example 40 Meaning of Cy.

Figure 1.63 illustrates a sample of the effect of increasing o on reduction of
F,/F; in Eq. (1.272) from o = 0 to o = «, for a constant s = 0.04. When o = 0,
then F,/F, = 0.4 for the given values of C; = 10, sy = Sdeg, C, = 0.2. By
increasing « the value of Fy/F, decreases linearly and proportionally. Assuming
when o = o5 we have Fy/F, = 0.2, and therefore,

F ‘
M s <1 —C,, "“) (1.276)
F, ;
02=04(1 - Cy) (1.277)
Ciw = 0.5 (1.278)

which indicates Cyy = 0.5 and F/F, drops to (1 — 0.5) x 100 = 50%.
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Fig. 1.64 The saturation line. At any point on the saturation line, at least one of s or « is at its
saturation level. Only at point C, both s and « are at their saturation levels

In case of Cyzq = 0.3, then F,/F, drops to (1 —0.3) x 100 = 70% when «
increases from o = 0 to o = .

Example 41 The limit slip line.
Let us assume a = 0, s = s, and

ss=01 Cy=10 Cye =05
@y =5deg  Cy =024  Cos =05 (1.279)

therefore, the longitudinal force is saturated and is at its maximum F,/F, =
Fy,/F; = Cssy = 1. This situation is indicated by point A in Fig. 1.64 at which
the tire is generating maximum possible longitudinal force while rolling straight.
Increasing sideslip angle « from ¢ = 0 to @ = «; will generate lateral force
in addition to the longitudinal force while the magnitude of longitudinal force
decreases according to Eq. (1.272). The line from point A to point C indicates how
the forces Fy/F; and F)/F, will change when « increases from o = 0 to o = «.
Aslong ass = s; and 0 < o < «ay, the longitudinal force is saturated and the lateral
force is undersaturated

Fy (o4 FxM

r_C 1-Cypy— | = M 1.280
F. sss< sozaS) F. ( )
F F

FZ = —Cya (1 — Cyy) < %ZM (1.281)

At point C where @ = «j, the lateral force will also be saturated and the force
conditions become

F. F
F’Z‘ = Cys5 (1 — Cyq) = ;24 (1.282)
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F, F
72 = —Coas (1 — Cyy) = ;24 (1.283)
Because Cy, = 0.5, the magnitude of F,/F, will drop from Fy/F, = 1 at point A
to
F. F
= =M= Coss |1 — Cscntg
F, F; o
5
=10x0.1{1-0.5x% 3 =0.5 (1.284)
at point C.

At a nominal point B between A and C, at which F/F, = 0.8, we have

F
Fan _ (1 _ 0.53) —~08 (1.285)
F. 5

o« = 2deg (1.286)

and therefore,

ﬂ=—Cot 1-C Ll
F. o ozssS

—0.24 x 2 (1 —05 (s—>> =024 (1.287)

Ss

The line AC is the limit line of generating longitudinal force by the tire and point
C is the absolute terminating point at which both longitudinal and lateral forces are
saturated. No matter how much s and « are more than their saturation values of s;
and o, the resultant tangential force of the tire at the tireprint will not move from
point C.

Now, let us assume o = «ay, s = 0, for the same tire as (1.279). The lateral force
of the tire is saturated and is at its maximum possible value F\/F, = Fy, /F, =
—Cy s¢ = —1.2. This situation is indicated by point D in Fig. 1.64 at which the
tire is generating the maximum possible lateral force. Increasing slip s from s = 0
to s = s will generate longitudinal force in addition to the lateral force while the
magnitude of lateral force decreases according to Eq. (1.21). The line from point D
to point C indicates how the forces F),/F; and F /F, will change when s increases
from s = 0 to s = s;. Therefore, The line AC indicates the situation at which the
tire longitudinally slides and laterally sticks to the road, and line DC indicates the
situation at which the tire slides laterally and sticks to the ground longitudinally.

Considering both negative and positive maximum forces £F,, /F; and
+Fy, /F;, the limit curves make a closed shape that divides the plane of
(F Y/ Fy, Fy/F. Z) into possible and impossible zones of tangential tire force vectors.
Figure 1.65 illustrates a sample of the possible force zone.
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Fig. 1.65 The maximum tangential tire forces is limited into a closed zone surrounded by the
limit curves made by Fy/F,, and — F),/ F; relationship when at least one of the slips, s, or « to be
saturated
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Fig. 1.66 Experimental results of Fy/F, versus —F,/F, for a sample tire and their diamond
model approximate

Example 42 Experimental verification.

Experimental data on tires are showing vast and diverse curves for longitudinal
and lateral forces for different tires at different conditions. As a result, there is no
unique model that covers all tires, all applications, and all conditions. Figure 1.66
illustrates a few experimental data on a sample tire to illustrate how we approximate
them with their diamond models. All of these curves belong to unsaturated cases
indicating how the combined forces affect each other.

There are two points on every diamond model approximation line. The first point
on (Fy/F;)-axis indicates the initial value of @ = 0 where there is no sideslip. The
second point on the other end of the line indicates the saturation value of «. Let us
consider the first line indicated by A. The line starts from
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F./F, =0.88 s = 0.087 C, =10.115 (1.288)
and ends at
F./F,=0.43 s = 0.043 C, =10.115 (1.289)

assuming oy = 5deg and using Fy /F; at two ends, we calculate Cy

F, o
— =Css (1 - Cm—) (1.290)
F; s
0.29 = 0.6 (1 — Csq) (1.291)
Csq = 0.511 (1.292)

and therefore, the equation for Fy/F, when both s and « exist will be
F.
= =10.1155 (1-05115) (1.293)
F, 5

Applying the same method for the second and third experimental curves, we find
the following diamond approximations for line B and C, respectively,

F

= = 101155 (1 — 0.516%) (1.294)
Z

F, o

X 10,1158 (1 _ 0.512—) (1.295)

F. 5

indicating that the diamond model is consistent with experiments on this tire.

1.6 Vehicle Kinematics

A body coordinate frame B(Cxyz) is attached to a vehicle at its mass center C.
The x-axis is the longitudinal axis passing through C and directed forward. The
y-axis goes laterally to the left from the driver’s viewpoint. The z-axis makes the
coordinate system a right-hand triad as shown in Fig. 1.67. Vehicles are assumed to
be symmetric about the (x, z)-plane. When the car is parked on a flat horizontal road,
the z-axis is perpendicular to the ground, opposite to the gravitational acceleration
g. The equations of motion of vehicles are always expressed in the vehicle body
coordinate frame, B(Cxyz), (Jazar 2017).

The orientation of the vehicle is determined by the three angles of roll angle ¢
about the x-axis, pitch angle 6 about the y-axis, and yaw angle i about the z-axis.
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Fig. 1.67 A moving vehicle, indicated by its body coordinate frame B in a global coordinate
frame G

The rate of the orientation angles are called roll rate p, pitch rate q, and yaw rate r,
respectively.

p=p (1.296)
0=gq (1.297)
V=r (1.298)

The vehicle force system (F, M), expressed in body coordinate is the resultant of
external forces and moments that vehicle receives from the ground and environment
(Ellis 1994; Dixon 1996).

B = Fii+ Fyj + Fik (1.299)
BM = M7+ Myj+ Mk (1.300)

The components of the vehicle force system that are shown in Fig. 1.67 have
special names and importance.

1. The F, is the longitudinal force acting on the x-axis. The longitudinal force may
also be called forward force, traction force, or brake force. Traction or braking
force of tires and the aerodynamic forces on the vehicle make F.

2. The F) is the lateral force leftward on the y-axis. Imbalance lateral force on front
and rear tires is needed to generate a yaw moment to turn a vehicle. Steering is
the main way to generate F).

3. The F; is vertical to the ground plane and is called vehicle load. Vehicle load
affects the limit and force capacity of tires.

4. The M, is the roll moment about the x-axis. The roll moment is also called the
longitudinal moment, bank moment, tilting torque, or overturning moment.

5. The M), is the pitch moment or lateral moment about the y-axis.
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Fig. 1.68 Top view of a moving vehicle to show the yaw angle 1 between the X and x axes, the
attitude angle B between the x-axis and the velocity vector v, at the mass center C, and the cruise
angle B + ¥ between the X-axis and the velocity vector v

6. The M, is the yaw moment or upward moment about the z-axis. The yaw moment
may also be called the aligning moment. Yaw moment along with lateral forces
would make a vehicle turn.

We determine the position and orientation of a vehicle by determining the
position and orientation of the body coordinate frame B(Cxyz) with respect to a
fixed global coordinate frame G(O XY Z). Figure 1.67 shows how a moving vehicle
is indicated by a body frame B in a global frame G (Dieter et al. 2018; Dukkipati
et al. 2008).

The angle ¥ between the X and x axes measured from X to x about Z is the
yaw angle or heading angle . A velocity vector v of the vehicle at its mass center
C makes an angle B with the body x-axis, measured from x to v about z, which
is called vehicle sideslip angle or attitude angle. Therefore, the vehicle’s velocity
vector v makes an angle 8 + ¢ with the global X-axis, measured from X to v about
Z that is called the cruise angle. A positive configuration of these angles is shown
in Fig. 1.68.

Bv:vcosﬂBf+vsinﬁBf:vai—i—vny (1.301)

The definition of 8 for a vehicle in (1.301) is similar to the definition of g for tires
in (1.123) and (1.128). To make it distinguishable between the wheel-body sideslip
angle (1.129) in C-frame and the vehicle sideslip angle (1.301) in B-frame, we
usually refer to § in (1.301) as vehicle sideslip or vehicle attitude angle.

The numbering of tires of a vehicle starts from the first axle at the front. The front
left wheel is number 1, and then the front right wheel would be number 2. Then the
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Fig. 1.69 A six-wheel passenger car wheel numbering, relative position, and orientation of
B (x, y, z) and coordinate G (x, y, z) frames

left wheel on second axle would be number 3 and the tire on second axle on the right
will be number 4. Numbering increases sequentially on the left and right of the next
axles. Therefore, the tires with odd numbers are on the left and even numbers on the
right. Assuming each axle has only two wheels, the number of a wheel indicates the
axle as well as the left or right one.

Besides a single number indicator for wheels, there are literatures in which they
use axle number and add left-right wheels, such that the position vector of the wheels
1 to 6 of a three axle vehicle is numbered as: ry;, ry,, I, 2, I3, '3y, OF T'{q, 12,
a1, I'22, 131, r32. Numbering of a four-wheel and a six-wheel vehicle are shown in
Figs. 1.68 and 1.69, respectively.

Each wheel is indicated by a position vector Zr;, expressed in the body
coordinate frame B

Bri = xii + yij + zik (1.302)
and its velocity will be indicated by Zv;, expressed in the body coordinate frame B
vcos B —ry;

vi=8v+ gwp x Br; = | vsinB +rx; (1.303)
0

B
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and the G-expression velocity ©v; of tire number i is:
Ov; = gwp x (Gl‘i - GdB) + Gdp
—r(yicosy +x;siny) +vcos (B + ¥)

= ORp By, = r(xjcosyr — y;sinyr) +vsin (B + ) (1.304)
0

where gwp is the angular velocity of the vehicle in G-frame, ©djp is the position
vector of the origin of the B-frame in G-frame as shown in Fig. 1.68. For a planar
vehicle model, gwp = r Sk where r is the yaw rate r = w, and Gk is the unit
vector of the Z-axis in the global coordinate frame.

Proof Let us show the coordinates of the origin of the B-frame in G-frame by “d
G = [XC] (1.305)

The transformation matrix between B-frame and G-frame © Rp is a rotation matrix
by the yaw angle .

Gp _ |cosy —siny
Ry = |:sin¢ cos ] (1.306)

Therefore the position vector of tires in the G-frame will be
GI‘,’ = Gd+ GRB Bl‘i
| Xc n cosy —siny || x;
| Ye siny cosyr || i
_ Xc +xjcosyy — y; sinyr (1.307)
Yc + yi cos ¥ + x; sinyr '

Assuming different front track wy and rear track w,, the position vectors of the
wheels of the four-wheel vehicle in Fig. 1.68 are

a a
Brl:[ll] Br2=[ ar ]
Wy —2Wf

Byy — [I‘Q} By, = [ e ] (1.308)
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The velocity of the vehicle v in B-frame is

By — [vcosﬁ] (1.309)

vsin g

Having the velocity ?v and the angular velocity gw 5 = r Bk of the vehicle at the
mass center C, we are able to calculate the velocity of any other point of the vehicle.
The velocity of tires will be needed in calculating traction force and torques.

Bwp = SRpcws (1.310)
cosy —siny 0 0 0
= | siny cosyy O | x|O0|=]0
0 0 1 r r
By; = Bvy Bwp x Br; (1.311)
vcos B 0 X vcos B —ry;
=|vsinB |+ |0 [ x|y |=| vsinf+rx;
0 r 0 0

The vehicle velocity Bv after transformation to G-frame will be

Gy— GRyBy = [cosw —sinw} [vcosﬂ}

v sinyy cos Y vsin 8
vCOS(ﬂ+W)] G
= ) =%d 1.312
[ vsin (B + ) (131
Therefore, the global velocity of the center of the wheel number i is:
Gy, = cwp X (Gr,- - GdB) + %d, (1.313)
0 Xc — yisinyr + x; cos Xc
=10|x Yc+yicosy +x;siny | — | Ye
r 0 0
vcos (B + )
+ | vsin (B + ¥)
0

—r (yicos ¥ + x; sinyr) + vcos (B + ¥)
= | r(xjcosy¥y —y;siny) + vsin (8 + )
0
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Example 43 Wheel numbers, their positions and velocity.

Figure 1.69 depicts a six-wheel passenger car. The velocity of the car at its mass
center is indicated by v. The wheel numbers are indicated next to each wheel. The
front left wheel is wheel number 1, and the front right wheel is number 2. Moving to
the second axle, we have the wheels numbered 3 and 4. The left wheel of the third
axle gets number 5, and the right wheel gets number 6.

Let us assume the global location vector of the car’s mass center is given by

Gap = [XC] (1.314)
Yc
and the body velocity ?v at the mass center C and angular velocity of the car gwp
by
v cos B 0 0
Bv:[’“]:[v , ,3} gwg=10]=]0 (1.315)
) in .
vy vs " -
The body position vectors of the wheels are
B [ ar ] B [ ar |
= = 1.316
r| w2 ] r w2 ] ( )
B [ —a | B [ —ay |
= = 1.317
r3 w2 ry w2 ] ( )
B [ —as | B [ —a3 ]
= = 1.318
rs w2 I's w2 ] ( )

Employing the transformation matrix ¢ R to go from B to G coordinate frame,

G | cosyr —sinyr
Ry = |:sinw cos ] (1.319)

we may determine the global position of the wheels:

— Lsi
Gpy = Gd 4 ORp Bry = | K€~ gwsiny +aicosy (1.320)
Yo+ swcosy +apsiny
l .
Gpy— Gd 4 GRp Bry = | XC T wsiny +aicosy (1.321)
Yo — swcosy +apsiny
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1

Gpy = Gd 4 ORp Bry = | XC — gwsiny —axcosy (1.322)
| Yc + swcos Yy —azsiny |
- e -
Gry = Od 4 ORp Bry = | XC T wsiny —axcosy (1.323)
| Yo — swcos Yy —azsiny |
S TR -
Gps = Gd 4 GRp Brs = | XC — gwsiny —ascosy (1.324)
| Yo + swcosy —azsiny |
- [IT -
Grg = Od 4 ORp Brg = | XC T wsiny —ascosy (1.325)
| Yc — swcos ¥ —azsiny |
The velocity of C in G-frame is:
Gy— GRpBy— C?Slﬂ—Slnw v09sﬁ
sinyr cos Y vsin B
— [ vesBHVI _ 6y (1.326)
vsin (8 + ¥)
The velocity of a point P at “rp will be calculated by
Gyp = cwg X (GI‘P - GdB) + Gy (1.327)
As an example, the global velocity of the center of the wheel number 1 is:
GV] = GWpg X (Gl'l - Gdg) + GdB (1.328)
0 Xc—%wsinw—i—alcomp Xc
=|(0|x Yc+%wcosw+alsin1// - | Yc
r 0 0
veos (B + )
+ | vsin(B+ )
0

vcos(ﬁ—l—dx)—r(%wcosw—i—al sin

= vsin(ﬁ+xlf)+r<a1cosw—%wsindf
0
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Having ©v,we may calculate the velocity of tires in B-frame by transformation.

cosy —siny 0
Byi = GRLCvi=| siny cosy 0| x (1.329)
0 0 1
w
vcos(ﬂ+1ﬁ)—r(alsin¢+—COSIp) vcosﬂ—%r
vsin(ﬂ~|—1ﬂ)+r<awos¢—Esinl/f> = | vsinB+ar
0 0

As an example, consider a car as shown in Fig. 1.69, having the following data:

Gdp = [255} m (1.330)
v =r=01rad/s Bvc=20m/s (1.331)
B = 0.2rad ¥ = 0.3rad (1.332)

a;=12m ap=15m az=2.1m w=14m (1.333)

The velocity vector of C in body coordinate frame is:

B vcos B 20cos0.2 19.601
= = = 1. 4
Y [vsin,B:| |:205in0.2] [3.9734} m/s (1:334)

The transformation matrix from B to G coordinate frame is:

GRp = C?S Y —siny _ 0.95534 —0.29552 (1.335)
siny cos Y 0.29552 0.95534
The global position of the wheels is:
Gp; = 9d+ SRy Br; (1.336)
The global velocity of C is:
17.551 .
G G B G
Y By |:9.5884:| d (1.337)
The global velocity of the center of the wheel number 1 is:
. 17.449
G G G G
= ~ Odg) + %dp = 1.338
Vi GwBX( r| B)+ “dp [9.6824:| ( )
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Example 44 Velocity distribution of a vehicle.
Consider a general point P at rp = x7 + yj of the vehicle in Fig. 1.69 along
with

Byp = [’C} m  CGdg = [25} m (1.339)

y 5
Vv =r =0.1rad/s Bye =20m/s (1.340)
B =0.2rad Y =0.3rad (1.341)
a=12m a=15m a3=21m w=14m (1.342)

G cos Y —siny 0.95534 —0.29552
Rp = = 1.343
B [sinw cos } [0.29552 0.95534 ( )
B vcos f 19.601

= = 1.344
Y |:vsin,3:| [3.9734 m/s (1344)

G. _Gp B. _|17551]  ¢=
v= "Rp v_|:9.5884 ="d (1.345)

The global coordinates of P are

0.95534x — 0.29552y + 25
G G G B y
_ Gq4 OR — 1.346
e + o RpTre [ 0.29552x + 0.95534y + 5 } (1.346)
and the global velocity components at P are:
Ovp = gwp x (GI‘P - GdB) + Gdp
—2.9552 x 1072x — 9.5534 x 102y 4+ 17.551
= | 9.5534 x 107%x —2.9552 x 1072y + 9.5884 (1.347)
0
0.95534 —0.29552 07"
By = GRL%v=1029552 095534 0| Cv
0 0 1
19.601 — 0.1y
= 3.9735+0.1 (1.348)

0
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The velocity distribution is a linear function of the local coordinates in B-frame.
Therefore, having the velocity of any two points of the vehicle is enough to calculate
the velocity of any other point of the vehicle.

Example 45 Global vehicle path.
When we find the translational and rotational velocities of a vehicle, vy, vy, r,
we may find the global path of motion of the vehicle by integration.

wzfl/}dtzl//o+/rdt

Gy = [;} = ORp By (1.349)
X = /th =/(vx cos Y — vy sinir) dt (1.350)
Y:/Ydt:f(vxsinw—i-vycosw)dt (1.351)

1.7 Weight Transfer

Tire longitudinal and lateral forces are proportional to the load on the tire. The
load on tires of a vehicle is a combination of weight of the vehicle and vehicle
acceleration, as well as orientation of the vehicle on the road. In this section we
review how the normal force F on a tire of a moving vehicle is calculated.

1.7.1 Longitudinally Accelerating Vehicle

We assume vehicles are longitudinally symmetric. Therefore, the left and right sides
of vehicles are under same vertical force in level conditions. When a vehicle is
speeding with acceleration a, on a level road, as shown in Fig. 1.70, the vertical
forces under the front and rear tires are:

1 a 1 h

F,=F, = Mg — ymax s (1.352)
1 aj 1 h
Fpy=Fy = Fme +omaxy (1.353)

l=a1+a (1.354)
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Fig. 1.70 An accelerating car on a level road

The first terms, %mg“l—2 and %mg"l—l, are the static parts, and the second terms,

:l:%max%, are dynamic parts of the vertical forces. The parameters a; and ap
are longitudinal distances between front and rear axles respectively from the mass
center C. The height of the mass center C from the ground is indicated by & (Dieter
et al. 2018).

Proof The vehicle is considered as a rigid body that moves along a horizontal road.
The force at the tireprint of each tire may be decomposed into a vertical F, and a
longitudinal force F,. The Newton’s equation of motion for the accelerating vehicle
in the x-direction and two static equilibrium equations in y- and z-directions is:

> Fx = max (1.355)
S Fz=0 (1.356)
> My=0 (1.357)

Expanding the equations produces three equations for four unknowns Fy,, Fy,, F7,,
F,.

2Fy, +2F,, = max (1.358)
2F,, +2F,, —mg =0 (1.359)
—2F.,a1 4+ 2Fap — 2 (Fx, + Fe,) h =0 (1.360)

We may substitute (F v + F x4) from the first equation in the third equations to solve
for the normal forces F,, F, from second and third equations

1 a 1 h
FZ] = FZz = (Fzz)st + (FZZ)dyn = EmgT — EmaXT (1.361)
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1 al 1 h
F,=F,= (FZ4)sr + (FZ4)a'yn = EmgT + EmaXT (1.362)

The static parts

1 ar

(FZ2)st = EmgT (1363)
1 ai

(F)y = 3ms T (1.364)

are weight distribution for a stationary car and depend on the horizontal position of
the mass center. However, the dynamic parts

1 h

(Fzz)dyn = —gmax (1.365)
1 h
(Fu)dyn = ymax (1.366)

indicate the weight distribution because of horizontal acceleration, and depend on
the vertical position of the mass center.

When accelerating a, > 0, the normal forces under the front tires are less than
the static load, and under the rear tires are more than the static load. ||

Example 46 Front and rear wheel drive accelerating on a level road.

When the car is front-wheel-drive, then F; = Fy, = 0. Equations (1.355)—
(1.357) will provide us with the same vertical tireprint forces as (1.352) and (1.353).
However, the required horizontal force, 2F,, to achieve the same acceleration, ay,
must be provided solely by the front wheels.

2Fy, =may (1.367)

If a car is rear-wheel drive, then Fy, = F, = 0 and the required force to achieve
the acceleration, a,, must be provided only by the rear wheels.

2F,, = may (1.368)

The vertical force under the wheels will still be the same as (1.352) and (1.353).

Example 47 Maximum acceleration on a level road.

The maximum acceleration of a car is proportional to the friction under its tires.
We assume the friction coefficients at the front and rear tires are equal and all tires
reach their maximum traction at the same time.

Fy, = £, F;, (1.369)
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Fig. 1.71 An accelerating car on inclined pavement

Also, we assume the engine has infinite power to produce as much power as needed.
Newton’s equation (1.352) can now be written as

4
may = +p, Y F (1.370)

i=1
Substituting F7; from (1.361) and (1.362) results in
ay =tu, g (1.371)

Therefore, the maximum acceleration and deceleration depend directly on the
friction coefficient.

Uy = Cs Ss (1.372)

Example 48 Accelerating vehicles on an inclined road.

When a symmetric vehicle is accelerating on an inclined pavement with angle ¢
as shown in Fig. 1.71, the vertical force under each of the front and rear axles, I,
F,,, Iy, Fy,, would be:

1 a h . 1 h

F,=F,= Emg Tcos¢ -7 sing | — Emaxj (1.373)
1 ai h . 1 h

FZ3 = FZ4 = Emg T COS¢ + 7 Sln¢ + Emaxi (1374)
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The dynamic parts, :i:%max X%, depend on acceleration a, and height 2 of mass
center C, while the static parts depend on the slope angle ¢ as well as the
longitudinal and vertical positions of the mass center.

The Newton’s equation in x-direction and two static equilibrium equations must
be solved together to find the equation of motion and ground reaction forces.

Z Fx = may (1.375)
Y Fz=0 (1.376)
> My =0 (1.377)

Expanding these equations produces three equations for four unknowns Fy,, Fy,,
F 21 F 22

2Fy, +2Fy, —mgsing = max (1.378)
2F,, +2F,, —mgcos¢ =0 (1.379)
—2F,a1 +2F,a —2 (F,C2 + Fx4) h=0 (1.380)

It is possible to eliminate (Fy, + Fy,) between the first and third equations, and
solve for the vertical forces I, Fy,, F;, F,.

Fp =F, = (Fzz)st + (Fzz)dyn

1 ar " h . " 1 h (1.381)
= —m — COS — — Sin — —may — .
28\ 7 I 24X

Fy=F; = (FZ4)st + (FZ4)dyn

Lng (L cosp+ " sing ) + Lmay (1.382)
= — — COS — Sin — — .
AW I 2MaxT

Example 49 Maximum acceleration on an inclined road.

The maximum acceleration depends on the friction under the tires. Let us assume
the friction coefficients at the front and rear tires are equal. Then, the front and rear
traction forces are

Fy < 1, F, (1.383)

If we assume the front and rear wheels reach their traction limits at the same time,
then

Fy, = +u F,, (1.384)
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Fig. 1.72 A vehicle on lateral acceleration

and we may rewrite Newton’s equation (1.375) as

4

max, =+, y_ F, —mgsing (1.385)
i=1

where ay,, is the maximum achievable acceleration.
Substituting Z?:l F; from (1.381) and (1.382) results in

Axy

=4/, cos¢p —sing (1.386)

Accelerating on an uphill road and braking on a downhill road are the extreme cases
in which the car can stall, a, = 0. In these cases, the car can move only if

Ky = |tan @] (1.387)

Following the directions of the body coordinate frame of the vehicle, uphill road
should be assigned by ¢ < 0 and downhill by ¢ > 0, as the slope angle ¢ should
be measured about the y-axis. However, in this section we have used the absolute
value of the slope angle for calculations.

1.7.2 Laterally Accelerating Vehicle

Figure 1.72 illustrates a vehicle on lateral acceleration. The vertical force under the
left and right tires, Fy,, F,, F,, Fy,, are:

F, = F; =-mg— — —may— (1.388)
w
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1 by 1 h
FZz = FZ4 = Eng + zmayE (1389)
w=>b+b (1.390)

Proof Assuming a symmetric vehicle, we may use equilibrium and equation of
motion in the body coordinate frame (Cxyz)

> Fy =may (1.391)
Y Fz=0 (1.392)
> Mx =0 (1.393)
we can write
2Fy, +2F,, = may (1.394)
2F;, +2F, —mg=20 (1.395)
2F; b1 — 2F,by + 2 (Fy, + Fy,) h =0 (1.396)

Substituting (Fyl + F. yz) from (1.394) into (1.396) enables us to solve for F7,.

FZ] = FZ3 = Emga — EmayE (1397)
1 b 1 h

F,,=F, = -mg— + —may — (1.398)
22 24 B gw ) w

n

Example 50 Vehicle on a banked road.

Figure 1.73 illustrates the effect of a bank angle ¢ on the load distribution of a
vehicle. A bank road causes the load on the lower tires to increase and the load on
the upper tires to decrease. The tire reaction forces are:

1mg .
F,, = -—(bycos¢ — hsing) (1.399)
2 w
1
F., = E@ (b1 cos ¢ + h sin ¢) (1.400)
w
w=>b;+ by (1.401)
The maximum bank angle is
tandy =, (1.402)

at which the car will slide down laterally.
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Fig. 1.73 Vertical forces to the ground under the uphill and downbhill tires of a vehicle, on banked
road

Starting with equilibrium equations in the body coordinate frame (Cxyz)

Y Fr=0 (1.403)
Y Fz=0 (1.404)
Z My =0 (1.405)
we write
2Fy, +2F,, —mgsin¢g =0 (1.406)
2F;, +2F,, —mgcos¢ =0 (1.407)
2F. by — 2F,by + 2 (Fy, + Fy,) h =0 (1.408)

We assumed the force under the lower tires, front and rear, are equal, and also the
forces under the upper tires, front and rear, are equal. To calculate the reaction forces
under each tire, we may assume the overall lateral force Fy, + F), as an unknown.
The solution of these equations provide the lateral and reaction forces under the
upper and lower tires.

1 b 1 &

F. =F., = Emgaz cosg — smgsing (1.409)
1 b 1 h

F.,=F, = zmgal cosg + smg—sing (1.410)

1 .
Fy, = ng sin ¢ (1.411)

i
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At the ultimate angle ¢ = ¢, all wheels will begin to slide simultaneously and
therefore,

Fy, =y, F, (1.412)

The equilibrium equations show that

2py Foy + 21y, Fry —mgsing =0 (1.413)
2F;, +2F,, —mgcos¢ =0 (1.414)
2F, by — 2F,by + 2 (py, Foy 4 iy, Fry) R =0 (1.415)

Assuming all friction coefficients are equal

My, = My (1.416)
provides us with
1 by 1 h .
FZ] =FZ3 = Emg;cosqu—ing SIH¢M (1417)
1 b I h .
F,=F,= Emgz cos @y + gmga sin ¢y, (1.418)
tang,, = Ky (1.419)

These calculations are correct as long as

IA
|

tan ¢y, (1.420)

jy < — (1.421)

If the lateral friction My is higher than b,/ h, then the car will roll downhill. To
increase the capability of a car moving on a banked road, the car should be as wide
as possible with a mass center as low as possible.

Example 51 Tire forces of a parked car in a banked road.
A car having

m=980kg h=06m w=152m b =b (1.422)

is parked on a banked road with ¢ = 4 deg. The forces under the lower and upper
tires of the car are:

2F, =22652N  2F, =2529.9N (1.423)
2F,, +2Fy, = 3353N (1.424)
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Fig. 1.74 A moving car on a round banked road

The ratio of the uphill force 2F;, to downhill force 2F;, depends on only the
mass center location.

Fy,  bycos¢ —hsing

- == (1.425)
F,, bicos¢ +hsing

Assuming a symmetric car with b; = b, = w/2 simplifies the equation to
& _ wcos¢ — 2hsin¢ (1.426)

F, " wcos¢ + 2hsing

Example 52 Vehicle on a banked round road.

When a vehicle of mass m is moving with speed v on a flat round path of radius
R, the direction of the wheels lateral force are inward and provide the required
centripetal acceleration.

2

(2F,, +2F),) cos ¢ = m% (1.427)

Knowing that the wheels’ lateral forces are limited by the maximum friction force
between tire and road, we conclude that there is a maximum speed vy, at which the
required lateral force will not be produced by tires and vehicle slides out of the road.
To have a safe road, we have to design round roads such that vehicle do not need
any wheel lateral force to provide the required centripetal force at the recommended
speed. Designing roads with a bank angle is a good approximate solution; so a
component of weight force provides the required centripetal force. Figure 1.74
illustrates a moving car on a round banked road. Assuming equal vertical force under
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each tire, the balance of the applied forces on the vehicle in the body coordinate
frame provides us with

2

mg cos ¢ — 4F,, — m% sing = 0 (1.428)
U2
mg sin ¢ —mE cosp =0 (1.429)

The second equation indicates the required bank angle as a function of speed

2

v
tang = — 1.430
an ¢ Rg (1.430)

The bank angle is independent of the vehicle mass m and is a function of the road
radius of turn R and velocity of the vehicle v. Assuming that the road radius of turn
R is not variable, the bank angle must ideally vary with the speed of the vehicle.
To design a traditionally fixed road, we have to decide about the proper velocity
of vehicles on the road and calculate the bank angle based on (1.430). Because
the angle is only a function of the vehicle velocity, the proper banked road works
well for all types of vehicles as long as they keep their velocity as recommended.
Any lower or higher speed would respectively need some positive or negative lateral
force to be generated by tires. The lack or excessive tire lateral force will be provided
by steering and sideslip angles of vehicles, or by roll and camber angles of bicycles
and motorcycles.

1.7.3 Longitudinally and Laterally Accelerating Vehicle

Figure 1.75 illustrates a vehicle on longitudinal and lateral acceleration a, and ay,.
The tire forces of the vehicle on a flat ground are equal to:

h b h h
Fopmm 2y Pay ) 2 (g Lay) L& (1.431)
l l wy l l wr g
h b h h
Fopmm(Zglay) 2 4 (2 tuy) L& (1.432)
[ [ wy / l wr g
h b h h
[ l wy l l Wy 8
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Fig. 1.75 A vehicle on longitudinal and lateral acceleration a, and a,

aj h b1, ai h h ay

Fo=m (%ot Zay ) 2L 4m (Lot tay ) —4 (1434)
l l wy l l w, g

wyr =biys+ bay (1.435)

Proof Let us use the tire numbers according to the recommendation in previous
section. The front left wheel is number 1, and then the front right wheel would be
number 2. The left wheel on second axle is number 3 and the second axle on the
right will be number 4.

Figure 1.76 illustrates a vehicle on a flat ground with forward acceleration a,.
The forces F.¢, F,, on front and rear axles of the vehicle from (1.352) to (1.353)
are:

h
F, = mg% —max; (1.437)
h
F., = mg"l—‘ +max; (1.438)
l=a+a (1.439)

Figure 1.77 depicts the front view of the same vehicle when the load on the front
axle is as (1.437) and the vehicle has a lateral acceleration of ay. Using (1.437), we
introduce a virtual front mass m, ¢
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Fig. 1.77 A vehicle with a vertical load of F; on front axle and on a lateral acceleration of a,

F. 1 h
Myf = i A (mga—2 — max—) (1.440)
g g l l

Employing (1.388)—(1.389) we find the vertical force under front wheels z; and z;
as:

by s h

F, =m — — My Ay —
Z1 vfgwf vf wa

ap h\ (bay ay h
T ) s T g wy
f 8§ wy

h b h h
=m ﬂg — —ay 2L %g — —ay e 4 (1.441)
l [ wr l l wr g
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biy h
FZ2 :mvf gw—f +mvf dyw—f

ay h bl :
= (mgT —max7> <w_; +

(az h ) h ay
m|—g——-ax | ——

a h b
=m —28——61X £+
) l w

wy =biyr+bay

ay h )
8§ wy

l l wr g

Similarly, we use (1.438) to introduce a virtual rear mass m,,

— FZr f—
Myr = =

1 al h
— | mg— +mayx—
g l [
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(1.442)

(1.443)

(1.444)

and use (1.388)—(1.389) to find the vertical force under rear wheels z3 and z4 as:

2 h
Frpy=my g mvran_
r r
h by, h
(g™ +omay ) (e
[ l wy g Wy
ai h by, ap h Y
_m<lg+lax> r—m<lg+lax) ;
b F,, h
Fz4—FZf - “ay —
Wy g Wy
h b h
= mga—]—i-max— l—i-a—y—
! ! Wr 8§ Wr
a h b a h h a
N D e I D N
[ l wy l l w, g
w, = by, + by

(1.445)

(1.446)

(1.447)

There were few assumptions in this analysis that make the results to be

approximately correct.

1. We started from Eqgs. (1.352) to (1.353) to determine the vertical load on the
front and rear axles. These equations assume the left and right wheels are under

the same forces.

2. We used (1.437) and (1.438) and defined virtual masses at front and rear parts
of the vehicle. This is only an assumption to be able to connect the effects of

longitudinal and lateral acceleratio

3. The sprung and unsprung masses are assumed rigidly connected.

ns ay and ay.
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Example 53 Linearized equations for tires’ load.

Under normal driving conditions, vehicles usually have very low lateral and lon-
gitudinal accelerations. In case the term including a,a, may be ignored compared
to other terms, the set of Eqgs. (1.431)—(1.434) for vertical forces of tires will become
linear.

F., = %wﬂf (gazba s — hbyax — haray) (1.448)
F., = %wif (gazby s — hby pax + haray) (1.449)
F., = %wﬂ (garbay + hbyrax — hayay) (1.450)
F., = %wﬂ (garbyy + hbiyax + hayay) (1.451)

Example 54 The problem with exact equations.
Consider the rigid vehicle in Fig. 1.75. There will be six equations of motions:

ZszmaX ZFy=may ZFz=O
ZMX:0 ZMX:0 ZMX:O (1.452)

which will be expanded to

Fy + Fx, + Fyy + Fy, = mayx (1.453)
Fy + Fy, + Fy; + F,, = may (1.454)
Fo+F,+F,;+F,—mg=0 (1.455)

_ (Fz1 + Fzz) a + (Fz3 + Fz4) a
— (Fuy + Foy + Fy + Fy) h = Lyg (1.456)

leblf - FngZf + Fz3b1r - Fz4b2r
+ (Fy + Fy, + Fyy + Fy)h = Lp (1.457)

Fy a1 + Fy,a1 — Fysay — Fy,ar

—Fybif + Fy,boy — Fy,b1y + Fyy by = L7 (1.458)
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Assuming every parameter and variables are given except the vertical forces F7,
F,,, F,,, F,,, we only have three equations (1.455), (1.456), (1.457) to determine
four unknowns. This system is undetermined and is not solvable unless a constraint
being introduced into the system of equations.

F,
1 1 1 1 le mg
—ay —a) ax ap FZz = maxh + Iyq (1.459)
b1y —bay b1y —byy FZ3 —mayh + I, p
24

If the calculated forces in Eqgs. (1.431)—(1.434) are correct, then they must satisfy
Eq. (1.459) when ¢ = 0, p = 0. Substituting the vertical forces F;,, F,, Fy;, Fz,
from (1.431) to (1.434) into Eq. (1.459) indicates that all three equations will be
satisfied.

Example 55 Weight transfer in local coordinate frame.

Equations (1.431)—(1.434) determine the load transfer on vehicle’s wheels
because of longitudinal and lateral accelerations ay and ay, both expressed in the
global coordinate frame. We will see that the equations of motion of vehicles are
better to be defined in the body coordinate frame. In the body coordinate frame, we
have

ax = Uy — vy (1.460)
ay = Uy +r vy (1.461)

Therefore, the weight transfer equations (1.431)—(1.434) must be modified as below
to be applied.

l l wy
a» h . h vy+rv
—m (Tg -7 (0x — 1 vy)> w—f% (1.462)

wy
a h . h vy+rv
+m (Tg -7 (vx —r vy)) w—f% (1.463)

h hov
—m <a—]g + 2 (b —r vy)> w—‘)yf% (1.464)
r
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aq h . b1
Fozm(Fot o) 3
aj h . h vy+rv
+m<7g+7(vx—rvy)>w—r% (1.465)
wyr=bif+byy (1.466)
w, = by, + by (1.467)

1.8 Chapter Summary

The dynamic performance of a vehicle is mainly determined by the interaction of
its tires and road. A vehicle can only move and maneuver by the force systems
generated under the tires. In this chapter, we introduce the required coordinate
frames to determine the location and orientation of tires in the vehicle body
coordinate frame; the mathematical equation to calculate longitudinal and lateral
forces; and individual equations needed to develop dynamic equations of vehicles
in the following chapters.

The resultant force system that a tire receives from the ground is at the center of
the tireprint and can be decomposed along x;, y;, and z; axes of the tire coordinate
frame T'. The interaction of a tire with road generates a three-dimensional (3 D) force
system including three forces and three moments. The force system at the tireprint
of a loaded, rolling, steered, cambered tire includes: forward force F,, lateral force
Fy, vertical force F7, aligning moment M, roll moment M,, and pitch moment
M,. The forward force F, and lateral force F) are the most significant forces in
vehicle maneuvering. To accelerate or brake a vehicle, a longitudinal force must be
developed between the tire and the ground. When a torque T is applied to the spin
axis of a tire, longitudinal slip ratio s occurs and a longitudinal force Fy is generated
at the tireprint proportional to s. The tire lateral force Fy is a function of two angles
of the tire: sideslip angle o and camber angle y. The F, and Fy take the tire load
F,, sideslip «, longitudinal slip s, and the camber angle y as input.

We adopt the proportional-saturation model for longitudinal and lateral slips of
tire. When o = 0, a small longitudinal slip s < s, generates the longitudinal force
Fy/F, = Cys, and when s = 0, a small sideslip angle « < o generates a lateral
force of Fy/F; = —Cya. When there exists a longitudinal slip s < sy and then
we also introduce a sideslip ¢ < oy, the longitudinal force will reduce. Similarly,
when there exists a longitudinal slip s < s, the lateral force will drop. The elliptic
mathematical model introduces the analytical expression of the interaction Fy/F,
and Fy/F;.

