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In striving for optimal comfort and safety conditions in road vehicles, 
today’s electronically controlled components provide a range of new 
options. These are developed and tested using computer simulations 
in software-in-the-loop or hardware-in-the-loop environments—an 
advancement that requires the modern automotive engineer to be 
able to build basic simulation models, handle higher level models, 
and operate simulation tools effectively.

Combining the fundamentals of vehicle dynamics with the basics of 
computer-simulated modeling, Road Vehicle Dynamics: Fundamen-
tals and Modeling draws on lecture notes from undergraduate and 
graduate courses given by the author, as well as industry seminars and 
symposiums, to provide practical insight on the subject. Requiring only 
a first course in dynamics and programming language as a prerequisite, 
this highly accessible book offers end-of-chapter exercises to reinforce 
concepts as well as programming examples and results using 
MATLAB®.

The book uses SI-units throughout, and begins with an introduction
and overview of units and quantities, terminology and definitions, 
multibody dynamics, and equations of motion. It then discusses the 
road, highlighting both deterministic and stochastic road models; tire 
handling including contact calculation, longitudinal and lateral forces, 
vertical axis torques, and measurement and modeling techniques; 
and drive train components and concepts such as transmission, 
clutch, and power source.

Later chapters discuss suspension systems, including a dynamic 
model of rack-and-pinion steering as well as double-wishbone 
suspension systems; force elements such as springs, anti-roll bars, 
and hydro-mounts; and vehicle dynamics in vertical, longitudinal, and 
lateral directions using a simple model approach to examine the 
effects of nonlinear, dynamic, and active force elements. Highlighting 
useable knowledge, the book concludes with a three-dimensional 
vehicle model and typical results of standard driving maneuvers
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Preface

The basic objective of this textbook is to provide fundamental knowledge of
the dynamics of road vehicles and to impart insight into and details on mod-
eling aspects. Road vehicles have been developed and built for more than 125
years. From the beginning to now, the main goal in vehicle dynamics has been
to achieve optimal safety and ride comfort. Today, computer simulations have
become an essential tool to develop new and enhance existing concepts for road
vehicles. Electronically controlled components provide new options. Usually
they are developed and tested in software-in-the-loop (SIL) or hardware-in-
the-loop (HIL) environments. Today, an automotive engineer requires a basic
knowledge of the fundamentals and the skill to build basic simulation mod-
els, to handle sophisticated ones, or to operate simulation tools properly. Yet,
only books on the fundamentals of vehicle dynamics or on modeling aspects
are available currently. Both subjects are combined for the first time in this
textbook. A first course in dynamics and a basic knowledge of a programming
language are prerequisites.

Lecture notes for an undergraduate course in vehicle dynamics, form the
basis of this textbook. The notes were then extended to serve as the basis
for a graduate course, first delivered at the State University in Campinas
(UNICAMP) by the author in 1992 and repeated as a short course in vehicle
dynamics several times since then. Part of the notes combined with additional
material are also used for in-house seminars at different automotive suppliers
and in several workshops at conferences on different topics of vehicle dynamics.
A truly motivating personal contact with Vladimir V. Vantsevich, the editor of
the Ground Vehicle Engineering Series, at the 21 st International Symposium
on Dynamics of Vehicles on Roads and Tracks in 2009 resulted in a textbook
proposal to Chapman & Hall/CRC. The lecture notes and the material for
the seminars were put together and completely revised. Exercises at the end
of each chapter serve to repeat the contents and check the knowledge of the
reader. Many programming examples, which were used in the seminars and
workshops to visualize the results and to deepen insight on vehicle dynam-
ics, are integrated into this textbook. Due to its ease of use and popularity,
MATLAB R© was used as the programming language. This textbook may be
used in a graduate course on vehicle dynamics for classroom teaching and self-
study. Skipping the modeling aspects, it will suit an Introduction to Vehicle
Dynamics at the senior undergraduate level. The modeling aspects may even
be integrated into a course on multibody dynamics. In addition, this text-
book will also help practicing engineers and scientists in the field of vehicle

xxv
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dynamics by providing a full range of vehicle models that may be used for
basic studies, for parameter variations, optimization, as well as the simulation
of different driving maneuvers.

Modern SI units are used throughout this textbook. The introduction in
Chapter 1 provides an overview of units and quantities, discusses the ter-
minology in vehicle dynamics, deals with definitions, gives an overview on
multibody dynamics, and derives the equations of motion for a first vehicle
model. Chapter 2 is dedicated to the road. At first, a sophisticated road model
is discussed, then deterministic and stochastic road models are described in
detail. The handling tire model TMeasy is discussed in Chapter 3. It includes
a sophisticated contact calculation and provides all forces and torques. The
longitudinal and lateral forces as well as the torque about the vertical axis
are modeled in a first-order dynamic approach. Besides that, measuring tech-
niques and modeling aspects are also discussed. Chapter 4 focuses on the
drive train. Components and concepts of different drive trains are discussed
first. Then, the dynamics of wheel and tire are studied in detail. A simple
vehicle wheel tire model including a lockable brake torque model is presented
and investigated. A short description of the layout and modeling aspects of
differentials, standard drive trains, the transmission, the clutch, and different
power sources completes this chapter. The purpose and components of suspen-
sion systems are discussed in Chapter 5. A dynamic model of rack-and-pinion
steering as well as a kinematic model of a double wishbone suspension system
are presented and analyzed via the simulation results. Chapter 6 is dedicated
to force elements. Besides the standard force elements like springs, anti-roll
bars, and dampers, dynamic force elements, including hydro-mounts are dis-
cussed in detail. A sophisticated model for a sweep sine excitation, as well as
models for different dynamic forces, are provided here. The fundamentals of
vehicle dynamics in the vertical, longitudinal, and lateral directions are pro-
vided in Chapters 7 to 9. Each chapter starts with a simple model approach.
Then, the effects of nonlinear, dynamic, or even active force elements, as well
as the influence of suspension kinematics are studied. Practical aspects and
applications complete these chapters. Finally, Chapter 10 presents the idea of
a full three-dimensional vehicle model and shows and discusses typical results
of standard driving maneuvers.

I am very grateful to Vladimir V. Vantsevich, who encouraged me to write
this textbook. I am also thankful to the publisher, namely, Senior Editor
Jonathan W. Plant, his assistant Arlene Kopeloff, and the Project Coordinator
Amber Donley, for all their support, which allowed me to focus on the contents
and not to bother with the layout of this textbook.

The results of the exercises as well as all MATLAB R©-Examples (M-Files)
are available for download on the website1 of the publisher.

1http://www.crcpress.com/product/isbn/9781439838983
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1.1 Units and Quantities

1.1.1 SI System

The International System of Units1 is the world’s most widely used system of
measurement. The International Organization for Standardization (ISO) laid
it out in ISO 31 and ISO 1000. The modern SI system will be used through
out this textbook. Common quantities, their variations, as well as conversion
tables may be found in [11]. The most important physical quantities, their

1Abbreviated SI from the French le Système International d’Unités.
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standardized units, as well as some old but still important units are collected
in Table 1.1. The unit rad can be replaced by the numeral 1 in calculations.

TABLE 1.1
Physical Quantities, Common Symbols, and Units

Quantity Name Unit SI Relationship

Length ` meter m yes
inch in no 1 in=0.0254m

Area A square meter m2 yes
Volume V cubic meter m3 yes

Angle ϕ radian rad yes
Grad ◦ no 1◦ =0.01745 rad

Mass m kilogram kg yes
pound lb no 1 pd=0.45359 kg

Time t second s yes

Frequency f hertz Hz no 1Hz=1/s

Angular freq. ω s−1 yes ω=2πf

Velocity v m/s yes
kilometers / hour km/h no 1 km/h=1/3.6m/s
miles / hour mp/h no 1m/ph=1.609 km/h

Angular velocity v rad/s yes
Rotational speed n rpm 1/min no 1 rpm=(1/60) s−1

Acceleration a m/s2 yes
Angular accel. rad/s2 yes
Force F newton N yes 1N=1 kgms−2

Torque M newtonmeter Nm yes 1Nm=1 kgm2s−2

pressure p pascal Pa yes 1Pa=1N/m2

bar bar no 1 bar=105 Pa

pound / square inch psi no 1 psi=6 894.8Pa

Temperature T kelvin K yes

With the exception of hours (1h=3, 600 s) and minutes (1min=60 s), decimal
multiples and submultiples will form additional legal units.

1.1.2 Tire Codes

Although the SI unit system has been nearly globally adopted, the alphanu-
meric code molded into the sidewall of the tire is still a mixture of modern
and old units. To take an example, P215/60R16 signifies by the letter P a
passenger car tire with a 215-millimeter tire width. The height of the sidewall
of the tire is 60% of the width, and the letter R states that the cord threads
of the tire casing run in the radial direction. Finally, the tire is designed to fit
rims of 16 inches. So, the height of this tire amounts to 215*0.60 = 129mm,
and the conversion from inches to meters and millimeters, given in Table 1.1,
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will produce a rim diameter of 16*0.0254 = 0.4064 m = 406.4 mm. Adding
twice the tire height to the rim diameter will then result in an overall tire
diameter of 2*129mm + 406.4mm = 664.4mm, which is equivalent to a tire
radius of 332.2mm. By adding the load index (a number code, from 0 to 279),
along with the speed rating symbol (a letter code, from A to Z), we finally
end up in the ISO Metric Sizing System.

Some light truck tires follow the Light Truck High Flotation System, which
for example, may read as 37x12.5R17LT. Here, the code starts with a two-
digit number separated by the character x from a three- or four-digit number,
indicating the diameter of the tire and the section width (cross-section) of the
tire. The following letter B for belted bias, D for diagonal bias, or R for radial
tire names the construction type. The following two-digit number gives the
diameter in inches of the wheel rim that this tire is designed to fit. Finally, the
letters LT indicate that this is a Light Truck tire. Load index and speed rating
are not required for this type of tire but may be provided by the manufacturer.

1.2 Terminology

1.2.1 Vehicle Dynamics

Vehicle dynamics are a part of engineering primarily based on classical me-
chanics but may also involve control theory, physics, electrical engineering,
chemistry, communications, psychology, etc. Here, the focus is laid on ground
vehicles supported by wheels and tires. Vehicle dynamics encompass the in-
teraction of

• Driver

• Vehicle

• Load

• Environment

Vehicle dynamics mainly deals with

• Improvement in active safety and driving comfort

• Reduction in road destruction

Vehicle dynamics employes

• Computer calculations

• Test rig measurements

• Field tests

In the following the interactions between the single systems and the problems
with computer calculations and/or measurements are discussed.
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1.2.2 Driver

By various means the driver can interfere with the vehicle:

Driver


Steering wheel Lateral dynamics
Accelerator pedal
Brake pedal
Clutch
Gear shift

 Longitudinal dynamics

 −→ Vehicle

The vehicle provides the driver with the following information:

Vehicle

 Vibrations: longitudinal, lateral, vertical
Sounds: motor, aerodynamics, tires
Instruments: velocity, external temperature, ...

 −→ Driver

The environment also influences the driver:

Environment

 Climate
Traffic density
Track

 −→ Driver

The driver’s reaction is very complex. To achieve objective results, an “ideal”
driver is used in computer simulations; and in driving experiments, automated
drivers (e.g., steering machines) are employed. Transferring results to normal
drivers is often difficult if field tests are made with test drivers. Field tests
with normal drivers must be evaluated statistically. Of course, the driver’s
security must have absolute priority in all tests. Driving simulators provide
an excellent means of analyzing the behavior of drivers even in limit situations
without danger. Many have tried to analyze the interaction between driver and
vehicle with complex driver models for some years.

1.2.3 Vehicle

The following vehicles are listed in the ISO 3833 directive:

• Motorcycles

• Passenger cars

• Buses

• Trucks

• Agricultural tractors

• Passenger cars with trailer

• Truck trailer/Semitrailer

• Road trains
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For computer calculations these vehicles must be depicted in mathematically
describable substitute systems. The generation of the equations of motion, the
numeric solution, as well as the acquisition of data require great expense. In
these days of PCs and workstations, computing costs hardly matter anymore.
At an early stage of development, often only prototypes are available for field
and/or laboratory tests. Results can be falsified by safety devices, e.g., jockey
wheels on trucks.

1.2.4 Load

Trucks are conceived for taking up load. Thus, their driving behavior changes.

Load

{
Mass, Inertia, Center of gravity
Dynamic behaviour (liquid load)

}
−→ Vehicle

In computer calculations, problems occur when determining the inertias and
the modeling of liquid loads. Even the loading and unloading process of exper-
imental vehicles takes some effort. When carrying out experiments with tank
trucks, flammable liquids must be substituted with water. Thus, the results
achieved cannot be simply transferred to real loads.

1.2.5 Environment

The environment influences primarily the vehicle:

Environment

{
Road: irregularities, coefficient of friction
Air: resistance, cross wind

}
−→ Vehicle,

but also affects the driver:

Environment

{
Climate
Visibility

}
−→ Driver

Through the interactions between vehicle and road, roads can quickly be de-
stroyed. The greatest difficulty with field tests and laboratory experiments is
the virtual impossibility of reproducing environmental influences. The main
problems with computer simulation are the description of random road ir-
regularities, the interaction of tires and road, as well as the calculation of
aerodynamic forces and torques.

1.3 Definitions

1.3.1 Coordinate Systems

If the chassis is supposed to be a rigid body, one coordinate system fixed to
the vehicle, which in general is located in the center C, then earth-fixed axis
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system 0 will be sufficient to describe the overall motions of the vehicle body,
Figure 1.1. The earth-fixed system 0 with the axis x0, y0, z0 serves as inertial
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FIGURE 1.1
Position and orientation of the vehicle body.

reference frame. Its origin 0 lies in a reference ground plane. Throughout this
textbook the z0-axis will point in the opposite direction of the gravity vector
g. Within the vehicle-fixed system F , the xF -axis points forward, the yF -axis
to the left, and the zF -axis upward, which will correspond with the definitions
in the ISO 8855 directive.

The orientation of the vehicle-fixed axis system F with respect to the
inertial frame 0 may be defined by the Cardan or Bryant angles γ, β, and α,
which represent the yaw, the pitch, and the roll motion of the vehicle body.
The first rotation about the z0=zI -axis defines the intermediate axis system
with xI and yI parallel to the horizontal ground.

In complex vehicle models it is often more convenient to attach the vehicle-
fixed axis system F to a representative chassis point rather than to the center
of gravity of the vehicle, because the latter will change with different loading
conditions.

The wheel consists of the tire and the rim. Handling tire models simplify
the contact patch by a plane, which is represented by the contact point P
and an unit vector en perpendicular to this plane. The contact geometry is
discussed in detail in Section 3.2. The rim is mounted at the wheel carrier or
knuckle. The suspension system, which attaches the wheel carrier to the chas-
sis, is extensively described in Chapter 5. Depending on the type of suspension
system, the wheel carrier and the attached wheel can perform a hub motion z
and optionally a steering motion δ, Figure 1.2. To describe the position and
orientation of the wheel carrier and the wheel, a reference frame with the axes
xC , yC , zC is fixed to the wheel carrier. The origin of this axis system is sup-
posed to coincide with the wheel center M . The position and the orientation
of the wheel carrier depend on the hub motion z and optionally on the steer
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FIGURE 1.2
Wheel position and orientation.

motion δ. In design position, the corresponding axes of the frames C and F
are supposed to be parallel. The wheel itself rotates with the angle ϕ about
an axis that is determined by the unit vector eyR, Figure 1.2.

1.3.2 Design Position of Wheel Center

The design position of the wheel center M0 is roughly2 determined by the
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FIGURE 1.3
Design position of wheels.

wheelbase a = a1 + a2 and the track widths s1, s2 at the front and rear axles,
Figure 1.3. If left/right symmetry is assumed, then the position vector

rCM0,F =

 a1

s1/2
−h+ rS

 (1.1)

denoted in the vehicle-fixed reference frame will define the design position of
the front left wheel center M0 relative to the vehicle center C. Here, h denotes

2Note: The track width is defined as the distance of the contact points at an axle. On
cambered wheels, the distance of the wheel centers is slightly different.
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the height of the vehicle center C above the ground and rS names the static
tire radius, which takes the tire deflection caused by the weight of the vehicle
into account.

By changing the sign in the second component (s1/2 → −s1/2), Equa-
tion }(refEq:introduction:wheel design position relative) applies for the right
wheel too. Finally, the design position of rear wheels is obtained by replacing
a1 and s1 by −a2 and s2, respectively.