Because the longitudinal and lateral forces are affected by the vertical force F;
on the tire, there must be a model to calculate the weight transfer during forward
and lateral acceleration. Such equations are calculated in this chapter.
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1.9 Key Symbols

8
SOl

RS
ey

=

N

Acceleration

Semiaxes of tire print area A

Longitudinal distance of axle i from mass center
Axle number starting from the front first axle
Forward acceleration

Lateral acceleration

Maximum forward acceleration

Maximum lateral acceleration

Aligning arm

Camber trail

Camber arm

Tireprint area

Lateral distance of a wheel from longitudinal x-axis
Vehicle body coordinate frame

Wheel-body coordinate frame, mass center
Sideslip aligning moment coefficient

Camber aligning moment coefficient
Longitudinal slip coefficient

Longitudinal force drop coefficient with slip rate
Tire longitudinal force drop factor

Tire longitudinal-camber force drop factor
Velocity drop coefficient in longitudinal force
Longitudinal and lateral slip coefficients
Camber arm coefficient

Sideslip coefficient, sideslip stiffness

Tire lateral force drop factor

Tire lateral-camber force drop factor

Velocity drop coefficient in lateral force
Camber coefficient, camber stiffness
Displacement

Location vector

No slip tire travel

Actual tire travel

Tire diameter

Function

Force

Longitudinal force, forward force

Maximum longitudinal force

Lateral force

105
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Maximum lateral force

Normal force, vertical force, wheel load
Gravitational acceleration

Height of mass center from the ground
Heaviside function

Mass moment

Unity matrix

Stiffness

Tire stiffness in the x-direction

Tire stiffness in the y-direction

Tire stiffness in the z-direction

Radial and non-radial tires parameter in ;, = u, (p, vy)
Mass

Virtual front mass

Virtual rear mass

Rolling resistance moment

Roll moment, bank moment, tilting torque
Pitch moment, rolling resistance torque
Yaw moment, aligning moment, self-aligning moment
Exponent for shape and stress distribution of A p
Number of tire rotations

Origin of a coordinate frame

Order of magnitude

Tire inflation pressure

Point

Radial position of tire periphery

Position vector

Geometric tire radius

Loaded tire height

Equivalent tire radius

Tire radius, rolling radius, effective radius
Rotation transformation matrix
Longitudinal slip

Saturation value of longitudinal slip
Lateral slip

Saturation function

Wheel torque, tire coordinate frame
Velocity, tread velocity in tireprint
Velocity of the ground

Relative velocity of tire tread with respect to ground
Displacement
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X, ¥, 2
Xg
Xrel

w

Exercises

Coordinate axes

Displacement of the ground

Relative displacement of tread with respect to ground
Wheel coordinate frame

Zero vector

Tire sideslip angle, tire angular acceleration
Saturation sideslip angle

Tire angular acceleration

Tire-body sideslip, wheel-body sideslip, vehicle sideslip
Transversal slope, attitude angle

Camber angle

Steer angle

Tire angular rotation

Friction coefficient

Longitudinal friction coefficient

Lateral friction coefficient

Friction coefficient driving peak value
Friction coefficient steady-state value
Shear stress

Shear stresses over the tireprint

Maximum shear stresses

Contact angle, angular length of A

Slope angle

Angular velocity, frequency

Equivalent tire angular velocity

Angular velocity of a wheel, actual tire angular velocity

1. Tire-wheel coordinate frames.
Assume an equivalent rigid tire disc with the following equation in T-
coordinate.

z—R?*+x*=R? (1.468)

(a) Assuming a positive y, determine the equation of the tire in W-frame.

(b) Assuming a positive 8, determine the equation of the tire in C-frame.

(c) Assuming a positive y and &, determine the equation of the tire in C-frame.
(d) Assuming a positive y and §, determine the equation of the tire in B-frame.
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2. Time-dependent transformation.
Consider the point P in Fig. 1.4 as the heading point of tire in T-frame. The
coordinates of P in T-frame are:

"rp=[ROR] (1.469)

Assume the steer angle § is varying with time as

5 =" sin Xy (1.470)
10" 10

(a) Determine the coordinates of P in W-frame.
(b) Determine the coordinates of P in C-frame.
(c) Determine the coordinates of P in B-frame.

3. T-frame vector to W-frame.

(a) Consider a vector quantity 7 F in the tire 7-frame as:
F=[F R R (1.471)

and knowing that:

1 0 0 0
w w :
W — Rt "dr _ 0 cqsy siny 0 (1.472)
0 1 0 —siny cosy —R
LO O 0 1
[[cosd —sind 0 0
c c :
Rr “d sind cosé 0 O
c T dr
Tr = = 1.473
’ [ 0 1 ] 0 0 1-R (1.473)
0 0 01
(b) transform the vector to W-frame.
(c) transform the vector to C-frame.
(d) transform the vector to B-frame if:
BRw = BR;y TRy
cosd] —cosysind; siny sind;
= | sind; cosycosd; —cosdpsiny (1.474)

0 siny cos y

Tdy =[0 —Rsiny Reosy ] (1.475)
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4. Phase portrait for longitudinal force.
Assume
i _c L Cys® (1.476)
—_— = S — — N .
F. S T
(a) Plot F,/F; as a function of s for C; = 10.01001.
(b) How much slip ratio is needed to have F, = F, and how much to have
F, =2F,.
(c) Plot d (Fy/F;) /dt versus F,/F, fors = 0.01, s = 0.05, s = 0.075,
s =0.1,s = 0.01, s = 0.15 and make a conclusion.

5. Tire sideslip, steer, wheel sideslip angles relationship.
The relationship of « = 8 — § is correct from top view at zero camber y = 0.
Determine the relationship when y # 0.

6. Sigmoid or Logistic function derivative.
Prove that if

= Si = 1.477
[0 =Sig() = 1 (1.477)
then
Fr@)=f@)d-fx) (1.478)
7. Sigmoid and Saturation function.
Determine the coefficient k in the Sigmoid function
S (x) =Sig(x) = (1.479)

1+ ek«

such that the difference between Saturation and Sigmoid function to be
minimum.

8. Activation functions.
Show that

(@) If f(x) =x/(1+|x]), then

X

! =— 1.480
SO =y (1450

(b) If f (x) = arctan (x) = tan™! (x), then
f(x) = (1.481)

1+ x2
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(¢) If f (x) = x/~/1 + kx?, then

1 3
f(x) = (—m) (1.482)

(d) If £ (x) = tanh (x), then
frf)y=1-f? (1.483)

() If £ (x) = tanh (x) =2/ (1 +e~%*) — 1, then
tanh (x) = 2 Sig (2x) — 1 (1.484)

Therefore, Sigmoid function is a scaled tanh function.

. Graphical view of tire force.

Consider a vehicle with the following data.

Car =85 Cor=85 a;=5deg  s,=0.1
Ciy=75 Cy=175 Cos=05 Cou=05 (1485)

and the tire force equations:

F o \?
— =Cs8,/1 — Csq | — lo] < o ls| < s (1.486)
F; o

N

Fy s\2
— = —Cqa,/1 —Cus | — lo| < o Is| <sg (1.487)
FZ Ss

(a) Plot Fy/F; as functions of « and s for —2ay < o < 205 and —2s; < § <
2s5. Replot Fy /F; for Cys = 0 and Cy = 0 and compare the plots.

(b) Plot F,/F; as functions of « and s for —2ay < o < 205 and —2s5 < 5 <
2s5. Replot F)/ F; for Cys = 0 and Cy = 0 and compare the plots.

(c) If there is any sharp edges in any of the above plots, explain what would
happen to the tire forces before and after the sharp edges.

Tire camber and steer angles connection.
Practically, we design a suspension and steering mechanism such that the
camber angle y is proportional to the steer angle é.

y =Cys56 (1.488)

Rewrite the lateral force equation to be a function of steer angle and sideslip
angle.
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Slope of limit ellipse tire force.

(a) Determine the slope of both sides of the limit curve at the point that F / F,
and F,/ F; reach each other.

(b) Determine the required condition to have the same slope of both sides of
the limit curve at the point that Fy /F, and F;/F, reach each other.

Jump in limit ellipse tire force.

Determine if it is possible the limit elliptical model curve at the point where
both F,/F; and Fy/F;, are saturated do not reach each other and show a jump?
Approximate elliptic tire model.

Use the approximate elliptical tire force model (1.266) and (1.267),

Fe ceslizle, (@ ’ (1.489)
Fz =Css 5 sa s .
By o culi-te,(? ’ (1.490)
F. = al 5 Cas 5 .

and use the following date

ss = 0.1 Cy, =10 Cy =024
Csq = 0.5 Cys =05 ay = Sdeg (1.491)

and

(a) Plot Fy/F; as a function « for —ay < o < ag and for s = 0.01, s = 0.02,
s =0.03, s = 0.04.

(b) Plot Fy/F; as a function s for —s; < s < s; and for = 0.5deg, a =
ldeg, « = 1.5deg, « = 2deg.

(c) Plot Fy/F; versus Fy/F, fors = 0.01, s = 0.02, s = 0.03, s = 0.04 and
o =0.5deg, ¢ = ldeg, o = 1.5deg, o = 2deg.

(d) Plot Fy/F; versus Fy/F, for s = s; and for —a5 < a < oy, and also plot
Fy/F, versus Fy/F, for a = o, and for —s; < s < s;. The closed curve
will show the possible limit zone of tire slips.

(e) Compare plots of 11(a) with elliptical tire model in the book and explain
the differences.

(f) Compare plots of 11(b) with elliptical tire model in the book and explain
the differences.

(g) Compare the limit of 11(c) with limit shape of elliptical tire model and
explain the differences.

Jump in limit diamond tire force.
Determine if it is possible the limit diamond model curve at the point where
both Fy/F, and F)/F;, are saturated do not reach each other and show a jump?
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16.

17.

18.

19.
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Tires’ loads order of magnitude.

Assuming that for most passenger cars the longitudinal and lateral accelerations
are ax/g < 1 and ay/g < 0.05, determine the order of magnitude of the term
with aya, compared to other terms in equations for vertical force on tires.
Vertical force examination

Use Eqgs. (1.431)—(1.434) and show that all Eq. (1.459) are correct.
Longitudinal and lateral accelerating vehicle.

Reprove the equations for tires vertical force calculation starting with lateral
acceleration. Then define a left and right virtual masses, m; m,,, and use the
longitudinal analysis. Compare your results with Eqs. (1.431)—(1.434).

Fourth equation.

The set of Eq. (1.459) provides three equations among four unknown forces,
Fy, Fy,, F;, F;,. We have a set of solutions (1.431)—(1.434) that satisfy the
set of equations. What can be the fourth equation to be added to Eq. (1.459) to
provide us with the solutions (1.431)—(1.434).

Fy+F,+Fy+ Fy mg
aFy, —a1Fy —a1F; +aFy, = | mayh (1.492)
Fo by + Fouby — Fryboy — Foyboy —mayh

Is it possible to rewrite Eq. (1.459) as

1 1 1 1 F, mg
—a; —a; ay a» F, mayh
= (1.493)
by —bay b1y —bo, F —mayh
Ci Cy (Cp Cj F, A
and solve the equations to find F, Fy,, F;, Fy,
-1
1 1 I 1 mg F,
—a; —a) ax ax maxh F,
= ' (1.494)
blf —bzf blr —bzr —mayh FZ3
Ci C C Ci A Fy

and then expand the equations and pick one of the coefficients Cy, C», C3, Cy4
equal to one, say C1 = 1, and find C», C3, C4, A?

Independent longitudinal and lateral forces.

In case the longitudinal and lateral forces are independent and not been affected
when the other force is developed, then the following questions will be applied.

F

—~ =F(a,s,y)=Css (1.495)

F;

F

Fy =Fy(a,5,7) =—Cqa—Cyy (1.496)
Z
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(a) Use Cy = 10, oy = Sdeg, C, = 0.24, s, = 0.1 and plot force relations
similar to Figs. 1.39 and 1.40.

(b) Use Cys = 0.5, and Cyy = 0.5, and redraw the elliptical and diamond and
independent models on one plot similar to Fig. 1.40.

Elliptical camber equation.
Consider the elliptical relationships (1.200) and (1.201) and include an elliptical
camber equation to the lateral force.

B coafi—co (2) e (2
F. = al as 55 ay V.
S o 2
—Cy)/ 1-— Cys (—) 2 _ Cya (—) (1.497)
Ss oy

o < O s <S5 Y <Vs

(a) Plot Fy/F; as a function of « and y at constant values of s for C; = 10,
ay = Sdeg, Cy = 0.24, 5, = 0.1, C,, = 0.05, y, = 20deg, Cys = 0.5,
Csa =0.5,Cyy =0.5,and Cpy =0.5.

Path of motion.

Assume
Y 0.1
=0.01rad Cy=|".|= 1.4
r =0.01rad/s v [X] [15]m/s (1.498)
Determine the path of motion of the vehicle.
Path of alternative motion.
Assume
Y 0.1 sin 55
= 0.01rad Gy=|. |= 100 14
r rad/s v |:Xj| |: s ]m/s (1.499)

Determine the path of motion of the vehicle.
Path of yaw rate related motion.
Assume

t .
r = 0.0 sin = rad/s Gy = [)ﬂ - [1100(512} m/s  (1.500)

[=3m (1.501)

Determine the path of motion of the vehicle.



Chapter 2 ®
Vehicle Planar Dynamics Qs

The planar model of vehicles is mathematically the simplest model to determine
dynamic characteristics of vehicles and it still predicts the dynamic behavior of
vehicles very well. In this chapter we study this principal model to examine
maneuvering of vehicles by steering as well as the wheel torque control. The wheel
torque and steer angle are the inputs and the longitudinal velocity, lateral velocity,
and yaw rate are the main output variables of the planar vehicle dynamics model.

2.1 Vehicle Dynamics Equations

The planar vehicle dynamic model is the simplest applied modeling in which we
assume the vehicle remains parallel to the ground and has no roll, no pitch, and no
bounce motions. Figure 2.1 illustrates the variables of the planar vehicle dynamic
model. A vehicle body coordinate B (C, x, y, z) is attached to the mass center C of
the vehicle. The planar motion of vehicles has three degrees of freedom: translation
in the x and y directions, and a rotation about the z-axis. The longitudinal velocity
v, along the x-axis, the lateral velocity vy along the y-axis, and the yaw rate r = v
about the z-axis are the outputs of the dynamic equations of motion (Jazar 2017,
2011; MacMillan 1936). The Newton—Euler equations of motion for the vehicle in
the body coordinate frame B are:

Fy =mv, —mruv, 2.1)

Fy =mvy +mr vy 2.2)

M. =17 2.3)

T, = [w,- d)wi + Ry Fx,- 2.4
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Fig. 2.1 Vehicle body coordinate frame B(Cxyz), dynamic variables, and force system of the
planar dynamic model

X
Y Fy . F,
S B
{
A
Vy’
d
W\ > X

Fig. 2.2 A rigid vehicle in a planar motion in a globally fixed coordinate frame G (X, Y, Z)

Proof Figure 2.2 illustrates a vehicle in a planar motion. We attach a body
coordinate frame B (x, y, z) to the vehicle at its mass center C. The vehicle is
moving in a global coordinate frame G (X, Y, Z) that is attached to the ground at a
given fixed point. The Z and z axes are always parallel. The orientation of the frame
B in G is indicated by the heading angle y» between the X and x axes, measured
from X. The global position vector of the mass center of the vehicle is denoted by
the location vector “d.
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The equations of motion of a rigid body in the body coordinate frame are:
By — BRG GF = BRG (m Gag) =m (B;aB

=m B\"B +m ng X BVB (2.5)

Gg . .
BM = BRG M = WBL: SLp =L+ Swp x L
= Bl Eap+ fop x (*1 Gos) 2.6)

The force, moment, and kinematic vectors for the vehicle are:

Bp=[F, F, 0] *M=[0 0 M.]" @7
Bog=[0 0 r]" Bog=[0 o #] 2.8)
By=[v, v 0] By=[v, v, 0] 2.9)

The vy is the forward component and the vy, is the lateral component of the velocity
vector Bv. The r = v/ = w. is the yaw rate of the vehicle.

We assume that the body coordinate is the principal coordinate frame of the
vehicle, and therefore we have a diagonal mass moment matrix (Beatty 1986;
Bottema and Roth 1979).

L 0 0 I, 0 0
Br=lo b o|=|0 1, © (2.10)
0 0 &I 0 0 I

Substituting the above vectors and matrices in the equations of motion (2.5)—(2.6)
provides us with the following equations:

BF =m B\"B +m ng X BVB
Uy 0 Uy mvy — mrvy,
=m| 0y [+m|O0[x]|v,|=|mdy+mro, 2.11)

0 r 0 0



118 2 Vehicle Planar Dynamics

F‘C
> X
Fig. 2.3 Free-body-diagram of a wheel
BM = Bf gd)B + ng X (BI gwg)
I, 0 O 0
=0 1, 0|0
0 0 IL||#
0 I, 0 O 0 0
+10 ]| x 0 1, 0 = 0 2.12)
r 0 0 I r I 7

The first two Equations of (2.11) and the third Equation of (2.12) make the set of
equations of motion (2.1)—(2.3) for the planar vehicle dynamics.

Fy =mvy —mrvy (2.13)
Fy =mv, +mr vy (2.14)
M, =71, (2.15)

The right-hand side of the equations of motion are the resultant of the kinematics
of the rigid vehicle acceleration ga expressed in B-frame. The left-hand side is the
resultant of the external force system on the vehicle, expressed in body coordinate
frame, 5F, BM.

The fourth equation (2.4) is a result of dynamic analysis of individual wheels
of the vehicle. Consider the free-body-diagram of the wheel number i as shown in
Fig.2.3. There is a traction force Fy and a roll resistance force Fr in the x-direction
according to the tire coordinate frame. The equal action and reaction forces of wheel
load and ground reaction are also applied to the tire in the z-direction by ignoring
the mass of the wheel. The in-wheel torque 7; will provide us with the resultant
traction force Fy, according to:
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T; = I, oy, + Ry, Fx, (2.16)

where I, is the mass moment of the wheel about its spin axis, w,, is the angular
velocity of the wheel about its spin axis, and Ry, is the equivalent tire radius. We
may replace R,, with tire geometric radius R, considering that in normal conditions
they are very close to each other.

Besides these main components of the force system on a wheel, there are several
other less important forces as aerodynamic resistance torque and force, aligning
moments and forces, etc. (Schiehlen 1982; Milliken and Milliken 1995, 2002). W

Example 56 Global equations of motion.
The equation of motion of a planar vehicle, expressed in the global coordinate
frame, is called the G-expression.

Fyx =m%f(=mi)x (2.17)

Fy =mif/=mi;y (2.18)
dt

Mz =1, iy) =1z (2.19)
dt

oz =i K (2.20)

Although these equations look simpler than (2.1)—(2.3), they are not practical
because the forces Fy, Fy are dependent on the orientation of the vehicle, and they
are well expressed in the B-frame. The orientation of the vehicle is indicated by the
heading angle .

To recover the vehicle’s equations of motion in B-frame we need to transform
the global equations of motion (2.17)—(2.19) to the vehicle’s body coordinate frame
B, using the transformation matrix ¢ Rp to go from B-frame to G-frame.

cosyy —siny O
ORp=|siny cosy O (2.21)
0 0 1

The G-expression of the velocity vector is

Cye = °Rg Bve (2.22)
vy [(cosy —siny O Uy
vy | = | sinyy cosy O vy
0 | 0 0 1 0

[ vy cosy — vy siny
= | vycosy + vy sinyr (2.23)
0
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where Bvc is the velocity of vehicle at C expressed in B-frame. Therefore, the
global acceleration components are

Gy Gd G

Ve = I ve (2.24)
Uy (i)x —fﬁvy) cos Yy — (i)y +¢vx) sin Y
vy | = (i)y + vx) cosy + (i)x — Y vy) sin Y (2.25)
0 0

The B-expression of the angular velocity vector is

Gp B
6w = “Rp cwp

0 cosyy —sinyr O 0 0
0 [=] siny cosy O 0l=1]20 (2.26)
wyz 0 0 1 r w;

where gw p is the angular velocity of B-frame with respect to G-frame expressed in
B-frame. The global equations of motion are

SFe=m%i¢c  “Mc= %1 gop (2.27)
where the force system vector transformation is
CFc = “RgBFc  “Mc¢ = SRy M (2.28)
therefore, the B-expression of the equations of motion is
BFc = ORE OFc =m “RE Ovc (2.29)
BMc = ORL “Mc = “RpB1 ORL Bog (2.30)

Substituting the associated vectors generates the Newton’s equations of motion in
the body coordinate frame.

F, Fx
Fy | = %R | Fy
0 0

(l)x — vy) cosy — (1')), + U vx) sin ¥
=m YR} (Oy + ¥ ve) cos ¥ + (0x — Y vy) siny
0

t}x—l:pvy
—m | by vy (2.31)
0
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Applying the same method for moment transformation,

0 cosyy —siny O 0 0
0 | =|siny cosy O 0O [=1]0 (2.32)
Mz 0 0 1 M, M,

we find the Euler equation in the body coordinate frame.
M, = CRpB1 RL Bop =71, (2.33)

These are the same equations we found in (2.13)—(2.15).

Example 57 Lagrange method and equations of motion.
We may use the Lagrange method to determine the equations of motion of planar
vehicle model. The kinetic energy K of a vehicle in a planar motion is,

1 1
K = EGVITS vaB+EGwITg “I gws
1 [5'¢ r Uy 1 0 r 0
= E vy m | vy z GI 0
0 0 wz wz

1 1 1 PR B
= Jmvk + 3mv} + SLo) = 5m (x2+72)+ S (2.34)

where its mass moment matrix in global coordinate is:

GI — GRBBIGRIT;

[[cosy —siny 0 I, 0 0 cosyy —siny 0
= | siny cosy O 0 1, 0O sinyy cosy O
0 0 1 0 0 I 0 0 1
[ I cos® ¢ + Iysin® ¢ (I, — Iy)sinyrcosyy 0
=| (I — Iy)sinyrcosyy Iycos®y + Iy sin® ¢y 0 (2.35)
B 0 0 I,
and
Gyp=[vx v 0] =[Xx ¥ 0] (2.36)
0 0 0
GWB = 0 =10]|= 0 (2.37)
0z r v
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The resultant external force system in G-frame is:
SFc=[Fy Fy 0]'  Mc=[0 0 Mm,]" (2.38)

Employing the Lagrange method

d (3K K
—(—=)-—=F i=1,2,--n (2.39)
dt \ 9q; 9qi

and using the coordinates X, Y, and ¢ as generalized coordinates g; provide us with
the following equations of motion in the global coordinate frame:

Fx =m %X = miy (2.40)
d . )

Fy szY = mvy 241
d . )

Mz =1~V = Loz (2.42)

These are the same equations as (2.17)—(2.19) (Jazar 2011; Goldstein et al. 2002).

Example 58 Comments on dynamic equations of motion.

Equations of motion of a moving rigid body such as a vehicle should be expressed
in its principal body coordinate frame at its mass center. This is the only coordinate
frame in which the mass moment matrix of the rigid body is diagonal and is
constant. Furthermore, in study of vehicles, the external forces are resultant of
the generated forces under the tires. Such forces have their simplest expression
in the vehicle body frame. The traction force in x-direction and the lateral force
in the y-direction are both independent of the orientation of the vehicle in the
global frame. Similarly, the equations of motion of spacecraft, aircraft, helicopter,
bicycle, motorcycle, hovercraft, and any other vehicle should be expressed in body
coordinate frame. Majority of external forces have simpler expression in B-frame
and the mass moments are constant in B-frame (Jazar 2011; Yang et al. 2015).

Example 59 Aerodynamic force.

The left-hand side of Egs. (2.1) and (2.2) indicates all external forces applied on
vehicles. Main reason of external forces are the resultant of tire road interactions.
However, we may also consider other external forces such as aerodynamic and tilted
gravitational forces.

Fy =mv, —mrv, (2.43)
Fy = m vy + mr vy (2.44)

Aerodynamics force Fy is considered to be proportional to relative velocity between
the vehicle and ambient air. Therefore, the aerodynamic force may be a result of
wind as well as vehicle speed. In this book we only consider F4 to be proportional

to the square of the relative velocity v?.
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Fig. 2.4 A vehicle is moving with attitude angle ¥ with velocity v while ambient wind is moving
at an angle 6 with respect to the global X-axis with velocity Vg

Assuming stationary air, the aerodynamic force Fy4 is only in the x-direction. We
separate the tire traction force and air resistance force and write the equations of

motion as:
Fy — Fp=miy —mru, (2.45)
Fy =mvy, +mr vy (2.46)
The force Fj4 is the air resistance aerodynamic forces
_! 22
FA—2,0CDAfvx—CA vy (2.47)

where p is the air density in [kg / m3], Cp is the drag coefficient, and A is the
frontal area or projected area of vehicle in x-direction in [mz]. We may consider p,
Cp, Ay to be constant for a vehicle; then, we combine the coefficients into a single

aerodynamic coefficient C 4.

Example 60 Global force, wind.
Assume there exists a wind at the area the vehicle is moving. The wind force on
the vehicle is an example of external force which is well expressed in the G-frame

instead of B-frame. Figure 2.4 illustrates a vehicle facing a side wind at an angle 6

with respect to the global X-axis.
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Fig. 2.5 A vehicle on a laterally tilted road to the angle —6 about the x-axis

OFp=Ca (Gv - Vwind) 2 (2.48)
Uy Vywind COS O
=Ca|%Rp | vy | = | vwinasin®
0 0

. 2
(vx cOS Y — vy SIN Y — Vying cos )
. . 2
=Cqp (v/V COS Y + vy SIN Y — Vyind smG)
0

To include the wind force into the vehicle equations of motion, we need to express
GF4 in B-frame.

2
B, = ORLOF, = Cy (Bv — GRT, vw,-,,d> (2.49)

(Ux — Vying €08 (6 — ¥))?
= Ca | (vy — Vwina sin (6 — w))2
0

Example 61 Global force, gravitation.

Gravitational force is also an example of external forces that is well expressed
in the G-frame instead of B-frame; however, it is easy to express it in the B-frame.
Figure 2.5 illustrates a vehicle on a laterally tilted road to the angle —6 about the
x-axis. Due to the tilting angle we have a lateral external force.

F

Ymg

= mgsinf (2.50)
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Fig. 2.6 The force system of tire number 1

Therefore the equation of motion of the vehicle on a laterally tilted road will be

muvy —mrvy = Fy 2.51)
muvy +mrvx = Fy, + F)

mg

= Fy +mgsin6 (2.52)

Road angle about the y-axis provides us with similar equation in the x-component
of the equations of motion.
2.2 Tire Force System

Figure 2.6 illustrates wheel number 1 of a vehicle and its force system
(FXW] , FyW] , Mzwl) in the wheel coordinate frame W, as well as the force system

(Fx. , Fy,, Mz]) in the wheel-body coordinate frame C (Jazar 2017).
If the force system at the tireprint in the tire coordinate frame 7 is:

T T
sz[FXTI_ Fy, FzTi] (2.53)

T
™™y =My, My, Mo, ] (2.54)



126 2 Vehicle Planar Dynamics

then the force system at the center of the wheel in W-frame is:

Fyy, Fyp
WF, = Fyy | = | Fyy, cosy; + Fyy, siny; (2.55)
| Fay, Fzp cosy; — Fy, siny;
_wa,- My;. + RFy, cosy + RF;; siny
M, = My, | =| My, cosy — RFy, + M, siny (2.56)
My, M, cosy — My, sin y

where R is the tire radius. The force system at the center of the wheel number i in
the wheel-body coordinate frame C is:

Fy, Fyy, cosd1 — Fyy, sin§
“Fu = | Fy, | =| Fyy, cosd1 + Fyy, siné (2.57)
F Fey,
M,, My, coséy — My, sin§
My, = | My, | =| My, cosd + My, siné (2.58)
M, My,

Therefore, the total planar force system on the vehicle in the body coordinate frame
B is:

BF. =Y Fy =) Fy, cosd — Y Fy, sing; (2.59)
i i i

BFy =Y Fy =) Fy, cosd+ Y _ Fy, sing; (2.60)
i i i

By, = ZMZ,. —i—Zx,-Fyi —Zy,-in (2.61)
i i i

Proof There exists a tire coordinate frame 7 at the center of the tireprint at the
intersection of tire-plane and the ground. The z7-axis is always perpendicular to
the ground and upward. The T-frame does not follow the spin and camber rotations
of the tire; however, it follows the steer angle rotation about the z7-axis. The W-
frame that is attached to the center of the wheel follows every motion of the wheel
except the spin. The C-frame at the center of neutral wheel is parallel to the body
coordinate frame B. When the wheel is at the rest position, then W-frame and C-
frame become coincident. The C-frame is motionless with respect to the vehicle
and does not follow any motion of the wheel. The vehicle body coordinate frame
B (x, y, z) is attached to the vehicle at its mass center. The wheel force system is
generated in 7'-frame and must be transformed to the C-frame and then B-frame to
develop the vehicle equities of motion.
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Let us assume that the force system in the 7-frame at the tireprint of the wheel
number i is

- T
F, = [ Fo. Fy Fo ] (2.62)
T T
M, = [MXTi My, M, ] (2.63)
then the force system in the W-frame at the center of the wheel will be

Fy,

wai
WFw = WRT TFw = Fyr,- cosy; + Fzr,- siny; | = wa,- (2.64)
Fzp cosy; — Fy, siny; Fay,

"My, = "Ry ™M, + "R x J'F,
= "R ™, +(—=R) Yk x YRy TF,

M, 0 Fup
= "Rr My, |+ 0 |x YRy Fyy,
M, —R F.,
Mxr, + RFy; cosy + RFZTI siny My,
=| My, cosy — RFy, +M,, siny | =| My, (2.65)
lMZTl_ cosy — ZlVIyTI_ sinly MZW:_

where VR is the position vector of the T-frame in W-frame which is equal to radius
of the wheel.

YR=-R"k (2.66)
The transformation ¥ Ry from T-frame in W-frame is:

1 0 0
WRr =10 cosy siny (2.67)
0 —siny cosy

Assuming W-frame and C-frame have a common origin, the transformation matrix
between the W-frame and the C-frame is

cosd; —sind; O
CRw = | siné; coss; 0 (2.68)
0 0 1
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and therefore, the force system at the center of the wheel, parallel to the vehicle
coordinate frame, is

°F, = Ry "F, (2.69)
Fy, (cos8; —sind; O Fuyy,
Fy, | =| siné; cosé;y 0 FyW’
F . 0 0 1 FZW,
_wa cosd| — }W sind
= F}W cos81 + Fy X, sind (2.70)
‘M, = “Ry "M,
My, [ cos8; —sind; 0 My,
M, | = | sind; cosd; 0 Mle_
M, . 0 0 1 MZW,.
_MXW,- Ccosd| — Mle_ sin g
= MyW[ cos sy + MXW,- sind .71
L Mzy,

Transforming the force system of each tire to the body coordinate frame B,
located at the body mass center C, generates the total force system applied on the
vehicle

BF:ZCFWZZFMIA_{_ZF;']A"’_ZF&]; 2.72)
i i i i

BM = Z M, + Z By, x BR,, (2.73)
i i
R yiFZl' _ZiFyi
=Y Myi+Y My j+Y M k+Y | zF, —xF,
i i i i xiFy, — yiFy,

where Pr; is the position vector of the wheel number i.

By, = [xi Vi Zi]T = [ai bi zi ]T (2.74)
zi ~0 2.75)
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Expanding Eqs. (2.72) and (2.73) and assuming that

. T
Fo=[Fy Fy 0] (2.76)
. T
M, ~ [0 0 M, ] 2.77)
provide us with the total planar force system.
Bp, = Z Fyy, cos 8 — Z Fyy, sin §; (2.78)
i i
BF, = Z Fy,, cos8; + Z Fyy, sing; (2.79)
i i
BM, =3 M, +) xiFy, =) yiFy (2.80)
i i i
|

Example 62 Tire force system in W-frame. A
If the force system at the tireprint is TF, and TM,, = o1, Tk, then the force
system in the W-frame at the center of the wheel would be

YF,="Rr"F, = TR}, F,

— T

Fy,, 10 0 Fep
F v, | =0 cosy —siny F VT,
Zu; | 0 siny cosy Fop
_ F,
= | Fy, cosy + Fzp. sin y (2.81)
Fzri cosy — Fy, sin y

"M, = "R], (TMw — Ty, x TFw)

RF,, cosy + RF;, siny
M., siny — RFx, (2.82)
M, cosy



130 2 Vehicle Planar Dynamics

where
0 0
T,. _ : T —
I, = | —Rsiny M, = 0 (2.83)
Rcosy Mzwi

The wheel force system at zero camber, y = 0, reduces to:

wai RFYw,-
YF,=| Fy, "M, = | —RF,, (2.84)
F, M.,

Example 63 Full force in C-frame.
Considering force F under the tire number i in the T -frame is:

T T
Fu=|Fy Fy Fo (2.85)

then the force in W-frame would be

Fup,
g, = YR, TF, = Fy, cosy; + Fp siny; (2.86)
Fzr,» cosy; — Fyr,- siny;

and the force in C-frame would be

CF, = Ry "F, (2.87)
Fy, FxTi cos 8| — (Fyri cosy; + Fzr,- sin y,-) sin §1

Fy | = Fle_ sinéq + (F),Tl_ cosy; + Fzr,- sin y,-) cosd

FZ]

Fzri cosy; — Fyri siny;
The moment M under the tire number i in the T -frame is:

- T

M, = [MXT,. My, M., ] (2.88)
Therefore, the moment in W-frame is
"My, = "Rr ™, + "R x }'F,
= "R ™, — Rk x YRy TF,
My, + RFy; cosy + RF,, sin y

= | My, cosy — RFyx; + M siny (2.89)
MZT[ cosy — Myri sin y



2.3 Bicycle Planar Vehicle Force Components 131
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Fig. 2.7 The acting forces at the wheel center of a front-wheel-steering four-wheel vehicle

and the moment in C-frame would be

‘M, = “Ry "M, (2.90)
- (MxT,- + RFy, cosy + RF;, sin y) cos 81
— (Myr,- cosy — RFy, + M, sin y) sind
= (MXTi + RFyr,- cosy + RFZTi sin y) sin §;
+ (Myr,- cosy — RFy, + M. sin y) cos 81

Mzr,- cosy — Myri sin y

2.3 Bicycle Planar Vehicle Force Components

Figure 2.7 illustrates the force system of each wheel in the wheel-body coordinate
frame C. The forces are acting at the wheel center of a front-wheel-steering vehicle.
When we ignore the roll and pitch motions of the vehicle, then the body z and global
Z axes are parallel and the xy-plane remains parallel to the road’s XY -plane.
Ignoring the roll motion as well as the lateral load transfer between left and right
wheels, we may define a simplified rwo-wheel model for the vehicle. Figure 2.8
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Fig. 2.8 A two-wheel model for a vehicle moving with no roll

illustrates a two-wheel model for a vehicle with no roll motion. The two-wheel
model is also called the bicycle model, although a two-wheel vehicle model does
not act similar to a traditional bicycle.

The force system applied on a bicycle model of vehicle at its mass center C is:

F, = Fxf cosd + Fy, — Fyf sin & 2.91)
Fy = Fyf cosé + Fy, + Fxf sin & (2.92)
M, = aFy, cosé + ai Fy, sind —ax F), (2.93)
Ty =1Ifws+ Ry Fx, (2.94)
T, =1, & + Ry Fy, (2.95)

where tire forces based on elliptic combined tire forces are:

Slar —«a
Fyp=F;;Csf S (sf—s5) |1—Ca (%) 2 (2.96)
S
S —
Fy, = FZrCsr S (sp — 55) \/1 — Csa (%) 2 (2.97)
S
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S(sfr—s
Fy, = —F;;Cos S (af —as) | 1= Cas (Q) 2 (2.98)
N
S (s —
Fy, = —F, Car S (ay — ;) \/ 1= Ca (“S—”> 2 (2.99)
s
where S is the saturation function (1.60).
X0 X0 < X
S(x —x9) = X —Xp < X < Xg (2.100)
—X0 X < —Xxp
The tire force characteristics are:
Cof =Cq =Cq, (2.101)
Cor = Coy = Cq, (2.102)
Csp =Cy =Cy, (2.103)
er = CS3 = CS4 (2104)
ar . h
Frp=F, +F, =mg7 —m(vx —rvy)T (2.105)
ap . h

F,, =F,+F, = mgT +m (vx —r vy) N (2.106)
l=a+a (2.107)
o = arctan (”—y + a—1r> ) (2.108)

Uy Uy
o, = arctan (v_y — a—2r> (2.109)

Uy Uy

- W
B = arctan (2.110)
Uy

R.wr—v
sp= g2 Ty 2.111)
Rowy HRywy — vfo) + Vxyy H(vfo — R, wy)

R wp — vy
Sy = (2.112)
Ry wr H(Rg wr — vy) + vy H(vx — Rg )




134 2 Vehicle Planar Dynamics

Uy, = Uy cosé + (vy +a1r) sin § (2.113)
T — RyrF,
wf = 2F T Rwf Py (2.114)
Iy
T, — Ry F
G = — (2.115)
I

The Ty and T, are the applied torques on front and rear wheels, Ry and Ry, are
equivalent tire radii of front and rear tires, and Iy and I, are the front and rear
wheels’ mass moments about their spin axes. The forces (F xpo Fy ) and (F s I yr)
are the planar forces at the tireprint of the front and rear wheels and we consider
them to be at the wheel center.

Proof For the bicycle vehicle model, we use the cot-average § of the outer §, and
inner §; steer angles as the only steer angle for the model

£8, + cot 8;
otd = % (2.116)

and we define sideslip coefficients Cy, r and Cy, as well as slip ratio coefficients Cy¢
and Cg, for the front and rear tires.

Caf = (Cay + Cay) /2 (2.117)
= (Cq3 + Cay) /2 (2.118)
Cyr = (Cy, + Cyy) /2 (2.119)
Csr = (Cs3 + Cyy) /2 (2.120)

Assuming the left and right tires are identical, then we have:

Cof = Cqy = Ca, (2.121)
Car = Cay = Ca, (2.122)
Csf = Cy, = Cy, (2.123)
Csr = Csy = Cy, (2.124)

Assuming similar force components to be equal on the left and right tires and adding
them up, we will have longitudinal and lateral forces (F i Fy ) and (Fy,, Fy,)
applied on front and rear tires.
Fi, =Fy+F,  Fy=Fy, (2.125)
Fy, = Fyy + Fy, Fy, = Fy, (2.126)
Fy, = Fy, + Fy, F, =F), (2.127)
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F,,=F,+F, F,=F, (2.128)
F,=F,+F, F,=F, (2.129)
F. =F.,+F., F.,=F, (2.130)

Employing the elliptical combined tire force models (1.202) and (1.203), and
proportional-saturation tire force behaviors (1.67) and (1.152), the longitudinal and
lateral forces on front and rear wheels will be

Fx_f = F)q +sz

2
Slar—a
= F;;Csr S(syp—55) |1—Csa (%) (2.131)
N
Fy, = Fyy + Fy,
S (or — )\’
= F, Csr S(sy — 85) 4/ 1 — Csa <a—> (2.132)
s
Fy, = Fy, + Fy,
2
S(sr—s
= _szCaf S (Olf - as) 1 — Cys ((fs—S)> (2.133)
N
Fy, = Fy, + Fy,
S (s —s5)\°
= —F;, Cqr S (o, —ag) |1 = Cqs (s—> (2.134)
N

Using Egs. (2.59)—(2.61) and ignoring the aligning moments M_,, the applied
forces on the two-wheel vehicle are:

Fy = Fy,cos§ — Fy, sind + Fy, (2.135)
Fy=Fy, cos s + Fy, sind + Fy, (2.136)
M, =aFy, cosé + ai Fy, sind —ax F), (2.137)

Assuming

F,, =F, Fp,=F, (2.138)
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and using the weight transfer equations in body frame (1.462)—(1.465), the vertical
load on front and rear tires is:

ap h .
Fop=Fy +Fy=m|—Tg—7 (0x — 7 vy) (2.139)
ai h .
F,=F,+F,=m 7g+7(vx—rv),) (2.140)
l=ai+a (2.141)

If we assume § to be small, then the force equations may be approximated by the
following equations.

Fy ~ Fy, +Fy, (2.142)
Fy~ Fy, + F, (2.143)
M.~ a\Fy, — aFy, (2.144)

Assume the wheel number i of the vehicle is located at (x;, y;) in the body
coordinate frame B. The velocity of the wheel number i in the B-frame is

Bvl- =By 4 g(uB X Bri (2.145)
Bop = . Bk =rBk = "k (2.146)

in which Br; is the position vector of the wheel number i,

Bry=[ay 0 0] (2.147)
Byy=[-ay 0 0] (2.148)

By is the velocity vector of the vehicle at its mass center C, and w, = r is the
yaw rate of the vehicle as shown in Fig.2.8. Expanding Eq. (2.145) provides the

following velocity vector for the wheel number i expressed in the B-frame at C.

U)Ci Ux 0 xl UX
Byvi=lo, [=|v |[+]|0|x]|0|=]v+rx (2.149)
0 0 r 0 0

The wheel-body sideslip B; for the wheel i is the angle between the vehicle body
x-axis and the wheel velocity vector v;.

B; = arctan (&> = arctan (M) (2.150)

Uy, Vy
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The wheel sideslip angles g; for the front and rear wheels of a two-wheel vehicle
model, ,Bf and B, are

v
,Bf — arctan [ =L | = arctan <M> (2.151)
Uy Uy
vy, vy —axr
B, = arctan | — | = arctan [ ——— (2.152)
Uy, Uy
and the vehicle sideslip angle B is
U)?
B = arctan | — (2.153)
Uy
Having the steer angle § of the front wheel, the tire sideslip angles will be
of =B —8=arctan (M) ) (2.154)
Ux
or = B, = arctan <M> (2.155)
Ux

Assuming small angles for wheel and vehicle sideslip 8 7, B, and B, the tire sideslip
angles for the front and rear wheels, « s and «,, may be approximated as

1 aj
af=ﬂf—3:a(v},+a1r)—3=ﬁ+ar—5 (2.156)
1 a
a = p, = (v, —arr) = B — U—zr (2.157)
X X

Also we substitute s from (1.57),

Re wy — vy
S =
Rg wy H(Rg wy — Vy) + vy H(vy — Ry wy)

(2.158)

however, the slip ratio of the front tire need to be adapted as the steer angle will
change velocity of the tire in the x7-direction as is shown in Fig. 1.13. The velocity
of the front wheel center in the x-direction of its local C-frame is

Vxp, = Ux cosé + (vy + alr) sin &

Therefore, the longitudinal slip ratios of the front and rear tire are:

Rewy — Uxpy

_ (2.159)
Rewy H(Rg g — Vipp) + Vapp H(vxp — Rgwp)
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_ R, wp — vy
"~ Ryw, H(Rg wy — vy) + vy H(vy — Ry wy)

(2.160)

Sr

To derive Eq. (2.93), we calculate the resultant yaw moment M, because of tire
forces.

2 2
BM = Zl‘,’ X BF,’ = Zl‘,’ X CRT TF,'
i=1 i=1

ap Fxf —ap F,,
=| 0| xR | Fy, |+| 0 |x|F,
Y 0 0 0
B 0
= 0 (2.161)
ap (Fyf cosé + Fxf sin8) —aFy,

where € Ry for the front wheel is

cosd —sinéd O
CRr =| sind coss 0 (2.162)
0 0 1

and € Ry is an identity matrix for the rear € Ry = [I] because of 8, = 0. Therefore,
the force equations (2.91)—(2.93) are completed. |

Example 64 Kinematic steering of a two-wheel vehicle.
For the two-wheel vehicle shown in Fig.2.9, we use the cot-average (2.116) of
the outer and inner steer angles as the input steer angle,

_ cotd, + cotd;

coté
2

(2.163)
Using the geometry of the vehicle of Fig. 2.9 and assuming same track in front and
rear, w = wy = w,, we have

[ l
tand, = o
R — — R —
=5 1+2

(2.164)

The radius of rotation p for the two-wheel vehicle will be

p =+/al +12cot?$ (2.165)

when the vehicle is moving very slowly such that the rotation center remains on the
axis of the rear axle (Fenton 1996; Karnopp 2013).
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Fig. 2.9 Steer angle and rotation center of a two-wheel model for a vehicle moving with no roll at
low speed

Example 65 Unsaturated force system.
Let us assume § is very small steer angle and

s < S o < g (2.166)

so the tire forces never reach their limit of saturation. In this case, the force system
of the vehicle bicycle model will be simplified to:

Fy :FXf‘I'Fx, (2.167)
Fy=F,, +F, (2.168)
M, = aiFy, — arF,, (2.169)

(2.170)

(2.171)
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2
N
Fyp = —=F;Copaypl—Cos (s—f> (2.172)
N
o\ 2
Fy, = —F;, Corary[1 = Cos (—) (2.173)
Ss

a . h
F,, = F, +F, = mgTz —m (0 = rvy) 5 (2.174)
aj . h
F,=F,+F,= mgT +m (vx —r vy) 7 (2.175)
l=a1+a (2.176)
ap=p+Lr—s  a,=p-2r 2.177)
’ Ux Uy
R — R —
sp= Rg @y — Ux s, = Rg@r — Ux (2.178)
Rewy R, w,
Tr — RyrF T, — Ry, F,
@fzw iy = - “wrlo (2.179)
Iy I,
The vehicle assumed to be in acceleration.
Example 66 Four-wheel rigid planar vehicle.
The force on each wheel of a planar model of vehicles is
[ Fy, cosd; — Fy, sind; | [ Fy, |
Fi = | F sind; + F), cosé; F3 = | F,, (2.180)
L 0 i L 0
[ Fy,cos 8y — Fy, sindy ]| [ Fy, ]
Fy = | Fy,sinéy + Fy, cosé Fy=| Fy, (2.181)
L 0 J L 0
The position vector of the wheels is
[ a; ai
r = | b =\ —-b (2.182)
| O 0
M —an —ap
r3 = b] rqg = —bz (2.183)
L O 0
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and therefore the force system on a planar vehicles model is

F = ZFi (2.184)

Fy 0881 + Fy, cosdy — Fy, sindy — Fy, sindy + Fyy + Fy,
= | F), cosd| + F),cosd + Fy sindy + Fy, sindy + Fy, + Fy,

0
0
M:Zri xFi=1| 0 (2.185)
M;

M, = a1 Fy cosdy +a Fy, cosdy —arFy, —aFy,
+b1Fy, sindy — by Fy, sin 83 + by Fy, cos 82 — by Fy, cos 81
+ai Fy, sinéy +ay Fx, sindy + by Fy, — b Fy, (2.186)

Let us assume a planar dynamic model of vehicles with four wheels such that its
equation to be approximated by

Fy =~ Fy, + Fy, + Fy, + Fy, (2.187)
Fy ~ Fy, + Fy, + Fy, + F), (2.188)
M, ~a Fy +aFy, —arFy, —arFy, (2.189)

in which we assumed small steer angles and ignored the yaw moment caused by
imbalance longitudinal forces, Fy,. Knowing that

Uy, = Uy — Vi T Vy, = Uy X 7 (2.190)
and tire angles as
B; = arctan (i> = arctan <M) (2.191)
Uy; Ux — Vi ¥
+ .
@i = B; — 8 = arctan (u> — 5 (2.192)
Uy = Vi1
we find that
+
B, = arctan <m> = arctan <M> (2.193)
Uy, vy — b1 r
B, = arctan <m> = arctan (M) (2.194)
U, vy +byr
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vy3 vy —ayr
= arctan | — | = arctan | ———— 2.195
Ps (%) (vx+b2r> ( .
B4 = arctan <M> = arctan (M) (2.196)
Uy, vy — b1 r

Employing the vehicle sideslip angle 8 = arctan (vy / vx) and assuming small angles
for B, B,, and B, the tire sideslip angles would be:

B+t
al=l31—51=—vy+a1r—51=—vx -8 (2.197)
Uy — b] r bl
1——r
Ux
p+
—r
az=ﬁz—82=—vy+zlr —82=—Z" -8 (2.198)
Ve D21 1+ 27
Ux
vy —apr p- o
w=py= 2= (2.199)
Vx + 027 1+ 2,
Uy
az
vy —axr p- vy
ag = By = = - (2.200)
vy —byr by
1——r
Uy
Modeling the longitudinal and lateral forces as
S (@i —ay)\?
Fx,- = Fz,- Csi S(si —85) 4|1 = Cso | ————— (2.201)
Uy

!
|

i = —F,Coi S (i —ay) \/1 — Caqs <M> 2 (2.202)

Ss

and assuming that the left and right wheels have similar lateral and longitudinal slip
coefficients we find the equations of motion (2.187)—(2.189).
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We combine the planar equations of motion of the bicycle vehicle model (2.1)—(2.4)
with the force expressions (2.91)—(2.115) to derive the equations of motion of the

two-wheel rigid bicycle vehicle:

. 1
Uy = — (Fy — F4) +rvy
m

. 1
vy:n—1Fy—rvx
lM
F=—
LL7°
: Ly _Rep
br = —Ts — -8
f Iff Ir Xy
. lT RgF
o, = —T, — —
r Ir r Ir Xy
Fy = Fy, cosd + Fy, — Fy, sin §

Fy = Fy,cos8 + Fy, + Fx, siné

FAZCAU/%

M, = alef cosé + alFxf siné — ax Fy,

Slar —«
Fy, = F;Cy S(sp—s5) |1 —Cya (%) )
S
S — o
Fy, = F,,Cs S (s — S5) \/1 — Cya (M) )
aS
S(sr — 8
Fyf :—FZfCafS(Otf—as) 1 — Cys (%)2
s
S (s, —
Fy, = —F, Cqy S (0 — ozs)\/l — Cys <M) 5
N

(2.203)

(2.204)

(2.205)

(2.206)

(2.207)

(2.208)
(2.209)

(2.210)
2.211)

(2.212)

(2.213)

(2.214)

(2.215)
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a . h
Frp=F, +F, =mg72 —m(vx —rvy)T (2.216)
ai . h
F,, =F,+F, = mgT +m (vx —r vy) 7 (2.217)
l=a+a (2.218)
o = arctan (M) —s (2.219)
Uy
vy — arr
o, = arctan [ ————— (2.220)
Ux
Yy
B = arctan — (2.221)

Ux

R.wr—v
sp= g Py (2.222)
Rowr HRywy — vfo) + Vxyy H(vfo — R, wy)

R wp — vy
s = (2.223)
Rg wr H(Rg 0y — vy) + vy H(wx — Rg )

Vxpp = Ux cosé + (vy + a1r) sin § (2.224)

Proof The Newton—Euler equations of motion for a rigid vehicle in the local
coordinate frame B, attached to the vehicle at its mass center C, are given in
Egs. (2.1)—(2.4). Those equations for bicycle vehicle model will be:

Fy =mvx —mrvy + Fy (2.225)
Fy =mvy +mruvy (2.226)
M, =71, (2.227)
Ty = Iy, wf + Ry Fx, (2.228)
T; = Iy, &r + Ry Fy, (2.229)

The force Fy4 is the air resistance aerodynamic forces that we assume to be applied
only in longitudinal direction.

1
Fa=3pCp As vi=Cyp0? (2.230)
Considering p, Cp, and Ay to be constant for a vehicle, we may combine the
coefficients of the aerodynamic force to be C 4.



2.4 Two-Wheel Planar Vehicle Dynamics 145

From (2.91) to (2.93), the vehicle body forces are

Fy = Fy, cosé + Fy, — Fy, sin é (2.231)
Fy = Fy, cosd + Fy, + Fy, sin é (2.232)
M, = a; Fyf cosd + aj Fxf sind —ax F), (2.233)

The force components Fy,, Fy,, Fy;, Fy, have been calculated in (2.96)-(2.99).
The vertical forces on front and rear wheels F; , F;, are also calculated in (2.139)-
(2.140) as are shown in (2.212)—(2.217).

The complexity of the equations of motion are hidden in the forward and lateral
forces Fy,, Fx,, Fy,, Fy, in (2.212)—(2.215). These forces are functions of two new
variables s and «. To be able to solve the equations of motions, we must be able to
relate these variables to the inputs 8, Fy or output variables vy, vy, r, of the vehicle
dynamic equations.

The tire side slip angle «; has been shown in (1.121)—(1.123) to be a function of
the input steer angle §; and the output wheel-body sideslip angle ; of the tire.

T C

Uy, :
ai =B; — i a; = arctan Tvy’ B; = arctan — (2.234)
Xi

The tire side slip angle «; is defined based on the velocity components in 7'-frame
while the wheel-body sideslip angle §; is defined based on the velocity components
in C-frame. The wheel-body sideslip 8, for the wheel i is shown in Eq. (2.150) to
be a function of vehicle velocity components.

B; = arctan (?) = arctan <Uy—:¢) (2.235)
Xi X
B, = arctan <M) (2.236)
Ux
B, = arctan <M> (2.237)
Ux

Rewriting this equation for the front and rear wheels of the two-wheel vehicle model
will be (2.219) and (2.220).

The longitudinal slip ratio s is shown in (1.57) to be a function of the tire forward
velocity vy, and the angular velocity of tire w,,.

o Re wy — vyy
Ry wy H(Rg 0y — Vxp) + Uiy H(Vyxp — Ry 0y)

(2.238)
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According to (1.303), the longitudinal velocity of the vehicle at the wheels centers
is:

By — |V Cf)Sﬂ =ryi | _ [ ve =1 (2.239)
vsin B + rx; vy +rx;
therefore,
Pyvp = [ vx ] By, = [ ox } (2.240)
Uy+ra1 Vy —raz

and hence the velocity vy, s at the center of the front wheel in the tire x-direction,
T .

i,1s
Uxp; = Ux COSS + (v/V + alr) sin § (2.241)
because
cosé —sind 0 ! Uy
TVf = CR; BVf = [ siné cosé O vy +raj
0 0 1 0
Uy COS S + (vy + ral) sin &
= (vy + ra1) cosé — vy siné (2.242)
0
cosé —sind O ’ Uy
Tvrf = CR; By, = | sins coss§ 0 vy —ra
0 0 1 0
vy c0s 8 + (vy — raz) siné
= | (vy — raz) cos§ — vy sinég (2.243)
0

and therefore

R, wy, —v
sp= S (2.244)
Ry wy H(Rg 0y — vfo) + Vxypy H(vfo — Ry wy)

5 = Rg 0w — vx (2.245)
Rg wy H(Rg wy — Vy) + vy H(vx — Ry wy)

Introducing w,, as a new kinematic variable requires to have a new equation to
determine w,,. The free-body-diagram of a wheel provided us with the equation of
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motion of the wheel (1.76). Ignoring the tire resistance force, the rotational equation
of motion of the wheel will be

Ipow =T — Ry Fy (2.246)

and therefore the tire longitudinal slip ratio s; becomes a function of vy, w;, Fy;.
This equation must be written for the front and rear wheels of the two-wheel vehicle
model as shown in Egs. (2.212) and (2.224).

These sets of equations of motion of bicycle vehicle model are nonlinear due to
several reasons such as:

1. Mathematical nonlinearities: The equations of motion relate kinematic variables
to applied forces. The force system also is a function of kinematic variables. For
example, v, is a variable and it appears in the denominators in Egs. (2.234)—
(2.245).

2. Model nonlinearities: The tire forces are functions of parameters which have
saturation limits and therefore they show nonlinear characteristics. For example,
The lateral force Fy is proportional to the sideslip angle « as long as « < a and
constant for ¢ > «,. Therefore, all proportional equations and their coefficients
are modeled better by using nonlinear relationships. |

Example 67 Aerodynamic effect.
Consider a vehicle with the following data.

m =1000kg Iz =2000kgm*>  I; =1, =30kgm?

Cof =85 Cor =85 ay = 5deg
Cy =15 Cyr =15 55 =0.1 (2.247)
ay = 135m ay=15m h=09m
R, =035m Cas = 0.5 Cia =0.5

Assume the car initially is moving at

vy =20m/s 8§=0 T;=T,=0 (2.248)
and
v 20
wf=w, = R—’; =035 = 57.143rad/s (2.249)

To show the effect of the aerodynamic resistance force, we determine the forward
velocity of the vehicle for a Cp. Figure 2.10 illustrates how the forward velocity vy
will reduce with

Cs =08 (2.250)

Figure 2.11 depicts the angular velocities w s and w, of the front and rear wheels.
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Fig. 2.10 The effect of aerodynamic drag force F4 = Cav? on forward velocity of a vehicle in
free straight motion
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Fig. 2.11 The angular velocities  y and w, of the front and rear wheels

Example 68 Increasing rear torque, straight driving.
Consider a vehicle with the data given in (2.251).

m =1000kg Iz =2000kgm®>  I; =1, =30kgm?
Cof =Cor =85 a;=5deg Cs=0.8

Csr =Cyr =15 ss = 0.1 (2.251)
a; =135m a =15m h=09m
R, =0.35m Cus =0 Cse =0

Assume the vehicle is moving slowly straight with

2
ve=2m/s  wf = = ;—x = 555 =57ldnad/s  2252)
. 0.

§=0 (2.253)



2.4 Two-Wheel Planar Vehicle Dynamics 149

0.9 —

08 "1
0.7

06
05 o
0.4 /

: ra
03

0.2
0.1 [— §
ole—— f
0 10 20 30 40 50

t[s]

Fig. 2.12 The longitudinal slip ratios of the front and rear tires
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Fig. 2.13 The angular velocities of the front and rear wheels w y and w;

At time r = 0, we apply an increasing torque on the rear wheel.
Ty =0 T, = 100t Nm (2.254)

This example shows how the rear longitudinal slip ratio will increase and reaches
its saturation, and how the rear wheel starts spinning after that. Figure 2.12 depicts
the longitudinal slip ratios. Considering that the saturation limit of the front and rear
tires are at s; = 0.1, we see that the slip ratio of the rear tire s, increases linearly
from zero up to the point that reaches s; = 0.1. At that point, tire starts sliding on the
ground and the applied torque increases the wheels’ angular velocity. As a result, the
slip ratio s, increases rapidly. There is no torque on the front wheel and therefore the
front wheel’s slip ratio sy remains unsaturated. Figure 2.13 illustrates the angular
velocities of the front and rear wheels wy and w,. At the beginning of applying
torque on the rear wheel, both angular velocities increase. At the point that the rear
wheel starts sliding and spinning, the rear wheel angular velocity increases rapidly.
The front angular velocity remains proportional to the vehicle velocity. Figure 2.14
depicts the forward velocity of the vehicle vy.
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Fig. 2.14 The forward velocity of the vehicle vy
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Fig. 2.15 The torques on front and rear wheels Ty and 7

The torques on front and rear wheels 7y and 7, are shown in Fig. 2.15. Because of
variable acceleration of the vehicle, the vertical load on the wheels are not constant.
Figure 2.16 illustrates how the vertical loads Fy and F; will change, and the
traction forces Fyy and Fy, are shown in Fig.2.17.

Example 69 Increasing front torque, straight driving.
Consider a vehicle with the data given in (2.251) and assume the vehicle is
moving slowly straight with

2
ve=2m/s  wf = = ;—x = 555 =57l4rad/s  (2259)
)

§=0 (2.256)

At time t = 0, we apply an increasing torque on the front wheel

Ty =100t Nm T,=0 (2.257)
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Fig. 2.16 The vertical load F;; and F;, on front and rear wheels
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Fig. 2.17 The traction forces Fys and F), on front and rear wheels

to investigate the differences of vehicle response to front or rear wheel drive.
Figure 2.18 depicts the longitudinal slip ratios sy and s, for the front and rear tires.
Figure 2.19 illustrates the angular velocities of the front and rear wheels oy and
w,. Figure 2.20 illustrates variation of the vertical loads F;s and Fy,. Figure 2.21
depicts the forces Fy and F), on the vehicle at its mass center. The force components
on front and rear wheels are slightly different. Figure 2.22 illustrates the longitudinal
forces Fxy and Fy, on front and rear tires. The acceleration components a, and a,
of the vehicle are plotted in Fig. 2.23.

Example 70 Increasing steer angle and front torque, slip saturation.
Consider a vehicle with the following data
m =1000kg Iz =2000kgm®>  I; =1, =30kgm?
Cof =Cqr =85 ay = Sdeg Cy =038
Cip =Csr =175 sy =0.1 (2.258)
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Fig. 2.18 The longitudinal slip ratios s ¢ and s, for the front and rear tires
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Fig. 2.19 The angular velocities of the front and rear wheels w y and w,
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Fig. 2.20 The vertical load F;y and F7, on front and rear wheels
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Fig. 2.21 The traction forces Fy and Fy on the vehicle at its mass center
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Fig. 2.22 The traction forces Fys and F), on front and rear tires
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Fig. 2.23 The acceleration components a, and ay /g of the vehicle
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Fig. 2.24 The forward velocity components of the vehicle v, and v,

a;=135m ap=15m h=09m
R, =0.35m Cys = Csq =05

and assume the vehicle is moving slowly straight.

2
v=2m/s  wp == ;—x = 555 = 57l4nad/s (2.259)
. 0.

At time t = 0, we apply a linearly increasing torque on the front wheel up to 7y =
1500 N m and keep constant after that. The steer angle is also linearly increasing at
a very low rate up to § = 0.5 deg and remains constant after that.

100t Nm 0<t<15s
Tf = T, =0 2.260
4 {1500Nm 15s <t ’ (2-260)
0.05rdeg = %%%rrad 0 <t < 10s
§ = 180 2.261
{O.Sdegz%rad 10s <t (2201

The front torque increases and goes beyond the limit of front wheel capability in
producing traction force. As a result, the front tire slip ratio s and hence its traction
force Fyy will become saturated.

Figure 2.24 depicts the velocity components of the vehicle vy and vy, measured
in body coordinate frame B. Figure 2.25 illustrates the angular velocities of the front
and rear wheels wy and w,. Figure 2.26 illustrates the sideslip angles of the front
and rear wheels « s and «,. Figure 2.27 depicts the longitudinal slip ratios sy and
s, for the front and rear tires. The acceleration components a, and ay, of the vehicle
are plotted in Fig. 2.28. Figure 2.29 depicts the forces Fy and F on the vehicle at
its mass center. Figure 2.30 illustrates variation of the vertical loads Fy and F,.
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Fig. 2.25 The angular velocities of the front and rear wheels w y and w,
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Fig. 2.26 The sideslip angles of the front and rear wheels oy and o,
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Fig. 2.27 The longitudinal slip ratios s ¢ and s, for the front and rear tires
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Fig. 2.28 The acceleration components a, and a, of the vehicle
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Fig. 2.29 The traction forces Fy and Fy on the vehicle at its mass center
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Fig. 2.30 The vertical load F;y and F;, on front and rear wheels
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Fig. 2.31 The traction forces Fys and F), on front and rear tires
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Fig. 2.32 The lateral forces Fy; and Fy, on front and rear tires

Figure 2.31 illustrates the longitudinal forces Fyy and Fy, on front and rear tires.
Figure 2.32 shows the lateral forces Fy; and F, on front and rear tires.

The front wheel torque Ty is increasing from zero up to 7y = 1500Nm.
Increasing torque will increase the slip ratio; however, before Ty reaches its
maximum, the slip ratio reaches its saturation s = s, as it can be seen in Fig. 2.27.
The front tire slip ratio increases rapidly after saturation. The sideslips « ¢ and
o, never get saturated in this maneuver. Hence the vehicle in this maneuver slips
longitudinally and sticks laterally to the road. Figure 2.33 illustrates the path of the
vehicle.

Example 71 Increasing steer angle and front torque, no combined forces.

Consider the vehicle in Example 70 with setting the tire slips not related by
Cys = 0, Cyq = 0. Ignoring the interaction between s and o makes both of them to
be higher and their associated forces to be more than real saturation. Figures 2.34
and 2.35 illustrate the sideslip angles « and slip ratios s of the front and rear tires to



158 2 Vehicle Planar Dynamics

2
\
——
(5]
<P
<P

e
[an}
an}
(=}

t = 40|[s] N .

S
paviv)
@\ t=201s] ";m 1*
\ EAVLY)
Y
Y « =«

1500

Fig. 2.33 Path of motion of the vehicle for 0 < ¢t < 50s by increasing steer angle and applying
front torque and having slip ratio saturation
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Fig. 2.34 The sideslip angles of the front and rear wheels oy and o,

rad

be compared with Figs. 2.26 and 2.27. Figure 2.36 illustrates the path of the vehicle
to be compared with Fig.2.33. It can be seen that tire slip interaction has a big
impact in the path of vehicle. The lateral force drops significantly and the rotation
of the vehicle decreases.
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Fig. 2.35 The longitudinal slip ratios s s and s, for the front and rear tires
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Fig. 2.36 Path of motion of the vehicle for 0 < ¢ < 50s by increasing steer angle and applying
front torque and having slip ratio saturation in case the sideslip and slip ratios were not connected

Example 72 Increasing steer angle and rear torque.
Consider a vehicle with the following parameters.

m=1000kg Iz =2000kgm> Iy =1, =30kgm?

Cof =Cqr =85 oy = Sdeg
Csp =Csr =15 s = 0.1 (2.262)
a; =135m a=15m h=09m

R, =0.35m Cos = Csq = 0.5
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Fig. 2.37 The forward velocity components of the vehicle v, and v,

The vehicle is moving slowly straight with

% _ 2 5714rad/
WfF =W = —=——= rad/s
f=or Rg 0.35
Cs =038 =2m/s (2.263)
At time ¢+ = 0, we apply an increasing torque on the rear wheel as well as an

increasing steer angle for limited times as expressed below.

Tf =0 (2.264)

_J30tNm 0<rt<10s
"7 |1 300Nm 10s < ¢

0.17
5= {Oltdeg_ Sgrtrad 0<t <155 (2.265)

1.5deg = llgg rad 15s <t

Figure 2.37 depicts the velocity components of the vehicle vy and vy. Figure 2.38
illustrates the angular velocities of the front and rear wheels w ¢ and w,. Figure 2.39
illustrates the sideslip angles of the front and rear wheels o ¢ and «,. Figure 2.40
depicts the longitudinal slip ratios s s and s, for the front and rear tires. The angular
accelerations of the front and rear wheels @y and @, are shown in Fig.2.41.
Figure 2.42 depicts the resultant forces Fy and F), on the vehicle at its mass center.
Figure 2.43 illustrates variation of the vertical loads F,r and F,.. Figure 2.44
illustrates the longitudinal forces Fyy and F, on front and rear tires. Figure 2.45
shows the lateral forces Fys and Fy, on front and rear tires. Figure 2.46 illustrates
the path of the vehicle.
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Fig. 2.38 The angular velocities of the front and rear wheels w y and w,
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Fig. 2.39 The sideslip angles of the front and rear wheels o  and o,
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Fig. 2.40 The longitudinal slip ratios s ¢ and s, for the front and rear tires
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Fig. 2.41 The angular accelerations of the front and rear wheels w s and w;
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Fig. 2.42 The forward and lateral forces F, and Fy on the vehicle at its mass center
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Fig. 2.43 The vertical load F;y and F, on front and rear wheels
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Fig. 2.44 The traction forces Fys and F), on front and rear tires
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Fig. 2.45 The lateral forces Fy; and Fy, on front and rear tires

2.5 Steady-State Turning

The conditions at which all variables remain still and do not changes with time is
called the steady-state conditions. To determine the steady-state relationships, it is
enough to eliminate all time derivative terms from the equations of motion and solve
the resultant algebraic equations for the steady-state values of the variables.

The steady-state output—input relationships of a front-wheel-steering two-wheel
vehicle are defined by the following responses:

1. Curvature response, S

1 DsCg — DgC
S = s = = St Mt ad (2.266)
6 pé IDgvz 4+ D Cg — DgCy
CysC
§rafTar (2.267)

B lgcotfcar + U)% (Car - Caf)
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Fig. 2.46 Path of motion of the vehicle for 0 < # < 50s by increasing steer angle up to 1.5 deg
and applying rear torque up to 300 N m

where
Cﬂ = _gQZCaf —ga1Cqr (2.268)
Ce = —ga1a2Cq 5 + ga1a2Cqyr (2.269)
Cs = gaaCay (2.270)
Dg = Coy — Cuy 2.271)
D, = —a2Cqr — a1Cyf (2.272)
Ds = Cqyy (2.273)

Curvature response S, determines the steady-state radius of rotation, p = 1/,
of the vehicle for a given steer angle § at a given v,.
2. Sideslip response, Sg

S, — é _ D,Cs — Ds (CK — lvf) 2.274)
P =8 T IDgv2 + D.Cy — DyCy '
v)%Caf - gaZCothar (2.275)

" 1gCqfCor + 12 (Cor — Cay)
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Sideslip response Sg determines the steady-state angle of velocity vector, 8 =
vy /vy, of the vehicle for a given steer angle § at a given vy (Marzbani and Jazar

2015).

Proof The equations of motion of two-wheel planar dynamics (2.203)—(2.207)

) 1
Uy = — (Fy — Fa) +ruy
m

vy = —Fy —ruy
y =0y

r=I—ZMZ
. 1 R,
wfr = 1—fo — EFxf
) 1 R,
oy = I—rTr — rFxr

(2.276)

(2.277)

(2.278)

(2.279)

(2.280)

will be simplified to the following at steady-state conditions and ignoring the

aerodynamic forces.

Fy = —mr vy

Fy = mr vy

M, =0

=,
g

Fy, = RLT,
g

The vehicle force system

F, = Fxf cosd + Fy, — Fyf

Fy = Fy,cosé + F,, + Fxsiné

sin §

M, =a1Fyf cos8+a1Fxf siné — ap

will be approximated for small steer angles to:

Fe=Fy,+F,=—(Tr+T)
Rg

Fy = Fy; + F),

Mzzalef arFy,

(2.281)
(2.282)
(2.283)

(2.284)

(2.285)

(2.286)
(2.287)
(2.288)

(2.289)

(2.290)
(2.291)
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The tire forces with combined slips effect

S(or — oy
Fip = Fe;Cyp S (s —s5) |1-Cra (%) 2 (2292)
S
S —
Fy, = F;,Cyr S (sy — 55) \/ 1 - Csq (%) 2 (2.293)
N
S(sr—ss
Fy, = —F;;Cqr S (f —as) |1 = Cas (y) 2 (2.294)
s
S —
Fy, = —F, Car S (e — ts) \/ 1 = Cas (%) 2 (2.295)
s
may be well approximated to the following equations
1 ar 2
FXf = szcsf Sf 1-— ECm a—s (2296)
1 o 2
Fy, =F, Css |1 —=Csq <—> (2.297)
2 o
1 st 2
Fy, = —F Cofay|l— EC‘“ — (2.298)
Ss
1 Sy 2
Fy =—F,Cqroa (11— EC‘“ (—) (2.299)
Ss
and the vertical load equations
ap X h
Fop=F,+F,= mgT —m (vx —r vy) n (2.300)
aj . h
F,=F,+F, = mgT +m (vx —r vy) n (2.301)
l=a1+a (2.302)

could be assumed to be equal to the following equation, ignoring weight transfer
effects.

F, = mg“l—2 (2.303)
F, =mg2 (2.304)

l
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The lateral slip angles « y and «, are assumed to be small.

vy +air
af = arctan [ 22— ) =4
Ux
Uy —agr
o, = arctan =2 =
Ux
v
B = arctan —
Uy

Introducing the curvature radius p and curvature xk = 1/p

1 Uy
p: _——= —
K r
we may rewrite the lateral slips as:
vy +air a
ap=2"" =B+ —5=B+ka -5
Ux o
vy —apr an
o =22 =p— =2 =p—ka
Uy P
p="22
Ux

Removing the braking case from the slip ratios s ¢ and s,

Rewyr — Uy g

Sy =
I 7 Rewy HRywys — veg,) + vayy HQayy — Rgoop)

R wp — vy
Re w H(Rg wp — vy) + vx H(vx — Ry @)

Sy =

Vxyp = Ux €088 + (vy 4 air)sind

provides us with the primary definition of slip ratios in traction condition.

s Rewy — vy
f=
Rgwy
5 = R wp — vy
R wy

Substituting (2.289)—(2.291) in (2.281)—(2.285)

1
—(Ty+T,) = Fy + Fr, = —mru,
R, ]
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(2.305)

(2.306)

(2.307)

(2.308)

(2.309)

(2.310)

(2.311)

(2.312)

(2.313)

(2.314)

(2.315)

(2.316)

(2.317)
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Fy, + Fy, =mr vy
0=a1Fyf —aF,,
Tf = RyFy,
T, = Ry F,

(2.318)
(2.319)
(2.320)
(2.321)

and then using (2.296)—(2.299) and (2.303)—(2.304) provides us with the following

equations.
1
R_g (T +T:) = —mruvy
1 s\ 2
—mg ; Cafozf (1 —Cus (—f> )
S
1 2
_mgﬂcar or | 1= =Cas r = mr vy
[ 2 s
1 s\ 2
_a1mg ; Cafaf (1 ECM <é> )
1 5\ 2
+a2mg Cocr ar |1 —zCqs | — =0
l 2 S
1 Olf 2
Remg—Csrsp|1—zCso | — = Rngszf
2 o

2
aj 1 o
Rg mgTCsr Sy (1 — ECM (a—r> ) = Rg Fxr = Tr
A

—almg

1
. (Tf + T,) = —mr vy
8
an 1 N
—mgTCaf (B +«kay —9) (1 ECas <Sf> 2)
s
2
aj 1 K
_mgTCozr (B +«az) (1 - Ecas (S_r) ) = mr Uy
s

1
i Caf (ﬁ +Kkay — 5) < Ecas (Sf) 2

(2.322)

(2.323)

(2.324)

(2.325)

(2.326)

(2.327)

(2.328)
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aj 1 Sr\ o

+a2mgTCar Btra)|1- Ecas S_ =0 (2.329)
S

1 — 5\

Rgmgﬂcsf spll— =Csa M = Rngf =Ty (2.330)
l ’ 2 o

ap 1 B+ras 2

R, mgTCsr s |1 — ECm ( ) =R, F, =T, (2.331)
Oy

Let us assume the slip ratios sy and s, to be very small such that the nonlinear terms
of Egs. (2.298)—(2.299) may be ignored and the slip ratios s; will not affect sideslip
angles «;. The tire slip interaction will be only due to «; reducing s;. Therefore, the
equations will become simpler as the following.

1
= (Tf + 1) = —mxvyvy (2.332)

g
—gaxCoy (B +kay —8) — ga1Cor (B — kaz) = klv? (2.333)
—Cor (B+Kay —8) + Cor (B—xaz) =0 (2.334)

1 —8\*
Rgmgal—zCSf Sf (1 — ECW <M> ) = Rngf = Tf (2335)
o :

A

1 _ 2
Rg mg%csr i (1 - Ecm (ﬂ Ka2> ) =Re Fr, = T; (2.336)

Equations (2.333) and (2.334) are linear functions of B, «, §, and may be
rearranged in the following forms

Cpp + Cikc + Cs8 = Klv? (2.337)
Dgp + Dk + D36 =0 (2.338)
where

Cp=—garCoy — ga1Cqr (2.339)

Ce = _gal‘JZCotf + ga1a2Cyr (2.340)

Cs = garCqy (2.341)

Dg = Cqr — Cqy (2.342)

D, = —a;Cqr —a1Cy (2.343)

Ds = Cyy (2.344)
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Equations (2.337) and (2.338) make a set of two linear algebraic equations

Csg Ce—12][B] _[Cs 5
Dg D, k| | Ds

which provides us with the following solutions as the steady-state responses.

S_K_ 1 _ DsCg — DgCs
“T 8 ps  IDgvi+ D Cp— DgCy
o _ P _ DcCs—Ds (Ce — Iv2)

P =5 T IDpv? + D.Cp — DyC,y

Substituting (2.339)—(2.344) determines the steady-state responses as functions of
vehicle dynamic parameters.

K 8Cu1Cour
SK = = )
1§Cq fCar + V2 (Cor — Caf)

> |

B v2Cof — 8a2Cq fCar
lgcotfcar + U)% (Car - Cotf)

> ™

|
Example 73 Under steering, over steering, neutral steering.

Curvature response S, indicates how the radius of turning will change with a
change in steer angle. S, can be expressed as

1 11
s =k _Ur_ —— (2.345)
5 5 I1+Ku2

1 1 1
K= — — (2.346)
8 1\ Cq f Cor
where K is called the stability factor. It determines if the vehicle is

Understeer K >0

Neutral K=0 (2.347)
QOversteer K <0

To find K we may rewrite S, as

8 8 IgCuyCor + v} (Car — Cay)
1

1gCofCor  (Car — Cay) v2

8CufCor 8CufCor

K 1/p §CasCar
Se=—=-"2C=
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3 1 1 1
T /1 1 Tl 1/ 1 1
G )
8§ \Cour Caor * gl \Cqr Cqr *
—1 ! (2.348)
11+ Kv? '
Therefore,
K= ( L1 ) (2.349)
gl \Cquy Cor .

The sign of stability factor K determines if S, is an increasing or decreasing
function of velocity vy. The sign of K depends on the relative weight of 1/Cy s
and 1/Cg,, which are dependent on the sideslip coefficients of the front and rear
tires Cy 7, Cor-

If K > 0, then

1 1
>
Cq f Car

(2.350)

and Sy = «/8 and dS,/dv, < 0. Hence, the curvature of the path x = 1/p
decreases with speed for a constant §. Decreasing « indicates that the radius of
the steady-state circle of rotation, p, increases by increasing speed v,. A positive
stability factor is desirable. A vehicle with K > 0 is stable and is called understeer.
For an understeer vehicle, we need to increase the steering angle if we increase the
speed of the vehicle to keep the same turning circle.

If K < 0, then

1 1
<

Cy f Cor

(2.351)

and S, = k /8 and d S, /dvy > 0. Hence, the curvature of the path « = 1/p increases
with speed for a constant §. Increasing « indicates that the radius of the steady-state
circle of rotation, p, decreases by increasing speed v,. A negative stability factor
is undesirable. A vehicle with K < 0 is unstable and is called oversteer. For an
oversteer vehicle, we need to decrease the steering angle when we increase the speed
of the vehicle, to keep the same turning circle.

If K =0, then

11
Cozf Car

(2.352)

then S, = «/& is not a function of v, because dS, /dv, = 0. Hence, the curvature
of the path k = 1/p remains constant for a constant é regardless of vy. Having a
constant k indicates that the radius of the steady-state circle, R, will not change by
changing the speed v,. A zero stability factor is neutral and a vehicle with K = 0 is
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on the border of stability and is called a neutral steer. When driving a neutral steer
vehicle, we do not need to change the steering angle if we increase or decrease the
speed of the vehicle, to keep the same turning circle.

2.6 Four-Wheel Planar Vehicle Dynamics

The four-wheel planar vehicle model is an extension to the two-wheel planar vehicle
model to include the lateral weight transfer. The four-wheel planar model provides
us with better simulation of drifting vehicles.

Let us assume that the front and rear tracks are different.

blf + bzf =wyr (2.353)
b1, + by = w, (2.354)

The equations of motion of the four-wheel rigid planar vehicle are:

1
Uy = — (Fy — Fa) +ruy (2.355)
m
1
ﬁy = I’I_’le —F Uy (2.356)
) 1
= M (2.357)
z
=-tn - (2.358)
w] = i 1 i X1 .
. 1 R,
in=—T — -5 Fy, (2.359)
I I
. 1 R,
i) = —T5 — ~% F,, (2.360)
13 13 :
. 1 R,
w] = I_T4 - I_ Fx4 (2361)
4 4

Fy = Fy cos 81 + Fy, cosdp + Fyy + Fy,

—Fy, sind; — Fy, sind; (2.362)
Fy = Fy, cosd1 + Fy, cosdr + Fy, + Fy,

+Fy, sindj + Fy, sinéy (2.363)
Fa=Cav? (2.364)
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M; = a1 Fy, sind1 + a1 Fy, cos 81 + aj Fy, sindy + ai Fy, cos 6

—b1yFy cos81 + bigFy, sindy — bayFy, sindy + by y Fy, cos &2

—arFy; —axyFy, — b1, Fyy + bor Fy, (2.365)
Fy, = F;;Csi S(si — $s) \/1 — Csq <M> 2 (2.366)
Ay
Fy, = —F;Coi S (i — ay) \/ 1 — Cys (—S (Sis_ SX)) 2 (2.367)
S
F, = g (azg —h (i}x —-r vy)) (bzfg —h (i)y +r vx)) (2.368)
F, = fore (azg —h (i}x —-r vy)) (blfg +h (i)y +r vx)) (2.369)
a =7 (alg +h (i)x —-r vy)) (bzrg —h (in +r vx)) (2.370)
,
F, = oz (a1g +h (vx —rvy)) (b1rg + h (vy +rvi)) (2.371)
r

and tire slips as

vy +xir
o =p; — 6 =arctan | —— | — §; (2.372)
Ux — )i 7
B; = arctan <h) = arctan <M) (2.373)
Uy; Ux — Vi F
Uy
B = arctan — (2.374)
Ux
X1 =Xx2=ai y1 =biy y3 = by, (2.375)
X3 = X4 = —az y2 = —bay y4 = —by, (2.376)
Re wj — vyyy

Si

_ 2.377)
Rg wj H(Rg w; — UxT,') + Uy H(UXTi - Rg w;)

Ve = (vx — rbiys) cos 81 + (vy + rap) sin g (2.378)
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Vxpy = (vx + rblf) cosdy + (vy + ral) sin 8o (2.379)
Uxpy = Ux — I'boy (2.380)
Uxrqy = Ux +rby, (2381)

The left and right steer angles are related due to steering mechanism.
82 = f (1) (2.382)
Proof The equations of motion for a flat and rigid vehicle in the local coordinate

frame B, at its mass center C, are given in Egs. (2.1)—-(2.4). The equations for a
four-wheel vehicle model will be:

Fy =mv, —mrvy + Fy (2.383)
Fy =mvy +mr vy (2.384)
M, =71, (2.385)
Ty = Iy, @1 + Ry Fx, (2.386)
T) = Iy, @2 + Ry Fx, (2.387)
T3 = Iy, or + Ry Fy, (2.388)
Ty = Iy, &r + Ry, Fy, (2.389)

We add the aerodynamic force F4 as the only resistance forces on the vehicle. We
assume F4 to be effective only in the x-direction

1
Fa=3pCp Ay v} = Cyv? (2.390)

where p is the air density, Cp is the drag coefficient, and A s is the frontal area or
projected area of vehicle in x-direction. We combine the coefficients p, Cp, and Ay
into a single coefficient Cy4.