1.3.3 Toe-In, Toe-Out

Wheel toe-in is an angle formed by the center line of the wheel and the lon-
gitudinal axis of the vehicle, looking at the vehicle from above, Figure 1.4.
When the extensions of the wheel center lines tend to meet in front of the
direction of travel of the vehicle, this is known as toe-in. If, however, the
lines tend to meet behind the direction of travel of the vehicle, this is known
as toe-out. The amount of toe can be expressed in degrees as the angle δ to
which the wheels are out of parallel, or, as the difference between the track
widths as measured at the leading and trailing edges of the tires or wheels.
Note that at the left wheel the sign of toe angle δ does not correspond to a
positive rotation around the z-axis. Toe settings affect three major areas of
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FIGURE 1.4
Toe-in and toe-out.

performance: tire wear, straight-line stability, and corner entry handling char-
acteristics. For minimum tire wear and power loss, the wheels on a given axle
of a car should point directly ahead when the car is running in a straight line.
Excessive toe-in or toe-out causes the tires to scrub, as they are always turned
relative to the direction of travel. Toe-in improves the directional stability of
a car and reduces the tendency of the wheels to shimmy.

1.3.4 Wheel Camber

Wheel camber is the angle of the wheel relative to vertical, as viewed from the
front or the rear of the car, Figure 1.5. If the wheel leans away from the car, it
has positive camber; if it leans in toward the chassis, it has negative camber.
Again, at the left wheel, the sign of camber angle γ does not correspond to
a positive rotation around the x-axis. The wheel camber angle must not be
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FIGURE 1.5
Positive and negative camber angles.

mixed up with the tire camber angle, which is defined as the angle between
the wheel center plane and the local track normal en. Excessive camber angles
cause nonsymmetric tire wear. A tire can generate maximum lateral force
during cornering if it is operated with a slightly negative tire camber angle.
As the chassis rolls when cornering, the suspension must be designed such that
the wheels perform camber changes as the suspension moves up and down.
An ideal suspension will generate an increasingly negative wheel camber as
the suspension deflects upward.

1.3.5 Design Position of the Wheel Rotation Axis

Usually, the wheel rotation axis, which is described by the unit vector eyR,
will not coincide with the yC-axis, which is part of the corresponding axis
system located in the wheel center and fixed to the wheel carrier, Figure 1.6.
The orientation of the unit vector eyR can be defined either by the angles δ0
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FIGURE 1.6
Design position of wheel rotation axis.

and γ0, or by δ0 and γ̂0, where δ0 is the angle between the yC-axis and the
projection line of the wheel rotation axis into the xC yC-plane. The angle γ̂0

describes the angle between the yC-axis and the projection line of the wheel
rotation axis into the yC zC-plane, whereas γ0 is the angle between the wheel
rotation axis eyR and its projection into the xC yC-plane. Toe-in and a positive
camber angle are indicated by δ0 > and γ0 > 0 or γ̂0 > 0 at the left wheel.



10 Road Vehicle Dynamics: Fundamentals and Modeling

In the design position, where the corresponding axis of the vehicle-fixed
axis system F and the wheel carrier-fixed coordinate system C are parallel,
one gets by inspecting Figure 1.6,

eyR,F = eyR,C =
1√

tan2 δ0 + 1 + tan2 γ̂0

 tan δ0
1

− tan γ̂0

 . (1.2)

On the other hand, applying a series of elementary rotations results in

eyR,F = eyR,C =

 sin δ0 cos γ0

cos δ0 cos γ0

− sin γ0

 . (1.3)

On a flat and horizontal road where the track normal en points in the direction
of the vertical axis zC = zF , the angles δ0 and γ0 correspond to the toe angle
and the camber angle, respectively. To specify the difference between γ0 and
γ̂0, the ratio between the third and second component of the unit vector eyR
is considered now. Equations (1.2) and (1.3) deliver

− tan γ̂0

1
=

− sin γ0

cos δ0 cos γ0
or tan γ̂0 =

tan γ0

cos δ0
. (1.4)

Hence, for small angles δ0 � 1, the difference between the angles γ0 and γ̂0 is
hardly noticeable. Kinematics and compliance test machines usually measure
the angle γ̂0. That is why the automotive industry mostly uses this one instead
of γ0 to determine the orientation of the wheel rotation axis in the design
position.

1.3.6 Wheel Aligning Point

Often the position of the wheel rotation axis is defined by the wheel center M
and an additional point D which is called “wheel alignment point”, Figure 1.7.
If point D is located inside the wheel center W , then the unit vector pointing
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FIGURE 1.7
Wheel alignment point.

in the direction of the wheel rotation axis is given by

eyR,F =
rCW,F − rCD,F
|rCW,F − rCD,F |

, (1.5)
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where the vectors rCW,F and rCD,F describe the design position of the wheel
center W and the wheel alignment point D relative to the origin C of the
vehicle-fixed reference frame F .

1.4 Multibody Dynamics Tailored to Ground Vehicles

1.4.1 Modeling Aspects

For dynamic simulation, the vehicles are usually modeled by multibody sys-
tems (MBS), [17]. Typically, the overall vehicle model is separated into dif-
ferent subsystems [30]. Figure 1.8 shows the components of a passenger car
model that can be used to investigate handling and ride properties. The ve-
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FIGURE 1.8
Vehicle model structure.

hicle model consists of the vehicle framework and subsystems for the steering
system and the drive train.

The vehicle framework represents the kernel of the model. It at least in-
cludes the module chassis and modules for the wheel/axle suspension systems.
The vehicle framework is supplemented by modules for the load, an elas-
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tically suspended engine, and passenger/seat models. A simple load module
just takes the mass and inertia properties of the load into account. To describe
the sloshing effects of liquid loads, dynamic load models are needed [43]. The
subsystems, elastically suspended engine, passenger/seat, and in heavy truck
models a suspended driver’s cabin can all be handled by a generic free-body
model [38].

For standard vehicle dynamics analysis, the chassis can be modeled by
one rigid body [2]. However, in the case of heavy trucks, the compliance of
the frame and the elastically suspended driver’s cab will require at least a
lumped mass model approach or the embedding of an enhanced finite element
structure. Most wheel/axle suspension systems can be described by typical
MBS elements such as rigid bodies, links, joints, and force elements [34]. Due
to their robustness, leaf springs are still a popular choice for solid axles. They
combine guidance and suspension properties, which causes many problems in
modeling [9]. A lumped mass approach can overcome these problems [42].

The steering system at least consists of the steering wheel, a flexible steer-
ing shaft, and the steering box, which may also be power-assisted. A very
sophisticated model of the steering system that includes compliancies, dry
friction, and clearance can be found in [24].

Tire forces and torques have a dominant influence on vehicle dynamics.
Usually, semi-empirical tire models are used for vehicle handling analysis.
They combine a reasonable computer runtime performance with sufficient
model accuracy. Complex tire models are valid even for high frequencies and
on really rough roads. But, they are computer time consuming and there-
fore used in special investigations only. The “Tyre Model Performance Test
(TMPT)” provides information about the efficiency and problems of tire mod-
eling and parameterization as well as the integration in standard multibody
system program codes [21]. In this textbook the tire model “TMeasy” is dis-
cussed in detail. This semi-empirical tire model meets the requirements of
both user friendliness and sufficient model accuracy [12].

The drive train model in [38] takes lockable differentials into account, and
it combines front-wheel, rear-wheel, and all-wheel drive. A simplified model
for a rear-wheel drive will be presented in this textbook. The drive train is
supplemented by a module describing the engine torque. It may be modeled,
as done here, quite simply by a first-order differential equation or by enhanced
engine torque modules.

Road irregularities and variations in the coefficient of friction present sig-
nificant impacts on the vehicle. Simple road models are discussed in Chapter 2.
A more enhanced model approach for generating two-dimensional reproducible
random profiles is presented in [32].

This textbook restricts itself to the fundamentals of the dynamics of
ground vehicles and will therefore focus on simple comfort and handling mod-
els for passenger cars. Besides some planar models, a simple three-dimensional
model with a rigid chassis and four independently suspended wheels will be
provided too.
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1.4.2 Kinematics

A simple three-dimensional vehicle model consists of at least five rigid bodies,
Figure 1.9. The position and orientation of each model body i = 1, 2, . . . will
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1) Vehicle body (chassis)

2)
Wheel and wheel carrier
front left

3)
Wheel and wheel carrier
front right

4)
Wheel and wheel carrier
rear left

5)
Wheel and wheel carrier
rear right

FIGURE 1.9
Bodies of a vehicle model.

be described relative to the earth-fixed coordinate system 0 that serves here
as an inertial reference frame. Throughout this textbook the z0-axis of the
earth-fixed reference frame will point in the opposite direction of the gravity
vector g.

The movements of each wheel and wheel carrier relative to the vehicle body
(chassis) are restricted by links, joints, or other guiding elements. The result-
ing constraint forces and torques may either be eliminated from the equations
of motion by appropriate algorithms or taken into account via Lagrange multi-
pliers. The first method is cumbersome but will result in a minimized number
of Ordinary Differential Equations (ODEs), whereas the latter will lead to
Differential Algebraic Equations (DAEs).

A right-handed Cartesian coordinate system is fixed to each body in its
center. Then, the position and the orientation of body i with respect to the
inertial reference frame 0 is determined by the position vector

r0i,0 = r0i,0(y) (1.6)

and the rotation matrix
A0i = A0i(y) , (1.7)

where the generalized coordinates y1, y2, . . . yf needed to describe the motions
of the multibody system are collected in the vector y and the comma-separated
subscript 0 indicates that the coordinates of the position vector r0i are mea-
sured in the reference frame 0.

The columns of the rotation matrix A0i are orthogonal unit vectors mea-
sured in the inertial frame 0 and pointing in the direction of the axis of the
body-fixed coordinate system i. For such kinds of orthonormal matrices

AT0iA0i = A0iA
T
0i = I or A−1

0i = AT0i (1.8)
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will hold, where I denotes the corresponding matrix of identity. If the com-
ponents of the vector r are measured in the body-fixed coordinate system i,
multiplication with the rotation matrix A0i transforms this vector via

r,0 = A0i r,i (1.9)

to the earth-fixed axis system 0, and

r,i = AT0i r,0 (1.10)

quite simply defines the inverse transformation.
The velocity with which body i is moving relative to the inertial system 0

is determined by the time derivative of the position vector defined in Equation
(1.6)

v0i,0 =
d

dt
r0i,0(y) = ṙ0i,0(y) =

f∑
m=1

∂r0i,0(y)

∂ym
ẏm = v0i,0(y, ẏ) . (1.11)

The time derivative of the rotation matrix multiplied by its transposed results
in a skew-symmetric matrix

ω̃0i,0 =
d

dt

(
A0i,0(y)

)
AT0i,0(y) =

f∑
m=1

∂A0i(y)

∂ym
ẏmA

T
0i,0(y) = ω̃0i,0(y, ẏ) .

(1.12)
Its essential components

ω̃0i,0 =

 0 −ω0i,0(3) ω0i,0(2)
ω0i,0(3) 0 −ω0i,0(1)
−ω0i,0(2) ω0i,0(1) 0

 (1.13)

define the vector of the angular velocity ω0i,0 = [ω0i,0(1), ω0i,0(2), ω0i,0(3)]
T

with which the body-fixed axis system i rotates relative to the earth-fixed axis
system 0. A direct calculation shows that

ω̃0i,0 r,0 = ω0i,0 × r,0 (1.14)

holds for any vector r,0, which means that multiplication of the skew-
symmetric matrix of the angular velocities can be replaced by the correspond-
ing vector- or cross-product.

Depending on the kind of constraints, the algebraic representation of the
velocity vector v0i,0 = v0i,0(y, ẏ) and the vector of the angular velocities
ω0i,0 = ω0i,0(y, ẏ) may become very complex. However, significant simplifi-
cations are possible if the time derivative of the vector of the generalized
coordinates ẏ is replaced via

z = K(y) ẏ (1.15)
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by a corresponding vector of generalized velocities z = z(y, ẏ). Then, the
algebraic representation for the resulting velocities and angular velocities

v0i,0(y, ẏ) =⇒ v0i,0(y, z) and ω0i,0(y, ẏ) =⇒ ω0i,0(y, z) (1.16)

will be less complicated. In many cases a simple inspection of the resulting
velocity terms already leads to appropriate generalized velocities [18]. The
trivial choice

z = ẏ (1.17)

is always possible. Here, the kinematical matrix K = K(y) simplifies to the
corresponding matrix of identity.

The time derivatives of the velocities and the angular velocities finally
result in the corresponding accelerations

a0i,0 =
d

dt
v0i,0(y, z) =

f∑
m=1

∂v0i,0(y, z)

∂ym
ẏm +

f∑
m=1

∂v0i,0(y, z)

∂zm
żm ,

α0i,0 =
d

dt
ω0i,0(y, z) =

f∑
m=1

∂ω0i,0(y, z)

∂ym
ẏm +

f∑
m=1

∂ω0i,0(y, z)

∂zm
żm .

(1.18)

1.4.3 Equations of Motion

The motions of one rigid body are governed by Newton’s law

mi a0i,0 = Fi,0 (1.19)

and Euler’s equation

Θi,0 α0i,0 + ω0i,0 ×Θi,0 ω0i,0 = Ti,0 , (1.20)

where mi is the mass of body i, and Θi,0 denotes the inertia tensor of body i
defined with respect to its center of mass and measured in the inertial frame.
If the body is exposed to kinematical constraints, then the forces and torques
acting on body i can be split into two parts

Fi,0 = F ci,0 + F ai,0 and Ti,0 = T ci,0 + T ai,0 , (1.21)

where F ci,0, T ci,0 represent the forces and torques provided by the constraints
and F ai,0, T ai,0 collect all other forces and torques applied to body i.

Similar to D’ Alembert’s principle of virtual work, Jourdain postulated
that the virtual power of all constraint forces and torques must vanish. For a
system with k rigid bodies, we get

k∑
i=1

{
δvT0i,0 F

c
i,0 + δωT0i,0 T

c
i,0

}
. (1.22)
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The virtual velocity and the virtual angular velocity of body i are defined by

δv0i,0 =
∂v0i,0

∂z
δz and δω0i,0 =

∂ω0i,0

∂z
δz , (1.23)

where the f×1-vector δz collects the variations of the generalized velocities
δz1, δz2, . . . δzf and the partial derivatives simply named as partial velocities
and partial angular velocities are arranged in the 3×f -Jacobian matrices of
translation and rotation

∂v0i,0

∂z
=

[
∂v0i,0(y, z)

∂z1
,
∂v0i,0(y, z)

∂z2
. . .

∂v0i,0(y, z)

∂zf

]
, (1.24)

∂ω0i,0

∂z
=

[
∂ω0i,0(y, z)

∂z1
,
∂ω0i,0(y, z)

∂z2
. . .

∂ω0i,0(y, z)

∂zf

]
. (1.25)

Using the Jacobian matrices, the accelerations provided by Equation (1.18)
can be written as

a0i,0 =
∂v0i,0

∂z
ż + aR0i,0 and α0i,0 =

∂ω0i,0

∂z
ż + αR0i,0 , (1.26)

where ż is the time derivative of the vector of generalized velocities and

aR0i,0 =

f∑
m=1

∂v0i,0(y, z)

∂ym
ẏm and αR0i,0 =

f∑
m=1

∂ω0i,0(y, z)

∂ym
ẏm (1.27)

abbreviates the remaining terms in the accelerations. By combining Equa-
tion (1.21) with Equations (1.19) and (1.20), one is able to put the constraint
forces and torques down to dynamic terms and the applied forces and torques.
Using the notation in Equations (1.26) and (1.27), Jourdain’s principle reads
as

k∑
i=1

{
∂vT0i,0
∂z

[
mi

∂v0i,0

∂z
ż +mia

R
0i − F ai,0

]
+

∂ωT0i,0
∂z

[
Θi,0

∂ωT0i,0
∂z

ż + Θi,0α
R
0i + ω0i,0×Θi,0 ω0i,0 − T ai,0

]}
δz = 0 .

(1.28)

The variations of the generalized velocities δz are arbitrary. Hence, the expres-
sion in the braces must vanish. The resulting first-order differential equation
can be written as

M(y) ż = q(y, z) , (1.29)

where the f×f -mass-matrix is defined by

M(y) =

k∑
i=1

[
∂vT0i,0
∂z

mi

∂v0i,0

∂z
+

∂ωT0i,0
∂z

Θi,0

∂ωT0i,0
∂z

]
, (1.30)
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and the f×1-vector of generalized forces

q(y, z) =

k∑
i=1

[
∂vT0i,0
∂z

(
F ai,0 −mia

R
0i,0

)
+
∂ωT0i,0
∂z

(
T ai,0 −Θi,0α

R
0i,0 − ω0i,0×Θi,0 ω0i,0

)] (1.31)

combines the inertia and gyroscopic forces and torques with the applied forces
and torques. The equations of motion result in a set of two first-order dif-
ferential equations. The definition of generalized velocities which is done by
Equation (1.15) or in the trivial form by Equation (1.17) represent the first set
and the dynamic equation defined in Equation (1.29) the second one.