From (2.59) to (2.61), the applied forces on the vehicle are:

F, = ZFxWi cosd; — ZFYW,' sin §;
i i

= Fy, c0s81 + Fy, cos 8y + Fyy + Fy,
—Fy, sind; — Fy, sind; (2.391)
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Fy = Z wa,- cosd; + Z FXW,- sin §;

L ]

= F), cos 81 + Fy, cos 8y + Fy, + Fy,
+Fy, sindy + Fy, sin (2.392)

and the moment in the z-direction is:

0
M = Zri xF,=| 0 (2.393)

b4

M, = inFyi _Zyini
i i

= a1 Fy, sindy + ai Fy, cos 81 + ay Fy, sindy
+ay Fy, coséy —ar Fy, —ar Fy,
—b1fFy cos81 +bisFy, sind; — byy Fy, sind;
+b2s Fy, cosdy — by Fxy 4 by, Fy, (2.394)

because the forces and location of each tire is:

[ Fy, cos8; — Fy, sind; | Fy,
F| = | Fy siné; + Fy, cosd; F3=| Fy, (2.395)
L 0 i L 0
[ Fy, cos 8y — Fy, sindy | [ Fy, |
Fy = | Fy,sindy + Fy, cos 82 Fy= | Fy, (2.396)
_ 0 i L 0
B al aq
ry = blf r, = —b2f (2.397)
L 0 0
M —an —ay
r; = by, ry = | —by, (2.398)
L O 0

Employing the combined slip elliptical model, the tire tangential forces Fy, and
Fy, are:
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S PR
Fy = FyCyi S (51 = 50) \/ - Cu (M) 2 (2.399)
S

o,

S (Si - ss) 2
Fy,- =-—F; Coi S(aj —ay) [1 = Cous | ————— (2.400)
Ss

The vertical forces on front and rear wheels F;, are calculated in (1.431)—(1.434)
in which the acceleration components ay and ay must be expressed in body
coordinate B

ax = Uy —ruy (2.401)
ay = by +ruy (2.402)

to be used in Eqs. (2.399) and (2.400). Rearrangement of Eqs. (1.431)—(1.434) is:

F,, = lwf (gaz — hvy + hrv}) (ht')y +gbay — hrvx) (2.403)
F, = (8az — hvy + hrvy) (b, + gbiy + hruy) (2.404)
lu)fg
F, = (hi)x + ga; — hrvy) (hin + gby — hrvx) (2.405)
lw,g
Fy=1 . (hox + gar — hrvy) (hy + gbir + hruy) (2.406)
r
where
wy =biy+byy (2.407)
w, = by, + by (2.408)
l = a] + az (2409)

The tire side slip angle «; has been calculated in (1.121)—(1.123)

a; = B; — §; = arctan <M) — &

Ux — il
where
B; = arctan (Ui> = arctan (M> (2.410)
Ux; Ux = Vi’

Uy =V — )i T Uy, = Uy +X; F 2411



2.6 Four-Wheel Planar Vehicle Dynamics 177

and therefore,

B, = arctan <m> = arctan (M) (2.412)
Uy, vy —bifr

B, = arctan (U£> = arctan (M) (2.413)
Uy, vy +barr
Vy, vy —axr

= arctan | — ) = arctan | ——— 2.414

P <UX3> <vx+b2rr> ( )

B4 = arctan <Q> = arctan (M) (2.415)
Uxy vy — b1y 1

The longitudinal slip ratio s; is calculated in (1.57) as a function of the tire
forward velocity v,,, and its angular velocity ;.

_ Ry w; — vy,
Rg wij H(Rg Wy — UXT,') + UXTi H(vxTi - Rg Cl)[)

(2.416)

Si

According to (1.303), the forward velocity of the vehicle at the wheels centers is:

By, — | VCOSB—ryi | _ | vx—ryi 2.417)
vsin B + rx; vy +rx;
because
Bv,- = Byt gwg X Br,- (2.418)
Uy 0 Xi Ux — IYi
=|lvy [+|0| Xy |=]|vy+rx
r 0 0
and therefore,
By, — [”x - ’blf] By, — [”x +’b1f} (2.419)
vy +rap vy +rap
BV3 — [Ux _rbZV} BV4= |:vx+rb2r:| (2420)
vy —ra vy —raz

Therefore, the velocity at the center of the front wheel in the tire x-direction, Ty,

will be

Uiy = (vx — rbiyg) cos 81 + (vy + rap) sin g (2.421)
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Uspy = (vx +7bi1f) cos 82 + (vy + ray) sin s (2.422)
Uxpy = Ux — I'boy (2.423)
Uxrqy = Ux +rby, (2424)
because
. T
cosé —sind O Vxy —1Yi
Ty; = CR% By, =| sins coss§ 0 Uy +1X;
0 0 1 0
(vy — ryij)cosé + (vy + rxi) sin é
= | (vy 4+ rxi)coss — (vy — ry;)sind (2.425)
0

The tire angular velocity w; comes from the equation of moment balance on each
wheel. Ignoring the tire resistance force, the rotational equation of motion of the
wheels is:

Iy, &; =T, — R; F, (2.426)

The traditional four-wheel vehicles with the front steerable wheels need to
connect the left and right front wheels together such that only one steer angle is
the driver’s command and the other wheels steer according to the connection rule.
The connection might be mechanical, as a passive steering mechanism does the job.
Let us assume that the tire number 1 is the commander and all other steer angles are
follower. The connection provides us with a mathematical equation to calculate 8,
for a given §;.

82 = f(é1) (2.427)

The connection may also be virtual as steer by wire systems do the job. Such a smart
system receives commands from a central system and activates individual actuators
on each wheel to give them the required steer angles calculated by a computer
system based on an objective function.

The simplest mathematical relation is the low speed neutral kinematic condition
called the Ackerman condition

cot, — cot §; = % (2.428)

in which §; is the steer angle of the inner wheel, and §, is the steer angle of the
outer wheel. The inner and outer wheels are defined based on the turning center
of the vehicle. This equation is only a synthetic relation which theoretically works
at zero speed and impossible to make a simple low bar mechanisms to provide the
equation. However, it is a good starting point. |
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Fig. 2.47 The effect of aerodynamic drag force F4 = C4v2 on forward velocity of a four-wheel
planar vehicle in free straight motion

Example 74 Aerodynamic effect.
Consider a vehicle with the following data.

m =1000kg Iz =2000kgm> I =5 =13 = I =30kgm’

Coy = Coy = Coy =Cq, =85 Ry =0.35m

Cyy =C5, =Cyy =C5, =175 (2.429)
ay =5deg s, =01  Cas =05 Cyu=05
a; =135m a=15m [ =2.85m h=09m

bif=by,=by=by=09m w;=w, =18m

Assume the car initially is moving at

vy =20m/s §=0 T, =0 (2.430)
and
Uy 20
w;j = — = —— = 57.143rad/s (2.431)
R, 035

The effect of the aerodynamic resistance force in slowing down the vehicle can be
seen in the time history of the forward velocity as is shown in Fig. 2.47 for:

Cs=08 (2.432)
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Fig. 2.48 The longitudinal slip ratios of the tires of a four-wheel planar vehicle

Example 75 Increasing rear torque, straight driving.
Consider a vehicle with the data given below.

m=1000kg Iz =2000kgm? I} =1 = I3 = I4 = 30kgm?

Coy =Coy=Coy =Co, =85 Cy=Cy, =Cs, =Cs, =75
ay =5deg  s;,=0.1  Cgs=Cy =0.5 (2.433)
a; = 1.35m ar=15m [ =2.85m h=09m

bif =bi, =byy =by =09m  wy=w,=18m R, =0.35m

Assume the vehicle is moving slowly straight with

2
vy =2m/s @ = ;—" = 535 = 57l4rad/s (2.434)
. 0.

§=0 (2.435)
At time ¢t = 0, we apply an increasing torque on the rear wheel.
T'h=1T,=0 T3 = T4, = 50t Nm (2.436)

The rear longitudinal slip ratio will increase and reaches its saturation; then the rear
wheels start spinning. Figure 2.48 depicts the longitudinal slip ratios. The saturation
limit of the tires is at s; = 0.1. The slip ratio of the rear tires s3 and s4 increases
linearly from zero up to the point at s, = 0.1. At that point, tire starts spinning on the
ground and the applied torque increases the wheels’ angular velocity. Therefore, the
slip ratio s, increases rapidly. There is no torque on the front wheels and therefore
the front wheels’ slip ratio s; and s» remains unsaturated although it will not be
zero. Figure 2.49 depicts the forward velocity of the vehicle vy.
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Fig. 2.49 The forward velocity of the vehicle v, of a four-wheel planar vehicle
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Fig. 2.50 The torques on the wheels of a four-wheel planar vehicle

The torques on the wheels are shown in Fig.2.50. Because of variable accel-
eration of the vehicle, the vertical load on the wheels is not constant. Figure 2.51
illustrates the vertical loads, and the traction forces are shown in Fig. 2.52.

Example 76 Increasing front torque, straight driving.
Consider a vehicle with the data given in (2.429) and assume the vehicle is
moving slowly straight with
Uy 2

vy =2m/s w; = = 035 = 5.714rad/s (2.437)
; .

§=0 (2.438)



182 2 Vehicle Planar Dynamics

2600
2500
& 2400

2300 4

— T

0 10 20

— 77—

30 40 50
ts]
Fig. 2.51 The vertical load on the wheels of a four-wheel planar vehicle
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Fig. 2.52 The traction forces on the wheels of a four-wheel planar vehicle

At time r = 0, we apply an increasing torque on the front wheel
T =T, =50t Nm I3=T4=0 (2.439)

to discover the differences of planar four-wheel vehicle response to front or rear
wheel drive. Figure 2.53 depicts the longitudinal slip ratios s;. Figure 2.54 illustrates
the angular velocities of the wheels w;. Figure 2.55 depicts the velocity components
of the vehicle vy and vy. Figure 2.56 illustrates variation of the vertical loads F;.
Figure 2.57 depicts the longitudinal forces Fy, on tires.
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Fig. 2.53 The longitudinal slip ratios s; of the tires of a four-wheel planar vehicle
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Fig. 2.54 The angular velocities of the wheels w; of a four-wheel planar vehicle
Example 77 Increasing steer angle and front torque, slip saturation.
Consider a vehicle with the following information
m =1000kg Iz =2000kgm?> I, =5 = I3 = I; = 30kgm?
Coy = Coy = Coy = Coy =85 Cyy =Cy, =C3 =Cy =75
ay = Sdeg ss =0.1 Cys = Cyq = 0.5 (2.440)

a; =135m a=15m [=285m h=09m

b1f=b1r=b2f=b2r=().9m wfzwr=1.8m Rg=0.35m
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Fig. 2.55 The forward velocity components v, and vy of a four-wheel planar vehicle
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Fig. 2.56 The vertical load F;; on the wheels of a four-wheel planar vehicle

and assume the vehicle is moving very slowly straight.

2
vy =2m/s w; = ;—x = 035 =5.714rad/s (2.441)
o .

At time ¢ = 0, a linearly increasing torque will be applied on the front wheels up

to 71 = T, = 750 N'm and keep constant after that. The steer angle is also linearly
increasing at a very low rate up to § = 0.5 deg and remains constant after that.

50t Nm 0<t<15s
T =T — T3=Ty =0 2.442
b= {75()Nm 155 <t 3T (2442)

180

0.5deg = %rad 10s <t

(2.443)

_ {0.05; deg = %7, 0 <1< 10s
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Fig. 2.57 The traction forces Fy, on tires of a four-wheel planar vehicle
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Fig. 2.58 The forward velocity components of a four-wheel planar vehicle v, and v,

The front torques increase and go beyond the limit of front wheels capability in
producing traction force. As a result, the front tire number 1 slip ratio s; > s¢ and
hence its traction force Fy, will be saturated.

Figure 2.58 depicts the velocity components of the vehicle vy and vy, measured
in body coordinate B-frame. Figure 2.59 illustrates the angular velocities of the
wheels w;. Figure 2.60 illustrates the sideslip angles of the wheels «;. Figure 2.61
depicts the longitudinal slip ratios s; for the tires. The acceleration components ay
and ay of the vehicle are plotted in Fig. 2.62. Figure 2.63 depicts the forces F; and
Fy on the vehicle at its mass center. Figure 2.64 illustrates variation of the vertical
loads F;. Figure 2.65 illustrates the longitudinal forces F); on tires. Figure 2.66
shows the lateral forces Fy, on tires. Figure 2.67 illustrates the path of the vehicle.
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Fig. 2.59 The angular velocities of a four-wheel planar vehicle wheels w;
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Fig. 2.60 The sideslip angles of a four-wheel planar vehicle wheels «;
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Fig. 2.61 The longitudinal slip ratios s; of a four-wheel planar vehicle tires
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Fig. 2.62 The acceleration components ay and ay /g of a four-wheel planar vehicle
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Fig. 2.63 The forces Fy and F on the vehicle at its mass center
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Fig. 2.64 The vertical load F;; of a four-wheel planar vehicle wheels
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Fig. 2.65 The traction forces Fy; of a four-wheel planar vehicle tires
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Fig. 2.66 The lateral forces F), of a four-wheel planar vehicle tires

Example 78 Increasing steer angle and rear torque.
Consider a vehicle with the following parameters.
m =1000kg Iz =2000kgm?> I, =1 = I3 = I; = 30kgm?
Coy =Cqy =Cqy; =Cq, =85 Csy =C5, =Csy; =C, =175
ay = 5deg ss =0.1 Cous = Csq = 0.5 (2.444)
ar =135m ap=15m [=285m h=09m
bif =biy =byyf =by =09m wr=w, =18m R, =0.35m
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Fig. 2.67 Path of motion of a four-wheel planar vehicle for 0 < # < 50 s by increasing steer angle
and applying front torque and having slip ratio saturation

The vehicle is moving slowly straight with

v 2
vy =2m/s w; = R—); =035 = 5.714rad/s (2.445)
Cs =038 (2.446)
At time ¢+ = 0, we apply an increasing torque on the rear wheel as well as an

increasing steer angle for limited times as expressed below.

15t Nm 0<t<10s
S {ISONm 10s < 1 =0 (2447)

(2.448)

1.5deg=%rad I5s <t

{O.Itdeg =%%rad  0<t<15s
Figure 2.68 depicts the velocity components of the vehicle vy, and v,. Figure 2.69
illustrates the angular velocities of the front and rear wheels w;. Figure 2.70
illustrates the sideslip angles of the front and rear wheels «;. Figure 2.71 depicts
the longitudinal slip ratios s; of tires. The acceleration components a, and a, of
the vehicle are plotted in Fig.2.72. The angular accelerations of the wheels @;
are shown in Fig.2.73. Figure 2.74 depicts the resultant forces Fy and Fy on the
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Fig. 2.68 The velocity components of a four-wheel planar vehicle vy and v,
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Fig. 2.69 The angular velocities w; of a four-wheel planar vehicle
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Fig. 2.70 The sideslip angles «; of a four-wheel planar vehicle
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Fig. 2.71 The longitudinal slip ratios s; of a four-wheel planar vehicle
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Fig. 2.72 The acceleration components ax and ay /g of a four-wheel planar vehicle
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Fig. 2.73 The angular accelerations of the wheels w; of a four-wheel planar vehicle
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Fig. 2.74 The forces F, and Fy of a four-wheel planar vehicle at its mass center
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Fig. 2.75 The longitudinal forces Fy, on a four-wheel planar vehicle at its mass center

vehicle at its mass center. Figure 2.75 illustrates the longitudinal forces Fy; and
Fig.2.76 illustrates the lateral forces F), on tires. Figure 2.77 illustrates variation of
the vertical loads F,y and F,. Figure 2.78 illustrates the path of the vehicle.

Example 79 No friction on left side and applying rear torque.

To show that the four-wheel planar vehicle mathematical model is capable to
analyze special cases, we assume that left side of the vehicle is moving on a no
friction pavement while an increasing torque is applied on the rear wheels. The
friction coefficients of the tires number 1 and 3 would be zero.

Let us consider a vehicle with the following parameters.

m =1000kg Iz =2000kgm> I} =5 =1 = I =30kgm’
Cay =Coy =0  Coy =Cqy =85  Coy=Cya =05
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Fig. 2.76 The lateral forces F), on tires of a four-wheel planar vehicle
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Fig. 2.77 The vertical load F; on front and rear wheels of a four-wheel planar vehicle

Csy =Cs3 =0 Cy, =Cs, =15 oy = Sdeg s = 0.1

a; =135m a=15m (2.449)
biy =bi, =byy =by =09m [=2.85m h=09m

wy =1.8m w, =1.8m Ry, =0.35m

The vehicle is moving slowly straight with

2
vy =2m/s W == = 5.714rad/s (2.450)
g .

Cai=0 8§=0 (2.451)



194 2 Vehicle Planar Dynamics

F40 X [m]

Y «

T
'

t-J

=

f
'
\@> ¢ =501s] | 0

250 200 150 100 50 0
Y [m]

Fig. 2.78 Path of motion of a four-wheel planar vehicle for 0 < ¢ < 50 s by increasing steer angle
up to 1.5 deg and applying rear torque up to 300 N m
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Fig. 2.79 Torque history on the wheels of a four-wheel vehicle with no friction on left side

Attime t+ = 0, we apply an increasing torque on the rear wheels as expressed below.
T =13 Ty =T, =7.5tNm (2.452)

Figure 2.79 depicts the applied torque history on the wheels of the vehicle, and
Fig. 2.80 illustrates the traction forces Fy, under each wheel. Figure 2.81 depicts the
velocity components of the vehicle v, and vy. Figure 2.82 illustrates the angular
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Fig. 2.80 F,, of a four-wheel vehicle with no friction on left side
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Fig. 2.81 v, and v, of a four-wheel vehicle with no friction on left side
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Fig. 2.82 w; of a four-wheel vehicle with no friction on left side
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Fig. 2.83 F\ and F) on a four-wheel vehicle with no friction on left side
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Fig. 2.84 Fy, of a four-wheel vehicle with no friction on left side

velocities of the front and rear wheels ;. Figure 2.83 depicts the resultant forces
Fy and Fy on the vehicle at its mass center. Figure 2.84 illustrates the lateral forces
Fy, on tires. Figure 2.85 illustrates variation of the vertical loads F;,. Figure 2.86
illustrates the path of motion of the vehicle comparing a front-wheel-drive (F W D)
and rear-wheel-drive (RW D) cases.

Example 80 No friction on left side and braking rear torque.

In this example we assume a vehicle is moving at a high speed and that left side
of the vehicle is moving on a no friction pavement. We apply an increasing negative
rear torque. The friction coefficients of the tires number 1 and 3 would be zero. Let
us consider the vehicle with the following parameters.
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Fig. 2.85 F;, of a four-wheel vehicle with no friction on left side
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Fig. 2.86 Path of motion of a four-wheel vehicle with no friction on left side
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Fig. 2.87 Torque history on the wheels of a four-wheel vehicle with no friction on left side and a
braking rear torque

m =1000kg Iz =2000kgm’> I} =1, = I3 = I4 = 30kgm?
Coy =Coy =0  Coqy=Cq, =85  Cgs=Csq =05
Cyy =Cs, =0 Cy,=Cy, =15 (2.453)
oy = Sdeg s = 0.1 a;=1.35m a=1.5m
[=285m h=09m  bjy=by, =byy =by =09m
wy=w, =18m Ry =0.35m

The vehicle is moving fast straight.

20
vy =20m/s w; = 7= 035 = 57.14rad/s (2.454)
o .

Cai=0 6§=0 (2.455)

At time t = 0, we apply an increasing negative torque on the rear wheels as below.

T, =T Ty =T3 = —7.5tNm (2.456)

Figure 2.87 depicts the applied torque history on the wheels of the vehicle.
Figure 2.88 depicts the velocity components of the vehicle v, and v,. Figure 2.89
illustrates the angular velocities of the front and rear wheels w;. Figure 2.90 depicts
the resultant forces F and F, on the vehicle at its mass center. Figure 2.91 illustrates
the longitudinal forces F); and Fig.2.92 illustrates the lateral forces F), on tires.
Figure 2.93 illustrates variation of the vertical loads Fy,. Figure 2.94 illustrates
the path of motion of the vehicle comparing a front-wheel-brake (F W B) and rear-
wheel-brake (RW B) cases.
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Fig. 2.88 Velocities v, and vy of the four-wheel vehicle with no friction on left side and a braking
rear torque
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Fig. 2.89 Wheel angular velocities w; of the four-wheel vehicle with no friction on left side and a
braking rear torque

Example 81 Only one-wheel torque.
Let us examine a vehicle that due to some reasons, only one of the wheel
actuators is working. Let us consider the vehicle with the following parameters.
m =1000kg Iz =2000kgm? I} =1 = I3 = Iy = 30kgm?
Coy =Cqy =Coy; =Cy, =85 Cyy=C5, =Cy, =C, =175
as = Sdeg ss = 0.1 Cys = C5q =0.5 (2.457)
a; = 135m a=15m [=2.85m h=09m
bif =biy =byr =by =09m wy=w, =18m Ry =0.35m
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Fig. 2.90 Applied forces F\ and Fy on the four-wheel vehicle with no friction on left side and a
braking rear torque
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Fig. 2.91 Wheel forces Fy, on the four-wheel vehicle with no friction on left side and a braking
rear torque

The vehicle is moving slowly straight.

2
vy =2m/s Wi = R_g =035 = 5.714rad/s (2.458)
Cy =038 §=0 (2.459)

At time r = 0, we apply an increasing torque on the rear wheels as below.

Th=T=T; Ty =7.5tNm (2.460)
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Fig. 2.92 Wheel forces Fy, on the four-wheel vehicle with no friction on left side and a braking
rear torque
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Fig. 2.93 Wheel forces F; on the four-wheel vehicle with no friction on left side and a braking
rear torque

Figure 2.95 depicts the applied torque history on the wheels of the vehicle, and
Fig. 2.96 illustrates the traction forces Fy, under each wheel. Figure 2.97 depicts the
velocity components of the vehicle v, and vy. Figure 2.98 illustrates the angular
velocities of the front and rear wheels w;. The global acceleration components ax
and ay of the vehicle are plotted in Fig.2.99. Figure 2.100 depicts the resultant
forces F, and Fy on the vehicle at its mass center. Figure 2.101 illustrates the
lateral forces F), on tires. Figure 2.102 illustrates variation of the vertical loads
F;,. Figure 2.103 illustrates the path of the vehicle.
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Fig. 2.94 Path of motion of the four-wheel vehicle with no friction on left side and a braking rear
torque
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Fig. 2.95 Applied torques 7; on the wheels of a four-wheel planar vehicle with only 74 # 0
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Fig. 2.96 Traction forces Fy, on the wheels of a four-wheel planar vehicle with only 74 # 0
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Fig. 2.97 The velocity components of a four-wheel planar vehicle v, and vy with only T4 # 0
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Fig. 2.98 The angular velocities of a four-wheel planar vehicle w; with only T4 # 0
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Fig. 2.99 The global acceleration components of a four-wheel planar vehicle ax and ay /g with
only Ty # 0
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Fig. 2.100 The force components of a four-wheel planar vehicle Fy and F with only Ty # 0
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Fig. 2.101 The forces Fy, of a four-wheel planar vehicle with only T4 # 0
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Fig. 2.103 Path of motion of a four-wheel planar vehicle with only 74 # 0

2.7 Chapter Summary

205

In this chapter we study the planar model of vehicles to examine maneuvering by
steering as well as the wheel torque control. The wheel torque and steer angle
are the inputs and the longitudinal velocity, lateral velocity, and yaw rate are the
main output variables of the planar vehicle dynamics model. The planar vehicle
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dynamic model is the simplest applied modeling in which we assume the vehicle
remains parallel to the ground and has no roll, no pitch, and no bounce motions.
The planar motion of vehicles has three degrees of freedom: translation in the x and
y directions, and a rotation about the z-axis. The longitudinal velocity v, along the
x-axis, the lateral velocity vy, along the y-axis, and the yaw rate r = Y about the
z-axis are the outputs of the dynamic equations of motion.

By ignoring the roll motion as well as the lateral load transfer between left and
right wheels, we define a simplified two-wheel model for the vehicle.

The four-wheel planar vehicle model is an extension to the two-wheel planar
vehicle model to include the lateral weight transfer. The four-wheel planar model
provides us with better simulation of drifting vehicles. This model is capable to
simulate drift of vehicles as well as simulation of different tire-wheel interaction for
all four tires of a vehicle.

2.8 Key Symbols

a=x Acceleration

a; Longitudinal distance of the axle number i from y-axis
Ay Frontal area of vehicle

b; Lateral distance of tire number i from longitudinal x-axis
B(Cxyz)  Vehicle coordinate frame

C Mass center

Ca Aerodynamic coefficient

Cy Tire sideslip coefficient

Cor Front sideslip coefficient

Cui Sideslip coefficient of tire number i

Cas Tire lateral force drop factor

Car Rear sideslip coefficient

c, Camber coefficient, camber stiffness

Cs Tire slip ratio coefficient

Csr Front slip ratio coefficient

Cyr Rear slip ratio coefficient

Csa Tire longitudinal force drop factor

Cp Drag coefficient

Csr Front slip ratio coefficient

Cyi Slip ratio coefficient of tire number i
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Cyr Rear slip ratio coefficient

Cg Coefficient between F, and § at steady-state
Cs Coefficient between F), and § at steady-state
Cy Coefficient between F), and « at steady-state
d Location vector

Dg Coefficient between M, and f at steady-state
Ds Coefficient between M, and § at steady-state
D, Coefficient between M, and « at steady-state
Fa Aerodynamic force

F, Longitudinal force, forward force, traction force
F; Force vector of tire number i

Fyi Longitudinal force of tire number i

Fy Lateral force of vehicle

Fy; Lateral force of tire number i

Fyr Front lateral force

Fy, Rear lateral force

F, Normal force, vertical force of tire number i
FM Force system

g.g Gravitational acceleration

G(OXYZ) Global coordinate frame

h Height of mass center from the ground

H Heaviside function

1 Mass moment

I;, Ly Wheel number i mass moment

K Stability factor

l Wheel base

L Moment of momentum

m Mass

M, Roll moment, bank moment, tilting torque
M, Pitch moment

M, Yaw moment, aligning moment

0,0 Origin of a coordinate frame

p=¢ Roll rate

P Momentum

qg=0 Pitch rate

qi Generalized coordinate

r= 1// Yaw rate

r Position vector

R, R, Tire radius

GRp Rotation matrix to go from B frame to G frame

s Longitudinal slip
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X,¥,%2, X
X, Y, Z

B+y

S >
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§.

Saturation value of longitudinal slip
Saturation function

Curvature response

Sideslip response

Time

Tire coordinate frame

Wheel torque

Velocity

Wind velocity

Longitudinal velocity of wheel number i
Lateral velocity of wheel number i
Wheelbase

Front wheelbase

Rear wheelbase

Displacement

Global displacement

Sideslip angle

Sideslip angle saturation

Global sideslip angle

Vehicle sideslip angle, attitude angle
Sideslip angle of front wheel
Sideslip angle of wheel number i
Sideslip angle of rear wheel

Cruise angle

Steer angle

Front steer angle

Front steer angle of wheel number i
Rear steer angle

Pitch angle

Pitch rate

Curvature

Eigenvalue

Radius of rotation, air density

Roll angle

Roll rate

Yaw angle

Yaw rate

Heading angle

Angular velocity

Angular velocity of wheel number i
Angular acceleration

Angular acceleration of wheel number i

2 Vehicle Planar Dynamics
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Exercises

1. Graphical view of tire force and vehicle dynamics.
Consider a vehicle with the following data.
Cor =85 Cor =85 as = Sdeg sg = 0.1
Csp =15 Csr =75 Cos =0.5 Cso =05  (2.461)

and the tire force equations:

F, a\?
— =Cs5,/1 —Cso | — lo| < o ls] < s (2.462)
F, o

s

Fy s \2
— = —Cqa |1 —Cys | — lo] < o Is|] <sg (2.463)
F; N

s

(a) Plot Fy/F, as functions of o and s for —2a; < o < 205 and —2s; < 5 <
2s5. Replot F /F;, for Cys = 0 and Cyq = 0 and compare the plots.

(b) Plot F,/F; as functions of « and s for —2ay < @ < 205 and —2s5 < 5 <
2s5. Replot Fy/ F, for Cys = 0 and Cy = 0 and compare the plots.

(c) If there are any sharp edges in any of the above plots, explain what would
you expect to see in the plot of Fy, Fy, F;, T;.

(d) Chose a set of inputs of § and 7; to show your predictions.

2. Wind force in B-frame.
Transform the result of the wind force F 4 of Eq. (2.48) into B-frame and find
the result of Eq. (2.49).

(a) Determine the force system that applies on the two-wheel model of the car.

Fy=Crr+CsB+Csé (2.464)
M, =D,r+Dgp+Dss (2.465)

(b) Write the equations of motion of the car as

Fy =mvy —mr vy
Fy =mvy, +mr vy (2.466)
M, =71,

(c) Derive the force system coefficient that the velocity is measured in km/h
instead of m/s.
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Velocity drop with aerodynamic resistance.

(a) Analytically determine if the forward velocity decreasing in Fig.2.10 is
linear or is a curve?

(b) Analytically determine if the forward velocity decreasing in Fig.2.47 is
linear or is a curve?

(c) Are the curves in Figs.2.10 and 2.47 exactly the same?

Nonlinear tire behavior.
Let us assume that the sideslip coefficient of the tires of a vehicle is nonlinear
such that its lateral force generation capacity drops at high « according to:

Cy = Ci — Cra? (2.467)

(a) Develop the force system for the bicycle vehicle model.
(b) Derive the equations of motion for a front wheel steerable planar bicycle
vehicle model.

Nonlinear equation for Fy = F) (a).
Accept the nonlinear functions of

Fy, ==Cifas+Cyay  Fy,=—-Ciar+Cya; (2.468)
and develop the force system for the planar bicycle vehicle model.
3D global wind force.
Assume the wind has a global velocity Gvuing and a vehicle is moving with a
velocity Cv.

. Vwx . Ux
Vwind = | Vwy V=1 1y (2.469)
Vg 0

The wind is blowing at angle n with respect to the ground XY -plane and angle
0 with respect to the global X Z-plane. The vehicle x-axis is at angle ¥ with
respect to X-axis.

(a) Determine the wind velocity expression in G-frame in terms of v,,..
(b) Determine the wind force on the vehicle in G-frame in terms of v and vy,.

GF, =Cy (Gv — va) 2 (2.470)

(c) Determine the wind force on the vehicle in B-frame in terms of v and vy,.
(d) Determine the changes on F;; for two-wheel planar vehicle model.
(e) Determine the changes on F7; for four-wheel planar vehicle model.

Y Initial camber set.
To increase directional stability of vehicles, specially the race cars, we design
their suspensions such that there exists a set inward camber angle y. The
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10.

11.

inward camber means at § = 0, we have y|; = y¢, Y2 = =V, ¥3 = Vo»
¥4 = —V, assuming front and rear suspensions initial cambers are equal.
Derive the total planar force system on the vehicle in the body coordinate frame
B expressed in Egs. (2.59)—(2.61) with this suspension design.

Front and rear steer bicycle plane vehicle model.

Re-derive the bicycle plane vehicle force components equations in (2.91)-
(2.93) for a front § y and rear §, steerable bicycle vehicle.

Front and rear steer two-wheel plane vehicle model.

The equations of motion of the two-wheel plane vehicle model are given
in (2.203)—(2.207).

(a) Re-derive the equations for a front § y and rear 8, steerable vehicle.

(b) Re-derive the equations for a front §, = 8 7/10. In this parallel steering
design, we will only have one input steer angle.

(c) Re-derive the equations for a front 6, = —6 ¢ /10. In this opposite steering
design, we will only have one input steer angle.

Aerodynamic effect.
Consider a vehicle is moving in a windy environment with a wind velocity of:

vaind = —Uyy I (2.471)

Assume the vehicle initially is moving at

v =20m/s 8=0 Ty=T, =0 (2.472)
20

wf =w = —> = — = 57.143rad/s (2.473)
: R, 035

The other parameters of the vehicle are given in Eq. (2.247) and the wind force
on vehicle is calculated by

Fy = Cy (vx — (—vyy sinwt))? (2.474)

(a) Assume Cp = 0.8 and determine the forward velocity of the vehicle. Plot
the forward velocity v, to the time at which v, = 10m/s.

(b) Indicating the time at which v, decreases to vy, = 10m/s by ;. Plot #;,
versus Cp.

Alternative aerodynamic effect.
Consider a vehicle is moving in a stormy environment with an alternative wind
velocity.

By ind = —Vwy SIn L © (2.475)
Assume the vehicle initially is moving at

vy =20m/s §=0 T;=T,=0 (2.476)
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20
wf =w = —> = — = 57.143rad/s (2.477)
R, 035

The other parameters of the vehicle are given in Eq. (2.247) and the wind force
on vehicle is calculated by

Fy = Cy (Uy — (—vyy Sinot))? (2.478)
Cp=08 (2.479)

(a) Assume w = 0.01/s and determine the forward velocity of the vehicle.
Plot the forward velocity v, to the time at which v, = 10m/s.

(b) Indicating the time at which v, decreases to v, = 10m/s by ¢, and plot
t, Versus w.

Y Front locked wheel.
Consider a vehicle with the data given in (2.251). Assume the vehicle is moving
slowly straight with

2
vy =2m/s wy = ;—x = 035 =5.714rad/s (2.480)
< .

At time t = 0, we apply an increasing torque on the rear wheel
Tr=0 T, = 100t Nm (2.481)

while the steer angle is kept at zero § = 0 and the front wheel is locked at
wr=0.

Solve the equations of motion numerically and plot Ty, T;, sy, s,, Fy, Fy,
Uy, dy, wp, for0 <t < 50s.

% Rear locked wheel.

Consider a vehicle with the data given in (2.251). Assume the vehicle is moving
slowly straight with

2
vy =2m/s wf = ;—X = 035 = 5.714rad/s (2.482)
¢ .

At time t = 0, we apply an increasing torque on the front wheel

T, =0 Ty =100t Nm (2.483)
while the steer angle is kept at zero § = 0 and the rear wheel is locked at
w, =0.

Solve the equations of motion numerically and plot T¢, T,, Fr, F., s7, sy,
Uy, dy, wf,for0 <t < 50s.
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Increasing steer angle and front torque.
Use the date in Example 70 and repeat the example for,

(@) Cos =0.2,Cse = 0.8
(b) Cys =0.8,Csq =0.2

Increasing steer angle and rear torque.
Use the date in Example 72 and repeat the example for,

(@) Cus =0.2,Cse =0.8
(b) Cys =0.8,Csq =0.2

Steady-state stability condition.
Plot S, and Sg versus v, for the vehicle of Example 70 if

(a) C(Xf = SCo(r, Car = 8.5.
(b) Caf == Car/s, Cozr = 8.5.

Four-wheel plane vehicle, increasing rear torque, straight driving.
This exercise simulates changing one tire with a new or different tire.

(a) Repeat Example 75 assuming Cy, = 10, Cy, = 8.5, Co; = 8.5, Cy, = 8.5.
(b) *Determine the required steer angle § = & (vy) such that the vehicle
moves straight.

Four-wheel plane vehicle, increasing steer angle and front torque.

Repeat Example 75 assuming Cy, = 10, Cy, = 8.5, Cy, = 8.5, Cy, = 8.5.
% Increasing steer angle and opposite rear torque.

Use the date in Example 78 and assume opposite left and right rear torques.

—30t Nm 0<t<10s
T3 = Ty = 2.484
} {—300Nm 10s < t 1=0 (2.484)
30t Nm 0<t<10s
L= {300Nm 10s < ¢ =0 (2.485)

(a) Does the vehicle move?
(b) Solve the equations of motion numerically and plot the same graphs of the
example to compare.

No friction on one tire and applying front torque.
In Example 80 assume the wheel number 1 has no friction.

Co =0 Co, =85 Coy; =85 Coy =85

Cs, =0 Cs, =75 Cs; =175 Cy, =75 (2.486)
(a) Repeat the example and plot the same graphs to compare.

(b) *Determine the required steer angle § = & (vy) such that the vehicle
moves straight.



Chapter 3 )
Vehicle Roll Dynamics Qs

We study the roll vehicle dynamic model in this chapter. The roll dynamic model of
vehicles has forward, lateral, yaw, and roll motions. The model of a rollable rigid
vehicle is more exact and more realistic compared to the vehicle planar model. Using
this model, we are able to analyze the roll behavior of a vehicle while maneuvering.

3.1 Equations of Motion and Degrees of Freedom

The Newton—Euler equations of motion of the roll vehicle dynamics in the body
coordinate frame B are:

Fy =mvy —mruvy (3.1
Fy =mvy +mr vy (3.2)
M,=1Lw,=1I7 (3.3)
My =1y ox = I p (3.4)
T; = Iy, @y; + Ry Fy, (3.5)

The roll vehicle dynamic model is well expressed by four kinematic variables: the
forward motion x, the lateral motion y, the roll angle ¢, and the yaw angle i,
plus four equations for the dynamics of each wheel. In the roll model of vehicle
dynamics, we do not consider vertical movement z and pitch motion 6 (Jazar 2017,
2011).

Figure 3.1 illustrates a roll vehicle model with a body coordinate frame B(xyz) at
the mass center C, its force system, and its kinematic variables. The body coordinate
frame is assumed to be the principal coordinate frame of the vehicle. The x-axis
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Fig. 3.1 The roll vehicle dynamic model has four degrees of freedom indicated by: x, y, ¢, ¥

is a longitudinal axis passing through C and directed forward. The y-axis goes
laterally to the left from the driver’s viewpoint. The z-axis makes the coordinate
system a right-hand triad. The z-axis is perpendicular to the ground, opposite to the
gravitational acceleration g on a flat horizontal road (Cossalter 2002; Dai et al. 2016,
2017a,b).

Angular orientation of the vehicle is expressed by three angles: roll ¢, pitch 0,
and yaw ¥, and the vehicle angular velocities are expressed by their rates: roll rate
p, pitch rate g, and yaw rate r.

pP=9¢=w, (3.6)
qg=0=uw, (3.7)
r=1v =, (3.8)

The vehicle force system (F, M) is the resultant of external forces and moments
that the vehicle receives from the ground and environment. The forces in the body
coordinate frame are expressed by:

Bp = Fii+ Fyj + Fik (3.9)
BM = M, i+ My j+ Mk (3.10)
In roll vehicle dynamic model we assume:

0 = (3.11)
g=0=w,=0 (3.12)
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Fig. 3.2 The vehicle roll dynamic model and its degrees of freedom and force system

Proof Consider the vehicle in Fig. 3.2. A global coordinate frame G is fixed on the
ground, and a local coordinate frame B is attached to the vehicle at its mass center
C. The orientation of the frame B can be expressed by the heading angle v between
the X and x axes measured from X, and the roll angle ¢ about the x-axis, between
the Z and z axes measured from Z. The global position vector of the mass center is
denoted by ¢d.

The force system in the body coordinate frame is:

Bp = BRG GF = BRG (mGaB) =m gaB

=m Bvp+m Bop x Bvp (3.13)

Gq . .
M = — BL= %L =L+ Zwp x °L (3.14)
= 1 Gap + fop x (°1 fop) (3.15)

Ignoring the vertical movement at the mass center, the velocity Zv and acceleration
By of the vehicle, expressed in the body coordinate frame are:

By = [ve vy 0] (3.16)
By = [0, 0, 0] (3.17)

where v, is the forward component and vy, is the lateral component of the vehicle
velocity vector Bv. Ignoring pitch motion of the vehicle, the angular velocity and its
rate are:
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Wy <P p
Bop=| 0 |=|0|=]0 (3.18)
(,()z _lb_ L7
oy | [r]
Bop=|0|=]0 (3.19)
w; ] L7

Assuming the body coordinate frame B to be the principal coordinate frame of the
vehicle, the mass moment matrix of the vehicle will be diagonal:

I, 00 L 00
Bi=lono0|=l0KLo0 (3.20)
001 001

Substituting the above vectors and matrices in the Egs. (3.13) and (3.15) provides us
with the following equations:

B = m B"’B +m gwlg X BVB (3.21)
Fy Uy P Uy
Fy|=m| b, [+m| 0| x| vy
F, 0 r 0
mvy — mrvy,
= | moy +mroy (3.22)
mpu,
BM = 81 Bop + Bwg x (31 ng) (3.23)
M, I; 00 p
My, |=|0L0 0
M, 001 F
p I; 00 p
+10|x 0L O 0
r 001 r
Lip
= | (I — L) pr (3.24)

131"
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The first two equations of (3.22) are the translational equations of motion in the
x and y directions.

[in| _ [mi)x — mrvy] (3.25)

Fy mvy + mruy

and the first and third Euler equations (3.24) are the rotational equations of motion

about the x and z axes.
M, _ Ly (3.26)
M, Lo, '

The third Newton’s equation
mpvy = F; (3.27)

provides the compatibility condition to keep the vehicle on the road and calculates
the change in F, because of motion. The second Euler equation

(h—I)pr=M, (3.28)

is another compatibility condition that provides the required pitch moment to keep
the vehicle on the road.

The last equation (3.5) is the result of analysis of individual wheels of the vehicle.
The free-body-diagram of the wheel number i is shown in Fig.2.3. The traction
force Fy and a roll resistance force Fg are applied on the tire in the x-direction.
Employing the in-wheel torque 7; and a resultant traction force Fy,, the moment
equation of motion of the wheel number i would be:

T; = Ly, @, + Ry, Fy, (3.29)

where I, is the mass moment of the wheel about its spin axis, w,, is the angular
velocity of the wheel about its spin axis, and Ry, is the equivalent tire radius. For
simplicity, we may replace R,, with tire geometric radius R, considering them to
be close to each other. |

Example 82 Five degrees of freedom vehicle motion.

Assume a vehicle that has forward, lateral translations along the x-axis, y-axis as
well as rotations about the x-axis, y-axis and the z-axis. Such a vehicle will have five
degrees of freedom, and its mathematical model is considered full vehicle dynamic
model for handling study. To develop the equations of motion of such a vehicle, we
need to define the kinematic characteristics as follows:

By = [vy vy 0] (3.30)

By = [0, 0, 0] (3.31)
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Bog =[wy 0y .] (3.32)
Boog = [an iy a0-] (3.33)
The acceleration vector of the vehicle in the body coordinate is (Jazar 2010a):

BF = BRG GFZ BRG (mGaB) =m gaB

=mByp+m Bop x Bvp (3.34)

Gd . .
Bm = - PL=8Lp =L+ fwp x L (3.35)
= 1 Gap + fop x (°1 fos) (3.36)

Uy + wyv; — w0,
Ba = Byp + ng x Bvg = Uy + 0 Uy — 0y Uy (3.37)
U7 + wxvy — wyvy

and therefore, the Newton’s equations of motion for the vehicle are:

BF:mBasz\'fB+mngx Byg

F, Uy + wyv; — w0y
Fy | =m| vy + ovy — w0 (3.38)
F; Uz + 0xVy — wyUy

Similarly, the Euler’s equations of motion will be:

EM = By gd’B + ng X (BI ga)B)

M, oy l] — wyw, b + wyw, I3
M, | = oy + oo ] —wyw, 13 (3.39)
M, w I3 — wywy I + oywylp

in which we assumed the mass moment matrix to be principal.

Br=lono (3.40)

Equations (3.38) and (3.39) are the force system expression of a vehicle with five
degrees of freedom.



3.2 Tire Force System 221
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Fig. 3.3 The force system at the tireprint of tire number 1, and their resultant force system at C

3.2 Tire Force System

Figure 3.3 depicts the wheel number 1 of a vehicle and its force system
(F s Py Mz, ) The force components are generated at the center of tireprint in the

T -frame (Fm , Fyr, ,
at the tire center. Then the forces in C-frames of all wheels will be transformed to
the B-frame (x, y, z) at the mass center of the vehicle to determine the resultant
applied forces on the vehicle (Jazar 2017; Popp and Schiehlen 2010). Let the force

system at the tireprint in the tire coordinate frame 7 to be:

Mzrl) and will be transformed to the C-frame (x1, y1, z1)

T T

F, = [FxTi Fy, Fop ] (3.41)
T T

M, = [Mxn My, M., ] (3.42)

then the force system at the center of the wheel in W-frame will be:

FXW,- FXTI
YFu = "Rr TRy = | By, | = | Fy cosy;+ Fopsiny; (3.43)
Fy, Fzp cosy; — Fy,, siny;
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M My; + RFy, cosy + RF;, siny

XWi
WMw = Myw,- = Myr,- cosy — RFxTi + Mzr,- sin y (3.44)
My, M cosy — My, siny

where R is the tire radius.
The force system at the center of the wheel number i in the wheel-body
coordinate frame C is:

F, Fyy, cos8y — Fyy, sindy
“Fu=| Fy, | =| Fyy, c0s81 + Fyy, siné (3.45)
FZi szl-
My, My, cos8y — My, siné;
My, = | My, | =| My, cosd; + My, siné (3.46)
MZ:‘ Mzwl»

In this analysis, we ignored the components of the tire moment at the tireprint M
compared to other moments.

The total important force system on the rigid vehicle in the body coordinate frame
to analyze the roll model of rigid vehicle is

BF. =) Fy =Y Fyy, cosd — Y Fy, sing; (3.47)
i i i

w;

BFy =) Fy =) Fy, cossi+ Y _ Fy, siné; (3.48)
i i i

BMxZZMx,J’_ZylFZz_ZZlF)’z (3'49)
i i i

BM, =3 "M, +> xiFy, =) yiFy (3.50)
i i i

Proof A tire coordinate frame T is set at the center of the tireprint at the intersection
of tire-plane and the ground. The z7-axis is always perpendicular to the ground and
upward. The tire T-frame follows the steer angle rotation about the z7-axis but it
does not follow the spin and camber rotations of the tire. A W-frame is also attached
to the center of the wheel that follows every motion of the wheel except the spin. The
C-frame is set at the center of the neutral wheel and is parallel to the body coordinate
frame B. The W-frame and C-frame will be coincident when the wheel is at the rest
position. The C-frame is motionless with respect to the B-frame and does not follow
any motion of the wheel. The vehicle body coordinate frame B (x, y, z) is attached
to the vehicle at its mass center. The wheel force system that are generated in T -
frame must be transformed to the C-frame and then B-frame to develop the vehicle
equations of motion.
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Let us assume that the force system in the 7-frame at the tireprint of the wheel
number i to be:

T T

Fu = | Fuy Fup Fo | (3.51)
T T

M, = [ My, My, Mo, | (3.52)

The rotation matrix between 7-frame and W -frame is:

1 0 0
WRr =10 cosy; siny; (3.53)
0 —siny; cosy;

and the rotation matrix between the W-frame and the C-frame is:

cosd; —sind; 0
CRw = | sins; coss; 0 (3.54)
0 0 1

Therefore, the force system in the W-frame is:

Fur, Fry,
W¥, = "Ry TF, = Fy, cosy; + Fyposiny; | = | Fy, (3.55)
Fzp cosy; — Fy, siny; Fry,
"My, = "Ry ™™, + "R x J'F,
= YR ™, +(—=R) Vkx YRy TF,
MXT,- 0 FXT,.
="Rr | My, |+| 0 | x"Rr | Fy
MZT,- —R FZT,-
My + RFy, cosy + RF; siny My,
= MYTi cosy — RFxTi + MZTi sin Y = M)’W,v (3.56)
M, cosy — My, siny My,

where "R is the position vector of the T-frame in W-frame which is equal to radius
of the wheel.

"R=-rR"i=[00-R]" (3.57)
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The force system in the C-frame is then calculated by transformation.

CF, = Ry "F, (3.58)

Fy, [ cos8; —sind; 0 Fy,
Fy, | = | sind; cosd; 0O F
F. o o 1]|FE,

4] -

_FXW,- cosd; — F.VW,- sin §;
= | Fyy, cosd; + Fyy, sing; (3.59)
F.

zw;

‘M, = “Ry "M,

M, [(cosd; —sind; 0] | Muy,
My, | = | sin§; cosé; O My,
M, L 0 0 1 M,
_Mle_ cosd; — Mle_ sin §;
= Mywi cosd; + MxW[ sin §; (3.60)
My,

We transform the force system of each tire to the body coordinate frame B,
located at the vehicle mass center to calculate the total applied force system on
the vehicle.

PF=3 Fu=) Fyit+) Fyj+) F.k (3.61)
i i i i

BM = Z M, + Z By, x BR,, (3.62)
i i
R yiFZl' _ZiFyi
=Y Myi+Y My j+Y M k+Y | zF, —xF,
i i i i LxiFy, —yiFy

where Zr; is the position vector of the wheel number i in B-frame.

Br, = [xi Yi Zi]T = [ai bi Zi]T (3.63)
7z >0 (3.64)
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Assuming

T T
F, ~ [FXTI, Fy, o]

T T
M, = [ My, 0 M, ]

225

(3.65)

(3.66)

and expanding Egs. (3.61) and (3.62) provide us with the total force system on the

roll vehicle dynamic model.

B, = Z FxW[ cosd; — Z wal_ sin §;
i i

Bp, = Z Fyy, cosd; + Z Fry, sing;
i i

BMx = ZM)C,- +Z)’in,- - ZZiFYi
i i i

BMZ = Zsz +Z‘xiFYi — Zijxl-
i i i

Example 83 Tire force system in W-frame.
If the force system at the tireprint is

"F=Fg Ti+F, "]+ F, "k

™ =M, "t + M, Tk

then the force system in the W-frame at the center of the wheel would be

WM: TR‘YI“/

= "Ry 'F, = TR}, TR,

10 o0 77 [Fo

0O cosy —siny Fyrl»
| O siny cosy

_ Fxn
Fyr,» cosy + Fzrl- siny
Fzr,- cosy — FyT,- sin y

(TM— Te x TF)

(3.67)

(3.68)

(3.69)

(3.70)

3.71)

(3.72)

(3.73)

(3.74)

(3.75)
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MXW,- Mxn + RFyT,- cosy; + RFZTi siny;
Mle_ = Mzrl- siny; — RFXTI_ (3.76)
MZW[_ Mzr,- cos y;
where
0
Ty, =| —Rsiny, (3.77)
Rcosvy;
The wheel force system at zero camber, y = 0, reduces to
Fxri
YFu,="Rr"F, = | Fy, (3.78)
Fzp
Mxr,- + RFyr,.
WM = TRI (TM— Ty, x TF) =| -RF, (3.79)
M,
Example 84 Tire force system in C-frame.
Considering force 7 F under the tire number i in the T-frame is:
T T
Fy = I:Fle. FyTl. FzT’. ] (380)
then the force in W-frame would be (3.74)
Fyp,
Yf¢,="R;TF, = Fy, cosy; + Fyy siny; (3.81)
Fzp cosy; — Fyp, siny;
and the force in C-frame would be
‘F, = Ry "F, (3.82)
. Fy;. cos 8; — (Fyr,- cosy; + Fz;, sin yl-) sin §;
Fy, | = FXTI_ sind; + (Fyr,- cosy; + Fzri sin yi) cos §;
F Fzp cosy; — Fy, siny;
The moment 7 M under the tire number i in the T -frame is:
- T
M, = [Mxn My, M., ] (3.83)
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Therefore, the moment in W-frame is
"M= "R ™M+ "Rx [F
="Rr ™M —-RVikx YRy TF
My;. + RFy; cosy + RF;. siny

= Myri cosy — RFxTi + Mzr,- siny (3.84)
M, cosy — My, sin y

and the moment in C-frame would be
‘M= “Ry"M (3.85)
— (Myr,- cosy — RFle_ + Mzr,- sin y) sin §p
_ <MXTi + RFy; cosy + RF; sin y) sind

+ (Myr,- cosy — RFy; + M, sin y) cos 81
M cosy — My, sin y

3.3 Bicycle Roll Vehicle Force Components

Figure 3.4 illustrates the force system of each wheel in the wheel-body coordinate
frame C, as well as the force system on the roll vehicle model in the body coordinate
frame B. The wheel forces are acting at the wheel center of a front-wheel-steering
vehicle. When we ignore the pitch motions of the vehicle, the angle between the z
and Z axes is the roll angle ¢. The z and Z axes are parallel at ¢ = 0.

Ignoring the lateral load transfer between left and right wheels, we may define a
simplified two-wheel model for the roll vehicle model as is shown in Fig.3.5. The
two-wheel roll vehicle model is also called the bicycle roll model. However, the
two-wheel roll vehicle model does not act similar to the roll behavior of traditional
bicycles (Ellis 1994; Jazar 2017).

The force system applied on a bicycle roll model of vehicle at its mass center C
is:

F, = Fxf cos (6 + 8(pf) + Fy, cosdy,
—Fypsin (848, ) = Fy, sind,, (3.86)
Fy = F), cos (8 + 8%’) + Fy, cosdy,

+F,, sin (5 +35, f) + F,, sind,, (3.87)
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Fig. 3.4 The acting forces at the wheel center of a front-wheel-steering four-wheel roll model
vehicle

ar

Center of
rotation

~ ﬂ» _

Fig. 3.5 A two-wheel model for a roll vehicle model

<
‘ <
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My = Cr, Fy; + Cr, Fy, — ko — cpp
M, = a (Fxf sin <8 + 8(”) + Fy; cos g cos (8 + ‘Swf>)
—ap (Fx,_ sindy, + Fy, cosdy, cOS cp)

T = Ifd)f + Ry Fx_f
T, =1, + Ry Fy,

where

A

S _
FXf = FZszf S(Sj _Ss) 1 - Csq <M> 2

S _
Fxr = FZrCSr S(Sr _SS) \/1 — CSO[ (M) 2

A

S(sr—ss
F)’f = _FZfCaf S(O‘f _O‘S) 1 — Co <(f—é)> 2= C¢/(p

Ss

S (s — 85)
F)’r _FZrCar S (ar —ay) \/1 — Clus (;> 2 - C‘Pr(p

Ss
and S is the saturation function (1.60).

X0 X0 < X
Sx —x0) = X —Xp <X <X
—X0 X < —Xo

The tire force characteristics are:

Cof = Cy; = Cay
Cor = Co3 = Coy
Csp = Cy, = Cy,
Cyr = Cyy = Cy,

a

Uy 1 14
=arctan| —+ —r —Cg,— | -6 — C,
o (Ux * er b vx) bes®

229

(3.88)

(3.89)
(3.90)
(3.91)

(3.92)

(3.93)

(3.94)

(3.95)

(3.96)

(3.97)
(3.98)
(3.99)
(3.100)

(3.101)
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o, = arctan (Z—y — :}2;’ — Cﬂ’v£> — Csp, 0 (3.102)
X X X
B = arctan -2 (3.103)
Ux
vy +x;r — Cg,
B; = arctan X T ZAP (3.104)
Ux
o :ﬁi_8a::3i_8i_8§0i ZIBi_ai_C‘S(ﬂi(p (3105)
Rowr—v
sy = B (3.106)
Rewr HRywyp — vfo) + Uxyy H(vfo — R, wy)
R —
5 = g @r — Ux (3.107)
Ry wr H(Rg 0y — vy) + vy H(wx — Rg )
Uxyp = Uy COS (6 + S(pf) + (vy + alr) sin (8 + 8¢f> (3.108)
Tr— RyrFy,
iy = ST PwfTxy (3.109)
Oy = E_IM (3.110)

Cpg, is the wheel slip coefficient to determine the effect of vehicle roll on sideslip
angles.
The vertical load on front and rear wheels is:

ar . h
F, :FZ1+F22:mg7—m(vx—rvy)7 (3.111)
al . h
F,, =F,+F, :mgT —i—m(vx —rvy)T (3.112)
l=a+a (3.113)

The applied torques on front and rear wheels are Ty and 7. The front and rear
wheels’ mass moments about their spin axes are indicated by /¢ and /,. The forces
(F Xpo Fy f) and (F s F yr) are the planar forces at the tireprint of the front and rear
wheels and we assume them to be at the wheel center.

If the steer angle of the steering mechanism is denoted by &, then the actual steer
angle 4, is:

8a=8+10, (3.114)

where §, is the roll-steering angle.
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8y = Cspp (3.115)

The roll-steering angle &, is proportional to the roll angle ¢ and the coefficient
Csy 1s called the roll-steering coefficient. The roll steering happens because of the
suspension mechanisms that generates some steer angle when deflected. The tire
sideslip angle a; of each tire of a rollable vehicle is then equal to:

o =B; —8a=PB;i —8i =8y, =B; — i — Csp, 0 (3.116)

where the wheel sideslip angle B; is the angle between the wheel velocity vector v;
and the vehicle body x-axis.

Proof Employing tire force equations (3.47) and (3.48) and rewriting them for
a bicycle vehicle provide us with Egs.(3.86) and (3.87). To derive the force
equations (3.86)—(3.89) on the bicycle roll vehicle model, we begin by defining the
cot-average & of the outer §, and inner §; steer angles or §; and § as the only steer
angle of the vehicle.

of§ — cotSo—chotS,- _ cotc?znztcot(h 3.117)

We also define sideslip coefficients Cy r and C,, and slip ratio coefficients Cyy and
Cj, for the front and rear tires as the average between the left and right tires.

Cof = (Coy + Cay) /2 (3.118)

= (Ca3 + Cay) /2 (3.119)
Csr = (Cy, + Cyy) /2 (3.120)
Cyr = (Cy; + Cy,) /2 (3.121)

Assuming the left and right tires to be identical, we have:

Cof = Cqy = Ca, (3.122)
Car = Cay = Ca, (3.123)
Csp = Cs, =Gy, (3.124)
Csr = Cy, = Cy, (3.125)

We may also assume similar force components to be equal on the left and right
tires and adding them up to make the longitudinal and lateral forces (Fx o Fy ) and
(Fx,, Fy,) on front and rear tires.
Fy, = Fy, + Fy, Fy = Fy, (3.126)
Fy, = Fyy + Fy, Fo, = Fy, (3.127)
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Fy, = Fy, + Fy, W = Fy, (3.128)
F,, = Fy+F, F,=F, (3.129)
F,=F,+F, F,=F, (3.130)
F,=F,+F, F,=F, (3.131)

The longitudinal and lateral forces on front and rear wheels will be expanded to the
following equations by employing the elliptical combined tire force models (1.202)
and (1.203), and proportional-saturation tire force behaviors (1.67) and (1.152).

Fx_f =FX| +Fx2

2

S —
= szcsf N (sf - Ss) I —Cyq (M) (3.132)

5

Fy, = Fyy + Fy,
S(ar — ay) 2
= F;, Csr S(sr — 85) 4/ 1 = Csa <—) (3.133)
U

Fy, = Fy, + Fy,

2
S(sr—s,
— —F,,Cos S(af—ay) |1 - Cas (M) ~Cpp (3134

Fy, = Fy, + Fy,

r

= —F, Cor S (@ — a5) \/1 — Cys (—_ —Cy.¢ (3.135)

Assuming
by =F, Fry =F, (3.136)

and using the vertical weight transfer equations in body frame (1.462)—(1.465), the
vertical load on front and rear tires are:

ar h .

FZ_/ = FZ] + FZ2 =m Tg — 7 (Ux —r Uy) (3137)
al h .

F, =F,;+F,=m Tg + 7 (vx —r vy) (3.138)

l=a +a (3.139)
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A rolled vehicle introduces some new reactions in the tires of the vehicle that
must be considered in development of the dynamic equations of motion. The most
important reactions are:

1. Roll-thrust Fy,.
An extra lateral force appears because of the vehicle roll. Tire roll-thrust is
assumed to be proportional to the vehicle roll angle ¢.

Fyp, = —Cypp (3.140)
d (—Fy)

C,= lim ———= 3.141

v (plmo o ( )

2. Roll-steer angle 6.
An extra steer angle appears because of the wheel roll. The roll steer is a result of
suspension mechanisms that provide some steer angle when the vehicle rolls and
the mechanism deflects. The wheel roll steering is assumed to be proportional to
the vehicle roll angle ¢.

8, = Csp (3.142)
C lim % (3.143)
= mm — .

by ¢p—0dgp

Therefore, the actual steer angle &, of such a tire will be:
8a =846, (3.144)

Depending on the design of suspension and steering mechanism, the coefficient
Cs, may be positive or negative.

Assume the wheel number i of a vehicle is located at:

T
By, = [xi Yi Zi] (3.145)
The velocity of the wheel number i is

By, = Bv+ Bwp x Br (3.146)

where Bv is the velocity vector of the vehicle at its mass center C, and ga) B is the
angular velocity of the vehicle expressed in the B-frame.

By = ¢i + vk = pi +rk (3.147)

Equation (3.146) provides us with the following velocity vector for the wheel
number i expressed in the vehicle coordinate frame at B.
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Uy; Uy @ Xi Uy — lbyi.
vy, | =y [F[ O [ X |y |=]vy—9zu+Px (3.148)
vz 0 v Zi PYi

Consider a bicycle model for the rollable vehicle to have

T
Bri=la10z] (3.149)
T
By, = [—a2 0z ] (3.150)
therefore we have
Uy, ] B Uy
vy, | = vy—zfp+a1r (3.151)
v | L 0
v, | [ Uy
vy, | = | vy —zrp —aor (3.152)
v, | L 0

The wheel slip angle B; for the wheel i is defined as the angle between the wheel
velocity vector v; and the vehicle x-axis.

B; = arctan (&> = arctan w (3.153)
Uy Uy
If the tire number i has a steer angle §;, then its sideslip angle «; would be:
v p— ” . 1 .
i = B; — 84 = arctan (M> — (8 + Cs,9) (3.154)
Uy

The wheel slip angle B; for the front and rear wheels of a two-wheel vehicle, 8
and B,, is

Uy, Vy — —+

B = arctan 21} = arctan P ar (3.155)
Ux s Ux
v vy — —

By = arctan( y’> — arctan 2P~ 927 (3.156)
Uy, Uy

We will use the vehicle slip angle B to relate §; to the vehicle’s dynamic variables.
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B = arctan <U—y> (3.157)

Ux

Although we may assume that the center of the wheels is on the xy-plane and the
z; coordinate of the wheels of vehicle to zero, they are not constant for a rollable
vehicle. To show the effect of variation of z;, we substitute it by coefficient Cg,
called the tire roll rate coefficient, and define coefficients Cg 7 and Cg, to express
the change in vy, because of roll rate p.

vy, = vy +rx; —Cg, p (3.158)

The coefficient Cg, should be determined by experiment for any given vehicle.

Cy = lim T (3.159)
= lim —* .
Bi p—0 dp
Therefore,
vy +arr—Cg,.p
B = arctan ( ! P ) (3.160)
Ux
—ar—C
B, = arctan (w) (3.161)
Uy
and

vy +arr—Cg,.p
afzﬂf—Sf:arctan< ’ < )—(a+c,s¢f<p) (3.162)

Uy

Uy — -C
@y = B, — 8, = arctan <M) — Csp 0 (3.163)

Uy

Assuming small angles for slip angles 8, 8, and ,., then the tire sideslip angles
for the front and rear wheels, «  and o, may be approximated as

1
ocfz—(vy—{—a]r—zfp)—(?—&pf
Uy :
—B+a——-Cs L —s5-c (3.164)
= a1vx ﬂfl)x ,3(pf(p .
1
ar:—(vy—azr—zrp)—%r
Ux
r p
R T G.165)
Uy Uy

Also we substitute s from (1.57),
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Re wy — vy

s = (3.166)
Re wy H(Rg wyy — vx) + vy H(vy — Ry wy)

however, the slip ratio of the front tire needs to be adapted as the steer angle will
change velocity of the tire in the x7-direction as is shown in Fig. 1.13. The velocity
of the front wheel center in the x-direction of its local C-frame is

Uiy, = s COS (5 + 5(/)/.) + (vy + arr) sin (5 + 5¢f) (3.167)
Therefore, the longitudinal slip ratios of the front and rear tires are:

R,wr—v
sp= § O~ Py (3.168)
Rywy H(Rga)f—vx”.)—i-vx,f H(vfo—Rga)f)

Re wp — vy
Sp = (3.169)
Re 0w H(R; 0 — vy) +vx H(vx — Ry )

Backward substitution of these equations completes Egs. (3.86) and (3.87).
To derive Egs. (3.88) and (3.89), we calculate the resultant roll and yaw moments
M,, M, because of tire forces.

2 2
BM: ZI‘,‘ X BF,‘ :ZI’,‘ X CRTTF,'

i=1 i=1
2 a Fy, —a> Fy,
=Y BMi+| 0 | x “Rey | By, |[+| 0 | xRy | P,
i=l 0 0 0 0
My, + M,

My, + My, +a1Fy, sing —ayF)y, sing
ai (Fxf sin (6 + (SW) + Fy, cos g cos (8 + 5(/,»[))
—ap (Fx,_ sindy, + Fy, cos by, cOS (p)

(3.170)

where

cosd, —sind, 0 1 0 0
CRT = CRW WRT = | sind, cosd, O 0 cos¢ sing
0 0 1 0 —sing cosg

cos§, — Cos @ sind, — sind, sin ¢
= | sind, cosd,cos¢ Ccosd,sing (3.171)
0 —sing cos @
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and therefore,

cos (3 + S(pf) —cos ¢ sin (8 + 8%,) —sin (8 + S(pf) sin ¢
CRTf = | sin <6 + B‘P/‘) cos (8 + 8(pf> cos@  cos (8 + 8(pf) sin g

0 —sing cos @
(3.172)
€088, —cosS@sindy, —sindy, sing
CRT, = | sindy, €08y COSY COSE, Sing (3.173)

0 —sing cos ¢

The My, and My, are the moments appeared at the tireprint because of lateral
shift of the resultant vertical force F7,, and also because of the lateral forces under
each tire. Let us assume that the slip and camber moments are proportional to the
wheels’ lateral forces and write them as

M., = Cr, Fy, (3.174)
M,, = Cr.F), (3.175)

where C Ts and C7, are the overall torque coefficient of the front and rear wheels,
respectively.

c dM, c . dM,
= m = m
Ty Fy;—0 dFyf Ir Fy,—0dF),

(3.176)

The contribution in My would also be the effect of the left and right suspension
stiffness and damping characteristics due to roll angle of the vehicle body. To
keep the effect of roll moment for the bicycle model, we introduce the suspension
deflection roll moments —wcy ¢ — wky @, assuming w = wy = w,. This part of
roll moment is due to change in normal force of the left and right wheels as a result
of force change in springs and dampers. These unbalanced forces generate a roll
stiffness moment that is proportional to the vehicle’s roll angle and roll rate,

My, = —kyg (3.177)
My, = —co9 (3.178)

where &, and ¢, are the roll stiffness and roll damping of the vehicle.

. d(=My)
kg =wk =w (kf +k,) = (ph—I>nOTX 3.179)
d(-M
¢y = we=w(cs +¢) = lim LMD (3.180)

¢o—0 dgﬂ
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w is the track of the vehicle and k and ¢ are sum of the front and rear springs’
stuffiness and shock absorbers damping. The coefficients k, and ¢, are called the
roll stiffness and roll damping, respectively. Therefore, the applied roll moment on
the vehicle can be summarized as

Mx = MXf + Mxr + ch + Mxk
=Cr; Fy, +Cr, Fy, —w (Cf +cr)(,b —w (kf +kr) 1)
~ Cr; Fy, + Cr, Fy, —kpp — Co (3.181)

We ignore the generated My, at the tireprint; then, we conclude the force
equations (3.86) and (3.89).

In majority of maneuvers we may assume ¢ and § to be very small such that the
force equations may be approximated by the following equations.

Fy~ Fy, + Fy, (3.182)
Fy~ Fy, +F, (3.183)
M, = Cr; Fy, +Cr, Fy, — koo — o (3.184)

M, ~ aiFy, — arF,,
Ty =Ifop+ Ry Fy, (3.185)
T, = I, @y + Ry Fy, (3.186)
u

Example 85 The tireprint position vector in the B-frame.
In Eq. (3.170)

2
BM = ZI‘,‘ X CRT TF,'

i=1

the r; are supposed to be position vectors in the B-frame.

aq —ap
Bei=1o0 Bey=1 0 (3.187)
0 0

because we moved TF; into the B-frame using transformation matrix CRy.
However, we could have done the calculation in the 7 -frame and move the resultant
moment into the B-frame. To do that calculation we needed to calculate the position
vectors in the T-frame.
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3.4 Two-Wheel Roll Vehicle Dynamics

We combine the equations of motion (2.1)—(2.4) with (3.86)—(3.91) for a two-wheel
roll vehicle model, and express its motion by the following set of equations (Ellis
1994; Jazar 2017).

There are 6 first order differential equations of motion:

Fy — Fp =miy —mruy (3.188)
Fy=mv, +mrov, (3.189)

M, =17 (3.190)

My =1p (3.191)

Tr =15+ Ry Fy, (3.192)

T, =1, o+ Ry Fy, (3.193)

The left-hand sides of the force system are:
Fy = Fy, cos (8 + S(pf) + Fy, cosdy,
—Fypsin (8+38,,) = Fy, sind,, (3.194)
Fy = Fy, cos (5 + 5¢f> + F), cosdy,

+Fy, sin (5 n 5¢,f) + Fy, sind,, (3.195)
My = Cr; Fy, + Cr, Fy, — koo — ¢y (3.196)
M, = a (Fxf sin <8 + 8¢f) + Fy, cos g cos (5 + (Swf))

—a» (Fx, sindy + Fy, cosd, cos (p) (3.197)

The longitudinal and lateral forces on the front and rear wheels of the bicycle vehicle
model are:

2
NCTEE?
Fop = F,Co S(sp—s5) |[1—Cua ((;—Y)) (3.198)
N
S (o — o) 2
Fy = F. Cs S (sy — 85) 1|1 — Csa (—) (3.199)
Uy
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2

S(sr—s

Fy, = —FZfC(xf S (Otf — Ols) 1 — Cys (y) — C(pf(p (3.200)
S
2

S (s — 585)

Fy = —F, Cor S(ay —ay),[1 = Cqys — ) - Cy, ¢ (3.201)
S

The longitudinal and lateral forces Fy; and Fy, are proportional to F;, and F, which
are:

ap . h
Fop=F,+F,= mgT —m (vx —r vy) 7 (3.202)
aj . h
F,=F,+F, = mgT +m (vx —r vy) n (3.203)
l=a +a (3.204)
The tire forces F); and Fy, are also functions of the sideslip angles «;
af =By —8; = arctan <v—y + - cﬂfﬁ) —5—Csp0  (3.205)
' Uy Uy Uy -
o, = p, — § = arctan (”—y - cﬁrﬁ) — Csp 0 (3.206)
Uy Uy Uy
where
Yy
B = arctan — (3.207)
Uy
vy +arr—Cg,p
By = arctan( i Py ) (3.208)
Uy
vy — -C
B, = arctan (M) (3.209)
Uy

The tire forces F); and Fy, are also functions of the slip ratios s;.

R,wr — vy,
sp= g =~ Py (3.210)
Rywy H(Rgwy — vfo) + Uy H(er_/ — Ry wy)

Rg Wr — VUxr,
Sy = (3.211)
Rg wr H(Rg wp — Vyp,) + Uiy, H(Vxp, — Rg )

vy = 000 (848, ) + (vy +air — Cy,p)sin (5+8,,)  (3212)

Uxy, = Uy €088y, + (vy —azyr — Cg p)sind,, (3.213)
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Proof The Newton—Euler equations of motion for roll vehicle model in the local
coordinate frame B, attached to the vehicle at its mass center C, are given in
Egs. (3.188)—(3.193). The right-hand side of the equations are B-expression of the
vehicle translational and rotational accelerations, as well as the torque equations of
the wheels of the vehicle.

The right-hand side of the equations are made of an equation chain starting with
the B-expression of the applied forces on the vehicle (3.194)—(3.197) and end up
with substituting the tire forces F £ Fy, Fy £ Fy,, and followed by vertical forces
sz,FZr,andtire slipsa r, ay, 57, 5p. |
Example 86 Two-wheel roll, increasing steer angle and front torque, slip saturation.

Consider a vehicle with the following data

m=1000kg  I; =1 =30kgm®* R, =0.35m
I, =300kgm?> 1. =2000kgm> C,=0.8
Cof =Cor =85 a;=5deg  Cuys = Csq =05
Csf =Csp =15 s = 0.1 wr=w, =18m
a=135m a=15m h=09m (3.214)
ky = 26,612 Nm/rad ¢y = 1700Nms/rad
Cp, =-04 Cp=-01 Cr,=Cr, =04

f
Csp, = Cop, =001 Cy, =3200 C, =0

and assume the vehicle is moving slowly straight.

2
v=2m/s  wp == ;—x = o35 = 5714rad)s (3.215)
. 0.

At time t = 0, we apply a linearly increasing torque on the front wheel up to Ty =

1500 N m and keep constant after that. The steer angle is also linearly increasing at
a very low rate up to § = 0.5 deg and remains constant after that.

100t Nm 0 <t < 15s

= T, =0 3.216

! {1500Nm 15s <t (3:216)

180

0.5deg = %% rad 10s < 1

(3.217)

_ {0.0St deg = %97 srad 0 <7 < 105

The front torque increases and goes beyond the limit of front wheel capability in
producing traction force. Therefore, the front tire slip ratio sy and hence its traction
force Fyy will become saturated. This vehicle will have s to be saturated and all
other slips unsaturated.
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Fig. 3.6 The forward velocity components v, and vy, of a bicycle roll vehicle model under front
torque and steer angle
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Fig. 3.7 The angular velocity components w y and w, of a bicycle roll vehicle model under front
torque and steer angle

Figure 3.6 depicts the velocity components of the vehicle v, and vy, measured
in body coordinate frame B. Figure 3.7 illustrates the angular velocities of the front
and rear wheels wy and w,. Figure 3.8 illustrates the sideslip angles of the front
and rear wheels o s and «,. Figure 3.9 depicts the longitudinal slip ratios s and s,
for the front and rear tires. The acceleration components ax and ay of the vehicle
are plotted in Fig. 3.10. Figure 3.11 depicts the forces F, and F on the vehicle at
its mass center. Figure 3.12 illustrates variation of the vertical loads F,y and F,.
Figure 3.13 illustrates the longitudinal forces Fyy and Fy, on front and rear tires.
Figure 3.14 shows the lateral forces Fy; and Fy, on front and rear tires. The roll
angle ¢ and roll rate p are shown in Figs.3.15 and 3.16 respectively. Figure 3.17
depicts the angular accelerations @ s and @, of the front and rear wheels. Figure 3.18
illustrates the path of the vehicle.
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Fig. 3.8 The sideslip angles « s and «;, of a bicycle roll vehicle model under front torque and steer
angle
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Fig. 3.9 The slip ratios s s and s, of a bicycle roll vehicle model under front torque and steer angle
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Fig. 3.10 The global acceleration components ay and ay of a bicycle roll vehicle model under
front torque and steer angle
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Fig. 3.11 The force components Fy and F), of a bicycle roll vehicle model under front torque and
steer angle
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Fig. 3.12 The vertical forces F;, and F, of a bicycle roll vehicle model under front torque and
steer angle
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Fig. 3.13 The longitudinal forces Fy, and Fy, of a bicycle roll vehicle model under front torque
and steer angle
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Fig. 3.14 The lateral forces Fy, and F), of a bicycle roll vehicle model under front torque and
steer angle
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Fig. 3.15 The roll angle ¢ of a bicycle roll vehicle model under front torque and steer angle
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Fig. 3.16 The roll rate p of a bicycle roll vehicle model under front torque and steer angle
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Fig. 3.17 The angular acceleration components @ s and @, of a bicycle roll vehicle model under
front torque and steer angle
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Fig. 3.18 Path of motion of a bicycle roll vehicle model under front torque and steer angle

Example 87 Two-wheel roll vehicle, increasing steer angle and front torque, no
combined forces.

To compare the effect of the combined tire force model with no combined
forces, let us consider the same Example 86 with Cys = 0, Cs = 0. Ignoring
the interaction between s and o makes them to go higher than real and therefore
their associated forces to be higher as well. The vehicle of this example will have
saturated s y and unsaturated other slips, similar to Example 86.
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Fig. 3.19 The forward velocity components v, and vy, of a bicycle roll vehicle model under front
torque and steer angle and no combined tire forces
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Fig. 3.20 The angular velocity components @ s and w, of a bicycle roll vehicle model under front
torque and steer angle and no combined tire forces

Figure 3.19 depicts the velocity components of the vehicle vy and vy, measured
in body coordinate frame B. Figure 3.20 illustrates the angular velocities of the front
and rear wheels wy and w,. Figure 3.21 illustrates the sideslip angles of the front
and rear wheels o s and «,. Figure 3.22 depicts the longitudinal slip ratios sy and s,
for the front and rear tires. The acceleration components ax and ay of the vehicle
are plotted in Fig. 3.23. Figure 3.24 depicts the forces F, and F on the vehicle at
its mass center. Figure 3.25 illustrates variation of the vertical loads Fy and F,.
Figure 3.26 illustrates the longitudinal forces Fyy and Fy, on front and rear tires.
Figure 3.27 shows the lateral forces Fy; and Fy, on front and rear tires. The roll
angle ¢ and roll rate p are shown in Figs. 3.28 and 3.29 respectively. The yaw rate
r is shown in Fig. 3.30. Figure 3.31 depicts the angular accelerations @ s and @, of
the front and rear wheels. Figure 3.32 illustrates the path of the vehicle.
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Fig. 3.21 The sideslip angles a s and «, of a bicycle roll vehicle model under front torque and
steer angle and no combined tire forces
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Fig. 3.22 The slip ratios sy and s, of a bicycle roll vehicle model under front torque and steer
angle and no combined tire forces
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Fig. 3.23 The global acceleration components ay and ay of a bicycle roll vehicle model under
front torque and steer angle and no combined tire forces
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Fig. 3.24 The force components Fy and F), of a bicycle roll vehicle model under front torque and
steer angle and no combined tire forces
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Fig. 3.25 The vertical forces F;, and F;
steer angle and no combined tire forces
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Fig. 3.26 The longitudinal forces Fy, and Fy, of a bicycle roll vehicle model under front torque
and steer angle and no combined tire forces
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Fig. 3.27 The lateral forces Fy, and F), of a bicycle roll vehicle model under front torque and
steer angle and no combined tire forces
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Fig. 3.28 The roll angle ¢ of a bicycle roll vehicle model under front torque and steer angle and
no combined tire forces
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Fig. 3.29 The roll rate p of a bicycle roll vehicle model under front torque and steer angle and no
combined tire forces
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Fig. 3.30 The yaw rate r of a bicycle roll vehicle model under front torque and steer angle and no
combined tire forces
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Fig. 3.31 The angular acceleration components @ s and @, of a bicycle roll vehicle model under
front torque and steer angle and no combined tire forces

Example 88 Two-wheel roll vehicle, increasing steer angle and rear torque.
Consider a vehicle with the following data

m=1000kg Iy =1, =30kgm* C,=0.8
I, =300kgm®* [, =2000kgm? R, =0.35m

Cof =Cor =85 oy = 5deg Cip=Csp =15

Cos = Csq = 0.5 ss =0.1 wr=w, =1.8m (3.218)

Cg, =—-04 Cp, =—0.1 Cr, =Cr, =04

Csp, = Csp, = 0.01 Cy, = 3200 Cy, =0
a; =135m a)=15m h=09m
ky = 26,612 Nm/rad ¢y = 1700Nms/rad
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Fig. 3.32 Path of motion of a bicycle roll vehicle model under front torque and steer angle and no
combined tire forces

and assume the vehicle is moving slowly straight.

2
v =2m/s  w;=w= ;—x = 535 = 57l4rad/s (3.219)
. 0.

At time ¢ = 0, we apply a linearly increasing torque on the rear wheel up to Ty =
300 N m and keep it constant after that. The steer angle is also linearly increasing at
a very low rate up to § = 1.5 deg and remains constant after that.

{30tNm 0<t<10s
T, =

T =0 3.220
300Nm  10s <1 I (3.220)

8

— Olr
0.1¢ deg = I8 trad 0 <t < 15s (3.221)
1.5deg=mrad 15s <t

We solve the equations of motion numerically and plot the vehicle dynamic
variables. Figure 3.33 illustrates the applied torque history. Figure 3.34 depicts the
forward velocity components of the vehicle v, and vy, measured in body coordinate
frame B. Figure 3.35 illustrates the angular velocities of the front and rear wheels
oy and w,. Figure 3.36 illustrates the sideslip angles of the front and rear wheels
ay and a,. Figure 3.37 depicts the longitudinal slip ratios s and s, for the front
and rear tires. The acceleration components ay and ay of the vehicle are plotted
in Fig.3.38. Figure 3.39 depicts the forces Fy and Fy, on the vehicle at its mass
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Fig. 3.33 The applied torque history Tr and 7, of a two-wheel roll vehicle model under rear
torque and steer angle
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Fig. 3.34 The velocity components v, and vy of a two-wheel roll vehicle model under rear torque
and steer angle
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Fig. 3.35 The angular velocity s and w, of a two-wheel roll vehicle model under rear torque
and steer angle
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Fig. 3.36 The angular acceleration « ¢ and «, of a two-wheel roll vehicle model under rear torque
and steer angle
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Fig. 3.37 The slip ratios sy and s, of a two-wheel roll vehicle model under rear torque and steer
angle
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Fig. 3.38 The global acceleration ax and ay of a two-wheel roll vehicle model under rear torque
and steer angle
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Fig. 3.39 The force components F, and Fy of a two-wheel roll vehicle model under rear torque
and steer angle
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Fig. 3.40 The vertical forces F,y and F;, of a two-wheel roll vehicle model under rear torque and
steer angle

center. Figure 3.40 illustrates variation of the vertical loads F, s and F,. Figure 3.41
illustrates the longitudinal forces Fyy and Fy, on front and rear tires. Figure 3.42
shows the lateral forces Fyy and Fy, on front and rear tires. The roll angle ¢ and
roll rate p are shown in Figs. 3.43 and 3.44 respectively. Figure 3.45 depicts the yaw
rate r of vehicle. Figure 3.46 illustrates the path of the vehicle.