1.5 A Quarter Car Model

1.5.1 Modeling Details

The quarter car model shown in Figure 1.10 consists of the chassis, a trailing
arm that is rigidly attached to the knuckle, and the wheel. The model repre-
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FIGURE 1.10
Quarter car model with trailing arm suspension.

sents a quarter car on a hydropulse test rig. That is why the chassis will here
perform vertical motions z only. A revolute joint in B connects the trailing
arm with the chassis. The rotation of the trailing arm and the knuckle de-
scribed by the angle β is affected by a torsional spring damper arrangement.
The simple torsional damper will be replaced by a point-to-point damper ele-
ment with a nonlinear characteristic in Chapter 6. The angle ϕ characterizes
the wheel rotation about the y0-axis. The position of the actuator that sup-



18 Road Vehicle Dynamics: Fundamentals and Modeling

ports the wheel is controlled to follow a prescribed displacement time history,
u = u(t).

A quarter car model is quite a good but surely limited approximation of
real vehicle dynamics. So, the simplification that the wheel center W , the
center of the knuckle and trailing arm K, and the joint in B are arranged
on a straight line will correspond to the overall model quality. In addition,
the wheel is supposed to roll, and a simple vertical spring acting between the
contact point Q and the wheel center W models the compliance of the tire.

1.5.2 Kinematics

The quarter car model consists of n = 3 rigid bodies, Figure 1.11. Their posi-
tion and orientation are determined by f = 3 generalized coordinates y(1) = z,
y(2) = β, and y(3) = ϕ. Position, velocity, and acceleration of the chassis cen-
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FIGURE 1.11
Quarter car model: Bodies and applied forces and torques.

ter C are simply defined by

r0C,0 =

 0
0

h+ z

 , v0C,0 =

 0
0
ż

 , a0C,0 =

 0
0
z̈

 . (1.32)

The orientation of the trailing arm and the knuckle with respect to the knuckle
fixed axis system C is described by the rotation matrix

ACK =

 cosβ 0 sinβ
0 1 0

− sinβ 0 cosβ

 . (1.33)
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As the chassis performs no rotation in this particular case, the rotation matrix
of the knuckle with respect to the earth-fixed axis system is simply given by

A0K = ACK , (1.34)

and the angular velocity and the angular acceleration are obtained as

ω0K,0 =

 0
1
0

 β̇ and α0K,0 =

 0
1
0

 β̈ . (1.35)

The position vector

r0K,0 =

 0
0

h+ z

 +

 0
0
−b

 +

 −s cosβ
0

s sinβ

 (1.36)

describes the momentary position of the center of the knuckle trailing arm
combination K, where the first two parts characterize the momentary position
of the revolute joint B. The time derivatives yield the velocity

v0K,0 =

 0
0
1

 ż +

 s sinβ
0

s cosβ

 β̇ (1.37)

and the acceleration

a0K,0 =

 0
0
1

 z̈ +

 s sinβ
0

s cosβ

 β̈ +

 s cosβ
0

−s sinβ

 β̇ 2 . (1.38)

The orientation of the wheel with respect to the earth-fixed axis system 0 and
the momentary position of the wheel center W are determined by

A0W =

 cosϕ 0 sinϕ
0 1 0

− sinϕ 0 cosϕ

 (1.39)

and

r0W,0 =

 0
0

h+ z − b

 +

 −a cosβ
0

a sinβ

 . (1.40)

Then, the velocity and acceleration state are given by

ω0W,0 =

 0
1
0

 ϕ̇, α0K,0 =

 0
1
0

 ϕ̈ (1.41)



20 Road Vehicle Dynamics: Fundamentals and Modeling

and

v0W,0 =

 0
0
1

 ż +

 a sinβ
0

a cosβ

 β̇ (1.42)

a0W,0 =

 0
0
1

 z̈ +

 a sinβ
0

a cosβ

 β̈ +

 a cosβ
0

−a sinβ

 β̇ 2 . (1.43)

Using the trivial choice of generalized velocities, the partial velocities which
according to Equations (1.26) and (1.27) form the Jacobians of translation
and rotation, can easily be depicted from the corresponding velocities. The
results are collected in the Tables 1.2 and 1.3.

TABLE 1.2
Partial Velocities, Applied Forces, and Remaining Acceleration Terms

Partial Velocities ∂v0i/∂zj
Applied
Forces

Remaining
Terms

Body name
mass z1 = ż z2 = β̇ z3 = ϕ̇ −Fi aR0i

Chassis
mC

0
0
1

0
0
0

0
0
0

0
0

−mCg

0
0
0

Knuckle and
trailing arm

mK

0
0
1

s sinβ
0

s cosβ

0
0
0

0
0

−mKg

sβ̇ 2 cosβ
0

−sβ̇ 2 sinβ

Wheel
mW

0
0
1

a sinβ
0

a cosβ

0
0
0

Fx
0

Fz −mW g

aβ̇ 2 cosβ
0

−aβ̇ 2 sinβ

TABLE 1.3
Partial Angular Velocities, Applied Torques, and Remaining Terms in
the Angular Accelerations

Partial Angular Velocities ∂ω0i/∂zj
Applied
Torques

Remaining
Terms

Body name
inertia

z1 = ż z2 = β̇ z3 = ϕ̇ Ti αR0i

Chassis
no rotation

0
0
0

0
0
0

0
0
0

0
−TS

0

0
0
0

Knuckle and
trailing arm

ΘK

0
0
0

0
1
0

0
0
0

0
TS
0

0
0
0

Wheel
ΘW

0
0
0

0
0
0

0
1
0

0
−rS Fx

0

0
0
0
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The chassis performs translational motions only. That is why the corre-
sponding rows in Table 1.3 will all vanish. There are also no remaining terms
in the angular accelerations within this simple model.

1.5.3 Applied Forces and Torques

Assuming linear characteristics, the torsional spring damper combination act-
ing at the revolute joint in B will generate the torque

TS = −
(
T 0
S + cS β + dS β̇

)
, (1.44)

where T 0
S describes the preload in the steady design position defined by β = 0

and β̇ = 0, cS denotes the torsional spring rate, and dS denotes the torsional
damper constant.

The constants cx and cz characterize the compliance of the tire in longitu-
dinal and vertical direction. As long as the tire is in contact with the actuator,
the vertical tire force is defined by

Fz = −cz (r0 − rS) , (1.45)

where

rS = h+ z − b + a sinβ − u (1.46)

denotes the static tire radius. Assuming adhesion in the contact area,

Fx = −cx (a (1−cosβ)− rS ϕ) − dx

(
a sinββ̇ − rS ϕ̇

)
(1.47)

will model the longitudinal tire force. The constant dx models the tire damping
in the longitudinal direction. The suspension damping here provided by the
torque Ts affects the translational motions of the wheel too. However, the
wheel rotation is determined by the longitudinal tire force only. That is why
damping must be provided via the constant dx to avoid undamped wheel
oscillations.

A detailed model for all tire forces and torques, which also includes non-
linearities and lift-off, is developed in Chapter 3.

1.5.4 Equations of Motion

Jourdain’s principle results in a set of two first-order differential equations.
As trivial generalized velocities were chosen here, they read as

ẏ = z and M ż = q , (1.48)

where y denotes the vector of generalized coordinates, the vector z defines
trivial generalized velocities, the mass matrix M is defined by Equation (1.30),
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and Equation (1.31) generates the vector q, which contains the generalized
forces and torques. Using the notations in Tables 1.2 and 1.3, we get

M =

 mC +mK +mW (smK + amW ) cosβ 0
(smK + amW ) cosβ ΘK + s2mK + a2mW 0

0 0 ΘW

 (1.49)

and

q =

 Fz − (mC +mK +mW ) g + (smK + amW ) sinβ β̇ 2

TS − (smK + amW ) cosβ g + a (Fx sinβ + Fz cosβ)
−rS Fx

 . (1.50)

Inspecting the elements of the mass matrix, we recognize that mC+mK+mW

represents the overall mass of the quarter car model and ΘK+s2mK+a2mW

denotes the inertia of the wheel mass, the knuckle, and the trailing arm with
respect to the revolute joint in B. The inertia of the wheel ΘW will not show
up here because the wheel rotation ϕ is measured not relative to the knuckle
but with respect to the earth-fixed system 0.

In steady state, the time derivatives of the generalized coordinates will
vanish. Then, the suspension torque provided by Equation (1.44) simplifies to

TS −→ T stS = −
(
T 0
S + cSβ

st
)
, (1.51)

and the balance of generalized forces expressed by q=0 will yield

F stz − (mC +mK +mW ) g = 0 , (1.52)

−
(
T 0
S+cSβ

st
)
− sSmS cosβstg + a

(
F stx sinβst+F stz cosβst

)
= 0 , (1.53)

−rS F stx = 0 , (1.54)

where the term smK+amW is replaced by sSmS by introducing the suspension
mass mS =mK+mW (knuckle with trailing arm) and sS as the position of
the corresponding mass center. The first an the third equations deliver the
steady-state tire forces

F stz = (mC +mK +mW ) g and F stx = 0 , (1.55)

where the vertical force F stz just equals the weight G=(mC+mK+mW ) g of
the quarter car.

1.5.5 Simulation

For any given vehicle data, including the preload of the torsional suspen-
sion spring T 0

S , the steady-state rotation angle βst of the trailing arm can be
obtained from Equation (1.53). The MATLAB-Script in Listing 1.1 will do
the calculation where the MATLAB-Command qcm data executes the corre-
sponding MATLAB-Script given in Listing 1.2, which provides the data of the
quarter car model.
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Listing 1.1
Script qcm steady state.m: Steady-State Position of Quarter Car Model

1 qcm_data

2
3 % steady state tire forces

4 Fx = 0; Fz = ( mC + mK + mW ) * g ;

5
6 % knuckle and trailing arm

7 mS = mK + mW; sS = ( s*mK + a*mW ) / mS;

8
9 % solve non-linear equation by matlab-function fzero

10 be0=fzero(@(be) -(Ts0+cs*be)-sS*mS*cos(be)*g+a*(Fx*sin(be)+Fz*cos(be)),0);

11 disp([’be_st=’,num2str(be0*180/pi),’ [Grad]’]

Listing 1.2
Script qcm data.m: Vehicle Data

1 g = 9.810; % [m/s^2] gravity [m/s^2]

2 s = 0.250; % [m] distance joint B center of knuckle/trailing arm

3 a = 0.400; % [m] distance joint B center of wheel

4 b = 0.310; % [m] vertical distance chassis center to joint B

5 h = 0.600; % [m] height of chassis center

6 r0= 0.305; % [m] tire radius

7
8 mC= 200; % [kg] corresponding chassis mass (quarter car)

9 mK= 35; % [kg] mass of knuckle/trailing arm

10 mW= 15; % [kg] mass of wheel (rim and tire)

11
12 ThetaK=0.6; % [kgm^2] inertia of knuckle/trailing arm

13 ThetaW=0.8; % [kgm^2] inertia of wheel

14
15 Ts0=1200; % [Nm] preload in torsional spring

16 cs=10000; % [Nm/rad] torsional spring rate

17 ds= 800; % [Nms] torsional damping

18 cx=180000; % [N/m] longitudinal tire stiffness

19 cz=220000; % [N/m] vertical tire stiffness

20 dx= 150; % [Ns/m] longitudinal tire damping

Finally, the MATLAB-Script given in Listing 1.3 performs a time simula-
tion in the interval from t0 = 0 s to tE = 1.5 s.

Listing 1.3
Script qcm main.m: Quarter Car Model Exposed to Step Input

1 % globals

2 global g s a b h r0

3 global mC mK mW ThetaK ThetaW

4 global Ts0 cs ds cx cz dx

5 global ustep tstep

6
7 % vehicle data

8 qcm_data

9
10 % define step input

11 ustep=0.05; % [m] actuator step input
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12 tstep=0.75; % [s] @ t=tstep

13
14 % initial states

15 x0 = [ 0; 0; 0; 0; 0; 0];

16
17 % time simulation

18 t0=0; tE=1.5;

19 [tout,xout] = ode45(@qcm_f,[t0,tE],x0);

20
21 % plot results

22 subplot(3,1,1), plot(tout,xout(:,1)), grid on

23 xlabel(’t [s]’), ylabel(’z [m]’)

24 subplot(3,1,2), plot(tout,xout(:,2)*180/pi), grid on

25 xlabel(’t [s]’), ylabel(’\beta [deg]’)

26 subplot(3,1,3), plot(tout,xout(:,3)*180/pi), grid on

27 xlabel(’t [s]’), ylabel(’\phi [deg]’)

The MATLAB-Function ode453 solves the first-order ordinary differential
equations (ODEs) provided by the function given in Listing 1.4 and plots the
time histories of the chassis displacement z, the rotation of the knuckle and
trailing arm β, as well as the wheel rotation ϕ versus time t, Figure 1.12.

Listing 1.4
Function qcm f.m: Equations of Motion of the Quarter Car Model

1 function xdot = qcm_f(t,x)

2 % quarter car model with trailing arm suspension

3
4 global g s a b h r0

5 global mC mK mW ThetaK ThetaW

6 global Ts0 cs ds cx cz dx

7 global ustep tstep

8
9 % state variables

10 z = x(1); beta = x(2); phi = x(3);

11 zd = x(4); betad = x(5); phid = x(6);

12
13 % step input to actuator @ t = tstep

14 if t < tstep, u = 0; else u = ustep; end

15
16 % torque in revolute joint

17 Ts = - ( Ts0 + cs*beta + ds*betad );

18
19 % tire deflection (static tire radius)

20 rS = h + z - b + a*sin(beta) - u ;

21
22 % longitudinal tire force (adhesion assumed)

23 Fx = - cx *( a*(1-cos(beta)) - rS*phi ) ...

24 - dx *( a*sin(beta)*betad - rS*phid ) ;

25
26 % vertical tire force (contact assumed)

27 Fz = cz *( r0 - rS );

28
29 % mass matrix

3ode45 is based on an explicit Runge-Kutta (4,5) formula, the Dormand-Prince pair.
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30 Massma=[ mC+mK+mW (s*mK+a*mW)*cos(beta) 0 ; ...

31 (s*mK+a*mW)*cos(beta) ThetaK+s^2*mK+a^2*mW 0 ; ...

32 0 0 ThetaW ];

33
34 % vector of generalized forces and torques

35 qgen=[ Fz-(mC+mK+mW)*g+(s*mK+a*mW)*sin(beta)*betad^2 ; ...

36 Ts-(s*mK+a*mW)*cos(beta)*g+a*(Fx*sin(beta)+Fz*cos(beta)); ...

37 -rS*Fx ];

38
39 % state derivatives

40 xdot = [ zd; betad; phid; Massma\qgen ];

41
42 end
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FIGURE 1.12
Simulation results to step input from u = 0 to u = 0.05m at t = 0.75 s.

During the first time interval 0 s ≤ t ≤ 0.75 s where the actuator displace-
ment is kept to u = 0m the quarter car model performs the transition from the
initial values to steady state. After a short time the rotation angle of knuckle
and trailing arm adjusts to the value β = −2.087◦ which is in conformity with
the steady state value bK0 calculated and printed by the MATLAB-Script
in Listing 1.1. At t = 0.75 s the actuator is moved in an instant (step input)
to the value of u = 0.05m. The resulting oscillations decay in a short time
indicating an appropriate suspension damping. The rotation of the trailing
arm β = β(t) causes the wheel center M to move back and forth. As a conse-
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quence, the wheel that is in contact with the strictly vertical moving actuator
is forced to rotate too, ϕ = ϕ(t).

Exercises

1.1 Given the tire codes P245/65R17 and 32x10.5R15LT, calculate the radius
and width for both tires.

1.2 Measurements on a K&C (Kinematics and Compliance) test rig provide
the toe angle δ0 = 0.7◦ and the camber angle γ̂0 = −1.0◦ in design position.
Calculate the components of the unit vector eyR pointing in the direction of
the wheel rotation axis.

1.3 Use the unit vector eyR calculated in Exercise 1.2 and generate the coor-
dinates of the wheel alignment point D when its distance to the wheel center
W is given by DW = 0.1 m and the position of the wheel center relative to
the origin C of the vehicle-fixed reference frame F is defined by the vector
rCW,F = [ 0.00 0.76 0.00 ]

T
.

1.4 The steady-state position of the trailing arm depends on the pre-load
in the torsional suspension spring. Find the value for T 0

S which will keep the
trailing arm in steady state in a horizontal position, βst = 0◦. Check the result
with the MATLAB-Script provided by Listing 1.1. Do not forget to adjust the
value for the torsional spring preload Ts0 in Listing 1.2.