3.5 Four-Wheel Roll Vehicle Dynamics

The four-wheel roll vehicle model is the best practical vehicle mathematical model.
This model provides us with in-wheel torques T;, tire slips «;, s;, §;, tire and vehicle
forces Fy, Fy, Fy;, Fy,, F;, velocity components of the vehicle vy, vy, w;, as well
as yaw and roll angular variables ¢, ¥, p, r. This model is an extension to the two-
wheel roll vehicle model to include the lateral weight transfer as well as roll effects
on vehicle dynamics. The four-wheel roll vehicle model is an excellent model to
simulate drifting of vehicles.
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Fig. 3.41 The longitudinal forces Fyy and Fy, of a two-wheel roll vehicle model under rear torque
and steer angle
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Fig. 3.42 The lateral forces Fyy and Fy, of a two-wheel roll vehicle model under rear torque and
steer angle
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Fig. 3.43 The roll angle ¢ of a two-wheel roll vehicle model under rear torque and steer angle
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Fig. 3.44 The roll rate p of a two-wheel roll vehicle model under rear torque and steer angle
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Fig. 3.45 The yaw rate r of a two-wheel roll vehicle model under rear torque and steer angle

Let us assume that the front and rear tracks are different.

bif+byy =wy (3.222)
biy + by = w, (3.223)

The differential equations of motion of the four-wheel roll vehicle are:

1
0y = — (Fy — Fa) +rv, (3.224)
m
1
by = —Fy =1 (3.225)
1
F=—M. (3.226)
I;
, 1 R,
i) = —T) — -2 Fy, (3.227)
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Fig. 3.46 Path of motion of a two-wheel roll vehicle model under rear torque and steer angle

1 R

n=—T—-2F, (3.228)
1p) 1p)
1 R

w1 =—T3— -2 F, (3.229)
JE! I3
1 R

w1 =—Ty— =2 F, (3.230)
I Iy

The resultant force system on the vehicle is:

Fy = Fy, cos (81 + 8¢]) + Fy, cos (82 + 6¢2)
+Fyy €088y, + Fy, c088y, — Fy; sindy, — Fy, sindy,
—Fy, sin (81 +8,) — Fy, sin (82 + 8,,) (3.231)

Fy = Fy, cos (81 + 84,) + Fy, cos (82 + 8y,)

+Fy; €088y, + Fy, €088y, + Fyy sindy, + Fy, sindy,

+F}, sin (81 + 8(p1) + Fy, sin (82 + 8¢2) (3.232)
Fo=Cav? (3.233)
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My = Cr, Fy, + Cr, Fy, + Cry Fyy; + Cry Fyy — ko9 — cp@

M. = ay Fy, sin (81 4 8y, ) + a1 Fy, cos (81 + 8,,)
+ay Fy, sin (82 + 8¢,) + a1 Fy, cos (82 + 8y,)
—by g Fy, cos (81 +8¢,) + b1 s Fy, sin (81 + 8,,)
—bszy2 sin (32 + 5(/,2) + besz cos (82 + 5(/,2)
_‘12Fy3 - aZFy4 - blrFx3 + bZrFX4

where
b¢; = Copi9

The tire force components are:

S (@i —ay)\?
Fy, = F Csi S(s5i —85)4)/1 = Coq | ————
s

O
S (si =590\
Fy, = —F;Cyi S (o; — ) 1 — Cys S— —C%.gp
N
where S is the Saturation function (1.60).
X0 X0 < X
Sx —x0) = X —Xp <X <X

—X0 X < —Xo

The vertical force of tires is:

Fo = e (a8 = (i =) (2 = h (0 4 7 v0))
Py = o (aag = (=7 00)) (1 +5 5+ )
o= g (0 = 7)) (g = h (3 + )
F, = ™ (a1g +h (0x —rvy)) (birg +h (Vy +rvy))

r

and tire slips as

vy +xir—Cg, p

Ux = Vi’

aj =B —8i — 8y, = arctan( ) —38i — Cs, 0

259

(3.234)

(3.235)

(3.236)

(3.237)

(3.238)

(3.239)

(3.240)

(3.241)

(3.242)

(3.243)

(3.244)
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vy, vy +x;r — Cg,
B; = arctan <i> = arctan <M>

Uy; Ux — Vi T
Uy
B = arctan —
Uy
X1 =x2=a y1=biy y3 = byy
X3 =X4 =—ap y2 = —bay y4 = —bo;

Rg wi — vy

s =
"7 Ry wi H(Rg @y — Vyy) + Vi, H vy, — Ry ;)

Uxp; = Uy; COS (6,~ + 6(/,,,) + vy, sin ((Si + 8(/,,,)
Vrpy = (vx —rbig)cos (81 +8y,)
+ (vy +ra; — Cg, p) sin (81 + 3y,)
e = (v 7b1) 00832+ 5,
+ (vy +ra; — Cp,p) sin (82 + 8y,)
Vxps = (vx — rbyy) cos 8y, + (vy — raz — Cg, p) sindy,

sy = (vx +rboy) cos 8y, + (vy — raz — Cg, p) sinéy,

where H is the Heaviside function (1.61).

(3.245)

(3.246)

(3.247)
(3.248)

(3.249)

(3.250)

(3.251)

(3.252)

(3.253)
(3.254)

The front left and right steer angles 81, §; are related due to steering mechanism.

3 = f(81)

(3.255)

Proof The equations of motion for a roll vehicle model in the local coordinate frame
B, at its mass center C, are given in Egs. (3.1)—(3.5). The equations for a four-wheel

roll vehicle model will be:

Fy =mvx —mrvy, + Fy
Fy =mv, +mrv,
M,=La, =L}

My =Iliwx=1Ixp

T; = Iy, @y, + Ry Fy,

Ti = Ly, @1 + Ry Fy,
T> = Ly, @2 + Ry F,
T3 = Ly, & + Ry Fyy
Ty = Ly, &y + Ry Fy,

(3.256)
(3.257)
(3.258)
(3.259)
(3.260)
(3.261)
(3.262)
(3.263)
(3.264)
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The aerodynamic force F4 is the environment resistance forces on the vehicle. The
F4 is assumed to be effective only in the x-direction.

Fo= %p Cp Ajvi=Cpvl (3.265)
We combine the coefficients p, Cp, and A ¢ into a single coefficient C4.
Suspension of vehicles are supposed to provide flexibility to the sprung mass with
respect to unsprung mass. Although there are several members connected to both
sprung and unsprung masses, the vehicle body is the main sprung mass and wheels
including in-wheel motors are the main unsprung masses. Besides suspending the
vehicle body, suspensions need to provide some motion freedom to the wheels with
respect to the vehicle body and lock some other motions. Wheels with respect to
the vehicle body must be locked for translation in the x and y directions and be
able to move in the z-direction. They also must be able to rotate about the x, y,
and z directions. Rotation about the y-direction is the spin of the wheels. Rotation
about the z-direction is the steer angle that is controlled by actuators or mechanisms
connected to the steer wheel. Rotation about the x-direction is camber of the wheel.
Because of these flexibility, the roll angle ¢ of the body is different than the camber
angle y, although we may assume ¢ = y as long as we are not separating sprung and
unsprung masses in dynamic analysis. Due to steering and suspension mechanism
interaction, the body roll may generate some steer angles. Such a roll-steer action
may be designed on purpose or be an unavoidable mechanism function. Due to the
roll-steer phenomenon, the actual steer angle §, of such a tire will be:

g =843, (3.266)

The wheel roll steering is assumed to be proportional to the vehicle roll angle ¢.

8, = Csp0 (3.267)
dé

Csp = lim == (3.268)
o—0dgo

Depending on the design of suspension and steering mechanism, the roll-steering
coefficient Cs, may be positive or negative, although a positive Cs, is desirable.
From (3.47) to (3.49), the applied forces on the vehicle are:

Bp. = Z Fyy, cos (8i + 8<p,) - Z Fyy, sin (‘Si + 3%)

1 1
= Fy, c08 (81 + 8¢, ) + Fy, cos (82 + 8y,)
+Fy;3 €088y, + Fy, c0838y, — Fy, 8indy, — Fy, sindy,

—Fy, sin (81 +84,) — Fy, sin (82 + 8,,) (3.269)
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BFy = ZF’W,- cos (Si +8<Pi) +ZFXW1' Sin(ai +8‘p")

i i
= Fy, cos (81 + 8y, ) + Fy, cos (82 + 8,)
+Fy; €088y, + Fy, c0S8y, + Fyysindy, + Fy, sindy,
+Fy, sin (81 4 8y,) 4 Fx, sin (82 + 8,,) (3.270)
Fa=Cav? (3.271)

EM, =Y Mo+ wiF, =Y ziF, (3.272)
i i i

=Cr Fy, + Cr, Fy, + Cr, Fy;, + Cr, Fy, — k(pgl) — c(pgb (3.273)

By, = ZMZI +inFyf _Zyinf
i i i

= a1 Fy, sin (61 + 8%) + a1 Fy, cos (81 + 8¢1) (3.274)
+ay Fy, sin (82 + 8y,) + a1 Fy, cos (82 + 8,)
—by g Fy, cos (81 +84,) + b1 Fy, sin (81 + 8,)
—by g Fy, sin (82 4 8y,) + ba s Fy, cos (82 + 8y,)
—ayFy, — asFy, — by, Fy, + by, Fy, (3.275)

A lateral reaction force will be generated under tires or a rolled vehicle called tire
roll-thrust. Tire roll-thrust is assumed to be proportional to the vehicle roll angle ¢.

Fyp = —Cpp (3.276)
d(~F

C, = lim d(-F) (3.277)
¢—>0 ng

Therefore, employing the combined slip elliptical model, the tire tangential forces
Fy; and F), are:

(3.278)

o %3

S (@ — 2
in = Fz,-Csi S (s; _Ss)\/l — Csq <M>

S (si — s \*
Fy, = —F.,Cai S (i — aty) \/1 — Cus (M) —Cppi  (3279)

Ss
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The vertical forces on front and rear wheels F;; are calculated in (1.431)—(1.434)
in terms of global accelerations ay, ay. To make the equations suitable to be
substituted in (3.278) and (3.279) we need to express ax and ay in body coordinate
frame B.

ax = vy —ruy (3.280)
ay = vy +ru, (3.281)

Therefore, the vertical force of tires will be:

21 lu)f (ga2 - hvx + hrvy) (hl’)y =+ gbzf — hrvx) (3282)
F, = Iw g (gaz — hy + hrvy) (hoy + gbi p + hrvy) (3.283)
Foy = o (s + gar — hroy) (hdy + gbor — hrus) (3.284)
7o lweg
Fau = lu')ng (hox + gar = hrvy) (hdy + by + hrox) (3.285)
;
where
wyp =biy+bay (3.286)
wr = b + bar (3.287)
l=ai+a (3.288)

The tire side slip angle «; is defined as:

o =B — i — Csp, 0 (3.289)

B; = arctan( y’) (3.290)

Uy;

i

We determine the velocity components vy, and vy, of wheels, using velocity of the
vehicle, 8

vV, = By + ng X Br,- (3.291)

Substituting the position vector of wheel number i, and the angular velocity of the
vehicle gw B,

&
o

B
=1y G@WB =
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we find

Uy, = Ux — Vil (3.292)

Uy,

Yi

=vy +X;7 —Zip (3.293)

To compensate the assumption of having no roll difference between sprung and
unsprung masses, we substitute the term z; p with Cg, p in which the tire roll rate
coefficient Cg, is determined by experiments. The z; is vertical distance of the wheel
center number i from the xy-plane. Although z; is very small, it may vary because of
Y # y. Considering the variation of z; p due to roll rate, we simplify it by Cg. p and
determine Cg; by experiment. Depending on the design of suspension mechanisms,
Cp, may be positive or negative. Therefore, the lateral velocity component because
of roll rate p is assumed to be proportional to p.
dvy,

Cg = lim — 3.294
Bi pino dp ( )

Hence, the velocity components of wheel number i will be
Uy, = Uy — Vil (3.295)
vy, = vy +rx; —Cg,p (3.296)

and therefore,

o =ﬂi—8i—8¢.

i

vy +x;r —Cag,
= arctan (M> — 8 — Csp.0 (3.297)
Ux — i 7
. vy +xir — Cag,
B; = arctan (ﬁ) = arctan <M) (3.298)
Uy; Ux — )il
B = arctan -2 (3.299)
Ux

From Eq. (1.57), the longitudinal slip ratio s; is calculated as a function of the
tire forward velocity vy, and its angular velocity w;.

Ry w;j — vy,
5 = (3.300)
Re w; H(Rg wy — Vxp;) + Uy H (U, — Rg @)

Uxp; = Vx; €08 (8; + 8y, ) + vy, sin (8; + 8,) (3.301)

The forward velocity vy, of the four-wheels in the tire forward direction, Ty,
will be
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Ve, = (vx — rbiys) cos (81 + 8y, )
+ (vy +ra; — Cg, p) sin (81 + 3y,)
Vspy = (vx 4 rbiy) cos (82 + 8y,)
+ (vy +ra; — Cg,p) sin (82 + 8,,)
sy = (vx — rbyy) cos 8y, + (vy — raz — Cg, p) sindy,

sy = (vx +rboy) cos 8y, + (vy — raz — Cp, p) sinédy,,

because
TV,’ = CR% BV,’
cos ((Si + 8%) —sin (8,~ + 8%) 07" Ux — FYi

= sin(8i+8(pi) cos(5i+8wi) 0 vy +rx; — Cg, p

0 0 1 0

Example 89 Four-wheel roll vehicle model, steer angle and front torque.

Consider a vehicle with the following characteristics

m=1000kg I} =1, = 3 = I = 30kgm?®
I, =300kgm?> I, =2000kgm’> C,=0.8
Cyy =Cqy, =Cqy =Cq, =85 as = Sdeg
Cyy =C;,=Cyy =Cs, =75  s5,=0.1
Rg=035m  Coy =05 Cyu=05
ay=135m a=15m h=09m
Cyp, = Cy, =1600  Cp, =C,p, =0
ky = 26,612Nm/rad ¢y = 1700Nms/rad
Cp, = Cp,=—04  Cp, =Cp, =—0.1
Csp, = Csg, = Cspy = Csp, = 0.01
Cr,=Cp=Cr,=Cp, =04 wr=w,=18m

The vehicle is moving very slowly straight.

Uy 2
vy =2m/s w; = R =035 5.714rad/s
¢ .

265

(3.302)

(3.303)
(3.304)
(3.305)

(3.3006)

(3.307)

(3.308)
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Fig. 3.47 The torques 7; of a four-wheel roll vehicle with active front torques and steer angle
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Fig. 3.48 The vehicle velocity v, and vy of a four-wheel roll vehicle with active front torques and
steer angle

At time t = 0, an increasing torque will be applied on the front wheels up to 77 =
T, = 1500 N'm and constant after that. The steer angle is also increasing at a very
low rate up to § = 0.5 deg and remains constant after that.

50Nm 0 <t < 15s
T T — Ty=Ty=0 3.309
= {750Nm 15s <t 3T (3-309)

05,150 (3.310)

O.Sdegzmrad 10s <t

_ {0.0SIdegz 0057 rrad 0 <t < 105

The torques T; of the four-wheel roll vehicle are shown in Fig. 3.47. Figure 3.48
depicts the velocity components of the vehicle v, and vy, measured in body
coordinate B-frame. Figure 3.49 illustrates the angular velocities of the wheels w;.
Figure 3.50 illustrates the sideslip angles of the wheels «;. Figure 3.51 depicts the
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Fig. 3.49 The wheels angular velocity w; of a four-wheel roll vehicle with active front torques

and steer angle
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Fig. 3.50 The sideslip angles of the wheels «; of a four-wheel roll vehicle with active front torques

and steer angle
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Fig. 3.51 The slip ratios of the wheels s; of a four-wheel roll vehicle with active front torques and

steer angle
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Fig. 3.52 The vehicle acceleration ay and ay/g of a four-wheel roll vehicle with active front
torques and steer angle
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Fig. 3.53 The force components Fy and Fy of a four-wheel roll vehicle with active front torques
and steer angle

longitudinal slip ratios s; for the tires. The acceleration components ay and ay of
the vehicle are plotted in Fig. 3.52. Figure 3.53 depicts the forces F, and Fy on the
vehicle at its mass center. Figure 3.54 illustrates variation of the vertical loads F;.
Figure 3.55 illustrates the longitudinal forces Fy, on tires. Figure 3.56 shows the
lateral forces Fy, on tires. The roll angle ¢ and roll rate p are shown in Figs. 3.57
and 3.58, respectively. Figure 3.59 depicts the angular accelerations @y and @, of
the front and rear wheels. Figure 3.60 depicts the yaw rate r of vehicle. Figure 3.61
illustrates the path of the vehicle.
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Fig. 3.54 The vertical forces of the wheels F;; of a four-wheel roll vehicle with active front
torques and steer angle
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Fig. 3.55 The longitudinal forces of the wheels Fy; of a four-wheel roll vehicle with active front
torques and steer angle

Fig. 3.56 The lateral forces of the wheels F); of a four-wheel roll vehicle with active front torques
and steer angle
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Fig. 3.57 The roll angle ¢ of a four-wheel roll vehicle with active front torques and steer angle
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Fig. 3.58 The roll rate p of a four-wheel roll vehicle with active front torques and steer angle
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Fig. 3.59 The wheels angular accelerations @; of a four-wheel roll vehicle with active front
torques and steer angle
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Fig. 3.60 The yaw rate r of a four-wheel roll vehicle with active front torques and steer angle
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Fig. 3.61 Path of motion of a four-wheel roll vehicle with active front torques and steer angle

Example 90 Four-wheel roll vehicle model, steer angle and rear torque.
Consider a vehicle with the following data
m=1000kg I =1, =3 = I =30kgm?
I, =300kgm?> I, =2000kgm®> C,=0.8
Coy =Cqy =Coy; =Cy, =85 ay = 5deg
Csy =Cs, =Cyy=C5, =75 ss =0.1
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Fig. 3.62 The torques T; of a four-wheel roll vehicle with active rear torques and steer angle

Ry, =0.35m Cus =05 Csa =05
a; =135m a=15m h=09m (3.311)
Cy, = Cy, = 1600 Cypy =Cp, =0
ky = 26,612Nm/rad ¢y = 1700Nms/rad
Cp, =Cpg,=-04 Cg, = Cg, = —0.1
Csp, = Csp, = Csyp, = Csy, = 0.01
Cr,=Cp,=Cr;,=C, =04 wr=w,=18m

and assume the vehicle is moving slowly straight.

2
v =2m/s  o;=w= ;—x = 535 = 5714rad/s (3.312)
. 0.

Attime t = 0, we apply an increasing torque on the rear wheels up to 7, = 300N m
and keep it constant after that. The steer angle is also increasing at a very low rate
up to § = 1.5 deg and remains constant after that.

15tNm 0 <t < 10s

T, =T, =0 3313
I50Nm  10s <1 =7 (3.313)

T3 =T4 = {
— Olr
5 — 0.1tdeg—1%1810trad 0<t<10s (3.314)
1.5deg = 1'8—0rad 10s <t

Figure 3.62 illustrates the applied torque history. Figure 3.63 depicts the forward
velocity components of the vehicle v, and vy, measured in body coordinate frame B.
Figure 3.64 illustrates the angular velocities of the wheels w;. Figure 3.65 illustrates
the sideslip angles of the wheels «;. Figure 3.66 depicts the longitudinal slip ratios
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Fig. 3.63 The vehicle velocity v, and vy, of a four-wheel roll vehicle with active rear torques and
steer angle

Fig. 3.64 The wheels angular velocity w; of a four-wheel roll vehicle with active rear torques and
steer angle
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Fig. 3.65 The sideslip angles of the wheels «; of a four-wheel roll vehicle with active rear torques
and steer angle
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Fig. 3.66 The slip ratios of the wheels s; of a four-wheel roll vehicle with active rear torques and
steer angle
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Fig. 3.67 The vehicle acceleration ay and ay of a four-wheel roll vehicle with active rear torques
and steer angle

s; for the tires. The acceleration components ay and ay of the vehicle are plotted in
Fig. 3.67. Figure 3.68 depicts the forces Fy and Fy on the vehicle at its mass center.
Figure 3.69 illustrates variation of the vertical loads F;;. Figure 3.70 illustrates the
longitudinal forces Fy; on front and rear tires. Figure 3.71 shows the lateral forces
Fy; on front and rear tires. The roll angle ¢ and roll rate p are shown in Figs. 3.72
and 3.73, respectively. Figure 3.74 depicts the yaw rate r of vehicle. Figure 3.75
illustrates the path of the vehicle.

Example 91 Four-wheel roll model, no friction on left side, rear torque.

Let us assume that left side of the vehicle is moving on a no friction pavement
while an increasing torque is applied on the rear wheels. The friction coefficients of
the tires number 1 and 3 would be zero.
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Fig. 3.68 The force components Fy and Fy of a four-wheel roll vehicle with active rear torques
and steer angle
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Fig. 3.69 The vertical forces of the wheels F_; of a four-wheel roll vehicle with active rear torques
and steer angle
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Fig. 3.70 The longitudinal forces of the wheels Fy; of a four-wheel roll vehicle with active rear
torques and steer angle
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Fig. 3.71 The lateral forces of the wheels Fy; of a four-wheel roll vehicle with active rear torques
and steer angle
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Fig. 3.72 The roll angle ¢ of a four-wheel roll vehicle with active rear torques and steer angle
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Fig. 3.73 The roll rate p of a four-wheel roll vehicle with active rear torques and steer angle
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Fig. 3.74 The yaw rate r of a four-wheel roll vehicle with active rear torques and steer angle
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Fig. 3.75 Path of motion of a four-wheel roll vehicle with active rear torques and steer angle

Consider a vehicle with the following data

m=1000kg I =1, =3 = I =30kgm?

I, =300kgm?> I, =2000kgm®> C, =0
Coy =Coy =0  Coy=Cq, =85  a;=>5deg
Cyy =Cs, =0 Cy,=Cy, =75 s5,=0.1
R =035m  Cuy =05  Cyu =05
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Fig. 3.76 The torques T; of a four-wheel roll vehicle with rear torques and no friction on left side

a; =135m a=15m h=09m (3.315)
Cy, = 1600 Cy, =Cp,=Cy, =0

ky = 26,612 Nm/rad ¢y = 1700Nms/rad
Cp, =Cp,=—-04 Cg, = Cg, = —0.1
Csp, = 0.01 Cr, =04 wr=w, =18m

and assume the vehicle is moving slowly straight. The vehicle is moving slowly
straight with
Uy 2
5

vy =2m/s Wi = o= o = 5.714rad/s (3.316)
g .

§=0 (3.317)
Attime t = 0, we apply an increasing torque on the rear wheels as expressed below.
Ih=7=0 Ty = T3 = 15t Nm (3.318)

Figure 3.76 illustrates the applied torques. Figure 3.77 depicts the forward velocity
components of the vehicle v, and vy, measured in body coordinate frame B.
Figure 3.78 illustrates the angular velocities of the wheels w;. Figure 3.79 illustrates
the sideslip angles of the wheels «;. Figure 3.80 depicts the longitudinal slip ratios
s; for the tires. The acceleration components ay and ay of the vehicle are plotted in
Fig. 3.81. Figure 3.82 depicts the forces F, and F, on the vehicle at its mass center.
Figure 3.83 illustrates variation of the vertical loads F_;. Figure 3.84 illustrates the
longitudinal forces Fy; on front and rear tires. Figure 3.85 shows the lateral forces
Fy; on front and rear tires. The roll angle ¢ and roll rate p are shown in Figs. 3.86
and 3.87, respectively. Figure 3.88 depicts the yaw rate r of vehicle. The angular
accelerations w; of the wheels are shown in Fig. 3.89. Figure 3.90 illustrates the
path of motion of the vehicle.



3.5 Four-Wheel Roll Vehicle Dynamics 279

0 10 20 t[s] 30 40 50

Fig. 3.77 The vehicle velocity vy and v, of a four-wheel roll vehicle with rear torques and no
friction on left side
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Fig. 3.78 The angular velocity w; of a four-wheel roll vehicle with rear torques and no friction on
left side
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Fig. 3.79 The sideslip angles «; of a four-wheel roll vehicle with rear torques and no friction on
left side
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Fig. 3.80 The slip ratios s; of a four-wheel roll vehicle with rear torques and no friction on left
side
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Fig. 3.81 The vehicle accelerations ay and ay of a four-wheel roll vehicle with rear torques and
no friction on left side
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Fig. 3.82 The vehicle forces Fy and Fy of a four-wheel roll vehicle with rear torques and no
friction on left side
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Fig. 3.83 The vertical forces of the wheels F; of a four-wheel roll vehicle with rear torques and
no friction on left side
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Fig. 3.84 The longitudinal forces of the wheels Fy; of a four-wheel roll vehicle with rear torques
and no friction on left side
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Fig. 3.85 The lateral forces of the wheels Fy; of a four-wheel roll vehicle with rear torques and
no friction on left side
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Fig. 3.86 The roll angle ¢ of a four-wheel roll vehicle with rear torques and no friction on left
side
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Fig. 3.87 The roll rate p of a four-wheel roll vehicle with rear torques and no friction on left side
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Fig. 3.88 The yaw rate r of a four-wheel roll vehicle with rear torques and no friction on left side
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Fig. 3.89 The angular acceleration @; of a four-wheel roll vehicle with rear torques and no friction
on left side
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Fig. 3.90 Path of motion of a four-wheel roll vehicle with rear torques and no friction on left side

Example 92 Only one-wheel torque.
We examine a vehicle that due to some reasons, only one of the wheel actuators
is working. Consider a vehicle with the following data
m=1000kg I =1, = I3 = I = 30kgm?®
I, =300kgm?> . =2000kgm®> C4 =038
Co; =85 ay = 5deg C,;, =15 ss = 0.1
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Fig. 3.91 The torques 7; of a four-wheel roll vehicle with only torque 74

R, =035m  Cuy =05 Cse =05

ag=135m a=15m h=09m (3.319)
Cy, = Cy, = 1600 Cp, =Cp, =0

ky = 26,612 Nm/rad ¢y = 1700Nms/rad
Cp, =Cp,=—-04 Cp, = Cg, = —0.1

Cr, =04 Csp, = 0.01 wr=w, =18m (3.320)

and assume the vehicle is moving slowly straight.

2
vy =2m/s wf=w = ;—x =035 = 5.714rad/s (3.321)
¢ .

§=0 (3.322)
At time t = 0, we apply an increasing torque on the wheel number 4.
Th=T=T3=0 T4 =7.5tNm (3.323)

Figure 3.91 illustrates the applied torques. Figure 3.92 depicts the forward velocity
components of the vehicle v, and vy, measured in body coordinate frame B.
Figure 3.93 illustrates the angular velocities of the wheels w;. Figure 3.94 illustrates
the sideslip angles of the wheels «;. Figure 3.95 depicts the longitudinal slip ratios
s; for the tires. The acceleration components ay and ay of the vehicle are plotted in
Fig. 3.96. Figure 3.97 depicts the forces F and F on the vehicle at its mass center.
Figure 3.98 illustrates variation of the vertical loads F7;. Figure 3.99 illustrates the
longitudinal forces Fy; on front and rear tires. Figure 3.100 shows the lateral forces
Fy; on front and rear tires. The roll angle ¢ and roll rate p are shown in Figs. 3.101
and 3.102, respectively. Figure 3.103 depicts the yaw rate r of vehicle. The angular
accelerations w; of the wheels are shown in Fig. 3.104. Figure 3.105 illustrates the
path of motion of the vehicle.
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Fig. 3.92 The vehicle velocity v, and vy of a four-wheel roll vehicle with only torque Ty
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Fig. 3.93 The angular velocity w; of a four-wheel roll vehicle with only torque 74
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Fig. 3.94 The sideslip angles «; of a four-wheel roll vehicle with only torque 74
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Fig. 3.95 The slip ratios s; of a four-wheel roll vehicle with only torque 74
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Fig. 3.96 The vehicle acceleration ax and ay of a four-wheel roll vehicle with only torque 7y
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Fig. 3.97 The angular velocity w; of a four-wheel roll vehicle with only torque 74
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Fig. 3.98 The vertical forces of the wheels F;; of a four-wheel roll vehicle with only torque 74
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Fig. 3.99 The longitudinal forces of the wheels Fy; of a four-wheel roll vehicle with only

torque T4
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Fig. 3.100 The lateral forces of the wheels F); of a four-wheel roll vehicle with only torque T
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Fig. 3.101 The roll angle ¢ of a four-wheel roll vehicle with only torque 74
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Fig. 3.102 The roll rate p of a four-wheel roll vehicle with only torque 74
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Fig. 3.103 The yaw rate r of a four-wheel roll vehicle with only torque 74
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Fig. 3.104 The angular acceleration w; of a four-wheel roll vehicle with only torque 74
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Fig. 3.105 Path of motion of a four-wheel roll vehicle with only torque 74

3.6 Chapter Summary

The roll vehicle dynamic model is well expressed by four kinematic variables: the
forward motion x, the lateral motion y, the roll angle ¢, and the yaw angle 1,
plus four equations for the dynamics of each wheel. In the roll model of vehicle
dynamics, we do not consider vertical movement z and pitch motion 8. The model
of a rollable rigid vehicle is more exact and more realistic compared to the vehicle
planar model. Using roll dynamic model, we are able to analyze the roll behavior
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of a vehicle in maneuvers. Angular orientation of the vehicle is expressed by three
angles: roll ¢, pitch 6, and yaw V, and the vehicle angular velocities are expressed
by their rates: roll rate p, pitch rate q, and yaw rate r.

A rolled vehicle introduces new reactions in the tires of the vehicle that must be
considered in development of the dynamic equations of motion. The most important
reactions are:

1. Roll-thrust Fy,.
An extra lateral force appears because of the vehicle roll. Tire roll-thrust is
assumed to be proportional to the vehicle roll angle ¢.

2. Roll-steer angle §,,.
An extra steer angle appears because of the wheel roll. The roll steer is a result of
suspension mechanisms that provide some steer angle when the vehicle rolls and
the mechanism deflects. The wheel roll steering is assumed to be proportional to
the vehicle roll angle ¢. Therefore, the actual steer angle §, of such a tire will be
5(1 == 6 + 8(,0'

In this chapter we introduce bicycle as well as four-wheel roll models with
independent in-wheel motors. The four-wheel roll vehicle model is the best practical
vehicle mathematical model. This model provides us with in-wheel torques T;, tire
slips «;, s;, B;, tire and vehicle forces Fy, Fy, Fy,, Fy,, F;, velocity components
of the vehicle vy, vy, w;, as well as yaw and roll angular variables ¢, ¥, p, r. This
model is an extension to the two-wheel roll vehicle model to include the lateral
weight transfer as well as roll effects on vehicle dynamics. The four-wheel roll
vehicle model is an excellent model to simulate drifting of vehicles.

3.7 Key Symbols

a=X Acceleration

a; Longitudinal distance of the axle number i from lateral y-axis
Ay Frontal area of vehicle

bi Lateral distance of tire number i from longitudinal x-axis
B(Cxyz) Vehicle coordinate frame

Co Roll damping of vehicle

C Mass center

Ca Aerodynamic coefficient

Cy Tire sideslip coefficient

Cor Front sideslip coefficient

Cui Sideslip coefficient of tire number i

Cas Tire lateral force drop factor

Car Rear sideslip coefficient

c, Camber coefficient, camber stiffness

Cs Tire slip ratio coefficient
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Csr Front slip ratio coefficient

Cyr Rear slip ratio coefficient

Csa Tire longitudinal force drop factor

Cp Drag coefficient

Csr Front slip ratio coefficient

Csi Slip ratio coefficient of tire number i

Cyr Rear slip ratio coefficient

Cr Torque coefficient

Cr, Torque coefficient of front wheel

Cr, Torque coefficient of rear wheel

Cr, Torque coefficient of wheel number i

Cg Coefficient between F, and § at steady-state
Cg, Wheel slip coefficient of number i

Cs Coefficient between F, and § at steady-state
Cy Coefficient between F), and « at steady-state
Csy Roll-steering coefficient

Csy, Roll-steering coefficient of wheel number i
Cy Roll-thrust coefficient

d Location vector

Dg Coefficient between M, and § at steady-state
Ds Coefficient between M, and § at steady-state
D, Coefficient between M and k at steady-state
Fy Aerodynamic force

F, Longitudinal force, forward force, traction force
F.i Longitudinal force of tire number i

Fy Lateral force of vehicle

Fy; Lateral force of tire number i

Fyr Front lateral force

Fy, Rear lateral force

Fyy Roll-thrust

F,i Normal force, vertical force of tire number i
F; Force vector of tire number i

F.M Force system

L Gravitational acceleration

G(OXYZ) Global coordinate frame

h Height of mass center from the ground
H Heaviside function

1 Mass moment

I;, I Wheel number i mass moment

P
hS]

Roll stiffness of vehicle
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Il ot =
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X,)’,Z’ X
X, Y, Z

Ay

B = vy/vx

Bi
B
B+v

Stability factor

Wheel base

Moment of momentum

Mass

Roll moment, bank moment, tilting torque
Pitch moment

Yaw moment, aligning moment
Origin of a coordinate frame
Roll rate

Momentum

Pitch rate

Generalized coordinate

Yaw rate

Position vector

Tire radius

3 Vehicle Roll Dynamics

Rotation matrix to go from B frame to G frame

Longitudinal slip

Saturation value of longitudinal slip
Saturation function

Curvature response

Sideslip response

Time

Tire coordinate frame

Wheel torque

Velocity

Wind velocity

Longitudinal velocity of wheel number i
Lateral velocity of wheel number i
Wheelbase

Front wheelbase

Rear wheelbase

Displacement

Global displacement

Tire sideslip angle between v, and x,,-axis
Sideslip angle saturation

Vehicle slip angle between v and x-axis
Attitude angle

Sideslip angle of front wheel

Sideslip angle of wheel number i
Sideslip angle of rear wheel

Cruise angle

Steer angle
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Exercises

Actual steer angle

Front steer angle

Front steer angle of wheel number i
Rear steer angle

Roll-steer angle

Pitch angle

Pitch rate

Curvature

Eigenvalue

Radius of rotation, air density

Roll angle

Roll rate

Yaw angle

Yaw rate

Heading angle

Angular velocity

Angular velocity of wheel number i
Angular acceleration

Angular acceleration of wheel number i

1. Global equations of motion
The equation of motion of a vehicle, expressed in the global coordinate frame, is
called the G-expression.

d . .
Fx =m —X =mvy

dt

F dY y
=m — = mv
Y dt Y

d .
Mz =17 —v =1z, 0z

dt

d )
Myx = Ix —¢ = Ix wx

dt
ox=pl
w. =1 K
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(3.324)

(3.325)

(3.326)

(3.327)

(3.328)
(3.329)

These are not practical because the force systems F, M are dependent on the
orientation of the vehicle. Transform these equations into the B-frame and derive
the vehicle roll model equations of motion.
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2. Lane-change maneuver.
Passing and lane-change maneuvers are two standard tests to examine a vehicle’s
dynamic responses. Lane-change may be expressed by a half-sine or a sine-
squared function for steering input. Two examples of such functions are

Sosinwt ] <t < T
S(t) = T @ rad (3.330)
0 —<t<t
w

. T
Sosinwt t] <t < —

5(t) = - ® rad (3.331)
0 —<t<h
w
L
w="= (3.332)
Ux

where L is the moving length during the lane-change and v, is the forward speed
of the vehicle.
Examine a vehicle with the characteristics given below
m=1000kg I =1, = I3 = I = 30kgm?
I, =300kgm?> I, =2000kgm’> C, =038
Cy =Cqy =Cqy =Cq, =85 oy = Sdeg
Csy =C5, =Cyy =C5, =75 ss = 0.1
R, =035m Cus =0.5 Csq =05
a; =135m a=15m h=09m (3.333)
Cy, = Cy, = 1600 Cyp, =Cyp, =0
ky = 26,612 Nm/rad ¢y = 1700Nms/rad
Cp, =Cp, =—04 Cp, =Cg, =—0.1

C,s(pl = C(sgo2 = C5¢73 = C8¢4 =0.01 Wf = Wyr = 1.8m

2
ve=2m/s @ = Z—" = S5 = 5Tl4rad/s (3.334)
. 0.

and a change in half-sine steering input § (¢).

. 7wL Uy
02sin—t 0 <t < —

§(t) = Uy v L rad (3.335)
0 Ix <t<0

L =100m vy =40m/s (3.336)
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Solve the equations of motion numerically and plot kinematic variables, vy, vy,
a;, Si, dy, ay, ©;, ©;, ¢, ¥, p, r, and forces Fy, Fy, F;, Fy;, Fy;, and path of
motion of the vehicle.

3. % Front locked wheel.
Consider a two-wheel roll model vehicle with the data given in (3.214). Assume
the vehicle is moving slowly straight with

2
vy =2m/s @ = ;—x = o35 = 5714rad)s (3.337)
. 0.

At time r = 0, we apply an increasing torque on the rear wheel
Tr=0 T, = 100t Nm (3.338)

while the steer angle is kept at zero § = 0 and the front wheel is locked at
wy=0.
Solve the equations of motion numerically and plot Ty, T,., s ¢, sp, ot f, ap, Fy, Fy,
F., vy, ay, wy, @, for0 <t < 50s.

4. %Rear locked wheel.
Consider a two-wheel roll model vehicle with the data given in (3.214). Assume
the vehicle is moving slowly straight with

2
vy =2m/s @y = Z—x = 535 = 5714rad/s (3.339)
. 0.

At time t = 0, we apply an increasing torque on the rear wheel
T, =0 Ty =100t Nm (3.340)

while the steer angle is kept at zero § = 0 and the rear wheel is locked at w, = 0.
Solve the equations of motion numerically and plot Ty, T;., s ¢, sp, ot p, ar, Fy, Fy,
F., vy, ay, y, @, for0 <t < 50s.

5. Increasing steer angle and front torque.
Repeat Example 86 for,

(a) Cozx == 0-2, C‘m =0.8
(b) Cus =0.8,Csq =0.2

6. Increasing steer angle and rear torque.
Repeat Example 87 for,

(@) Cy=02,Cs =0.8
(b) Cy =0.8,Cy =0.2
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7. Four-wheel roll vehicle, increasing rear torque, straight driving.
This exercise simulates changing one tire with a new or different tire. Repeat
Example 89 assuming C,, = 10, Cy, = 8.5, Co; = 8.5, Cy, = 8.5.
8. Four-wheel roll vehicle, a different tire.
Repeat Example 90 assuming Cy, = 10, Cy, = 8.5, Co; = 8.5, Cy, = 8.5.
9. No friction on one tire and applying front torque.
In Example 89 assume the wheel number 1 has no friction.

CO(] =0 Cozz =35 CO!3 =85 CO‘4 =85
Cs, =0 Cs, =175 Cs, =175 Csy, =175 (3.341)

Repeat the example and plot the same graphs to compare.



Chapter 4 )
Road Dynamics Qs

Passenger cars are developed to move on smooth paved pre-designed roads. To keep
vehicles on road, we need a steering mechanism to provide steer angle as an input to
the vehicle dynamic system. Ideally, all wheels of a vehicle should be able to steer
independently such that the vehicle follows the desired path at the given speed. In
this chapter we review steer and road dynamics.

4.1 Road Design

Roads are made by continuously connecting straight and circular paths by proper
transition turning sections. Having a continuous and well-behaved curvature is a
necessary criterion in road design. The clothoid spiral is the best smooth transition
connecting curve in road design which is expressed by parametric equations called
Fresnel Integrals:

t T )

X (1) =a/0 cos (Eu )du 4.1)
tox )

Y (1) :a/o sin (Eu )du 4.2)

The curvature of the clothoid curve varies linearly with arc length and this linearity
makes clothoid the smoothest driving transition curve.

Figure 4.1 illustrates the clothoid curve for the scaling parameter a = 1 and
variable —m <t < m. The scaling parameter a is a magnification factor that shrinks
or magnifies the curve. The range of ¢ determines the variation of curvature within
the clothoid, as well as the initial and final tangent angles of the clothoid curve.

The arc length, s, of a clothoid for a given value of ¢ is
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y
A
a=1 0.6
—-n<t<m 0.4
0.2
‘ ‘ > X
04 08
t T
x=J. cos(—uzjdu
0 2
LN
y:I sin| —u” du
0 2

Fig. 4.1 The clothoid curve fora = land —7 <t <wnw

s = at 4.3)

If the variable ¢ indicates time, then a would be the speed of motion along the path.
The curvature k and radius of curvature p of a clothoid at a given ¢ are:

Tt
K=— 4.4)
a
1 a
p=—-—=— (45)
Kk Tt
The tangent angle 6 of a clothoid at a given value of ¢ is:
T2
0=—t 4.6
> (4.6)

Having a road with linearly increasing curvature is equivalent to entering the path
with a steering wheel at the neutral position and turning the steering wheel with a
constant angular velocity. This is a desirable and natural driving action (Jazar 2017,
Marzbani et al. 2015a).

Proof Arc length s of a parametric planar curve X = X (), Y = Y (¢) between #;

and 1, is calculated by
= /’2 ax 2+ ar 2dt 4.7
=, dt dt '

Substituting the clothoid spiral parametric expression (4.1)—(4.2), we have
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&) -()
s = — ) +—) dt
f du du
t t
_ 2 (T2 2 (72 g _
_a/O \/cos <2u)+s1n (2u>dt—a/(; dt = at 4.8)

Curvature « of a planar curve X = X (s), ¥ = Y (s) that is expressed
parametrically by its arc length s is

*x\°  (dv\’

Using the result of (4.8), we can replace the variable ¢ with arc length s

i= (4.10)
a
and define the clothoid spiral parametric equations (4.1)—(4.2) as:
s/a
X (5) :a/ cos (zuz) du @.11)
0 2
s/a
Y (5) = a/ sin (%uz) du (4.12)
0

Therefore, the curvature of clothoid spiral is

2 2
TS TS T s wt
=" Jeos? (== ) +sin® (=5 )| == =— 4.13
A (2 a2> + 2 a? a’? a (4.13)

The slope of the tangent to clothoid spiral tan 6 at a point ¢ is

asin (Eﬂ)
_dY dY/dt 2 — tan (%ﬂ)

tanf = — = = = 4.14
WUTAX T axjdi T o (Ze) 19
2
and therefore, the slope angle 6 of the tangent line is
2

i TS
0=>1"==— 4.15
2 2 a? ( )

The clothoid curve approaches the point (a/2, a/2) at infinity, t — oo,
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t
X (1) = lim (a/ cos (%:ﬂ) du) =§ (4.16)
—> 00 0
. by, a
Y@= lim (a/o sin (Eu )du) =2 4.17)

Combining the equations for arc length (4.8) and curvature (4.13), we can express
the curvature k of a clothoid curve such that it varies linearly with its arc-length s.
The curvature of such a curve is

s = ks (4.18)

K (s) =

k= (4.19)

= R[=

where s is the arc length and k is the sharpness or the rate of change of curvature.
Using

t=— (4.20)
T

we can also define the parametric equations of the transition clothoid road as:

ka/mw T,

X () = a/o cos (Eu )du 421)
ka/mw ) T,

Y () = a /0 sin (Eu )du (4.22)

Figure 4.2 illustrates a design graph of the relationship between the clothoid and
parameters of scaling or magnification factor a, curvature «, and slope 9. The higher
the magnification factor a the larger the clothoid. The clothoid curves of different a
are intersecting with the constant slope lines of 8. The curves for constant curvature
k intersect both the constant a and constant 6 curves.

The clothoid transition equation is a proper solution for any required change in
any parameter of a road. As an example the change of the bank angle from a flat
straight road to a tilted road on a circular path needs a clothoid transition bank
angle. |

Example 93 Derivative of a clothoid spiral.
Differentiation of a definite integral is based on the Leibniz formula

d b(t) b(t) df db da
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Fig. 4.2 A design graph of the relationship between the clothoid and parameters of magnification

factor a, curvature «, and slope 6

Taking derivative of the clothoid spiral parametric equations in calculating the arc
length s of (4.7) is based on the Leibniz formula.

62—); = a% tcos (%M2> du = acos (%ﬂ) (4.24)
0
i’—f = a% Ot sin (%uz) du = asin (%tz) (4.25)

The calculation of the curvature « of (4.9) is also based on the Leibniz formula
(Jazar 2010b, 2012).

ax d s/a 2
— =a— cos (l,ﬂ) du = cos Ty (4.26)
ds dt Jy 2 2 a?
dY d s/a 2
— =a— sin (£u2> du = sin Ty 4.27)
ds dt Jy 2 2 a?
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d*x d 7 52 s . (7 52 4.28)
— = —cosS| == | = ——=sin| —— .
ds? ds 2 a? a? 2 a2

d?y d = (752 TS T 52 4.29)
— = —sin|—=—= ) = —cos| =— .
ds?  ds 2 a? a? 2 a?

Therefore,

2 2

d*X d’Y w
JEEY (Y o x w0

Example 94 A connecting road with given a and k.
Let us set a = 200 and plot a clothoid road starting from (0, 0) and end up at a
point with a given curvature of k = 0.01 equal to a radius of curvature of p = 100 m.

Using

t=— 4.31)

we can define the parametric equations of the transition road (4.1)—(4.2) as
ka/mw T
X () =a / cos (Eu2> du (4.32)
0

ka/mw T
Y () = a / sin (—u2> du (4.33)
0 2
The coordinates of the clothoid road at x = 0.01 and a = 200 are

Xo = 122.2596310 Yy = 26.24682756 (4.34)

The slope of the road at the point is

1
0 = 2—a2K2 = 0.6366197722rad = 36.475 deg (4.35)
T

and therefore, the tangent line to the road is
Y = —64.14007833 + 0.7393029502X (4.36)
and the normal line to the road is

Y = 191.6183183 — 1.352625469X (4.37)
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Fig. 4.3 The tangent line, normal line, and the tangent circle to the clothoid at the point where
k = 0.01 for a given a = 200. The clothoid is plotted up to k = 0.025

Having the radius of the tangent curvature circle, p = 1/k = 100 m, we are able to
find the coordinates of the center C of the tangent circle on the line (4.37).

Xc = 6281155414  Yc = 106.6578104 (4.38)

Figure 4.3 illustrates the tangent line, normal line, and the tangent circle to the
clothoid at the point where k = 0.01. The clothoid is plotted up to « = 0.025.

Example 95 Connecting a straight road to a circle.

Assume that we need to define a clothoid road to begin with zero curvature and
meet a given circular curve. Let us consider the road to be on the X-axis and the
circle of p = 100 m at center C (62.811, 106.658).

(X — 62.811)% + (Y — 106.658)> = 1007 (4.39)

Therefore, the transition road must begin with k = 0 on the X-axis and touch the
circle at a point when its curvature is « = 1/100. Because of

s _ T (4.40)

K= —
a? a

we can define the parametric equations of the transition road (4.1)—(4.2) by «.

ka/m T
X (k) = ~u*)d
(k) a/o cos(zu ) u

ka/m ) T,
Y () = a/o sin (Eu )du (4.41)
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. — (X —62.811) s 5 )
Fig. 4.4 The error e = arctan ———  — 1.5915 x 1074~ as a function of a
Y —106.658

Having ¥ = 0.01 at the destination point, we find the coordinates of the end point
of the clothoid as functions of a.

0.0la/m T
X (a) = a/ cos (—uz) du
0 2
0.0la/m T
Y (a) = in(=u®)d 4.42
(a) a/o s1n(2u) u ( )

We need to find the magnifying factor a, such that the clothoid (4.41) touches the
circle (4.39) with the same slope. The slope of the circle at (X, Y) is

(X — 62.811)

Y =tnf =———— = 4.43
an (Y — 106.658) (4.43)
and the slope angle of the clothoid is
T2 1 52 -5 2
0=—t"=—ak"=15915x10""a (4.44)
2 2

To make the clothoid have the same slope, we derive an equation that relates the
magnification factor a to the components of the final point of the clothoid.

— (X —62.811)

=1.5915 x 104> (4.45)
Y — 106.658

arctan @ = arctan

Equations (4.45), (4.42), and (4.39) provide us with an equation to find a. Let us
define and plot an error equation e versus a in Fig. 4.4
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— (X —62.811) 5 2
e = arctanf — § = arctan —— — 1.5915 x 10" °a
Y — 106.658

— (X —62.811
= arctan ( ) —1.5915 x 107%4°
V1002 — (X — 62.811)2

3 (a 001a/m o (%bﬂ) du — 62.81 1)

2
\/1002 — (a fy /" cos (Fu?) du — 62811)

= arctan

~1.5915 x 10~%a? (4.46)
and solve the equation for a that makes e = 0.
a =200 (4.47)

Therefore, the clothoid equation is

B ka/mw T,
X(kK)=a cos(—=u”")du
0 2
B ka/mw ) T,
Y()=a sin ( —u” ) du (4.48)
0 2
where at k = 0.01 reaches to:

Xo = 122.2596310 Yo = 26.24682756 (4.49)

The slope of the road at the point, the tangent line to the road, and the normal line
to the road are

1

0 = 2—6121(2 = 0.6366197722 rad = 36.475 deg (4.50)
I

Y = —64.14007833 + 0.7393029502X 4.51)

Y = 191.6183183 — 1.352625469X (4.52)

Figure 4.3 illustrates the clothoid, tangent line, normal line, and the tangent circle to
the clothoid at the point where k = 0.01. The clothoid is plotted up to k = 0.025.

Example 96 Connecting a straight road to another circle.

Assume that we need to determine a transition clothoid road to begin with zero
curvature on the X-axis and meet a given circular curve of R = 80m at center
C (100, 100).

(X — 100)> + (Y — 100)% = 80> (4.53)
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The expression of the transition road (4.1)-(4.2) by « is:

ka/m T
X (k) = ~u?)d
(k) a/o cos(zu ) u

ka/m ) T o,
Y (6) = a /0 sin (Eu )du (4.54)

Using k = 1/R = 0.0125 at the destination point determines the coordinates of the
end of the clothoid as functions of a.

0.0125a/m
X (a) = a[ cos <£u2> du
0 2

0.0125a /7 -
Y (a) = a/ sin (=u?) du (4.55)
0 (5+)

The slope of the tangent to the circle (4.53) at a point (X, Y) is

X — 100
Y =tanf = _ X~ 100) (4.56)
Y — 100
and the slope angle of the clothoid as a function of a is
T2 1 22 -5 2
0=—1t"=—a"k"=24868 x 10°a (4.57)
2 2
The clothoid should have the same slope, therefore,
— (X — 100
arctan — 10 _ 5 4868 x 1050 (4.58)
Y — 100

Equations (4.58) and (4.53) along with (4.55) provide us with an equation to
find a. However, substituting ¥ = Y (X) and replacing tan and arctan generate
four equations to be solved for possible a. To visualize the possible solutions, let us
define two error equations (4.59)—(4.60).

— (X — 100
e = arctan ( ) —2.4868 x 104> (4.59)
+/802 — (X — 100)>
— (X =100
e = ( ) _tan (2.4868 x 10—5a2) (4.60)
+./802 — (X — 100)2

Figure 4.5 depicts Eq.(4.59) and Fig.4.6 shows Eq.(4.60). Equation (4.59)
provides the solutions of

a = 230.7098693 a = 130.8889343 (4.61)
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Fig. 4.5 Plot of e = arctan — X 109 —2.4868 x 107542 versus a
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Fig. 4.6 Plotofe =

tan (2.4868 x 10742) versus a

+/302 — (X — 1002

and Eq. (4.60) provides the solutions of

a = 230.7098693 a = 130.8889343
a = 394.0940573 a = 463.5589702 (4.62)

The correct answer is a = 230.7098693 and Fig. 4.7 depicts the circle and the
proper clothoid. Using a, we define the clothoid equation

ka/m T
X (k) = ~u?)d
(k) a/o cos(zu ) u

kalmw ) T o,
Y () = a /0 sin (Eu )du (4.63)
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0 ; L > X
40 80 120 160

Fig. 4.7 The transition road starting on the X-axis and goes to a circle of radius R = 80m at
center C (100 m, 100 m)

which at « = 0.0125 reaches

Xo = 177.5691613 Y, = 82.38074640 (4.64)
at angle
1
0 = 2—a2/c2 = 1.32361ad ~ 75.84 deg (4.65)
T

Example 97 Using the design chart.

Assume we are asked to find a clothoid transition road to connect a straight road
to a circle of radius R = 58.824 m. Having R is equivalent to have the destination
curvature k = 1/R = 0.017. The desired circle must be tangent to a clothoid with a
given a at the point that the clothoid is intersecting the curve of k = 0.017.

The clothoid for @ = 250 m hits the curve of x = 0.017 at a point for which we
have

X = 147.3884878 m Y =176.4421850 m (4.66)
60 = 164.7102491 deg s = 338.2042540m (4.67)

The clothoid for a = 210 m hits the curve of k = 0.017 at a point for which we
have

X = 157.4739501 m Y =119.7133227m (4.68)
0 =116.2195518 deg s = 238.6369216 m (4.69)
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k=0.017

0=164.71°

0 40 80 120 160 200

Fig. 4.8 A few clothoid transition road to connect a straight road to a circle of radius R =
58.824m

The clothoid for @ = 180 m hits the curve of x = 0.017 at a point for which we
have

X = 140.1918463 m Y =74.21681673 m (4.70)
0 = 85.38579313 deg s = 175.3250853 m 4.71)

The clothoid for a = 150 m hits the curve of k = 0.017 at a point for which we
have

X = 109.3442240 m Y =38.89541829m 4.72)
6 = 59.29568967 deg s = 121.7535314m (4.73)

The clothoid for a = 120 m hits the curve of x = 0.017 at a point for which we
have

X =74.57259185 m Y =16.67204291 m (4.74)
0 = 37.94924139 deg s =77.92226012m (4.75)

Figure 4.8 illustrates these solutions. The number of solutions is practically infinite
and the best solution depends on safety, cost, and physical constraints of the field.
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Example 98  Clothoid spiral as an optimal curve problem.

Clothoid spiral is the shortest curve connecting two given points with given initial
and final tangent angles and curvatures. The angle and curvature are varying. The
problem can be formulated as follows:

Given two points (X1, Y1) and (X», Y») and two angles 6 and 6, find a curve
(clothoid segment) which satisfies:

dy (0)  dY (0) /dt
X0 =X, YO0=Y tan@lzdx(o) = dX (0) /dr

dY (s) _ dY (s) /dt
dX (s) dX(s)/dt

(4.76)

X (s) = X2 Y()=" tanf, = “4.77)

with minimal arc length s.

Example 99 Clothoid shift to meet a given circle.

It is not generally possible to design a clothoid starting at the origin and meet
a given circle at an arbitrary center and radius. However, it is possible to start the
clothoid from other points on the x-axis to meet the given circle.

Assume we need to design a clothoid starting on the x-axis to meet a given circle

(x —x0)*+ (0 —yo) =R? (4.78)

where (xc, yc) indicates the coordinates of the center of the circle, and R is the
radius of the circle. Substituting ¢ in terms of @ and R

a ak
t=—=— (4.79)
7R b4
we define the equation of clothoid to have the same radius of curvature as the circle
at the end point.

a/(Rm)
x (k)= a/ cos (ZuZ) du
0 2

a/(Rm) T
y (k) = a/ sin (—uz) du (4.80)
0 2
Let us assume there is a y at which the slope of the clothoid
nt? a’
tanf =tan [ — ) = tan 4.81)
2 2w R?
and the circle
X —XC
tanfd = — (4.82)

Yy —=JYc
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are equal.

t a’ e (4.83)
an| ——x = — .
27 R? Yy — yc

Searching for a match point in the right half circle

y—yc = R?— (x —x¢)? (4.84)

makes the slope equation to be a function of a

a2 \/—2 X — X
tan (2717) R?Z — (x —xc)* + e =0 (4.85)

yc

or

2
2 a/(Rm)
tan [ —— R? — a/ cos (zbﬂ) du — xc
27TR2 0 2
a/(Rm) T
ta f cos <§u2> dit — x¢ =0 (4.86)
0

Solution of this equation provides us with an a for which the clothoid ends at a point

with the same curvature as the circle. At the same y of the end point, the slope of

the clothoid is also equal to the slope of the circle. A proper shift of the clothoid on
the x-axis will match the clothoid and the circle.
As an example, let us assume that the circle is

(x — 60)> + (y — 60)* = 50° (4.87)

and therefore, the slope equation will be

2
2 a/(50m)
tan [ —4— 502 — a/ cos (zuz) du — 60
2750 ) 2

a/(50m) T
+a / cos (5142) di —60 =0 (4.88)
0

Numerical solution of the equation is
a = 132.6477323 (4.89)

The plot of the clothoid and the circle at this moment are shown in Fig. 4.9.
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X

Fig. 4.9 A clothoid starting at origin ends at a point with the same slope and curvature as the given

circle, at the same y

For the calculated a, the value of ¢ at the end point of the clothoid is

a 2.652954646
t=—=———/—"=0.84446
TR T

and therefore, the coordinates of the end point are

0.84

X (k) = 132.6/ cos (fuz) du = 98.75389126
A 2

0.84

. T 5
y (k) = 132.6 sin (—u )du — 38.22304651
o 2

At the point, the radius of curvature of the clothoid is

. 1 a 1326477323 0
Tk wt 0.84446m

and the slope is
0= %ﬂ - %0.844462 — 1.1202rad

The x-coordinate of the circle at the same y = 38.22304651

38.22304651 — 60 = /502 — (x — 60)?

is

Xcircle = 105.0084914

(4.90)

4.91)

4.92)

(4.93)

(4.94)

(4.95)
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Fig. 4.10 A shifted clothoid starting on a point on the x-axis ends at a point on the given circle
with the same slope and curvature

If we shift the clothoid by the difference between x i, cie and Xcjothoid

Xdis = Xcircle — Xclothoid

= 105.0084914 — 98.75389126 = 6.2546 (4.96)

then the clothoid and circle meet at a point on the circle with all requirements to
have a smooth transition. Figure 4.10 illustrates the result.

Example 100 Complex expression and proof of curvature.
Let us define a curve in complex plane as

sfa
C(s)=a / &2 qy (4.97)
0

The derivative of the curve is an equation with absolute value of a.

dC (S) _ eins2/(2a2)

o (4.98)

The curvature of the curve is

d*C (s)
ds?

_ )i”_jeiﬂsz/(mz) - (4.99)
a a

K =

Example 101 Parametric form of a straight road.
The equation of a straight road that connects two points Pj(x1, y1,z1) and

Py(x2,y2,23) 18

X=X y—=y1 _ z—2l

X2 — X1 2=Mn 2 —121

(4.100)
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This line may also be expressed by the following parametric equations.

x=x1+ (2 —x1)t
y=y1+Q—y)t
7=z1+ (2 —2z1)t (4.101)

Example 102 Arc length of a planar road.
A planar road in the (x, y)-plane

y=fx) (4.102)
can be expressed vectorially by
r=xi+yx);J (4.103)

The displacement element on the curve

dr ., dy,
- = - 4.104
= + o ( )
provides us with
ds\*> dr d dy\?
Gy _ada (Y (4.105)
dx dx dx dx

Therefore, the arc length of the curve between x = x| and x = x is

X2 d 2
s =/ J1+ (—y> dx (4.106)
Xi dx

In case the curve is given parametrically,
x =x(t) y =y(t) 4.107)
we have
ds\* dr d dx\*  (dy\?
as) _dar ar_fax) (4 (4.108)
dt dt dt dt dt

and hence,

dr
dt

’2 12 dx\? dy 2
[ () () @109
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Let us show a circle with radius R by its polar expression using the angle 6 as a
parameter, as an example:

x = Rcosé y = Rsinf 4.110)
The arc length between 6 = 0 and 8 = 7 /2 would then be one-fourth the perimeter

of the circle. Therefore, the equation for calculating the perimeter of a circle with
radius R is

/2 dx 2 dy 2 /2
S:4/ dx\" (4 d@:R/ Vsin2 0 + cos2 6 do
0 de do 0

/2
=4R/ 46 = 27 R @.111)
0

Using Eq. (4.106), we can define the equation of the road as

X2 2
yzf /(;’_i) ~ldx 4.112)
X1

Example 103 A figure 8 as an approximately correct road.

Sometimes, matching slopes, instead of matching curvatures, can be used to
design an approximately correct road. Let us make a closed road in the shape of
a symmetric figure 8 with two 180 deg circular paths. Assuming

a = 200 (4.113)

the equations of the clothoid road starting from the origin are:
t
)
X (1) = 200[ cos (Eu ) du (4.114)
0
t
. )
Y (1) = 200/ sin (Eu )du (4.115)
0
The slope (4.6) of the curve would be parallel to the symmetric line Y = X when
20 2
=" r:,/-:izm (4.116)
4 T 2
At t = 1y the clothoid is at

N .
Xo = 200/ cos (—uz) du = 132.943 (4.117)
) 2
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Fig. 4.11 A clothoid between two point at which the tangent lines are parallel to Y = X

Yo = 200 / sin (Ebﬂ) du = 35.424
0

where the tangent and perpendicular lines respectively are

Y =35424 4+ (X — 132.943) tan0 = —97.519+ X
Y =35.424 — (X — 132.943) /tanf = 168.37 — X

as are shown in Fig. 4.11 for the clothoid from t = —fg to r = fo.
The perpendicular line hits the symmetric line ¥ = X at

Xc=Yc=284.184

which would be the center of a circular path with

R= \/(xo —X0)? + (Yo — Ye)* = 68.956
to connect (Xg, Yp) to its mirror point with respectto ¥ = X at
X, =35424 Y| = 132.943

The mirror clothoid

V2/2
X = 200/ sin (zu2) du
2/2 2

V272
Y = 200/ cos (zuz) du
—V2/2

will complete the figure 8 road as is shown in Fig. 4.12.

(4.118)

(4.119)
(4.120)

4.121)

4.122)

(4.123)

(4.124)

(4.125)
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A

-150
Fig. 4.12 A slope match symmetric figure 8 road based on two clothoid and two circular parts
Therefore, the parametric equations of the road beginning from the origin and

moving in the X-direction are as follows. The parameter ¢ is not continuous and not
with the same dimension in all equations.

t
2
X (1) = 200/ cos (Lﬂ) du  0<i< V2 (4.126)
) 2 2
! 2
Y () = 200/O in (%uz) du  0<t< % 4.127)
X (t) = Xc + Reost  — % <1<23562 (4.128)
Y(t)=Yc+ Rsint  — % <1<23562 (4.129)
' 2 2
X (1) = 200/ sin (zuz) w2 <i< V2 (4.130)
, T3 2 2
t
_ T 9 \/E \/E
Y(t)—ZOO/O c0s<2u)du IR (4.131)
X ()= Xc+ Rcost 23562 <1 < 5.4978 (4.132)

Y (1) = Yo + Rsint 23562 <t < 5.4978 (4.133)
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t
X(t)=200/ cos (Lﬂ) i —-YZ<i<o0 (4.134)
A 2

13
T
Y(t)=200/ sin (= u?) du -
0 (2 )

Using s as the road length, we may define the equations with a smooth and
continuous parameter.

IA

t<0 (4.135)

MISI

5/200
X (1) = 200 / cos (zlﬂ) du (4.136)
A 2
5/200 .
_ (T o
Y (1) = 200/0 sin ( S ) du (4.137)
0<s <1002 (4.138)
— 10032
X (1) = X¢ + R cos s 100v2 7 (4.139)
R 4
—100+/2
Y () = Yc + Rsin sZ100v2 @ (4.140)
R 4
10082 < s < 358.05 (4.141)
(499.47—5)/200
X (1) = 200 / sin (zuz) du (4.142)
) 2
(499.47—5)/200
Y (1) = 200 / cos (zuz) du (4.143)
) 2
358.05 < 5 < 640.89 (4.144)
640.89 —
X (1) = —X¢ + Reos [ 2 % _ % (4.145)
R 4
640.89 —
Y (1) = —Yc + Rsin [ —2 2 _ T (4.146)
R 4
640.89 < 5 < 857.52 (4.147)
5—857.52—100~/2) /200
X (1) = 2()0/( ) cos <£u2> du (4.148)
A 2



4.1 Road Design 319

150

0 200 400 800

-100+

-150

Fig. 4.13 The variation of X and Y for 0 < s < 998.94 of the figure 8 road

5—857.52—100+/2) /200
Y (1) = 200 / ( ) sin (zuz) du (4.149)
A 2
857.52 < s < 998.94 (4.150)

The variation of X and Y for 0 < s < 998.94 is depicted in Fig. 4.13.
Example 104 A figure 8 correct road.

Let us design a closed road in the shape of a symmetric figure 8 with a curvature
transition between the clothoids and the circular paths. Assuming

a =200 (4.151)

the equations of the clothoid road starting from the origin are:
t
X (1) = zoo/ cos (zuz) du (4.152)
0 2

! b1
Y (1) = 200/ sin (-:ﬂ) du (4.153)
0 2
The slope (4.6) at ¢ of the curve is

6 = %ﬂ (4.154)

where the tangent and perpendicular lines respectively are:

Y=Y (@) + (X —X())tan6 (4.155)
Y=Y —(X—X(@)/tan® (4.156)
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The radius of curvature of the clothoid at ¢ is

1
R=-=" (4.157)
K Tt

If a clothoid point (X, Y) exists at which the radius of curvature is equal to the
distance of the point from the line ¥ = X on the perpendicular line, then we can
have a circular path starting at the point. The intersection of the clothoid point (X, Y)
and the symmetric line Y = X is the point Y¢ = X¢ where

nt?
X(f) + Y(t)tanT

Yo = Xc = > (4.158)

¢ wt 1
an —
2

The distance of the clothoid and the point (X¢, Y¢) on the perpendicular line is

d =\/(¥ (1) = YO + (X (1) - X)?

? 712\ 2
Y (@) — X (¢ (X (1) =Y () tan —
_ # n ; 2 (4.159)
tan T +1 tan T +1
2 2

Equating d and R provides us with an equation to be solved for the ¢ at which the
clothoid terminates and a circle with the same curvature starts.

i—2 —o (4.160)
Tt

As is shown in Fig. 4.14, the equation has multiple solutions, and the first solution
is at

t =19 =0.9371211755 (4.161)

At t = 19 the clothoid and its kinematics are

0.9371211755
Xo = 200 / cos (zuz) du = 154.77 (4.162)
o 2
0.9371211755
Yo = 200/ sin (Lﬂ) du = 75.154 (4.163)
) 2
1
R = — = 67.93355959 (4.164)
K

0 = 1.379467204 rad = 79.038 deg (4.165)
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Fig. 4.14 Plot of the equationd — R = d — % = 0 to find a ¢ at which the curvature of the
b4

clothoid matches with a symmetric circle

The intersection of the perpendicular to the clothoid at (X, Yop) with Y = X is at

Xc = 88.0724138 < X (4.166)
Yc = 88.0724138 > Yy (4.167)
We can check the distance of (Xg, Yp) and (X¢, Yc¢) to be equal to R.

Therefore, using the parametric s as the road length, the equations of the road
beginning from the origin and moving in the X-direction can be expressed as

s/a
X (1) = zoo/ cos (zuz) du  0<s<so (4.168)
0 2
s/a
Y () = 200/ sin (Lﬂ) du  0<s<so (4.169)
0 2
5o = aty = 187.42 (4.170)
X (t) = Xc + R cos (S_SO —90> 50 <5 <5 (4.171)
Y(t):Yc—i-Rsin(s_SO —90> 50 <s<s| (4.172)
Yo — ¥,
0o = arctan —— 2 = 0.19132rad = 10.962 deg (4.173)
Xo— Xc¢

51 =50+ R (% + 290) —320.12 (4.174)
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> X

Fig. 4.15 A curvature match symmetric figure 8 road based on two clothoid and two circular parts

(s1+so—s)/a
X (1) = 200 / sin (Zuz) du
) 2
(s1+s0—s)/a T
Y () = 200 / cos <5u2> du
0

sy = 8§51 + 259 = 694.96

S =8 =8

S =85 =8

52— 8 T
X(t):—Xc—I—RCOS< R —(——90)) s <5 <853

L (s2—s b4
Y(t):—YC—i—Rsm( R —<——90)) 52 <5 <83

53=s +R (% n 290) — 827.66

(s—s3—50)/200

X (1) = 200 / cos (%u2> du

0

s4 =53+ 59 = 1015.1

The road is shown in Fig. 4.15.

§3 <85 < 54

(4.175)

(4.176)

4.177)

(4.178)

(4.179)

(4.180)

(4.181)

(4.182)

(4.183)
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Example 105 % Spatial road.
If the position vector “rp of a moving car is such that each component is a
function of a variable ¢,

Cr=Crt)y=x)i+y®)]+z0)k (4.184)
then the end point of the position vector indicates a curve C in G. The curve °r =
Gy (¢) reduces to a point on C if we fix the parameter 7. The functions

x =x (1) y=y() z2=2() (4.185)

are the parametric equations of the curve. When the parameter ¢ is the arc length s,
the infinitesimal arc distance ds on the curve is

ds®> = dr - dr (4.186)

The arc length s of a curve is defined as the limit of the diagonal of a rectangular
box as the length of the sides uniformly approaches zero.

When the space curve is a straight line that passes through point P (xg, Yo, 20)
where xo = x(%9), yo = y(t0), z0 = z(tp), its equation can be shown by

X — X0 y—yOZZ—ZO
o B 4
>+ p2+yr=1 (4.188)

(4.187)

where o, 8, and y are the directional cosines of the line. The equation of the tangent
line to the space curve (4.185) at a point P (xg, yo, Zo) 1S

X — X0 :y—yo _ Z—20
dx/dg dy/dq dz/dq

dx\? dy 2 dz \*
<E> +(E) +(E> =1 (4.190)

To show this, let us consider a position vector “r = Cr (s) that describes a space
curve using the length parameter s:

(4.189)

Or=Crs)=x@)i+y©)J+z0)k (4.191)

The arc length s is measured from a fixed point on the curve. By a very small change
ds, the position vector will move to a very close point such that the increment in the

position vector would be

dr=dx (s) +dy(s) j+dz(s)k (4.192)
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The lengths of dr and ds are equal for infinitesimal displacement:

ds = \/dx? +dy? + dz? (4.193)

The arc length has a better expression in the square form:
ds* = dx* + dy> +dz> = dr - dr (4.194)

If the parameter of the space curve is ¢ instead of s, the increment arc length would
be

ds\* dr dr
= .= 4.195
<dz> dt dt ( )

Therefore, the arc length between two points on the curve can be found by
integration:

ftz dr dr ftz )T ()T (4), (4.196)
S = —_ . — = _ _ J— .
n Vdt dt 1 dt dt dt

Let us expand the parametric equations of the curve (4.185) at a point
P (x0, y0, 20),

Ly 142 AP+
X = X —_— B ..
0" 2 di?

ot Dar g Ly 0y (4.197)
YTy 242 '

dz 1d*z  ,

— o+ Enr4-LEA2 4

Z Z0+dt +2dt2 +

and ignore the nonlinear terms to find the tangent line to the curve at the point:

X—X0 _y—Yo _Z—20 _
dxjdt ~ dy/dt  dzj/dt

(4.198)

Example 106 Length of a spatial road.
Consider a spatial closed road with the following parametric equations:
x = (a+bsinh)cosH
y = (a+bsinf)sinb
z=b+bcosh (4.199)
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The total length of the road can be found by the integral of ds for 6 from O to 27:

%2 [dr dr 02 ax\2 ax\? ax\2
s = — . —dO = — )+l =) +| =) do
0, do do 0, 00 20 a0

2
2
- / “/7_\/2612 + 3b2 — b2 cos 20 + 4ab sin 06O (4.200)
0

Example 107 History of clothoid.

The clothoid spiral is also called Cornu spiral, referring to Alfred Cornu (1841-
1902), a French physicist who rediscovered the clothoid spiral. It may also be
called Euler spiral, as Leonard Euler (1707-1783) was the first codiscoverer of the
curve with Jacques Bernoulli (1654—1705) who formulated the clothoid spiral on
deformations of elastic members. It is also called Fresnel spiral credited to Augustin-
Jean Fresnel spiral (1788—1827) who independently rediscovered the curve in his
work on the fringes of diffraction of light through a slot. In vehicle dynamics and
road design industry it may also be called the transition spiral to refer to the road
connections corners.

In the 19th century it became clear that we need a track shape with gradually
varying curvature. Although circles were being used for most of the path, a correct
transition curve was needed to gradually change the curvature from one path
to the other. Arthur Talbot (1857-1942) in 1880 derived the same integrals as
Bernoulli and Fresnel and introduced the railway transition spirals. Because of this
contribution in railroad practical design, the clothoid spiral is also called Talbot
curve. Talbot curve has been used in railways and road construction since.

It is said that Clotho was one of the three Fates who spun the thread of human
life, by winding it around the spindle. At the beginning of the 20th century, the
Italian mathematician Ernesto Cesaro (1859-1906), from this poetic reference gave
the name ““clothoid” to the curve with a double spiral shape.

4.2 Static Steering

Figure 4.16 illustrates a front-wheel-steering (F W S) vehicle that is turning to the
left. There is a kinematic condition between the inner and outer wheels that allows
them to turn slip-free at very low speed. The kinematic condition is called the
Ackerman condition and is expressed by

cotdy — cot§) = # (4.201)

where §; and &, are the steer angles of the wheel number 1 of the front left and
the wheel number 2 of the front right wheel. In this equation the steer angles are
measured from the x-axis and is positive if it is about positive z-axis (Jazar 2017).
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Fig. 4.16 A front-wheel-steering vehicle and the static steering condition

Ideally, perpendicular lines to all four wheels of a vehicle intersect at a single
point called the kinematic center of rotation. When a vehicle is moving very slowly,
we may assume the velocity vector of each wheel is in their tire plane. Therefore,
the perpendicular lines to the tire planes intersect at the kinematic center of rotation
of the vehicle, somewhere on the rear axis.

The distance between the tire planes of the left and right wheels is called the
track and is shown by w. The distance between the front and real axles is called the
wheelbase and is shown by /. Track w and wheelbase [ are the kinematic width and
length of the vehicle.

It is common to use one single steer angle command § and calculate all other
required steer angles based on that. When we employ the bicycle vehicle model the
single steer angle is the cot-average of the inner and outer steer angles.

_ cotdy + cotdy
N 2

cotd (4.202)

The angle § is the equivalent steer angle of a bicycle having the same wheelbase /
and radius of rotation p.

Proof To have all wheels turning freely on a curved road at very low speed, all the
tire axes must intersect at a point. This criteria is the static steering condition. The
tire axis is the perpendicular line to the tire-plane at the center of the tire.
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Fig. 4.17 A front-wheel-steering vehicle and steer angles of the inner and outer wheels, and
equivalent bicycle model

Figure 4.17 illustrates a vehicle turning left about the turning center O. The inner
and outer steer angles §; and §, may be calculated from the triangles AOAD and
AOBC as:

l
Ry — —
2
l
tan 82 = —w (4204)
R had
1+ >
Eliminating R;
R ! + —l ! + ! (4.205)
= —Ww = ——Ww .
! 2 tan §1 2 tan &,

provides us with the static steering condition (4.201). The static steering condition
is better defined by inner and outer steer angles.

cotd, —cotd; = % (4.206)



328 4 Road Dynamics

A
Y

Fig. 4.18 Illustration of a trapezoidal steering mechanism

To find the vehicle’s turning radius p, we look at the equivalent bicycle model,
shown in Fig. 4.17. The radius of rotation p is perpendicular to the vehicle’s velocity
vector v at the mass center C.

o> =d3+ R} (4.207)
R 1
cotd = T = 5 (cotd; + coté,) (4.208)

and therefore,

p =+/a3 +12cot?§ (4.209)

A device that provides steering according to the static condition (4.201) is called
static steering mechanism, Ackerman mechanism, or Ackerman geometry. There
is no practical mechanical linkage steering mechanism that can provide the static
steering condition perfectly for every angle. However, we may design a multi-bar
linkages to work close to the static condition and be exact at few angles. The ideal
solution, however, would be steering by wires and controlling every wheel’s steer
angle independently. |

Example 108 Trapezoidal steering mechanism.

The simplest practical steering mechanism that provides more steer angle to the
inner wheel than the outer wheel is the trapezoidal steering mechanism as shown
in Fig. 4.18. The trapezoidal mechanism is a symmetric four-bar linkage that has
been used for more than 100 years as a steering connection. The mechanism is
indicated by two parameters: angle § and offset arm length d. A steered position
of the trapezoidal mechanism is shown in Fig. 4.19 to illustrate the inner and outer
steer angles §; and §, (Genta 2007; Soni 1974; Hunt 1978).
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Fig. 4.20 Trapezoidal steering triangle ABC

The relationship between the inner and outer steer angles of a trapezoidal steering
mechanism is given by:

sin (B + 6;) +sin(B —§,)

w w R -
== —/(5 —2sinB) — (cos (B—8,) —cos(B+5))>  (4210)
To prove this equation, we examine Fig. 4.20. In the triangle AABC we can write

(w—2d sin B)> = (w —dsin (B — 8,) — dsin (B + 8;))*
+(dcos (B —8,) —d cos (B + 58;))> (4.211)

and derive Eq. (4.210) with some manipulation.

Usually the functionality of a steering mechanism is tested by comparing the
mechanism with the static steering condition (4.201). Figure 4.21 illustrates the
inner-outer relationship of Eq.(4.210) for / = 2.93m ~ 9.61ft, w = 1.66m ~
5.45ft and respectively for d = 0.4m ~ 13ftand d = 0.2m =~ 0.65ft. The
horizontal axis shows the inner steer angle and the vertical axis shows the outer
steer angle. It shows that for given / and w, a mechanism with 18 deg < 8 < 22 deg
is the best simulator of the Ackerman mechanism if §; < 50 deg.
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Fig. 4.21 Behavior of a trapezoidal steering mechanism, compared to the associated Ackerman
mechanism d = 0.4m
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rotation
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Fig. 4.22 A positive four-wheel steering vehicle

4.3 Four-Wheel Steering

At very low speeds, the kinematic steering condition that the perpendicular lines to
each tire meet at one point must be applied. The intersection point is the furning
center of the vehicle (Jazar et al. 2012).

Figure 4.22 illustrates a positive four-wheel steering vehicle, and Fig.4.23
illustrates a negative 4W S vehicle. In a positive 4W S configuration the front and
rear wheels steer in the same direction, and in a negative 4W S configuration the
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Fig. 4.23 A negative four-wheel steering vehicle

front and rear wheels steer opposite to each other. The kinematic condition between
the steer angles of a 4W S vehicle is

t80f — COLS;
COt8op — cot 8y = L — Lr S0l T EO0 4.212)
l [ cotd, —cots;,

where w ¢ and w, are the front and rear tracks, §; and 8,5 are the steer angles of the
front inner and outer wheels, §;, and §,, are the steer angles of the rear inner and
outer wheels, and / is the wheelbase of the vehicle. We may also use the following
more general equation for the kinematic condition between the steer angles of a
4W S vehicle

wy  wyCcotd s —cotd sy

cotdf —cotdy = — —

(4.213)
l [l cotd,, —coté,;

where & 7 and § ¢, are the steer angles of the front left and front right wheels, and
8,1 and &, are the steer angles of the rear left and rear right wheels.

If we define the steer angles according to the sign convention shown in Fig. 4.24,
then Eq. (4.213) expresses the kinematic condition for both positive and negative
4W S systems. Employing the wheel coordinate frame (x,, yy, Zy), We define the
steer angle as the angle between the vehicle x-axis and the wheel x,,-axis, measured
about the z-axis. Therefore, a steer angle is positive when the wheel is turned to the
left, and it is negative when the wheel is turned to the right.

Proof The slip-free condition for wheels of a 4W S in a turn requires that the
normal lines to the center of each tire-plane intersect at a common point. This is
the kinematic steering condition.
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Fig. 4.24 Sign convention for steer angles

Figure 4.25 illustrates a positive 4W S vehicle in a left turn. The inner wheels
are the left wheels that are closer to the turning center O. The longitudinal distance
between point O and the axles of the car are indicated by ¢ and ¢, measured in the

body coordinate frame.

The front inner and outer steer angles §;r, 6, may be calculated from the
triangles AOAE and AOBF, while the rear inner and outer steer angles §;,, 8,,
may be calculated from the triangles AODG and AOCH as follows.

tan 8 a
ano;f = W
o7
2

c1
tand,r = Wy
1+ =
2

c
tand;, = zw
R ——
2
tan 8, = Czwr
R+ —
)

(4.214)

(4.215)

(4.216)

(4.217)
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Fig. 4.25 Tllustration of a positive four-wheel steering vehicle in a left turn

Eliminating R,

C1l 1 Cl

tand; s - +

1
R1=—wf-|—

> (4.218)

tan §,f

between (4.214) and (4.215) provides the kinematic condition between the front
steering angles 6;y and §,.

wf
cotdyr — cotdjy = — (4.219)
Cl
Similarly, we may eliminate R
1 1
Ri=-w+ —2 = ——w, + —2 (4.220)

2 tand;, 2 tan §,,

between (4.216) and (4.217) to provide the kinematic condition between the rear
steering angles §; and §,,.

cotd,, — cot 8y = -~ (4.221)
e
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Fig. 4.26 [Illustration of a negative four-wheel steering vehicle in a left turn

Using the constraint
cr—cr=1 (4.222)

we may combine Eqs. (4.219) and (4.221)

u)f Wy

— =1 (4.223)
COtdyf — COtS;r  COLdyr — COLS;y

to find the kinematic condition (4.212) between the steer angles of the front and rear
wheels for a positive 4W S vehicle.

Figure 4.26 illustrates a negative 4W S vehicle in a left turn. The inner wheels
are the left wheels that are closer to the turning center O. The front inner and outer
steer angles §; ¢, 8,7 can be calculated from the triangles AOAE and AO BF, while
the rear inner and outer steer angles §;,, 8, may be calculated from the triangles
AODG and AOCH as follows.

tan 85 = o (4.224)
=y

tan 8,y = c—lwf (4.225)
Ry + —

2
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—tand;, = —— 5~ (4.226)

R — —

2
—tand, = — o (4.227)

Ri + —

1+ >

Eliminating R
Ry = tu, 4+ Lo, 441 (4.228)
=—w =——w .
! 2 ! tand; s 2 ! tan §,f

between (4.224) and (4.225) provides us with the kinematic condition between the
front steering angles §;¢ and 8, .

COt 8oy — cotdif = —L (4.229)
cl

Similarly, we may eliminate R

Ri= 2wy 4+ -2 L+ 22 (4.230)
=-w,+——=—=w .
P= 2 T an Sir 27" tané,,

between (4.226) and (4.227) to provide the kinematic condition between the rear
steering angles §;, and §,,.

cotd,, — cot 8y = -~ (4.231)
1)
Using the constraint
c1—ca=1 (4.232)
we may combine Eqs. (4.229) and (4.231)
wr wy

— =1 (4.233)
COtdyf — COtS;r  COLSyr — COLS;y

to find the kinematic condition (4.212) between the steer angles of the front and rear
wheels for a negative 4W S vehicle.

Using the sign convention of Fig. 4.24, we may re-examine Figs. 4.25 and 4.26.
When the steer angle of the front wheels are positive, then the steer angle of the rear
wheels are negative in a negative 4W S system, and are positive in a positive 4W .S
system. Therefore, Eq. (4.213)

cotd  — cotd
COt(Sfr —COt(Sf[ = ﬂ — ﬂ#

4.234
l [l cotd,, —coté,; ( )

expresses the kinematic condition for both positive and negative 4W S systems.
Similarly, the following equations can uniquely determine c; and ¢, regardless of
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the positive or negative 4W S system.

U)f

el (4.235)

cotd fr — cotd sy
Wy

= 4.236
€ cotd,r — cotd,; ( )

Four-wheel steering or all wheel steering AW .S may be applied on vehicles to
improve steering response, increase the stability at high speed maneuvering, or
decrease turning radius at low speeds. A negative 4W § has shorter turning radius R
than a front-wheel steering (F W S) vehicle.