1.5 Use the MATLAB-Scripts in Section 1.5.5 and perform simulations with
different values of the suspension damping (double or halve the given value).
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2.1 Modeling Aspects

Besides single obstacles or track grooves, the irregularities of a road are
stochastic in nature. A vehicle driving over a random road profile mainly
performs hub, pitch, and roll motions. The local inclination of the road pro-
file also induces longitudinal and lateral motions as well as yaw motions. On
normal roads the latter motions will have less influence on ride comfort and
ride safety. To limit the effort of the stochastic description, usually simpler
road models are used.

Sophisticated three-dimensional road models provide not only the road
height z = z(x, y) but also the local friction coefficient µ = µ(x, y) at each
point x, y, Figure 2.1. In addition, simple road models will often generate
the local road normal and the local curvature. Within this general approach
the tire model is responsible for calculating the local road inclination and
curvature. By separating the horizontal course description from the vertical
layout and the surface properties of the roadway almost arbitrary road lay-
outs are possible [4]. Today, high-resolution measurements of road surfaces are
performed in moving traffic by measuring vans and generate a huge amount
of data. Therefore, a compact but still accurate representation of measured
data will be essential for straightforward applications in simulation environ-
ments. The recently launched open-source project OpenCRG provides a three-

27
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dimensional road model where a curved regular grid (CRG) is used to achieve
a compact and accurate representation of measurements [5].

center 
line road segments

singleobstacle

track contour

local 
friction 
area

grooves

�(x,y)

x0y0

z0 z(x,y)

FIGURE 2.1
Sophisticated road model.

If the vehicle drives along a given path, its momentary position can be
described by the path variable s = s(t). Hence, a fully three-dimensional
road model can be reduced to a parallel track model, Figure 2.2. Now, the

s

x
y

z

zR(x,y) z1(s)

z1z2

FIGURE 2.2
Parallel track road model.

road heights on the left and right track are provided by two one-dimensional
functions z1 = z1(s) and z2 = z2(s). Within the parallel track model, no
information about the local lateral road inclination is available. If this infor-
mation is not provided by additional functions, the impact of a local lateral
road inclination to vehicle motions is not taken into account.
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For basic studies the irregularities at the left and the right track can be
considered approximately the same, z1(s) ≈ z2(s). Then, a single track road
model with zR(s) = z1(x) = z2(x) can be used. In this case, the roll excitation
of the vehicle is neglected too.

2.2 Deterministic Profiles

2.2.1 Bumps and Potholes

Bumps and potholes on the road are single obstacles of nearly arbitrary shape.
Already with simple rectangular cleats, the dynamic reaction of a vehicle or a
single tire to a sudden impact can be investigated. If the shape of the obstacle
is approximated by a smooth function, like a cosine wave, then discontinu-
ities will be avoided. Usually, deterministic obstacles are described in local
coordinate systems, Figure 2.3.
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FIGURE 2.3
Rectangular cleat and cosine-shaped bump.

Then, the rectangular cleat is simply defined by

z(x, y) =

{
H if − L

2 < x < L
2 & − B

2 < y < B
2

0 else
(2.1)

and the cosine-shaped bump is given by

z(x, y) =

 1
2H
(

1+cos
(

2π
x

L

))
if − L

2 < x < L
2 & − B

2 < y < B
2

0 else,

(2.2)
where H, B, and L denote the height, width, and length of the obstacle.
Potholes are obtained if negative values for the height (H < 0) are used.

The function in Listing 2.1 computes the rectangular cleat when the switch
parameter OT is set to 1 or with OT=2 the cosine-shaped bump. Case OT=3
generates a rounded bump with a cosine-like transition to the default road
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height z = 0 in the x-direction and a sharp but still smooth blending in the
y-direction.

Listing 2.1
Function obstacle f.m: Deterministic Obstacles

1 function z = obstacle_f(x,y,OT,B,H,L)

2 % set default road height outside obstacle

3 z = 0;

4 % check if x,y-coordinates are inside obstacle

5 if x>-L/2 && x<L/2 && y>-B/2 && y<B/2

6 % select type of obstacle

7 switch OT

8 case 1 % cleat

9 z = H;

10 case 2 % cosine shaped obstacle

11 z = H/2 * ( 1 + cos(2*pi*x/L) );

12 case 3 % rounded obstacle

13 zx=(1-(x/(L/2))^2)^2; zy=(1-(y/(B/2))^8)^2; z=H*zx*zy;

14 end

15 end

16 end

In a similar way, track grooves can be modeled too [49]. By appropriate co-
ordinate transformations, the obstacles can then be integrated into the global
road description.

2.2.2 Sine Waves

Using the parallel track road model, a periodic excitation can be realized by

z1(s) = A sin (Ω s) and z2(s) = A sin (Ω s−Ψ) , (2.3)

where s is the path variable, A denotes the amplitude, Ω the wave number,
and the angle Ψ describes a phase lag between the left and right tracks. The
special cases Ψ = 0 and Ψ = π represent in-phase excitation with z1 = z2 and
out-of-phase excitation with z1 = −z2, respectively.

If the vehicle runs with constant velocity ds/dt = v0 = const., then the
momentary position of the vehicle is simply determined by s = v0 t, where the
initial position s = 0 at t = 0 was assumed. By introducing the wavelength

L =
2π

Ω
, (2.4)

the term Ω s in Equation (2.3) can be written as

Ω s =
2π

L
s =

2π

L
v0 t = 2π

v0

L
t = ω t . (2.5)

Hence, in the time domain, the excitation frequency is given by

f = ω/(2π) =
2π v0

L

2π
=
v0

L
. (2.6)
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For most vehicles, the rigid body vibrations are between 0.5 Hz and 15 Hz.
This range is covered by waves that satisfy the conditions v0/L ≥ 0.5Hz and
v0/L ≤ 15Hz.

For a given wavelength, let’s say L= 4 m, the rigid body vibrations of a
vehicle are excited if the velocity of the vehicle will be varied from vmin0 =
0.5Hz ∗ 4m=2m/s=7.2 km/h to vmax0 =15Hz ∗ 4m=60m/s=216 km/h.
Hence, to achieve an excitation in the whole frequency range with moderate
vehicle velocities, road profiles with varying wavelengths are needed.

2.3 Random Profiles

2.3.1 Statistical Properties

Road profiles fit the category of stationary Gaussian random processes [6].
Hence, the irregularities of a road can be described either by the profile itself
zR = zR(s) or by its statistical properties, Figure 2.4.
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FIGURE 2.4
Road profile and statistical properties.

By choosing an appropriate reference frame, a vanishing mean value

m = E {zR(s)} = lim
X→∞

1

X

X/2∫
−X/2

zR(s) ds = 0 (2.7)

can be achieved, where E {} denotes the expectation operator. Then, the
Gaussian density function that corresponds with the histogram is given by

p(zR) =
1

σ
√

2π
e
− z2

R

2σ2 , (2.8)
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where the deviation or the effective value σ is obtained from the variance of
the process zR = zR(s)

σ2 = E
{
z2
R(s)

}
= lim

X→∞

1

X

X/2∫
−X/2

zR(s)2 ds . (2.9)

Alteration of σ affects the shape of the density function. In particular, the
points of inflection occur at ±σ. The probability of a value |z| < ζ is given by

P (±ζ) =
1

σ
√

2π

+ζ∫
−ζ

e
− z2

2σ2 dz . (2.10)

In particular, one gets the values P (±σ) = 0.683, P (±2σ) = 0.955, and
P (±3σ) = 0.997. Hence, the probability of a value |z| ≥ 3σ is 0.3%.

As an extension to the variance of a random process, the autocorrelation
function is defined by

R(ξ) = E {zR(s) zR(s+ξ)} = lim
X→∞

1

X

X/2∫
−X/2

zR(s) zR(s+ξ) ds . (2.11)

The autocorrelation function is symmetric, R(ξ) = R(−ξ), and it plays an
important part in the stochastic analysis. In any normal random process, as
ξ increases the link between zR(s) and zR(s+ξ) diminishes. For large values
of ξ, the two values are practically unrelated. Hence, R(ξ → ∞) will tend to
0. In fact, R(ξ) is always less than R(0), which coincides with the variance σ2

of the process. If a periodic term is present in the process, it will show up in
R(ξ).

Usually, road profiles are characterized in the frequency domain. Here, the
autocorrelation function R(ξ) is replaced by the power spectral density (psd)
S(Ω). In general, R(ξ) and S(Ω) are related to each other by the Fourier
transformation

S(Ω) =
1

2π

∞∫
−∞

R(ξ) e−iΩξ dξ and R(ξ) =

∞∫
−∞

S(Ω) eiΩξ dΩ , (2.12)

where i is the imaginary unit, and Ω in rad/m denotes the wavenumber. To
avoid negative wavenumbers, usually a one-sided psd is defined. With

Φ(Ω) = 2S(Ω) , if Ω ≥ 0 and Φ(Ω) = 0 , if Ω < 0 , (2.13)

the relationship e±iΩξ = cos(Ωξ) ± i sin(Ωξ), and the symmetry property
R(ξ) = R(−ξ) Equation (2.12) results in

Φ(Ω) =
2

π

∞∫
0

R(ξ) cos (Ωξ) dξ and R(ξ) =

∞∫
0

Φ(Ω) cos (Ωξ) dΩ . (2.14)
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Now, the variance is obtained from

σ2 = R(ξ=0) =

∞∫
0

Φ(Ω) dΩ . (2.15)

In reality, the psd Φ(Ω) will be given in a finite interval Ω1 ≤ Ω ≤ ΩN ,
Figure 2.5. Then, Equation (2.15) can be approximated by a sum, which for
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FIGURE 2.5
Power spectral density in a finite interval.

N equal intervals will result in

σ2 ≈
N∑
i=1

Φ(Ωi)4Ω with 4Ω =
ΩN − Ω1

N
. (2.16)

2.3.2 Classification of Random Road Profiles

Road elevation profiles can be measured point by point or by high-speed pro-
filometers. The power spectral densities of roads show a characteristic drop
in magnitude with the wavenumber, Figure 2.6a. This simply reflects the fact
that the irregularities of the road may amount to several meters over the
length of hundreds of meters, whereas those measured over the length of 1
meter are normally only some centimeters in amplitude.

Random road profiles can be approximated by a psd in the form of

Φ (Ω) = Φ (Ω0)

(
Ω

Ω0

)−w
, (2.17)

where Ω = 2π/L in rad/m denotes the wavenumber and Φ0 = Φ (Ω0) in
m2/(rad/m) describes the value of the psd at the reference wavenumber Ω0 =
1 rad/m. The drop in magnitude is modeled by the waviness w.

According to the international directive ISO 8608 [16], typical road profiles
can be grouped into classes from A to E. By setting the waviness to w = 2,
each class is simply defined by its reference value Φ0. Class A with Φ0 =
1 ∗ 10−6 m2/(rad/m) characterizes very smooth highways, whereas Class E
with Φ0 = 256∗10−6m2/(rad/m) represents rather rough roads, Figure 2.6b.
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FIGURE 2.6
Road power spectral densities: (a) Measurements [3], (b) classification.

2.3.3 Sinusoidal Approximation

A random profile of a single track can be approximated by a superposition of
N →∞ sine waves

zR(s) =

N∑
i=1

Ai sin (Ωi s−Ψi) , (2.18)

where each sine wave is determined by its amplitude Ai and its wavenumber
Ωi. By different sets of uniformly distributed phase angles Ψi, i = 1(1)N in
the range between 0 and 2π different profiles can be generated that are similar
in general appearance but different in details.

The variance of the sinusoidal representation is then given by

σ2 = lim
X→∞

1

X

X/2∫
−X/2

(
N∑
i=1

Ai sin (Ωi s−Ψi)

) N∑
j=1

Aj sin (Ωj s−Ψj)

 ds .

(2.19)
For i = j and for i 6= j, different types of integrals are obtained. The ones for
i = j can be solved immediately:

Jii =

∫
A2
i sin2 (Ωis−Ψi) ds =

A2
i

2Ωi

[
Ωis−Ψi −

1

2
sin
(
2 (Ωis−Ψi)

)]
. (2.20)

Using the trigonometric relationship

sinx sin y =
1

2
cos(x−y) − 1

2
cos(x+y) , (2.21)
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the integrals for i 6= j can be solved also

Jij =

∫
Ai sin (Ωis−Ψi)Aj sin (Ωjs−Ψj) ds

=
1

2
AiAj

∫
cos (Ωi−j s−Ψi−j) ds −

1

2
AiAj

∫
cos (Ωi+j s−Ψi+j) ds

= −1

2

AiAj
Ωi−j

sin (Ωi−j s−Ψi−j) +
1

2

AiAj
Ωi+j

sin (Ωi+j s−Ψi+j) ,

(2.22)
where the abbreviations Ωi±j = Ωi±Ωj and Ψi±j = Ψi±Ψj were used. The
sine and cosine terms in Equations (2.20) and (2.22) are limited to values of
±1. Hence, Equation (2.19) simply results in

σ2 = lim
X→∞

1

X

N∑
i=1

[
Jii
] X/2

−X/2︸ ︷︷ ︸
N∑
i=1

A2
i

2Ωi
Ωi

+ lim
X→∞

1

X

N∑
i,j=1

[
Jij
] X/2

−X/2︸ ︷︷ ︸
0

=
1

2

N∑
i=1

A2
i . (2.23)

On the other hand, the variance of a sinusoidal approximation to a random
road profile is given by Equation (2.16). So, a road profile zR = zR(s) de-
scribed by Equation (2.18) will have a given psd Φ(Ω) if the amplitudes are
generated according to

Ai =
√

2 Φ(Ωi)4Ω , i = 1(1)N (2.24)

and the wavenumbers Ωi are chosen to lie at N equal intervals 4Ω.
A realization of the country road with a psd of Φ0 = 10∗10−6m2/(rad/m)

and a waviness of w = 2 is shown in Figure 2.7. The pseudo-random road
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FIGURE 2.7
Realization of a country road.

profile z = z(s) was generated according to Equations (2.18) and (2.24) by
N = 200 sine waves in the frequency range from Ω1 = 0.0628 rad/m to
ΩN = 62.83 rad/m.
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2.3.4 Example

A slight modification of the function provided in Listing 1.4 makes the pseudo-
random road profile available to the quarter car model.

Listing 2.2
Function qcm f.m: Equations of Motion of the Quarter Car Model

1 function xdot = qcm_f(t,x)

2 % quarter car model with trailing arm suspension

3
4 global g s a b h r0

5 global mC mK mW ThetaK ThetaW

6 global Ts0 cs ds cx cz dx

7 global v_V Amp Om Psi

8 global z_road fz_wheel

9
10 % state variables

11 z = x(1); beta = x(2); phi = x(3);

12 zd = x(4); betad = x(5); phid = x(6);

13
14 % pseudo random road

15 s_V=v_V*t; u = sum( Amp.*sin(Om*s_V+Psi) ); z_road = u;

16
17 % torque in revolute joint

18 Ts = - ( Ts0 + cs*beta + ds*betad );

19
20 % tire deflection (static tire radius)

21 rS = h + z - b + a*sin(beta) - u ;

22
23 % longitudinal tire force (adhesion assumed)

24 Fx = - cx *( a*(1-cos(beta)) - rS*phi ) ...

25 - dx *( a*sin(beta)*betad - rS*phid ) ;

26
27 % vertical tire force (contact assumed) = wheel load

28 Fz = cz *( r0 - rS ); fz_wheel=Fz;

29
30 % mass matrix

31 Massma=[ mC+mK+mW (s*mK+a*mW)*cos(beta) 0 ; ...

32 (s*mK+a*mW)*cos(beta) ThetaK+s^2*mK+a^2*mW 0 ; ...

33 0 0 ThetaW ];

34
35 % vector of generalized forces and torques

36 qgen=[ Fz-(mC+mK+mW)*g+(s*mK+a*mW)*sin(beta)*betad^2 ; ...

37 Ts-(s*mK+a*mW)*cos(beta)*g+a*(Fx*sin(beta)+Fz*cos(beta)); ...

38 -rS*Fx ];

39
40 % state derivatives

41 xdot = [ zd; betad; phid; Massma\qgen ];

42
43 end

The statements in line 15 of the modified function given in Listing 2.2
generate actuator displacements u, which according to Equation (2.18) will
approximate a given random road profile. By assuming a constant driving
velocity vV = const., the relationship sV = vV t will provide the spatial coor-
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dinate as a function of time. The additional global variables zroad and fzwheel
make the road profile and the wheel load also available outside the function.
The vectors Amp, Om, Psi stored in global variables define the amplitudes,
the spatial frequencies, and the randomly distributed phase angles. They are
calculated in the MATLAB-Script given by Listing 2.3.

Listing 2.3
Script qcm main.m: Quarter Car Model Exposed to Pseudo-Random Excita-
tion

1 % globals

2 global g s a b h r0

3 global mC mK mW ThetaK ThetaW

4 global Ts0 cs ds cx cz dx

5 global v_V Amp Om Psi

6 global z_road fz_wheel

7
8 % vehicle data

9 qcm_data

10
11 % vehicle velocity [km/h --> m/s]

12 v_V = 80/3.6;

13 % spectral density and waviness

14 Phi0 = 10e-6; w = 2;

15 % range of frequencies and number of samples

16 Omin = 0.0628; Omax = 62.83; n = 200;

17
18 % calculate amplitudes and random phases

19 dOm = (Omax-Omin)/(n-1);

20 Om = Omin:dOm:Omax;

21 Om0 = 1;

22 Phi = Phi0.*(Om./Om0).^(-w); Amp = sqrt(2*Phi*dOm);

23 Psi = 2*pi*rand(size(Om));

24
25 % initial states: x0 = [ zC; betaK; phiW; zCd; betaKd; phiWd ]

26 x0 = [ 0; 0; 0; 0; 0; 0];

27
28 % simulation interval

29 t0=0; tE=6;

30 % adjust initial state to road

31 s_V = v_V*t0; u = sum( Amp.*sin(Om*s_V+Psi) ); x0(1)=u;

32 % perform time simulation

33 [tout,xout] = ode45(@qcm_f,[t0,tE],x0);

34
35 % get road height, wheel load and chassis acceleration

36 zr=zeros(size(tout)); fz=zeros(size(tout)); zdd=zeros(size(tout));

37 for i=1:length(tout)

38 xdot = qcm_f(tout(i),xout(i,:)’);

39 zr(i)= z_road; fz(i)=fz_wheel; zdd(i)=xdot(4);

40 end

41
42 % mean value and standard deviation of wheel load

43 fz_m = mean(fz); fz_std = std(fz);

44 disp([’wheel load: mean value =’,num2str(fz_m)])

45 disp([’wheel load: standard deviation =’,num2str(fz_std)])

46
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47 % generate histogram of wheel load

48 nh=20; [nfz,hfz]=hist(fz,nh);

49
50 % generate gaussian density function and adjust to histogramm

51 fzi=linspace(min(fz),max(fz),201);

52 pfz = exp(-(fzi-fz_m).^2./(2*fz_std.^2))./(fz_std*sqrt(2*pi));

53 pfz = pfz * (sum(nfz)*(max(fz)-min(fz))/nh);

54
55 % plot results

56 subplot(3,2,1), plot(tout,zr), grid on

57 xlabel(’time’), legend(’road: z_R ’)

58 subplot(3,2,2), plot(tout,xout(:,2)*180/pi), grid on

59 xlabel(’time’), legend(’\beta [deg]’)

60 subplot(3,2,3), plot(tout,xout(:,1)), grid on

61 xlabel(’time’), legend(’chassis: z(t)’)

62 subplot(3,2,4), plot(tout,xout(:,3)*180/pi), grid on

63 xlabel(’time’), legend(’\phi [deg]’)

64 subplot(3,2,5), plot(tout,fz/1000), grid on

65 xlabel(’time’), legend(’wheel load F_z [kN]’)

66 subplot(3,2,6), barh(hfz/1000,nfz), colormap(’white’), hold on

67 plot(pfz,fzi/1000,’k--’,’Linewidth’,2)

68 legend(’Histogram F_z’,’Gauss’)

As done in the corresponding script provided by Listing 1.3, the vehicle
data are defined in the script qcm data given in Listing 1.2. The MATLAB-
Function rand1 is used to generate uniformly distributed pseudo-random num-
bers. To reduce initial disturbances the chassis displacement z represented by
the first state variable x(1) is adjusted in line 31 to the initial actuator dis-
placement u = u(t0).

MATLAB simulations performed by any ode-solver just provide the state
variables at different time steps stored in the vector tout and the matrix
xout. The loop in lines 37 to 40 calls the MATLAB-Function qcm f, which
while providing the state derivatives xdot as a function of the time t=tout(i)
and the state vector x=xout(i,:)’, will calculate the corresponding actuator
displacement u or respectively the road profile z road and the wheel load
fz wheel too. The actual values will be stored in the vectors zr and fz, which
are pre-allocated in line 36 to speed up the loop.

The MATLAB-Functions mean and std applied to the vector fz provide
mean values in the range of 2440N < fz m < 2460N and standard deviations in
the range of 750N < fz std < 770N. As expected, the mean values correspond
quite well to the steady-state value F stz = 2452.5N , which results from the first
part of Equation 1.55. The MATLAB-Function hist generates a histogram of
the wheel load, which is appropriately plotted here via the MATLAB-Function
barh next to the time history of the wheel load, Figure 2.8.

The time histories of the chassis and the actuator displacements clearly
indicate the filtering effects of the wheel suspension. The quarter car model

1Note: Different MATLAB-Version may generate different random numbers. In addition,
subsequent calls to rand will produce various results. That is why the pseudo-random road
realization will differ from application to application. But, all realizations will have the same
statistical properties.
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FIGURE 2.8
Simulation results with a pseudo-random excitation.

is here driven with a velocity of vV = 80 km/h over a rather rough road that
produces large wheel load variations. According to Equation (2.10), the wheel
loads will be with a probability of 99.7% in the range of

2450− 3 ∗ 760 < fz < 2450− 3 ∗ 760 or 170 < fz < 4730 , (2.25)

which takes a Gaussian normal distribution for granted. In fact, the histogram
of the wheel load matches the Gaussian density function defined by Equa-
tion (2.8) nearly perfectly. As the area below the Gaussian density function
equals 1 per definition, the density function pfz must be scaled to equal the
area below the histogram. Equation (2.25) indicates by potential wheel loads
close to zero fz→ 0 the danger of wheel liftoff. The simple calculations of the
longitudinal and vertical tire forces done in lines 24 and 28 of the function
qcm f given in Listing 2.2 are not valid in situations where the wheel is close to
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liftoff. Here, a more complex tire model, which will be provided in Chapter 3,
is mandatory. In addition, a more sophisticated random road approximation
may be applied where the range of the wavenumbers is divided not in equally
spaced intervals but in intervals where the bandwidth bi = (Ωi + ∆Ωi) /Ωi is
kept constant.

2.3.5 Shaping Filter

The white noise process produced by random number generators has a uniform
spectral density and is therefore not suitable to describe real road profiles. But,
if the white noise process is used as input to a shaping filter, more appropriate
spectral densities will be obtained [28]. A simple first-order shaping filter for
the road profile zR reads as

d

ds
zR(s) = −γ zR(s) + w(s) , (2.26)

where γ is a constant and w(s) is a white noise process with the spectral
density Φw. Then, the spectral density of the road profile is obtained from

ΦR = H(Ω) ΦW HT (−Ω) =
1

γ + iΩ
ΦW

1

γ − iΩ
=

ΦW
γ2 + Ω2

, (2.27)

where Ω is the wavenumber and H(Ω) is the frequency response function of
the shaping filter. By setting ΦW = 10∗10−6m2/(rad/m) and γ = 0.01rad/m,
the measured psd of a typical country road can be approximated very well,
Figure 2.9. The shape filter approach is also suitable for modeling parallel

10-2 10-1 102101100

10-4

10-3

10-5

10-6

10-7

10-8

10-9

����������	�

���
����
�	��

���������������������

�
�
�
��
��
�
��
	�
��
��
��
�

	�
��
��
�
 
�!
��
�
��

"�
�

FIGURE 2.9
Shaping filter as approximation to measured psd.
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tracks. Here, the crosscorrelation between the irregularities of the left and
right track have to be taken into account also [32].

The white noise process w(s) is discontinuous. Hence, the solving shape
filter differential equations like Equation (2.26) with standard ode-solvers is
extremely time consuming or will cause severe problems. That is why the
shape filter approach usually is applied within analytical calculations.

2.3.6 Two-Dimensional Model

The generation of fully two-dimensional road profiles zR = zR(x, y) via a sinu-
soidal approximation is very laborious. Because a shaping filter is a dynamic
system, the resulting road profile realizations are not reproducible. By adding
band-limited white noise processes and taking the momentary position x, y
as seed for the random number generator, a reproducible road profile can be
generated [33].
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FIGURE 2.10
Two-dimensional road profile.

By assuming the same statistical properties in longitudinal and lateral di-
rection, two-dimensional profiles, like the one in Figure 2.10, can be obtained.

Exercises

2.1 Modify the MATLAB-Script (Listing 2.3) and the corresponding func-
tion (Listing 2.2) so that the displacements of the actuator correspond with
a cosine-shaped bump. Use the function in Listing 2.1 or the relevant state-
ments in it. Note: The vehicle data are defined in the script qcm data given
in Listing 1.2.

Perform simulations with different heights (including negative values) and
lengths of the obstacle. Replace the histogram-plot by the chassis acceleration
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which will be provided by the fourth component of the state derivatives xdot.
Keep in mind that valid results presume positive wheel loads!

2.2 Use the MATLAB-Script qcm main (Listing 2.3) together with the
MATLAB-Script qcm data given in Listing 1.2 and the corresponding func-
tion (Listing 2.2) to study the influence of the vehicle velocity on the wheel
load.

Perform simulations with different values of the road power spectral den-
sity. Again, keep in mind that valid results presume positive wheel loads!
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3.1 Introduction

3.1.1 Tire Development

Some important milestones in the development of pneumatic tires are shown
in Table 3.1.

TABLE 3.1
Milestones in Tire Development

1839 Charles Goodyear: vulcanization
1845 Robert William Thompson: first pneumatic tire

(several thin inflated tubes inside a leather cover)
1888 John Boyd Dunlop: patent for bicycle (pneumatic) tires
1893 The Dunlop Pneumatic and Tyre Co. GmbH, Hanau, Germany
1895 André and Edouard Michelin: pneumatic tires for Peugeot

Paris-Bordeaux-Paris (720 mi):
50 tire deflations and 22 complete inner tube changes

1899 Continental: “long-lived” tires (approx. 500 km)
1904 Carbon added: black tires.
1908 Frank Seiberling: grooved tires with improved road traction
1922 Dunlop: steel cord thread in the tire bead
1942 Synthetic rubber: extremely important during World War II
1943 Continental: patent for tubeless tires
1946 Radial tire
1952 High-quality nylon tire

...

Of course tire development did not stop in 1952, but modern tires are still
based on these achievements. Today, run-flat tires are under investigation. A
run-flat tire enables the vehicle to continue to be driven at reduced speeds
(i.e. 80 km/h or 50 mp/h) and for limited distances (80 km or 50 mi). The
introduction of run-flat tires makes it mandatory for car manufacturers to fit a
system where the drivers are made aware that the run-flat has been damaged.

3.1.2 Tire Composites

Tires are very complex. They combine dozens of components that must be
formed, assembled, and cured together. And their ultimate success depends
on their ability to blend all of the separate components into a cohesive product
that satisfies the driver’s needs. A modern tire is a mixture of steel, fabric,
and rubber. The main composites1 of a passenger car tire with an overall mass
of 8.5 kg are listed in Table 3.2.

1Data taken from www.felge.de (last accessed September 2010).
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TABLE 3.2
Tire Composites: 195/65 R 15 ContiEcoContact

Reinforcements: steel, rayon, nylon 16%
Rubber: natural/synthetic 38%
Compounds: carbon, silica, chalk, ... 30%
Softener: oil, resin 10%
Vulcanization: sulfur, zinc oxide, ... 4%
Miscellaneous 2%

3.1.3 Tire Forces and Torques

In any point of contact between the tire and the road surface, normal and fric-
tion forces are transmitted. According to the tire’s profile design, the contact
patch forms a not necessarily coherent area, Figure 3.1.
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FIGURE 3.1
Footprint of a test tire of size 205/55 R 16 at Fz = 4700N and p = 2.5 bar.

The effect of the contact forces can be fully described by a resulting force
vector applied at a specific point of the contact patch and a torque vector. The
vectors are described in a track-fixed coordinate system. The z-axis is normal
to the track, and the x-axis is perpendicular to the z-axis and perpendicular to
the wheel rotation axis eyR. Then, the demand for a right-handed coordinate
system also fixes the y-axis.

The components of the contact force vector are named according to the
direction of the axes, Figure 3.2. A nonsymmetric distribution of the forces in
the contact patch causes torques around the x- and y-axes. A cambered tire
generates a tilting torque Tx. The torque Ty includes the rolling resistance of
the tire. In particular, the torque around the z-axis is important in vehicle
dynamics. It consists of two parts,

Tz = TB + TS . (3.1)
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Fx longitudinal force

Fy lateral force

Fz vertical force or wheel load

Tx tilting torque

Ty rolling resistance torque

Tz self-aligning and bore torque
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FIGURE 3.2
Contact forces and torques.

The rotation of the tire around the z-axis causes the bore torque TB . The
self-aligning torque TS takes into account that, in general, the resulting lateral
force is not acting in the center of the contact patch.

3.1.4 Measuring Tire Forces and Torques

In general, tire forces and torques are measured under quasi-static operating
conditions. Different measurement techniques are available. To measure tire
forces and torques on the road, a special test trailer is needed, Figure 3.4. Here,
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FIGURE 3.3
Layout of a typical tire test trailer.

the measurements are performed under real operating conditions. Arbitrary
surfaces like asphalt or concrete and different environmental conditions like
dry, wet, or icy are possible. Measurements with test trailers are quite costly
and in generalt restricted to passenger car tires.
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Indoor measurements of tire forces and torques can be performed on drums
or on a flatbed, Figure 3.4. On drum test rigs, the tire is placed either inside
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FIGURE 3.4
Tire test rigs: Inner and outer drum as well as flatbed.

or outside the drum. In both cases the shape of the contact area between
tire and drum is not correct. That is why one cannot rely on the measured
self-aligning torque. Due to its simple and robust design, wide applications
including measurements of truck tires are possible. The flatbed tire test rig
is more sophisticated. Here, the contact patch is as flat as on the road. But,
the safety walk coating that is attached to the steel bed does not generate the
same friction conditions as on a real road surface.
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FIGURE 3.5
Typical results of tire measurements.

The slip, a dimensionless quantity that is discussed in Section 3.3.4, is used
to quantify the sliding condition in the area where the tire is in contact with
the road or the testing device, respectively. Usually, the velocity or angular
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velocity of the testing device (trailer, drum, or flatbed) is kept constant. Then,
different sliding conditions are generated by slowly increasing or decreasing
the angular velocity or slowly varying the alignment of the test wheel. In con-
sequence, the measurements for increasing and decreasing sliding conditions
will result in different graphs, Figure 3.5. In general, the mean values are then
taken as steady-state results.

3.1.5 Modeling Aspects

For the dynamic simulation of on-road vehicles, the model-element “tire/road”
is of special importance, according to its influence on the achievable results. It
can be said that the sufficient description of the interactions between tire and
road is one of the most important tasks of vehicle modeling, because all the
other components of the chassis influence the vehicle dynamic properties via
the tire contact forces and torques. Therefore, in the interest of balanced mod-
eling, the precision of the complete vehicle model should stand in reasonable
relation to the performance of the applied tire model. At present, two groups
of models can be identified: handling models and structural or high-frequency
models [21].

Structural tire models are very complex. Within RMOD-K, the tire is
modeled by four circular rings with mass points that are also coupled in the
lateral direction [26]. Multi-track contact and the pressure distribution across
the belt width are taken into account. The tire model FTire consists of an
extensible and flexible ring that is mounted to the rim by distributed stiff-
nesses in the radial, the tangential, and the lateral direction [10]. The ring
is approximated by a finite number of belt elements to which a number of
mass-less tread blocks are assigned, Figure 3.6.
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FIGURE 3.6
Complex tire model (FTire).
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Complex tire models are computer time consuming and need a lot of data.
Usually, they are used for stochastic vehicle vibrations occurring during rough
road rides and causing strength-relevant component loads [31].

Comparatively lean tire models are suitable for vehicle dynamics simu-
lations, while, with the exception of some elastic partial structures such as
twist-beam axles in cars or the vehicle frame in trucks, the elements of the
vehicle structure can be seen as rigid. On the tire’s side, “semi-physical” tire
models prevail, where the description of forces and torques relies, in contrast
to purely physical tire models, also on measured and observed force-slip char-
acteristics. This class of tire models is characterized by useful compromise
between user friendliness, model complexity, and efficiency in computation
time on the one hand, and precision in representation on the other hand.

In vehicle dynamics practice, often there exists the problem of data provi-
sion for a special type of tire for the examined vehicle. Considerable amounts
of experimental data for car tires has been published or can be obtained from
the tire manufacturers. If one cannot find data for a special tire, its charac-
teristics can be guessed at least by an engineer’s interpolation of similar tire
types, Figure 3.7. In the field of truck tires, there is still a considerable back-
log in data provision. These circumstances must be respected in conceiving a
user-friendly tire model.
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FIGURE 3.7
Handling tire model: TMeasy [12].