For a FW S vehicle, the perpendicular to the front wheels meet at a point on the
extension of the rear axle. However, for a4W S vehicle, the intersection point can be
any point in the xy plane. The point is the turning center of the car and its position
depends on the steer angles of the wheels. Positive steering is also called same steer,
and a negative steering is also called counter steer. ]

Example 109 Steering angles relationship.
Consider a car with the following dimensions.

[=28m wr=135m w, =1.4m 4.237)

The set of Egs. (4.214)—(4.217) which are the same as (4.224)—(4.227) must be used
to find the kinematic steer angles of the wheels. Assume one of the angles, such as

8;r = 15deg (4.238)

is known as an input steer angle. To find the other steer angles, we need to know
the position of the turning center O. The position of the turning center can be
determined if we have one of the three parameters ci, c2, R;. To clarify this fact,
let us assume that the car is turning left and we know the value of ;5. Therefore,
the perpendicular line to the front left wheel is known. The turning center can be
any point on this line. When we pick a point, the other wheels can be adjusted
accordingly.

The steer angles for a 4W S system is a set of four equations, each with two
variables.

Sif =8if (c1.R) 8o =8of (c1, R1) (4.239)
3ir = 8ir (2, R1) dor = 8or (c2, R1) (4.240)
If ¢y and R are known, we will be able to determine the steer angles §;¢, 8,7, Jir,
and §,, uniquely. However, a practical situation is when we have one of the steer

angles, such as §;¢, and we need to determine the required steer angle of the other
wheels, 8,¢, 8;r, 8or. It can be done if we know ¢y or R;.
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The turning center is the curvature center of the path of motion. If the path of
motion is known, then at any point of the road, the turning center can be found in
the vehicle coordinate frame.

In this example, let us assume

Ri =50m 4.241)
therefore, from Eq. (4.214), we have

~ w; o 135\ 7w
¢l = (R1 - )tan&f - <50 : )tan 5 =13217m (4.242)

Because ¢; > [ and §;y > O the vehicle is in a positive 4W S configuration and the
turning center is behind the rear axle of the car.

er=ci —1=13217-2.8=10.417m (4.243)

Now, employing Eqgs. (4.215)—(4.217) provides us the other steer angles.

L _, 13217
(ng = tan —wf — tan W
R+ — 50 4+ ——
2 + 2
— 0.25513rad ~ 14.618 deg (4.244)
10.417
(Szr—tanl wrza ! 14
Ry — > 50 — —
2
= 0.20824rad ~ 11.931 deg (4.245)
10.417
Sor = tan_l C—Zwr = tan_l ﬁ
Ry + — 50+ —
2 T 2
= 0.20264rad ~ 11.61 deg (4.246)

Example 110 Position of the turning center.
The turning center of a vehicle, in the vehicle body coordinate frame, is at a point
with coordinates (xp, yo). The coordinates of the turning center are

wy
=—-wn—-—c=—a)— ———— 4.247
to @2 @ cotS, — cotd;, ( )

1
I+ 3 (wytand;r — w, tan ;)

=R = 4.248
Yo ! tan ;s — tand;, ( )
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Equation (4.248) is found by substituting c; and c¢; from (4.228) and (4.230)
in (4.232), and defining yo in terms of §;r and §;,. It is also possible to define
Yo in terms of §,¢ and 8,

Equations (4.247) and (4.248) can be used to define the coordinates of the turning
center for both positive and negative 4W S systems.

As an example, let us examine a car with

[=28m wy =135m w, =1.4m a=a (4.249)

8if = 0.26180rad ~ 15deg

8or = 0.25513rad ~ 14.618 deg

8ir = 0.20824rad ~ 11.931 deg

8or = 0.20264rad ~ 11.61 deg (4.250)

and find the position of the turning center.

Wy
Xxo=—-a— ———
cot S, — cotdi,

28 14
_ 28 — —11.802 4251
2 c0t0.20264 — cot0.20824 802m (4.251)

1
I+ 3 (wytand;r — w, tan ;)

Yo = tand; s — tand;,

1
2.8+ 3 (1.35tan 0.26180 — 1.4 tan 0.20824)

- =5001lm  (4.252)
tan 0.26180 — tan 0.20824

The position of turning center for a F W S vehicle is at

1 l
- _ ——— 4253
X0 a Yo =Zwy + ans; ( )
and for a RW S vehicle is at
_ L, ! (4.254)
to=da Yo =t tan §;, '

Example 111 Curvature radius.

Consider a road as a path of motion that is expressed mathematically by a
function ¥ = f(X), in a global coordinate frame. The radius of curvature R, of
such a road at point X is
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S O

where

. dy v d’y

Y'=— = — 4.256
dX dXx? ( )
Consider a road with a given equation
Xz /! X 1 1
y = 2 = = — (4.257)
200 100 100

where both X and Y are measured in meter [ m]. The curvature radius of the road is.

R (L+77) " 100 X241 v (4.258)
£ Y” - 10,000 + '
At X = 30m, we have
9 3 1
Y=-m Y == "= _—m! (4.259)
2 10 100
and therefore,
R, = 113.80m (4.260)

Example 112 Autodriver.

Consider a car at the global position (X, Y) that is moving on a road, as shown in
Fig.4.27. Point C indicates the center of curvature of the road at the car’s position.
The center of curvature of the road is supposed to be the turning center of the car at
the instant of consideration (Jazar 2010b; Bourmistrova et al. 2011).

There is a global coordinate frame G attached to the ground, and a vehicle
coordinate frame B attached to the car at its mass center C. The z and Z axes are
parallel and the angle v indicates the angle between the X and x axes. If (X¢, Y¢)
are the coordinates of C in the global coordinate frame G, then the coordinates of
C in B would be

Bre = R,y (Grc - Gd) (4.261)
xc cosy siny 0 Xc X
yc | = | —siny cosyr 0 Yce |- | Y
0 0 0 1 0 0
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> X

Fig. 4.27 Tllustration of a car that is moving on a road at the point that O is the center of curvature

Xc—X)cosy + (Yc — Y)siny
= | Yc—=Y)cosy — (X¢c — X)sinyr (4.262)
0

Having coordinates of C in the vehicle coordinate frame is enough to determine Ry,
c1, and cp.

Ri=yc=Jc—-Y)cos¥y — (Xc — X)siny (4.263)
co=—ay—xc=—(Xc—X)cosy — (Yc—Y)siny —ay (4.264)
cir=c+l=—Xc—X)cosyy — (Yc —Y)siny + a; (4.265)

Then, the required steer angles of the wheels can be uniquely determined by
Eqgs. (4.214)—(4.217).

It is possible to define a road by a mathematical function ¥ = f(X) in a global
coordinate frame. At any point X of the road, the position of the vehicle and the
position of the turning center in the vehicle coordinate frame can be determined.
The required steer angles can accordingly be set to keep the vehicle on the road
and run the vehicle in the correct direction. This principle may be used to design an
autodriver.

As an example, let us consider a car that is moving tangent to a road with a given
equation

X2

Y = — 4.2
200 (4.266)
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where both X and Y are measured in meter [ m]. At X = 30m, we have Y =4.5m
and Y/ = 0.3, Y” = 0.01, and therefore

dy
Y = arctan Ix = arctan 0.3 = 0.29146rad ~ 16.7 deg (4.267)

The curvature radius at (30, 4.5), from Example 111, is
R =113.80m (4.268)
The tangent line to the road is
Y —45=03(X—-30) (4.269)

and therefore the perpendicular line to the road is
10
Y —-45= -3 (X —30) (4.270)
Having R, = 113.80m,

(1+v2)"? (1403
Re = = oo = 1138m (4.271)

we have
(X —Xc) 4+ ¥ —Ye)P=R? (4.272)

and we can find the global coordinates of the curvature center (X ¢, Y¢) at the proper
intersection of the line (4.270) and circle (4.272).

Xc =-2.7002m Yc=1135m (4.273)

The coordinates of the turning center in the body frame would then be

xc cosyr siny O Xc X 0
yc | = | —siny cosy 0 Ye [—| Y = 113.8 (4.274)
0 0 0 1 0 0 0

Example 113 Curvature equation.
Consider a vehicle that is moving on a path Y = f(X) with velocity v and
acceleration a. The curvature k = 1/R of the path that the vehicle is moving on is

1 an
K = — =

— 4.275
R v ¢ )
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where a, is the normal component of the acceleration a. The normal component a,
is toward the rotation center and is equal to

v 1
anz‘—xa‘z—lvxaﬂ
v v
YX — Xy
= — (ayvx —axvy) = ——— 4.276)
v /XZ + Y2
and therefore,
YX — Xy YX — Xy 1 4277
K= . . = : . .
(Xz + y2)3/2 x3 < Y2>3/2
1+ —
XZ
However,
dy Y
=== 4.278)
dX X
., dY d (Y d (Y\1 YX-Xy
YVi=—=—|=x)=|)m=—F++ 4.279)
dx? dx \X dt \X/) X X3

and we find the equation for the curvature of the path and radius of the curvature
based on the equation of the path (Jazar 2011).

Y//

= 4.280
T (4250
3/2 2o von3/2
1 (1+v? X2+y
R =—= ( ) = ( — ) (4.281)
K Y” YX - XY
As an example, let us consider a road with a given equation
x2
Y = — 4.282
200 ( )
At a point with X = 30m, we have
9 3 1
Y=-m Y =-— " -1 (4.283)
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and therefore,
K =28.7874 x 103 m™! R, = 113.80m (4.284)

Example 114 Center of curvature in global coordinate frame.
Assume a planar road being expressed by a parametric equation in a global frame
as

X=X Y=Y(@) (4.285)
The perpendicular line to the road at a point (Xo, Yp) is:

Y =Yo— (X — Xo) /tan@ (4.286)

dy dy/dt Y
tanf = — = / = - (4.287)
dX ~— dX/dt X

The curvature center (X, Y¢) is on the perpendicular line and is at a distance R,
from the point (X, Y) = (Xo, Yo). Therefore,

Y (X2 + 72 X(X2+7v?
YX - XY YX - XY

Employing Eq.(4.274), the curvature center in the body coordinate frame of a
moving vehicle that its x-axis makes the angle ¥ with the global X -axis is

xc = Xc—X)cosyy + (Ye —Y)siny

= (Xsiny — Y cos ) X+ v (4.289)
B YX - Xy '
ye =Fc—Y)cosy — (X¢c — X)siny
(X cosy + ¥ siny) X+ v (4.290)
= Cos sin e .
YX - XY
As an example, the global coordinate frame of a parabolic path
2
X =t Y = (4.291)

~ 200



344 4 Road Dynamics

would be
X24+y2 .
Xe=X— A 05044 x 1021 — 0.000173
¥X - Xy
X2 4+v? . 5
Yo=Y+ X =0.015¢2 + 100

Example 115 An elliptic path and curvature center.
Consider an elliptic path with equations

X =acost Y =bsint

a =100m b=65m

The curvature center of the road in the global coordinate frame is at

Y(X24+7Y%) a2-p> 5 231
Xc=X— —= — = cos”t = —cos” ¢
YX - XY a 4
X(X24+7Y%)  a*—b* 5 —1155
Yc =Y + —= — = — sin” t = sin
YX - XY b

Therefore, the curvature center in the vehicle coordinate frame would be

X2 472
YX — XY

2 2
a-—b>b
= ( cos’ t —acost) cos ¥
a

xc = (Xsiny — ¥ cos )

2 _ 32
—-b
- (a 3 sin’ 1 +bsint> sin Y

X2 4y?

yc = (XCOSW-FYSIHW)W

2 _ 12
—b
=— (a sin3t+bsint) cos Y
a

a® — b? 3 .
— cos’t —acost | siny

a

Figure 4.28 illustrates the elliptic path and its curvature center.

3

t

(4.292)

(4.293)

(4.294)
(4.295)

(4.296)

(4.297)

(4.298)

(4.299)
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Fig. 4.28 An elliptic path and its curvature center

4.4 Chapter Summary

Passenger cars are developed to move on smooth paved pre-designed roads. To keep
vehicles on road, we need a steering mechanism to provide steer angle as an input to
the vehicle dynamic system. Ideally, all wheels of a vehicle should be able to steer
independently such that the vehicle follows the desired path at the given speed. In
this chapter we review steer and road dynamics.

Roads are made by continuously connecting straight and circular paths by proper
transition turning sections. Having a continuous and well-behaved curvature is a
necessary criterion in road design. The clothoid spiral is the best smooth transition
connecting curve in road design which is expressed by parametric equations called
Fresnel Integrals. The curvature of the clothoid curve varies linearly with arc length
and this linearity makes clothoid the smoothest driving transition curve. Having
a road with linearly increasing curvature is equivalent to entering the path with a
steering wheel at the neutral position and turning the steering wheel with a constant
angular velocity. This is a desirable and natural driving action.

Ideally, perpendicular lines to all wheels of a vehicle intersect at a single point
called the kinematic center of rotation. When a vehicle is moving very slowly, we
may assume the velocity vector of each wheel is in their tire plane. Therefore, the
perpendicular lines to the tire planes intersect at the kinematic center of rotation
of the vehicle, somewhere on the rear axis. However, when the vehicle moves
faster, the actual center of rotation will move away from the kinematic center of
rotation. Steering mechanism relates the left and right steerable wheels and provide
a mathematical relationship to calculate all steer angles based on the angle of the
steering wheel or the steer angle one of the wheels.
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4.5 Key Symbols

4W S Four-wheel-steering

a,b,c,d Lengths of the links of a four-bar linkage

a; Distance of the axle number i from the mass center
A B, C Input angle parameters of a four-bar linkage
AWS All-wheel-steering

b1 Distance of the hinge point from rear axle

by Distance of trailer axle from the hinge point

c Stability index of a trailer motion

1 Longitudinal distance of turn center and front axle
1) Longitudinal distance of turn center and rear axle
C 4W S factor

C Mass center, curvature center

Ci,Cp, - Constants of integration

d Arm length in trapezoidal steering mechanism

e Error

e Length of the offset arm

FWS Front-wheel-steering

g Overhang distance

J Link parameters of a four-bar linkage

l Wheelbase

Iy Steering length

n Number of increments

0] Center of rotation in a turn, curvature center

)4 Perturbation in u

q Perturbation in v

r Yaw velocity of a turning vehicle

r Position vector of a car at the hinge

R Radius of rotation at mass center

R, Radius of rotation at the center of the rear axle for FW S
R Horizontal distance of O and the center of axles
R, Trailer’s radius of rotation

R; Radius of rotation at the center of the trailer axle
Ry Radius of the rear wheel

R, Curvature radius
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RWS
S
t
u

X,%Zs X
Z=T—S

5 = Sfl
8y =0,
6Ac

S

W = Wyj
Wo = Wro

Rear wheel steering

Position vector of a trailer at the axle center
Time

Temporary variable in car-trailer analysis
Steering rack translation

Unit vector

Vehicle velocity, temporary variable in car-trailer analysis

Speed of the inner rear wheel

Speed of the outer rear wheel

Track

Front track

Rear track

Displacement

Position vector of a trailer relative to the car

Arm angle in trapezoidal steering mechanism
cot-average of the inner and outer steer angles
Front left wheel steer angle

Front right wheel steer angle

Steer angle based on Ackerman condition
Front left wheel steer angle

Front right wheel steer angle

Inner wheel

Rear left wheel steer angle

Rear right wheel steer angle

Outer wheel

Steer command

Steer angle difference

Angle between trailer and vehicle longitudinal axes
Curvature of a road

Eigenvalue

Angular velocity

Angular velocity of the rear inner wheel
Angular velocity of the rear outer wheel
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it @ ‘l\'
1

(100,40) l
B

(80,10,35deg) (90,10,45deg)
B 7
- - (40,0)

Fig. 4.29 Two straight roads need to be connected. The connecting clothoids must meet at a given
middle point

Exercises

1. Radius of rotation.
In Fig. 4.16 show that the mass center of the steered vehicle will turn on a circle

with radius p,
p =+/a3 +12cot?§ (4.300)

2. 90 deg connection to straight roads.
In Fig. 4.29, connect road A at point (40, 0) m to road B at point (100, 40) m. The
connecting road will be made by two pieces of clothoids. The first one begins
from road A to a designed point at a certain slop angle, and the second piece
starts from the middle point and ends to the road B. Assume the middle point is:

(a) point C at (90, 10) m and at slope 45 deg.
(b) point D at (80, 10) m and at slope 35 deg.

3. Radius of rotation.
Consider a two-axle truck that is offered in different wheelbases.

[ =109in [ =132.51in ! =150.0in [ =176.0in (4.301)
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AY ((_?}1
~1
/ c, (50,40)
” <. (100,40)
(40,40) Cs B
O
\ (80,10,35deg) (90,10,45deg)
\—\ D ¢
A .
(40,0) !

Fig. 4.30 Two circular roads need to be connected. The connecting clothoids must meet at a given
middle point

If the front track of the vehicles is
w = 70in (4.302)

and a; = a», calculate the radius of rotations for § = 30 deg.

4. Connecting road with given a and «.
Assume a = 200. determine the clothoid connecting road from point (0, 0) m to
a point at which the slope is as below. Determine the coordinate of the end point,
slope, and coordinate of the curvature center of the road at the end point.

() k = 0.05
() « =0.01
©) k = 0.02

5. 90 deg connection to circular roads.
In Fig. 4.30, assume the road A and B to be circular path with given center of
rotation. Connect road A at point (40, 0) m to road B at point (100, 40) m. The
connecting road will be made by two pieces of clothoids. The first begins from
road A to a designed point at a certain slop angle, and the second piece starts
from the middle point and ends to the road B. Assume the middle point is:

(a) point C at (90, 10) m and at slope 45 deg.
(b) point D at (80, 10) m and at slope 35 deg.
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<
A Y Cg/f
/ (50,40)
| e ° (100,40)
C,rg B
-, A X
e (40,0)

Fig. 4.31 A straight load needs to be connected to a circular road

6. Using design chart.
Use the design chart to connect a straight road to a circular path with

(a) radius R = 100 m for a = 200.
(b) radius R = 100 m for a = 100.
(¢) radius R = 200 m for a = 100.
(d) radius R = 200 m for a = 200.

7. Bank angle of the road.
The straight road A in Fig.4.31 will be connected to road B using clothoid
connecting curve. Determine the required clothoid road.

8. Trapezoidal steering mechanism.
Derive the steering equations for the trapezoidal steering mechanism of Fig. 4.19
if the d link is unequal for left and right, d = 0.9d,..



Appendix A
Trigonometric Formulas

Definitions in Terms of Exponentials

eiz +e—iz
COSZ == —m——
2
eiz _ efiz
sing = -
2i
eiz _ e—iz
tang = —————
i (ezz + e—zz)

e’ =cosz+ising

e '* =cosz—ising

Angle Sum and Difference
sin(a + B8) = sina cos 8 % cos & sin 8

cos(a £+ B) = cosa cos 8 F sina sin 8

tano £ tan B

tano £ ) = ————
1 Ftanatan 8

t t 1

cot(a = B) = cotecolP+ - F¥

cot B £ cotw
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352 A Trigonometric Formulas

Symmetry
sin(—a) = —sin«
cos(—a) = cos

tan(—a) = —tanao

Multiple Angles

2tan o

sin(2e) = 2sinecosag = ————
1 + tan? &

2 2

cos(Ra) = 2cos’a —1=1—2sina = cos’ a — sin

2tan o
) = T ana

cot?a — 1
Cot(2a) = m

sin(3x) = —4 sin’ o + 3 sina
cos(3a) = 4cos’ o — 3cosa

—tan o + 3tana
—3tan?a + 1

tan(3a) =

sin(4a) = —8 sin’® « cos o + 4 sin cos
cos(4a) = 8cos*a — 8cosa + 1

—4tan® o + 4tana

tan(4o) =
an(4e) tano — 6tanZ o + 1

sin(5a) = 16sin’ @ — 20sin® o 4 5sina
cos(Sa) = 16 cos® a — 20 cos> & + 5 cos o

sin(na) = 2sin((n — ) cosa — sin((n — 2)a)

(A.10)
(A.11)
(A.12)

(A.13)

(A.14)

(A.15)

(A.16)

(A.17)

(A.18)

(A.19)

(A.20)

(A21)

(A22)

(A.23)
(A.24)

(A.25)
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cos(na) = 2cos((n — 1)a) cosa — cos((n — 2)a)

tan((n — Do) + tana
1 —tan((n — Do) tan«

tan(na) =

Half Angle

1+cosot
cos =+/—
/1 —coso
o 1 —cosa sin o 1 —cosa
tan(-): - = =:|: -
2 sin o 1+ cosa 1+ cosa

Sll’l

. 2tan 5
sing = ——=—
1+ tan? §
1 —tanz%
cosey = ——=
1 4 tan? §

Powers of Functions
.2 1
sin“ o = 5 (1 — cosRa))
. 1.
sinx cosa = 3 sin(2a)
2 1
cos“a = 3 (1 + cosRa))
. 3 1 . .
sin” @ = 7 (3sin(a) — sin(3a))
2

1
sin“ @ cosa = 7 (cosa — 3 cos(3a))

1
sino cos? o = 1 (sina + sin(3w))
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(A.26)

(A.27)

(A.28)

(A.29)

(A.30)

(A.31)

(A.32)

(A.33)

(A.34)

(A.35)

(A.36)

(A.37)

(A.38)
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1
cos’a = 2 (cos(Ba) +3cosw))
4 1
sin” @ = 3 (3 — 4 cos(Qa) + cos(4a))
.3 r . .
sin” @ cos o = 3 (2sin(2a) — sin(4w))
2 2 1
sin“ o cos“ @ = 3 (1 —cos(4a))
. 3 L. .
sin cos” o = 3 (2sin(2a) + sin(4w))
4 1
cos o = 3 (3 4+ 4cos(2a) + cos(4w))
.5 1 . . .
sin” o = T (10sina — 5sin(3a) + sin(5w))
4 1
sin" ¢ coso = T (2cosa — 3cos(3a) + cos(Sw))
.3 2 1 . . .
sin” o cos“ a = T 2sina + sin(3a) — sin(Sw))
-2 3 1
sin“ o cos” o = T (2cosa — 3cos(3a) — Scos(Sa))

1
sina cos* o = 16 (2sina + 3 sin(3a) + sin(5w))

1
cosd o = T3 (10cosa + 5cos(3a) + cos(Sw))
2 1 — cos(Ru)

tan" o =
1+ cos(Rw)

Products of sin and cos

1 1
cosacosfB = 3 cos(x — B) + 3 cos(a + B)

(A.39)

(A.40)

(A41)

(A42)

(A.43)

(A.44)

(A.45)

(A.46)

(A.47)

(A.48)

(A.49)

(A.50)

(AS51)

(A.52)
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sina sin 8 = %cos(a - pB) — %cos(a + B) (A.53)

. 1. 1 .
sina cos B = 3 sin(e — B) + 3 sin(a + 8) (A.54)

. L. |
cosasin 8 = 3 sin(a + ) — > sin(a — B) (A.55)
sin(a + B) sin(a — ) = cos? B — cos” o = sin® o — sin® B (A.56)
cos(a + B) cos(a — B) = cos® B + sin’ (A.57)

Sum of Functions

sino & sin 8 = 2sin ¢ > cos ¢ :; P (A.58)

coso + cos B = 2cos 5 cos 5 (A.59)
.o . a—pf
cosa — cos B = —2sin sin (A.60)
2 2
i +
tane + tan g = 0@ EP (A.61)
cosa cos B
i +
cote £ cot = SHBED (A.62)
sina sin 8
sina +sinf  tan #
- - = (A.63)
sine —sinf  tan W
sina + sin B8 ot —a+ B (A.64)
cosa — cos 2
sinatsinfp o+ p (A.65)
cosa + cos B 2
sina@ — sin 8 _tana—ﬂ (A.66)

cosa +cosp 2



356 A Trigonometric Formulas

Trigonometric Relations

2

sin® a — sin® B = sin(a + B) sin(e — B) (A.67)

cos’a — cos”> B = —sin(a + B) sin(e — B) (A.68)



Appendix B
Unit Conversions

General Conversion Formulas
N®m? s¢ ~ 4.448% x 0.3048” x b ft’ s¢
~ 4.448% x 0.0254° x b in®s°
1b? ft? s¢ &~ 0.2248% x 3.2808” x N¢m’ s°
1Ib%in” s¢ &~ 0.2248% x 39.37° x N?m? s¢

Conversion Factors

Acceleration

1ft/s? ~ 0.3048 m/s> 1m/s> ~ 3.2808 ft/s’

Angle
ldeg ~ 0.01745rad 1rad =~ 57.307 deg
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358 B Unit Conversions

Area
1in? ~ 6.4516 cm? 1cm? ~ 0.155 in?
1 ft> ~ 0.09290304 m? 1m? ~ 10.764 ft*
1 acre ~ 4046.86 m> 1m? ~ 2.471 x 10~* acre
1 acre =~ 0.4047 ha 1ha ~ 2.471 acre
Damping
INs/m~ 6.85218 x 10~ 21bs/ft 1lbs/ft ~ 14.594Ns/m
INs/m~ 5.71015 x 1073 Ibs/in 1lbs/in ~ 175.13Ns/m
Energy and Heat
1Btu ~ 1055.056] 1]~ 9.4782 x 104 Btu
1cal ~ 4.1868] 1J ~ 0.23885 cal
1kWh ~ 3600kJ 1MJ ~ 0.27778 kW h
1ftlbf ~ 1.355818J 1J =~ 0.737562 ftIbf
Force

11b A~ 4.448222N 1N =~ 0.224811b

Fuel Consumption

1 1/100km ~ 235.214583 mi/gal 1mi/gal ~ 235.2145831/100 km
1 1/100km = 100km/1 1km/1 = 100 1/100km
1 mi/gal ~ 0.425144 km/1 1km/1 &~ 2.352146 mi/gal
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Length
lin ~ 25.4mm lcm ~ 0.3937in
1ft =~ 30.48 cm 1m =~ 3.28084 ft
1mi~ 1.609347km 1km =~ 0.62137 mi
Mass

11b ~ 0.45359kg  1kg ~ 2.2046231b
1slug ~ 14.5939kg 1kg ~ 0.068522 slug
1slug ~ 32.1741b  11b ~ 0.03.1081 slug

Moment and Torque

1lbft ~ 1.35582Nm 1Nm~ (0.737461b ft
1lbin ~ 8.85075Nm 1Nm~ (0.112981bin

Mass Moment

11bft? &~ 0.04214kgm? 1kgm? ~ 23.73 b ft>

Power
1 Btu/h =~ 0.2930711 W 1W =~ 3.4121 Btu/h
1 hp ~ 745.6999 W 1kW ~ 1.341 hp
1hp ~ 5501bft/s 11bft/s ~ 1.8182 x 1073 hp

11bft/h ~ 3.76616 x 1074W 1 W ~ 2655.21bft/h
11bft/min ~ 2.2597 x 10"2W 1 W ~ 44.2541b ft/min
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Pressure and Stress

11b/in® &~ 6894.757Pa 1 MPa ~ 145.04 1b/in>
11b/ft> ~ 47.88 Pa 1Pa ~ 2.0886 x 1072 Ib/ft>
1Pa ~ 0.00001 atm 1l atm ~ 101,325 Pa

Stiffness

IN/m ~ 6.85218 x 10-21b/ft 11b/ft ~ 14.594N/m
IN/m ~ 5.71015 x 10-31b/in 11b/in ~ 175.13N/m

Temperature

°C = (°F—32)/1.8
°F = 1.8°C + 32

Velocity

1 mi/h ~ 1.60934km/h 1km/h 2 0.62137 mi/h
1 mi/h ~ 0.44704 m/s 1 m/s ~ 2.2369 mi/h
1ft/s ~ 0.3048 m/s 1 m/s ~ 3.2808 ft/s

1 ft/min ~ 5.08 x 1073 m/s 1m/s ~ 196.85 ft/min

Volume

lin® ~ 16.39 cm? 1em® ~ 0.0061013 in?
163 ~ 0.02831685m> 1m?> ~ 35.315ft>

1 gal ~ 3.7851 11~ 0.2642 gal

1gal ~3785.41cm® 112 1000cm?
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A
Ackerman
geometry, 328
mechanism, 328
steering, 178, 325, 328
Ackerman condition, 178, 325
Activation functions, 24
Aerodynamic force, 122
Aligning moment, 37, 38
Angle
body-wheel sideslip, 27
camber, 26
sideslip, 26
steering, 326
tire contact, 20
tireprint, 20
tire sideslip, 27
wheel-body sideslip, 27
Arc length, 314
Arctan function, 25
Attitude angle, 80

B
Bernoulli, Jacques, 325
B-frame, 2, 11

Bicycle model, 131, 143, 163,172,239

body force components, 131
coefficient matrix, 240

control variables, 147, 240, 241

coordinate frame, 78, 79
curvature response, 163

equations of motion, 239, 241
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force system coefficients, 238
global sideslip angle, 136
input vector, 147,241
kinematic steering, 138
neutral steer, 170

Newton—Euler equations, 144, 174

oversteer, 170

roll damping, 237, 238
roll stiffness, 237, 238
sideslip coefficient, 238
sideslip response, 164
stability factor, 170, 171
torque coefficient, 237
understeer, 170

vehicle velocity vector, 136

Body

frame, 1, 11

Body-wheel sideslip, 27

C

Camber

angle, 26, 43,46
force, 43
moment, 46
stiffness, 44, 49
torque, 45

trail, 45

trust, 43

Cesaro, Ernesto, 325
C-frame, 2, 5,7,9, 11, 130
Circumferential slip, 18
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Clothoid, 297
arc length, 297
curvature, 298
figure 8, 315,319
history, 325
radius, 298
road, 297
scaling parameter, 297
sharpness, 300
tangent angle, 298
Combined force, 49, 63, 65, 68

approximate elliptic model, 68

camber effect, 68

diamond mode, 69

elliptic model, 50

experimental data, 65

velocity dependency, 63
Combined slip, 50
Contact patch, 2
Coordinate frame

body, 80

global, 80

tire, 12

vehicle, 12,78, 80, 215

wheel, 12, 127

wheel-body, 12, 127
Cornering stiffness, 31
Cornu, Alfred, 325
Cornu spiral, 325
Crouse angle, 80
Cubic

function, 36
Curvature response, 163

D
Differential geometry
space curve, 314
Directional
cosine, 323
Dynamics
lateral force, 25

tire, 1, 13, 15, 17, 25, 31, 4044, 48-50, 68,

69

E

Effective tire radius, 19
Ellipse condition, 58, 59
Euler, Leonard, 325

F
Force
aerodynamic, 122

bicycle roll vehicle, 227

gravitation, 124
longitudinal, 16
shear, 49
tangetial, 49
wind, 123
Force system
planar, 125
unsaturated, 139
Formula
Leibniz, 300
Four-wheel model

Newton—Euler equations, 260

Four wheel steering, 330
Four-wheel vehicle, 140
dynamics, 140

Newton—Euler equations, 260

Frame

body, 1, 11

tire, 1,4, 5,9, 11

wheel, 1,5, 11

wheel-body, 1, 5,9, 11
Fresnel Integrals, 297
Friction ellipse, 58
Front-wheel-steering, 325
Function

activation, 24

arctan, 25

cubic, 36

Heaviside, 15, 24

logistic, 24

nonlinear-saturation, 35
proportional-saturation, 16, 34
saturation, 15, 24, 25,49

Sigmoid, 24
TV-shaped, 65

G

Global sideslip angle, 27, 136, 137

Gravitation force, 124
Grip, 39

H
Heading angle, 80

Heaviside function, 15, 24

Index



Index

L
Lateral

tire force, 25
Lateral force

cubic model, 36
Lateral stiffness, 49
Leibniz formula, 300
Logistic function, 24
Longitudinal

tire force, 14, 16
Longitudinal force, 15

velocity-dependent, 23
Longitudinal friction, 16
Longitudinal slip, 15-18
Longitudinal slip ratio

rate, 23

M

Mechanism
steering, 328
trapezoidal steering, 328

N

Neutral steer, 170-172

Nonlinear-saturation
function, 35

(0}
Oversteer, 170-172

P
Pitch moment, 79
Planar

vehicle dynamics, 115, 119, 122, 125, 139

Planar dynamics, 143, 172

body force components, 131

control variables, 147
coordinate frame, 78, 79
curvature response, 163

global sideslip angle, 136

input vector, 147
kinematic steering, 138
neutral steer, 170

Newton—Euler equations, 115, 144, 174

oversteer, 170

sideslip response, 164
stability factor, 170, 171
steady-state turning, 163
understeer, 170

vehicle velocity vector, 136

wheel number, 84

Pneumatic trail, 37, 38
Proportional-saturation

R

function, 34

Road

bank angle, 94, 96

banked, 96, 97

clothoid, 297, 298, 315,319
curvature, 298
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design, 297, 302, 303, 305, 308-310, 314,

315,319,323, 324
history, 325
radius, 298
sharpness, 300
spatial, 323, 324
spiral, 297
tangent angle, 298

Road design, 297
Road dynamics, 297
Roll angle, 79,216
Roll dynamics, 215

coefficient matrix, 240
control variables, 240, 241

equations of motion, 239, 241
force system coefficients, 238

input vector, 241
lateral force, 230

Newton—Euler equations, 215, 219, 260

roll-steering angle, 231

roll damping, 237, 238

roll stiffness, 237, 238
sideslip angle, 231

sideslip coefficient, 238
tire slip coefficient, 230
torque coefficient, 237
vehicle slip coefficient, 234
wheel force system, 221

Roll moment, 79

Roll thrust, 233, 290
Roll-steer, 261

Roll-steer angle, 233, 290
Rotation

S

Saturation function, 15, 16, 24, 25,49

radius of, 326

Sideslip angle, 26, 27, 80

tire, 27
wheel-body, 27

Sideslip coefficient, 28
Sideslip response, 164
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Sideslip stiffness, 31
Sigmoid function, 24
Slip moment, 38
Slip ratio, 15, 18

Space

curve, 314
Spatial

road, 323, 324
Spiral

clothoid, 310

Cornu, 325

Fresnel, 325
Stability factor, 170, 171
Stall, 93
Steady state
center of rotation, 170
curvature response, 163
sideslip response, 164
stability factor, 170
Steering, 178,297, 325, 326, 331
Ackerman condition, 178, 325
autodriver, 339
bicycle model, 326, 328
counter steer, 336
four wheel, 330-339
front wheel, 178, 325
inner-outer relationship, 326, 329
inner steer angle, 178, 325, 326, 331
inner wheel, 178, 325, 326,331
kinematic, 297
kinematic condition, 178, 325
mechanism, 328
outer steer angle, 325, 326, 331
outer wheel, 178, 325, 326, 331
radius of curvature, 338
same steer, 336
sign convection, 336
sign convention, 331
static steering, 326
static steering condition, 326
steer angle, 326
trapezoidal mechanism, 328, 329
turning center, 325, 330, 336-338
turning radius, 326, 328, 335, 336
Stiffness
camber, 49
lateral, 49
Symbols, xi

T

T-frame, 2,4, 5,9, 11
Talbot, Arthur, 325
Talbot curve, 325

Index

Tangential slip, 18
Taylor series, 20
Tire

aligning moment, 14, 38,47

bank moment, 14

bore torque, 14

camber angle, 26, 46, 47,49

camber arm, 46

camber effect, 68

camber force, 43, 46

camber moment, 46

camber stiffness, 44, 49

camber torque, 45

camber trail, 45

camber trust, 43

circumferential slip, 18

combined force, 49, 50, 58, 68, 69

combined slip, 58

contact angle, 20

coordinate frame, 26

cornering force, 39

cornering stiffness, 31

drag force, 39

dynamics, 1, 31,43, 49, 50, 68, 69

effective radius, 19, 20

ellipse condition, 58, 59

equivalent radius, 20

equivalent speed, 17

force system, 13, 40-42, 44,48, 49

forward force, 13

forward velocity, 19

frame, 1,4, 5,9, 11

friction, 22

friction coefficient, 16, 32

friction ellipse, 58

geometric radius, 19, 20

grip, 39

impossible force zones, 76

lateral drop factor, 51, 54, 59, 70, 74

lateral force, 13,31, 33, 35, 36, 39, 40,
42-44, 46, 50, 51

laterally deflected, 32

lateral stiffness, 32, 49

limit slip curve, 55

limit slip line, 75

load, 20

longitudinal drop factor, 50, 54, 59, 69,
74, 75

longitudinal force, 13-15, 50, 68, 69

longitudinal friction, 22

longitudinally deflected, 33

longitudinal slip, 15, 16,49

maximum force, 76

maximum velocity, 22
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neutral position, 1
non-radiale, 49
normal force, 14
overturning moment, 14
pitch moment, 14
plane, 26
pneumatic trail, 38
possible tire force zone, 57
radiale, 49
rest position, 1
rolling resistance torque, 14
roll moment, 14
saturation force, 43
saturation values, 50, 51, 69, 70
self aligning moment, 14
shear force, 49
side force, 39
sideslip angle, 26, 27,31, 46
sliding, 64
sliding line, 33
slip coefficient, 16
slip factors, 50, 51
slip models, 22, 23
slip moment, 38
slip ratio, 15, 17, 18,20-23, 65
stiffness, 32
stress distributions, 38
tangential slip, 18
tangetial force, 49
tilting torque, 14
tireprint, 2, 41
tireprint angle, 20
tireprint model, 48
traction force, 13
vertical force, 14
wheel load, 14
yaw moment, 14
Tireprint, 2, 26,41, 42,48
angle, 20
Track, 326
Transformation
homogeneous, 6, 7,29
tire to vehicle frame, 9
tire to wheel-body frame, 5-7, 29
tire to wheel frame, 4, 5
wheel-body to vehicle frame, 11
wheel to tire frame, 2, 5
wheel to wheel-body frame, 7
Trapezoidal steering, 328, 329
Turning center, 330, 336-338
TV-shaped function, 65
Two-wheel vehicle, 131, 138, 143, 163, 172,
239
body force components, 131

U
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coefficient matrix, 240

control variables, 147, 240, 241
coordinate frame, 78, 79
curvature response, 163
equations of motion, 239, 241
force system coefficients, 238
global sideslip angle, 136

input vector, 147,241
kinematic steering, 138

neutral steer, 170
Newton—Euler equations, 144, 174
oversteer, 170

roll damping, 237, 238

roll stiffness, 237, 238

sideslip coefficient, 238
sideslip response, 164

stability factor, 170, 171
torque coefficient, 237
understeer, 170

vehicle velocity vector, 136

Understeer, 170-172
Unit system, xi

v

Vehicle

accelerating, 88, 90-92

banked road, 94, 96

longitudinal dynamics, 88, 90-92, 94, 96
maximum acceleration, 90, 92

stall, 93

Vehicle dynamics, 115, 172

aerodynamic effect, 147

aerodynamic force, 122

aligning moment, 80

attitude angle, 80

bank moment, 79

bicycle model, 131, 135, 143, 163, 172
bicycle roll model, 227

body force components, 131

body force system, 125, 139
coefficient matrix, 147, 240
comments, 122

control variables, 147, 240, 241
crouse angle, 80

curvature response, 163

equations of motion, 136, 238, 239, 241
force system, 79

force system coefficients, 238

forward force, 79

four-wheel planar, 172
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Vehicle dynamics (cont.) traction force, 79
four-wheel roll, 255 two-wheel model, 131, 135, 143, 163, 172
global equations, 119 understeer, 170-172
heading angle, 80 vehicle load, 79
input vector, 147,241 vehicle slip coefficient, 234
Lagrange method, 121 vehicle velocity vector, 136
lateral force, 27, 79, 142, 230 vertical force, 79
lateral moment, 79 weight transfer, 88
longitudinal force, 79 wheel force system, 221
longitudinally weight transfer, 88 wheel frame, 127
neutral, 171, 172 wheel number, 84
neutral steer, 170 yaw angle, 79, 216
Newton—Euler equations, 115, 144, 174, yaw moment, 80

215,260 yaw rate, 79,216
normal force, 79 Vehicle kinematics
oversteer, 170-172 velocity distribution, 87

overturning moment, 79
path of motion, 88

pitch angle, 79,216 w

pitch moment, 79 Weight transfer, 88, 91-94, 97, 98, 102, 103
pitch rate, 79,216 banked road, 94, 97

planar, 78, 115, 119, 125, 139 inclined road, 91

planar four-wheel, 172 lateral acceleration, 93

rigid vehicle, 78, 215 linearized, 102

roll angle, 79,216 local frame, 103

roll damping, 237, 238 longitudinal and lateral acceleration, 98
roll dynamics, 215, 216 longitudinally, 88

roll moment, 79 maximum acceleration, 92
roll rate, 79,216 W-frame, 2,4, 5,7, 11, 129, 130
roll-steering angle, 231 Wheel

roll stiffness, 237, 238 extreme velocity, 29

roll vehicle model, 227 forward velocity, 19

sideslip angle, 80, 231 frame, 1,5, 11

sideslip coefficient, 28, 238 neutral position, 1

sideslip response, 164 rest position, 1

six DOF, 219 Wheel-body

stability factor, 170, 171 frame, 1,5,9, 11

steady-state turning, 163 Wheelbase, 326

steer angle, 134,231 ‘Wheel number, 84

tilting torque, 79 Wind force, 123

tire force system, 125, 139

tire lateral force, 26

tire slip coefficient, 230 Y

torque coefficient, 237 Yaw moment, 80
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