For a special type of tire, usually the following sets of experimental data
are provided:

• Longitudinal force versus longitudinal slip (mostly just brake-force)

• Lateral force versus slip angle

• Aligning torque versus slip angle

• Radial and axial compliance characteristics

whereas additional measurement data under camber and low road adhesion
are favorable special cases.
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Any other correlations, especially the combined forces and torques, ef-
fective under operating conditions, often must be generated by appropriate
assumptions with the model itself, due to the lack of appropriate measure-
ments. Another problem is the evaluation of measurement data from different
sources (i.e., measuring techniques) for a special tire [13]. It is a known fact
that different measuring techniques result in widely spread results. Here the
experience of the user is needed to assemble a “probably best” set of data as
a basis for the tire model from these sets of data, and to verify it eventually
with his own experimental results.

3.1.6 Typical Tire Characteristics
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FIGURE 3.8
Longitudinal force: ◦ Measurements, − TMeasy approximation.
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FIGURE 3.9
Lateral force: ◦ Measurements, − TMeasy approximation.

Standard measurements usually performed for different wheel loads Fz pro-
vide the longitudinal force Fx as a function of the longitudinal slip sx and
the lateral force Fy and the self-aligning torque TS as a function of the slip
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FIGURE 3.10
Self-aligning torque: ◦ Measurements, − TMeasy approximation.

angle α, which is related to the lateral slip by tanα = sy. Although similar in
general, the characteristics of a typical passenger car tire and a typical truck
tire differ quite a lot in some details, Figures 3.8 to 3.10. Usually, truck tires

Passenger car tire: Fz = 3.2 kN Truck tire: Fz = 35 kN
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FIGURE 3.11
Combined forces: |sx|=1, 2, 4, 6, 10, 15 %; |α|=1, 2, 4, 6, 10, 14◦.

are designed for durability and not for generating large lateral forces. The
characteristic curves Fx = Fx(sx), Fy = Fy(α), and TS = TS(α) for the pas-
senger car and truck tire can be approximated quite well by the tire handling
model TMeasy [12]. Within the TMeasy model approach, one-dimensional
characteristics are automatically converted to two-dimensional combined-slip
characteristics, Figure 3.11.
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3.2 Contact Geometry

3.2.1 Basic Approach

The current position of a wheel in relation to the earth-fixed x0-, y0-, z0-system
is given by the wheel center M and the unit vector eyR in the direction of
the wheel rotation axis, Figure 3.12. The irregularities of the track can be
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FIGURE 3.12
Contact geometry.

described by an arbitrary function of two spatial coordinates,

z = z(x, y) . (3.2)

At an uneven track, the contact point P cannot be calculated directly. At
first, one can get an estimated value with the vector

rMP∗ = −r0 ezB , (3.3)

where r0 is the undeformed tire radius and ezB is the unit vector in the z-
direction of the body-fixed reference frame. The position of this first guess P ∗

with respect to the earth-fixed reference frame x0, y0, z0 is determined by

r0P∗,0 = r0M,0 + rMP∗,0 =

 x∗

y∗

z∗

 , (3.4)

where the vector r0M describes the position of the rim center M . Usually, the
point P ∗ does not lie on the track because Equation (3.3) generates a vector
where neither the deflection of the tire nor its liftoff is taken into account. The
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corresponding track point P0 is determined by

r0P0,0 =

 x∗

y∗

z (x∗, y∗)

 , (3.5)

where Equation (3.2) was used to adjust the z-coordinate to the conforming
road height. At the point P0, the track normal en is calculated. Then, the
unit vectors in the tire’s circumferential direction and lateral direction can be
calculated. One gets

ex =
eyR×en
| eyR×en |

and ey = en×ex , (3.6)

where eyR denotes the unit vector in the direction of the wheel rotation axis.
Calculating ex demands a normalization, as eyR is not always perpendicular
to the track. The tire camber angle γ describes an inclined position of the rim
center plane defined by the unit vector eyR against the track normal en. By
inspecting Figure 3.12 one gets

cos (90◦ − γ) = sin γ = eTyR en or γ = arcsin
(
eTyR en

)
. (3.7)

Now, the vector from the rim center M to the track point P0 is split into three
parts,

rMP0 = −rS ezR + a ex + b ey , (3.8)

where rS denotes the loaded or static tire radius and a, b are distances
measured in the circumferential and lateral direction. The radial direction is
defined by the unit vector ezR which is mutually perpendicular to ex and eyR
and hence given by

ezR = ex×eyR . (3.9)

A scalar multiplication of Equation (3.8) with the unit vector en results in

eTn rMP0
= −rS eTn ezR + a eTn ex + b eTn ey . (3.10)

As the unit vectors ex and ey are perpendicular to en, Equation (3.10) sim-
plifies to

eTn rMP0
= −rS eTn ezR . (3.11)

Hence, the static tire radius is just given by

rS = − eTn rMP0

eTn ezR
, (3.12)

and
rMP = −rS ezR (3.13)

defines the geometric contact point P that lies within the rim center plane.
The transition from the point P0 to the contact point P takes place according
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to Equation (3.8) by the terms a ex and b ey perpendicular to the track normal
en. The track normal, however, was calculated at the point P0. With an uneven
track, the point P shifted perpendicular to the track normal at P0 may no
longer lie on the track and will therefore no longer serve as the contact point.
Using P as a new estimation P ∗ = P , Equations (3.5) to (3.13) may be
repeated until the shifting distances a and b are sufficiently small.

Tire models that can be simulated within an acceptable time frame, assume
that the contact patch is sufficiently flat. At an ordinary passenger car tire,
the contact patch has approximately the size of 15×20 cm at normal load.
So, it makes no sense to calculate a fictitious contact point to fractions of
millimeters, when later on the real track will be approximated by a plane
in the range of centimeters. If the track in the contact patch is replaced by a
local plane, no further iterative improvements will be necessary for the contact
point calculation.

3.2.2 Local Track Plane

Any three points that by chance do not coincide or form a straight line will
define a plane. In order to get a good approximation of the local track incli-
nation in the longitudinal and lateral direction not only three but four sample
points will be used to determine the local track plane.

The unit vector ezB pointing in the z- or upper direction of the body fixed-
reference frame was used in Equation (3.3) to define the initial guess rMP∗

for the contact point. As normal roads are sufficiently even, ezB will be close2

to the local track normal en in normal driving situations where all tires are in
or at least close to contact with the road. Hence, the unit vector

e∗x =
eyR×ezB
| eyR×ezB |

(3.14)

will provide, on the analogy of Equation (3.6), a first guess of the longitudinal
or circumferential direction of the wheel. The points Q∗1, Q∗2, Q∗3, Q∗4 defined
by

rMQ∗
1,2

= rMP∗ ± ∆x e∗x
rMQ∗

3,4
= rMP∗ ± ∆y eyR

(3.15)

will then be located close to the road surface in the front, in the rear, to
the left, and to the right of the wheel center M , Figure 3.13. In order to
sample the contact patch as well as possible, the distances ∆x and ∆y in the
longitudinal and the lateral direction will be adjusted to the unloaded tire
radius r0 and to the tire width b. By setting ∆x = 0.1 r0 and ∆y = 0.3 b, a
quite realistic behavior even on track grooves could be achieved [49]. Similar
to Equation (3.5), the corresponding sample points on the road Q1 to Q4 can

2Using the last value of the unit vector ezR that defines the radial direction of the wheel
instead of ezB , a more accurate approach will be possible.
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FIGURE 3.13
Sample points on local track surface.

be found from

r0Qi,0 =

 x∗i
y∗i

z (x∗i , y
∗
i )

 , i = 1(1)4 , (3.16)

where x∗i and y∗i are the x- and y-components of the vectors

r0Q∗
i ,0

= r0M,0 + rMQ∗
i ,0

=

 x∗i
y∗i
z∗i

 , i = 1(1)4 , (3.17)

describing the absolute position of points Q∗1 to Q∗4.
The lines fixed by the points Q1 and Q2 as well as Q3 and Q4, respectively,

will now be used to define the inclination of the local track plane in the
longitudinal and the lateral direction, Figure 3.14. One gets

en =
rQ2Q1

×rQ4Q3

| rQ2Q1
×rQ4Q3

|
, (3.18)

where rQ2Q1
= r0Q1

− r0Q2
and rQ4Q3

= r0Q3
− r0Q4

define vectors pointing
from Q1 to Q2 and from Q3 to Q4. The unit vectors ex, ey in the direction of
the longitudinal and lateral tire force follow from Equation (3.6). In addition,
the mean value of the sample track points

r0P0,0 =
1

4
(r0Q1,0 + r0Q2,0 + r0Q3,0 + r0Q4,0) (3.19)

may serve as a first improvement of the contact point, P ∗ → P0. Finally,
the corresponding contact point P in the rim center plane is obtained by
Equations (3.12) and (3.13).

As mentioned before, the point P is not always located on the track. But,
together with the local track normal en, it represents the local track uneven-
ness very well. As in reality, sharp bends or discontinuities, which will occur
at very rough roads or step- and ramp-sized obstacles, will be smoothed by
this approach.
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FIGURE 3.14
Inclination of local track plane in longitudinal and lateral directions.

3.2.3 Tire Deflection
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FIGURE 3.15
Deflection of a passenger car or truck tire in different contact situations.

For a vanishing tire camber angle γ = 0, the deflected zone of a passenger car
or truck tire will be close to a rectangle, Figure 3.15. Its area is given by

A0 = ∆z b , (3.20)

where b is the width of the tire, and the radial or vertical tire deflection is
defined as the difference between the undeflected and the deflected or static
tire radius,

∆z = r0 − rS . (3.21)

In this case, the width of the contact patch simply equals the tire width,
wC = b.
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On a cambered tire, the deflected zone of the tire cross-section depends on
the contact situation. The magnitude of the tire flank radii

rSL = rS +
b

2
tan γ and rSR = rS −

b

2
tan γ (3.22)

determines the shape of the deflected zone. The tire is in full contact with
the road if rSL ≤ r0 and rSR ≤ r0 will hold. Then, the deflected zone has a
trapezoidal shape with an area of

Aγ =
1

2
(r0−rSR + r0−rSL) b = (r0 − rS) b . (3.23)

Equalizing the cross-sections Aγ = A0 = ∆z b will again yield the simple
vertical tire deflection

∆z = r0 − rS . (3.24)

Hence, at full contact, the tire camber angle γ will have no influence on the
vertical tire deflection. But, due to

wC =
b

cos γ
, (3.25)

the width of the contact patch increases with the tire camber angle.
The deflected zone will change to a triangular shape if one of the flank

radii exceeds the undeflected tire radius. Assuming rSL > r0 and rSR < r0,
the area of the deflected zone is obtained by

Aγ =
1

2
(r0−rSR) b∗ , (3.26)

where the width of the deflected zone follows from

b∗ =
r0−rSR

tan γ
. (3.27)

Now Equation (3.26) reads as

Aγ =
1

2

(r0−rSR)
2

tan γ
. (3.28)

Equalizing the cross-sections A0 = Aγ finally results in the vertical tire de-
flection

∆z =
1

2

(
r0 − rS + b

2 tan γ
)2

b tan γ
, (3.29)

where Equation (3.22) was used to express the flank radius rSR by the static
tire radius rS , the tire width b, and the camber angle γ. Now the width of the
contact patch is given by

wC =
b∗

cos γ
=

r0 − rSR
tan γ cos γ

=
r0 − rS + b

2 tan γ

sin γ
, (3.30)

where Equations (3.27) and (3.22) were used to simplify the expression. If
tan γ and sin γ are replaced by | tan γ | and | sin γ |, then Equations (3.29) and
(3.30) will hold not only for positive but also for negative camber angles.
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3.2.4 Static Contact Point

Assuming that the pressure distribution on a cambered passenger car or truck
tire corresponds with the shape of the deflected tire area, the acting point of
the resulting vertical tire force Fz will be shifted from the geometric contact
point P to the static contact point Q, Figure 3.16. The center of the deflected
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FIGURE 3.16
Lateral deviation of contact point at full and partial contact.

area determines the lateral deviation yQ of the contact point. By splitting the
trapezoidal area into a rectangular and a triangular section, one obtains

yQ = − y�A� + y∆A∆

A
. (3.31)

The minus sign takes into account that for positive camber angles, the acting
point will move to the right, whereas the unit vector ey defining the lateral
direction will point to the left. The area of the whole cross-section at full
contact is given by

A = 1
2 (r0−rSL + r0−rSR) wC , (3.32)

where the width of the contact patch wC is determined by Equation (3.25).
Using Equations (3.22) and (3.24), the expression can be simplified to

A = ∆z wC . (3.33)

As the center of the rectangular section is located on the center line that runs
through the geometric contact point, y� = 0 will hold. The distance from the
center of the triangular section to the center line is given by

y∆ = 1
2wC −

1
3wC = 1

6wC . (3.34)

In addition, the area of the triangular section is defined by

A∆ = 1
2 (r0−rSR − (r0−rSL)) wC = 1

2 (rSL−rSR) wC = 1
2 b tan γ wC ,

(3.35)
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where Equation (3.22) was used to simplify the expression. Now Equa-
tion (3.31) can be written as

yQ = −
1
6 wC

1
2 b tan γ wC

∆z wC
= − b tan γ

12 ∆z
wC = − b2

12 ∆z

tan γ

cos γ
. (3.36)

If the cambered tire has only partial contact with the road, then according
to the deflection area, a triangular pressure distribution will be assumed, Fig-
ure 3.16. Now the location of the static contact point Q is given by

yQ = ±
(

1

3
wC −

b

2 cos γ

)
, (3.37)

where the width of the contact patch wC is determined by Equation (3.30) and
the term b/(2 cos γ) describes the distance from the geometric contact point
P to the outer corner of the contact patch. The plus sign holds for positive
and the minus sign for negative camber angles.

The static contact point Q described by the vector

r0Q = r0P + yQ ey (3.38)

will represent the contact patch very well in any situation, because it is al-
ways placed inside the contact area. Whereas, the geometric contact point P
as indicated in Figure 3.16 may even be located outside the contact area in
situations where the tire is close to liftoff.

3.2.5 Length of Contact Patch

To approximate the length of the contact patch, the tire deformation is split
into two parts, Figure 3.17. By ∆zF and ∆zB , the average tire flank and the
belt deformation are measured. Hence, for a tire with full contact to the road,

∆z = ∆zF + ∆zB = r0 − rS (3.39)

will hold. Assuming both deflections being approximately equal will lead to

∆zF ≈ ∆zB ≈
1

2
∆z . (3.40)

Approximating the belt deflection by truncating a circle with the radius of
the undeformed tire results in(

L

2

)2

+ (r0 −∆zB)
2

= r2
0 . (3.41)

Under normal driving conditions, the belt deflections will be small. Taking
∆zB � r0 for granted, Equation (3.41) simplifies to

L2

4
= 2 r0 ∆zB or L =

√
8 r0 ∆zB =

√
8 r0

1

2
∆z = 2

√
r0 ∆z , (3.42)
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FIGURE 3.17
Length of contact patch.

where Equation (3.40) was used to approximate the belt deflection ∆zB by
the overall tire deformation ∆z.

Inspecting the passenger car tire footprint in Figure 3.1 leads to a contact
patch length of L ≈ 140mm. For this tire, the vertical stiffness and the inflated
radius are specified with cz = 265 000 N/m and r0 = 316.9 mm. The overall
tire deflection can be estimated by ∆z = Fz/cz. At the load of Fz = 4700N ,
the deflection amounts to ∆z = 4700 N / 265 000 N/m = 0.0177 m. Then,
Equation (3.42) produces with L = 2

√
0.3169m ∗ 0.0177m = 0.1498 m ≈

150mm a contact patch length that will correspond quite well with the length
of the tire footprint.

3.2.6 Contact Point Velocity

The velocity of the contact point will be needed to calculate the tire forces
and torques that are generated by friction. The momentary position of the
static contact point Q defined by Equation (3.38) is given by

r0Q = r0M + rMQ , (3.43)

where the vector r0M describes the position of the wheel center M with respect
to the origin 0 of an earth-fixed coordinate system, and rMQ denotes the vector
from M to the static contact point Q. The absolute velocity of the contact
point will be obtained from

v0Q,0 = ṙ0Q,0 = ṙ0M,0 + ṙMQ,0 , (3.44)

where ṙ0M,0 = v0M,0 names the absolute velocity of the wheel center. As the
vector rMQ contains the tire deflection ∆z normal to the road and it takes
part in all those motions of the wheel carrier that do not contain elements of
the wheel rotation, its time derivative may be expressed as

ṙMQ,0 = ω∗0R,0×rMQ,0 + ∆ż en,0 , (3.45)
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where en describes the road normal, ∆ż denotes the change of the tire deflec-
tion, and

ω∗0R = ω0R − eTyR ω0R eyR (3.46)

is the angular velocity of the wheel rim without any component in the direction
of the wheel rotation axis eyR. Now Equation (3.44) reads as

v0Q,0 = v0M,0 + ω∗0R,0×rMQ,0 + ∆ż en,0 . (3.47)

As the point Q lies on the track, v0Q,0 must not contain any component normal
to the track,

eTn,0 v0Q,0 = eTn,0 v0M,0 + eTn,0 ω
∗
0R,0×rMQ,0 + ∆ż eTn,0 en,0 = 0 . (3.48)

In addition, eTn,0 en,0 = 1 will hold because en,0 is a unit vector. Then, the
time derivative of the vertical tire deformation is simply given by

∆ż = − eTn,0
(
v0M,0 + ω∗0R,0×rMQ,0

)
. (3.49)

Finally, the components of the contact point velocity in the longitudinal and
the lateral direction are obtained from

vx = eTx,0 v0Q,0 = eTx,0
(
v0M,0 + ω∗0R,0×rMQ,0

)
(3.50)

and
vy = eTy,0 v0Q,0 = eTy,0

(
v0M,0 + ω∗0R,0×rMQ,0

)
, (3.51)

where the relationships eTx,0en,0 = 0 and eTy,0en,0 = 0 were used to simplify
the expressions. The contact point velocities vx and vy will characterize the
sliding situation of a nonrotating tire.

3.2.7 Dynamic Rolling Radius

If a rigid disc of radius rD performs a roll motion on a flat surface, then the
constraint equation

v = rD Ω , (3.52)

also known as rolling condition, will couple the velocity v of the disc center to
the angular velocity Ω of the disc. On a rolling wheel, the tire deflection must
be taken into account somehow. To do so, the roll motion of a wheel with r0

and rS as unloaded and loaded radius will be compared to a rolling disc of
the fictitious or dynamic rolling radius rD, Figure 3.18.

With v = dx/dt and Ω = dϕ/dt, the rolling condition (3.52) for the rigid
disc results in

dx

dt
= rD

dϕ

dt
or dx = rD dϕ or ∆x = rD ∆ϕ , (3.53)

where ∆x denotes the traveling distance if the rolling disc of radius rD rotates
with a specific angle ∆ϕ. Supposing that the rotation angle ∆ϕ causes the
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FIGURE 3.18
Dynamic rolling radius.

wheel of the unloaded radius r0 to perform a rolling motion where a tread
particle is transported from the beginning of the contact patch to the center
of the contact patch, then the traveling distance of the wheel will be given by

∆x = r0 sin ∆ϕ . (3.54)

The comparison with a rolling disc on the basis of the same traveling distance
will results in

rD ∆ϕ = r0 sin ∆ϕ . (3.55)

Hence, the dynamic tire radius is determined by

rD = r0
sin ∆ϕ

∆ϕ
. (3.56)

At small, yet finite angular rotations, the sine function can be approximated
by the first terms of its Taylor expansion. Then, Equation (3.56) reads as

rD = r0

∆ϕ− 1
6∆ϕ3

∆ϕ
= r0

(
1− 1

6
∆ϕ2

)
. (3.57)

Using the relationship

cos ∆ϕ =
rS
r0

, (3.58)

which follows by inspecting Figure 3.18 and expanding the cosine function in
a Taylor series, one gets

cos ∆ϕ = 1− 1

2
∆ϕ2 or ∆ϕ2 = 2 (1− cos ∆ϕ) = 2

(
1− rS

r0

)
. (3.59)

Then, Equation (3.57) finally reads as

rD = r0

(
1− 1

3

(
1− rS

r0

))
=

2

3
r0 +

1

3
rS , (3.60)
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which will represent the dynamic rolling radius rD as a weighted mean value
of the unloaded r0 and loaded rS radius of a tire. Note: For a tire close to
liftoff rS = r0 will hold. Then, Equation (3.60) provides a dynamic rolling
radius of rD = r0 that corresponds to the trivial solution of Equation (3.56)
when the sine function is approximated by its argument.

By means of the dynamic rolling radius, the roll motion of a wheel can be
transferred to the rolling of a rigid disc. But, as a deflected tire is in contact
to the road over the whole length of the contact patch, the rolling condition
(3.52) must be modified to

vT = rD Ω , (3.61)

where vT denotes the average velocity at which the tread particles are trans-
ported through the contact patch. As the loaded or static tire radius rS de-
pends on the wheel load Fz, the dynamic rolling radius rD will automatically
be a function of the wheel load too: rD = rD(Fz).

3.3 Steady-State Forces and Torques

3.3.1 Wheel Load

The vertical tire force Fz can be calculated as a function of the tire deflection
∆z and its time derivative ∆ż

Fz = Fz(∆z, ∆ż) . (3.62)

Because the tire can only apply pressure forces to the road, the normal force
will be restricted to Fz ≥ 0. In a first approximation, Fz is separated into a
static and a dynamic part,

Fz = F stz + FDz . (3.63)

The static part is described as a nonlinear function of the tire deflection,

F stz = a1 ∆z + a2 (∆z)2 . (3.64)

The constants a1 and a2 may be calculated from the radial stiffness at nominal
and double payload,

cz1 =
dF stz
d∆z

∣∣∣∣
F stz =FNz

and cz2 =
dF stz
d∆z

∣∣∣∣
F stz =2FNz

. (3.65)

The derivative of Equation (3.64) results in

dF stz
d∆z

= a1 + 2 a2∆z . (3.66)
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From Equation (3.64) one gets

∆z =
−a1 ±

√
a2

1 + 4a2F
st
z

2a2
. (3.67)

Because the tire deflection is always positive, the minus sign in front of the
square root has no physical meaning and thus can be omitted. Hence, Equa-
tion (3.66) can be written as

dF stz
d∆z

= a1 + 2 a2

(
−a1 +

√
a2

1 + 4a2F
st
z

2a2

)
=
√
a2

1 + 4a2F
st
z . (3.68)

Combining Equations (3.65) and (3.68) results in

cz1 =
√
a2

1 + 4a2F
N
z or a2

1 + 4a2F
N
z = c2z1 ,

cz2 =
√
a2

1 + 4a22FNz or a2
1 + 8a2F

N
z = c2z2 ,

(3.69)

finally leading to

a1 =
√

2 c2z1 − c2z2 and a2 =
c2z2 − c2z1

4FNz
. (3.70)

The parabolic approximation in Equation (3.64) of the static wheel load F stz
as a function of the tire deflection ∆z fits very well with measurements, Fig-
ure 3.19. The characteristic for the passenger car tire is nearly linear. The
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FIGURE 3.19
Static wheel load as a function of the tire deflection.

radial tire stiffness of cz1 = 190 N/mm at the payload of Fz = 3 200 N
slightly increases to the value of cz2 = 206N/mm at double the payload. The
MATLAB-Script in Listing 3.1 performs a least squares approximation to a
measured wheel load characteristic of a truck tire, calculates the stiffness at
the given payload and its double, and plots the approximated characteristic
as well as the given pairs of measured values.
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Listing 3.1
Script fz approx.m: Approximation of a Nonlinear Wheel Load Characteristic

1 % measured wheel load versus tire deflection

2 Fz = [ 0.0; 10.9; 21.5; 32.2; 46.1 ]; % wheel load [kN]

3 dz = [ 0.0; 15.5; 27.2; 36.4; 47.2 ]; % tire deflection [mm]

4 % least square approximation by parabola: Fz = a(1)*dz + a(2)*dz^2

5 A = [dz, dz.^2]; a = A\Fz;

6 % get deflections at payload FzN and double the payload 2*FzN

7 FzN = 35; % tire payload (truck tire)

8 dz_FzN = ( -a(1) + sqrt(a(1)^2+4*a(2)*FzN) ) / (2*a(2)) ;

9 dz_2FzN = ( -a(1) + sqrt(a(1)^2+4*a(2)*2*FzN) ) / (2*a(2)) ;

10 % calculate stiffness at FzN and 2*FzN

11 c_z1 = ( a(1) + 2*a(2)*dz_FzN );

12 c_z2 = ( a(1) + 2*a(2)*dz_2FzN );

13 % plot approximated characteristic and compare to measurements

14 d_z = linspace(0,2*dz_FzN,201);

15 F_z = a(1)*d_z + a(2)*d_z.^2;

16 plot(d_z,F_z,’r’,’Linewidth’,1.5), hold on, plot(dz,Fz,’ok’ ), grid on

17 xlabel(’\Delta z [mm]’), ylabel(’F_z [kN]’)

The characteristic of the truck tire shows a significant progressive nonlinearity.
Here, the radial stiffness at the payload of Fz = 35 kN is given by cz1 =
1.25 kN/mm and it rises to cz2 = 1.68 kN/mm at double the payload. If
now measurements are available, an appropriate wheel load characteristic can
intuitively be modeled by estimating the stiffness cz1 at the payload Fz = FNz
and set the value for the stiffness cz2 at double the payload to the same or an
increased value depending on the desired or estimated linear or progressive
behavior.

The dynamic part of the wheel load is roughly approximated by

FDz = dR ∆ż , (3.71)

where dR is a constant describing the radial tire damping, and the derivative
of the tire deformation ∆ż is given by Equation (3.49).

3.3.2 Tipping Torque

The lateral shift of the vertical tire force Fz from the geometric contact point
P to the static contact point Q is equivalent to a force applied in P and the
tipping torque

Tx = Fz yQ (3.72)

acting around a longitudinal axis in P . Figure 3.20 shows a negative tipping
torque; a positive camber angle moves the contact point in the negative y-
direction and hence will generate a negative tipping torque. As long as the
cambered tire has full contact with the road, the lateral displacement yQ is
given by Equation (3.36). Then, Equation (3.72) reads as

Tx = − Fz
b2

12 ∆z

tan γ

cos γ
. (3.73)
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FIGURE 3.20
Tipping torque at full and partial contact.

If the wheel load is approximated by its linearized static part Fz ≈ cz ∆z and
small camber angles |γ| � 1 are assumed, then Equation (3.73) simplifies to

Tx = − cz ∆z
b2

12 ∆z
γ = − 1

12
cz b

2 γ , (3.74)

where the term 1
12 czb

2 can be regarded as the tipping stiffness of the tire.
The use of the tipping torque instead of shifting the geometric contact

point P to the static static contact point Q is limited to those cases where
the tire has full or nearly full contact with the road. If the cambered tire has
only partial contact with the road, the geometric contact point P may even
be located outside the contact area, whereas the static contact point Q is still
a real contact point.

3.3.3 Rolling Resistance

If a nonrotating tire has contact with a flat ground, the pressure distribution
in the contact patch will be symmetric from the front to the rear, Figure 3.21.
The resulting vertical force Fz is applied in the center of the contact patch
that coincides in the xz-plane with the geometric and static contact points P ,
Q. Hence, it will generate no torque around the y-axis.
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FIGURE 3.21
Pressure distribution at a non-rotation and rotation tire.

If the tire rotates, tread particles will be stuffed into the front of the
contact patch, which causes a slight pressure increase, Figure 3.21. Now the
resulting vertical force Fz is applied in front of the contact points P and Q
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and generates the rolling resistance torque

Ty = − |Ω| Fz xR , (3.75)

where the term − |Ω| ensures that Ty always acts against the sign of the wheel
angular velocity Ω. The simple approximation of the sign function

|Ω| ≈ dΩ with d |Ω | ≤ 1 (3.76)

will avoid discontinuities at Ω = 0. However, the parameter d > 0 must be
chosen appropriately. The distance xR from the contact points P , Q to the
working point of Fz usually is related to the unloaded tire radius r0,

fR =
xR
r0

. (3.77)

According to [22], the dimensionless rolling resistance coefficient slightly in-
creases with the traveling velocity v of the vehicle

fR = fR(v) . (3.78)

Under normal operating conditions, 20 km/h < v < 200 km/h, the rolling
resistance coefficient for typical passenger car tires is in the range of 0.01 <
fR < 0.02. The rolling resistance hardly influences the handling properties of
a vehicle, but it plays a major part in fuel consumption.

3.3.4 Longitudinal Force and Longitudinal Slip

To get a certain insight into the mechanism generating tire forces in the lon-
gitudinal direction, we consider a tire on a flatbed test rig. The rim rotates
with angular velocity Ω and the flatbed runs with velocity vx. The distance
between the rim center and the flatbed is controlled to the loaded tire radius
corresponding to the wheel load Fz, Figure 3.22.
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FIGURE 3.22
Tire on flatbed test rig.
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A tread particle enters at the time t = 0 the contact patch. If we assume
adhesion between the particle and the track, then the top of the particle
will run with the bed velocity vx and the bottom with the average transport
velocity vT = rD Ω. Depending on the velocity difference ∆v = rD Ω− vx the
tread particle is deflected in longitudinal direction,

u = (rD Ω− vx) t . (3.79)

The time a particle spends in the contact patch is given by

T =
L

rD |Ω|
, (3.80)

where L denotes the length of the contact patch and T > 0 is assured by |Ω|.
Maximum deflection occurs when the tread particle leaves the contact patch
at time t = T ,

umax = u(t = T ) = (rD Ω− vx)T = (rD Ω− vx)
L

rD |Ω|
. (3.81)

The deflected tread particle applies a force to the tire. In a first approximation,
we get

F tx = ctx u , (3.82)

where ctx represents the stiffness of one tread particle in the longitudinal direc-
tion. On normal wheel loads, more than one tread particle will be in contact
with the track, Figure 3.23a. The number p of tread particles can be estimated
by

p =
L

s+ a
, (3.83)

where s is the length of one particle and a denotes the distance between the
particles. Particles entering the contact patch are undeformed, whereas the
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FIGURE 3.23
a) Tread particles, b) force distribution.

ones leaving have the maximum deflection. According to Equation (3.82), this
results in a linear force distribution versus the contact length, Figure 3.23b.
The resulting force in the longitudinal direction for p particles is then given
by

Fx =
1

2
p ctx umax . (3.84)
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Inserting Equations (3.83) and (3.81) results in

Fx =
1

2

L

s+ a
ctx (rD Ω− vx)

L

rD |Ω|
. (3.85)

A first approximation of the contact length L was previously calculated in
Equation (3.42). Approximating the belt deformation by ∆zB ≈ 1

2 Fz/cz re-
sults in

L2 ≈ 4 r0
Fz
cz

, (3.86)

where cz denotes the vertical tire stiffness, and nonlinearities and dynamic
parts in the tire deformation were neglected. Now Equation (3.84) can be
written as

Fx = 2
r0

s+ a

ctx
cz
Fz

rD Ω− vx
rD |Ω|

. (3.87)

The nondimensional relation between the sliding velocity of the tread particles
in the longitudinal direction vSx = vx−rD Ω and the average transport velocity
rD |Ω| form the longitudinal slip,

sx =
−(vx − rD Ω)

rD |Ω|
. (3.88)

This slip is not simply defined in order to achieve an appropriate dimensionless
quantity, it is, moreover, the plain results from a simple physical approach.

If the tire properties r0, s, a, ctx, and cz are summarized in the constant
k, Equation (3.87) will simplify to

Fx = k Fz sx . (3.89)

Hence, the longitudinal force Fx will be proportional to the wheel load Fz and
to the longitudinal slip sx in this first approximation.

But, Equation (3.89) will hold only as long as all tread particles stick to
the track. At moderate slip values, the particles at the end of the contact
patch start sliding; and at high slip values, only the parts at the beginning
of the contact patch will still stick to the road, Figure 3.24. The resulting
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FIGURE 3.24
Longitudinal force distribution for different slip values.
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nonlinear function of the longitudinal force Fx versus the longitudinal slip sx
can be defined by the parameters initial inclination (driving stiffness) dF 0

x ,
location sMx , and magnitude of the maximum FMx , start of full sliding sSx , and
the sliding force FSx , Figure 3.25.
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FIGURE 3.25
Typical longitudinal force characteristic.

3.3.5 Lateral Slip, Lateral Force, and Self-Aligning Torque

The wheel rotation with the angular velocity Ω affects the longitudinal slip
only. Hence, similar to Equation (3.88), the lateral slip sy and simultaneously
the slip angle αS will be given by

tanαS = sy =
−vy
rD |Ω|

, (3.90)

where the lateral component of the contact point velocity vy is defined in
Equation (3.51). As long as the tread particles stick to the road (small amounts
of slip), an almost linear distribution of the forces along the length L of the
contact patch will appear. At moderate slip values, the particles at the end of
the contact patch start sliding; and at high slip values, only the parts at the
beginning of the contact patch stick to the road, Figure 3.26. The nonlinear
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FIGURE 3.26
Lateral force distribution over contact patch.

characteristic of the lateral force versus the lateral slip can be described by the
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initial inclination (cornering stiffness) dF 0
y , the location sMy and the magnitude

FMy of the maximum, the beginning of full sliding sSy , and the magnitude FSy
of the sliding force. The distribution of the lateral forces over the contact patch
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FIGURE 3.27
Typical plot of lateral force, normalized tire offset, and self-aligning torque.

length also defines the point of application of the resulting lateral force. At
small slip values, this point lies behind the center of the contact patch (contact
points P , Q). With increasing slip values, it moves forward, sometimes even
before the center of the contact patch. At extreme slip values, when practically
all particles are sliding, the resulting force is applied at the center of the
contact patch. The resulting lateral force Fy with the dynamic tire offset or
pneumatic trail n as a lever generates the self-aligning torque,

TS = −nFy . (3.91)

The lateral force Fy as well as the dynamic tire offset n are functions of
the lateral slip sy. Typical plots of these quantities are shown in Figure 3.27.
Characteristic parameters of the lateral force graph are initial inclination (cor-
nering stiffness) dF 0

y , location sMy and magnitude of the maximum FMy , begin

of full sliding sSy , and the sliding force FSy . The dynamic tire offset n has been
normalized by the length of the contact patch L. The normalized dynamic
tire offset starts at sy = 0 with an initial value (n/L)0 > 0 and it tends to
zero (n/L → 0) at large slip values (sy ≥ sEy ). Sometimes the normalized
dynamic tire offset overshoots to negative values before it reaches zero again.
This behavior can be modeled by introducing the slip values s0

y and sEy , where
the normalized dynamic tire offset passes the sy-axis and reaches zero again
as an additional model parameters, Figure 3.28. In order to achieve a simple
and smooth approximation of the normalized tire offset versus the lateral slip,
a linear and a cubic function are overlaid in the first section sy ≤ s0

y,

n

L
=
(n
L

)
0



[
(1−w) (1−s) + w

(
1− (3−2s)s2

)]
|sy| ≤ s0

y

− (1−w)
|sy| − s0

y

s0
y

(
sEy − |sy|
sEy − s0

y

)2

s0
y < |sy| ≤ sEy

0 |sy| > sEy ,

(3.92)
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FIGURE 3.28
Normalized tire offset with and without overshoot.

where the abbreviation s = |sy|/s0
y was used and the factor w = s0

y/s
E
y weights

the linear and the cubic function according to the values of the parameter s0
y

and sEy . No overshoot will occur for s0
y = sEy . Here, w = 1 and (1 − w) = 0

will produce a cubic transition from n/L = (n/L)0 to n/L = 0 with vanishing
inclinations at sy = 0 and sy = s0

y.
The function provided in Listing 3.2 provides the normalized tire offset as

a function of the lateral slip.

Listing 3.2
Function tmy tireoff.m: Normalized Tire Offset

1 function nto=tmy_tireoff( sy ... % lateral slip

2 , nto0 ... % normalized caster offset n/L @ sy=0

3 , synto0 ... % slip where nto passes sy-axis

4 , syntoE ) % slip where sliding starts

5 % tire offset normalized to contact length

6
7 sy_a = abs(sy); % absolute slip value

8 syntoE_loc = max([syntoE,synto0]); % ensure appropriate data

9
10 if sy_a >= syntoE_loc

11 nto = 0.d0; % very high slip values --> pure sliding

12 else

13 wf = synto0/syntoE_loc; % weighting function for 2 approximations

14 if sy_a <= synto0 % low and moderate slip values

15 sy_n = sy_a/synto0;

16 nto1 = nto0*( 1 - sy_n ); nto2=nto0*(1-(3-2*sy_n)*sy_n^2);

17 nto = (1.d0-wf)*nto1 + wf*nto2 ;

18 else % high slip values

19 sy_n = ( syntoE_loc - sy_a ) / ( syntoE_loc - synto0 );

20 nto = - nto0*(1-wf) * (sy_a-synto0)/synto0 * sy_n^2 ;

21 end

22 end

23
24 end

At least the value of (n/L)0 can be estimated very well. At small values of lat-
eral slip sy ≈ 0, one gets in a first approximation a triangular, distribution of
the lateral forces over the contact patch length (cf. Figure 3.26). The working
point of the resulting force is then given by

n0 = n(Fz→0, sy=0) =
1

6
L . (3.93)
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Because the triangular force distribution will take for granted a constant pres-
sure in the contact patch, the value n0/L = 1/6 = 0.167 can serve as a first
approximation only. In reality, the pressure will drop to zero in the front and
in the rear of the contact patch, Figure 3.21. Because low pressure means low
friction forces, the triangular force distribution will be rounded to zero in the
rear of the contact patch, which will move the working point of the resulting
force slightly to the front. If no measurements are available, the slip values
s0
y and sEy where the tire offset passes and finally approaches the x-axis again

must be estimated. Usually the value for s0
y is somewhat higher than the slip

value sMy where the lateral force reaches its maximum.

3.4 Combined Forces

3.4.1 Combined Slip

The longitudinal force as a function of the longitudinal slip Fx = Fx(sx) and
the lateral force depending on the lateral slip Fy = Fy(sy) can be defined
by their characteristic parameters initial inclination dF 0

x , dF 0
y , location sMx ,

sMy and magnitude of the maximum FMx , FMy as well as sliding limit sSx , sSy ,

and sliding force FSx , FSy , Figure 3.29. During general driving situations, e.g.,

��

��
�

��

���
�

���
�

��
�
���
�
��

�	


�
��

��

��
��

����

�	
��

����	

�	
�

��	
�

��	
�

�	
�

��	
��	

FIGURE 3.29
Combined tire forces.

acceleration or deceleration in curves, longitudinal sx and lateral slip sy appear
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simultaneously. The combination of the more or less differing longitudinal and
lateral tire forces requires a normalization process, cf. [20], [27].

The longitudinal slip sx and the lateral slip sy can vectorially be added to
the combined slip

s =

√(
sx
ŝx

)2

+

(
sy
ŝy

)2

=

√(
sNx
)2

+
(
sNy
)2
, (3.94)

where the slips were normalized, sx → sNx and sy → sNy , in order to achieve
a nearly equally weighted contribution to the combined slip. The normalizing
factors

ŝx =
sMx

sMx + sMy
+

FMx /dF 0
x

FMx /dF 0
x + FMy /dF 0

y

(3.95)

and

ŝy =
sMy

sMx + sMy
+

FMy /dF 0
y

FMx /dF 0
x + FMy /dF 0

y

(3.96)

take characteristic properties of the longitudinal and lateral tire force charac-
teristics into account. If the longitudinal and lateral tire characteristics do not
differ too much, the normalizing factors will be approximately equal to one.

If the wheel locks, the average transport velocity will vanish, rD |Ω| = 0.
Hence, longitudinal, lateral, and combined slip will tend to infinity, s → ∞.
To avoid this problem, the normalized slips sNx and sNy are modified to

sNx =
sx
ŝx

=
−(vx − rD Ω)

rD |Ω| ŝx
⇒ sNx =

−(vx − rD Ω)

rD |Ω| ŝx + vN
(3.97)

and

sNy =
sy
ŝy

=
−vy

rD |Ω| ŝy
⇒ sNy =

−vy
rD |Ω| ŝy + vN

. (3.98)

In normal driving situations, where rD |Ω| � vN holds, the difference between
the original slips and the modified slips are hardly noticeable. However, the
fictitious velocity vN > 0 avoids the singularities at rD |Ω| = 0 and will
produce in this particular case a combined slip that points exactly in the
direction of the sliding velocity of a locked wheel.

Similar to the graphs of the longitudinal and lateral forces, the graph
F = F (s) of the combined tire force can be defined by the characteristic
parameters dF 0, sM , FM , sS , and FS . These parameters are calculated from
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the corresponding values of the longitudinal and lateral force characteristics

dF 0 =

√
(dF 0

x ŝx cosϕ)
2

+
(
dF 0

y ŝy sinϕ
)2
, (3.99)

sM =

√(
sMx
ŝx

cosϕ

)2

+

(
sMy
ŝy

sinϕ

)2

, (3.100)

FM =

√
(FMx cosϕ)

2
+
(
FMy sinϕ

)2
, (3.101)

sS =

√(
sSx
ŝx

cosϕ

)2

+

(
sSy
ŝy

sinϕ

)2

, (3.102)

FS =

√
(FSx cosϕ)

2
+
(
FSy sinϕ

)2
, (3.103)

where the slip normalization must also be considered at the initial inclination.
The angular functions

cosϕ =
sNx
s

and sinϕ =
sNy
s

(3.104)

grant a smooth transition from the characteristic curve of longitudinal to the
curve of lateral forces in the range of ϕ = 0 to ϕ = 90◦. The longitudinal and
the lateral forces follow then from the according projections in longitudinal

Fx = F cosϕ = F
sNx
s

=
F

s
sNx = f sNx (3.105)

and lateral direction

Fy = F sinϕ = F
sNy
s

=
F

s
sNy = f sNy , (3.106)

where f = F/s describes the global derivative of the combined tire force char-
acteristic. In addition, the normalized dynamic tire offset n = n(sy) described
by Equation 3.92 and based on a pure lateral slip situation will be extended
by

n(s) = n(sy) sinϕ = n(sy)
sNy
s

(3.107)

to a modified normalized tire offset n = n(s), which, similar to the lateral
force, is also affected by the combined slip.

3.4.2 Suitable Approximation

The combined tire force characteristic F = F (s) is now approximated in
intervals by appropriate functions, Figure 3.30. In the first interval 0 ≤ s ≤
sM , the rational fraction

F (s) =
s

1 +
s

sM

(
s

sM
+
dF 0 sM

FM
− 2

) dF 0 (3.108)
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is used, which is defined by the initial inclination dF 0 and the location sM

and the magnitude FM of the maximum tire force. When fixing the parameter
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FIGURE 3.30
Approximation of the combined tire force characteristic.

values, one just has to make sure that the condition dF 0≥2FM/sM is fulfilled,
because otherwise the function will have a turning point in the interval of
interest. It can be seen that the global derivative of the combined tire force
f = F/s is well defined at a vanishing slip and coincides in this particular
case with the initial inclination of the combined tire force characteristic f(s =
0) = dF 0. In the interval sM ≤ s ≤ sS , the combined tire force characteristic
is smoothly continued by two parabolas

F (s) =

{
FM − a

(
s− sM

)2
, sM ≤ s ≤ s∗

FS + b
(
sS − s

)2
, s∗ ≤ s ≤ sS

(3.109)

until it finally reaches the sliding area s ≥ sS , where the combined tire force
is approximated by a straight line

F (s) = FS . (3.110)

The curve parameters a, b, and s∗ defining the two parabolas are determined
by the demands

d2 F

d s2

∣∣∣∣
s→sM

=
d2 F

d s2

∣∣∣∣
sM←s

, (3.111)

F (s→s∗) = F (s∗←s) and
dF

d s

∣∣∣∣
s→s∗

=
dF

d s

∣∣∣∣
s∗←s

. (3.112)

To calculate the second derivative of the rational function at s = sM , the first
derivative is needed first. Abbreviating the denominator by

D = 1 +
s

sM

(
s

sM
+
dF 0 sM

FM
− 2

)
, (3.113)

one gets

dF

d s
=

D − s
(

1

sM

(
s

sM
+
dF 0 sM

FM
− 2

)
+

s

sM
1

sM

)
D2 dF 0 , (3.114)
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which can be simplified to

dF

d s
=

1−
(
s/sM

)2
D2 dF 0 . (3.115)

A further derivative yields

d2 F

d s2
=
D2
(
−2 s/sM 1/sM

)
−
(

1−
(
s/sM

)2)
2D

dD

d s
D4 dF 0 . (3.116)

At s = sM , the abbreviation D simplifies to

D
(
s=sM

)
= DM = 1 +

sM

sM

(
sM

sM
+
dF 0 sM

FM
− 2

)
=

dF 0 sM

FM
(3.117)

and Equation (3.116) finally results in

d2 F

d s2

∣∣∣∣
s→sM

= dF 0 −2/sM

D2
M

= −2
dF 0

sM

(
FM

dF 0 sM

)2

. (3.118)

The second derivative of the first parabola defined in Equation (3.109) just
yields the value −2 a. Hence, the parameter

a =
dF 0

sM

(
FM

dF 0 sM

)2

(3.119)

will grant a smooth transition from the rational function to the first parabola.
Now the parameters s∗ and b can be calculated. The first demand in Equa-
tion (3.112) on the parabolas defined by Equation (3.109) results in

FM − a
(
s∗−sM

)2
= FS + b

(
sS−s∗

)2
(3.120)

and the second one yields

−2 a
(
s∗−sM

)
= 2 b

(
sS−s∗

)
(−1) or a

(
s∗−sM

)
= b

(
sS−s∗

)
. (3.121)

After multiplication with the term sS − s∗, it can be inserted in Equa-
tion (3.120), which then will read

FM − a
(
s∗−sM

)2
= FS + a

(
s∗−sM

) (
sS−s∗

)
. (3.122)

Rearranging some terms, we get

FM − FS = a
(
s∗−sM

) [(
sS−s∗

)
+
(
s∗−sM

)]
, (3.123)

which finally provides the location of the point where the parabolas are con-
nected to each other

s∗ = sM +
FM − FS

a (sS−sM )
, (3.124)
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and in addition the parameter

b =
s∗−sM

sS−s∗
a (3.125)

as a result from Equation (3.121). Note that for realistic tire characteristics,
the connecting point s∗ will be located in the transition interval sM ≤ s∗ ≤ sS
in general. In the very unrealistic case of s∗ > sS , a third-order polynomial
instead of the two connected parabolas will realize an “emergency”-transition
from the maximum to the sliding force, Listing 3.3.

Listing 3.3
Function tmy fcombined.m: Combined Tire Force

1 function [ f, fos ] = tmy_fcombined( s, df0,fm,sm,fs,ss )

2 % combined tire force f, global derivative fos and maximum value fmax

3
4 % set initial slope to appropriate value if given one is too small

5 df0loc = 0; if sm > 0, df0loc = max(2*fm/sm, df0); end

6
7 if s > 0 && df0loc > 0 % normal operating conditions

8 if s > ss % full sliding

9 f = fs; fos = f/s;

10 else

11 if s < sm % adhesion

12 p = df0loc*sm/fm - 2 ; sn = s/sm ; dn = 1 + ( sn + p ) * sn ;

13 f = df0loc*sm*sn/dn; fos = df0loc/dn;

14 else % adhesion --> sliding

15 a = (fm/sm)^2/(df0loc*sm); % parameter from 2. deriv. of f @ s=sm

16 sstar = sm + (fm-fs)/(a*(ss-sm)); % connecting point

17 if sstar <= ss % 2 parabolas (standard approach)

18 if s <= sstar % 1. parabola sm < s < sstar

19 f = fm - a*(s-sm)^2;

20 else % 2. parabola sstar < s < ss

21 b = a*(sstar-sm)/(ss-sstar); f = fs + b*(ss-s)^2;

22 end

23 else % 1 cubic function (just in case)

24 sn = (s-sm)/(ss-sm) ; f = fm - (fm-fs)*sn^2*(3.d0-2.d0*sn) ;

25 end

26 fos = f/s ; % global derivative

27 end

28 end

29 else

30 f = 0; fos = df0loc; % defaults (s=0)

31 end

32
33 end

3.4.3 Some Results

Within the TMeasy model approach, the one-dimensional tire characteristics
Fx = Fx(sx) and Fy = Fy(sy) are automatically converted to two-dimensional
characteristics. The combined force characteristic in Figure 3.31 demonstrates
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the friction limits of the tire, and Figure 3.32 will show the mutual influence
of the longitudinal and lateral slip on the corresponding tire forces.
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FIGURE 3.31
Combined forces Fy = Fy(Fx) at different slip values.
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FIGURE 3.32
Two-dimensional tire characteristics.

The MATLAB-Script provided in Listing 3.4 provides the parameters for
the longitudinal and lateral tire force characteristic of a typical passenger car
tire, calculates the steady-state tire force characteristics for different values
of the longitudinal and lateral slip using the function tmy fcombined given in
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Listing 3.3, and finally plots the results. The Listing shows only the plotting
commands to create the upper left graph in Figure 3.32, because generating
the others will be straightforward.

Listing 3.4
MATLAB-Script f steady state.m: Steady-State Tire Forces

1 % tire characteristics in longitudinal and lateral direction

2 dfx0 = 69000; dfy0 = 66000; % init slopes dfx/dsx & dfydsy [n/-]

3 fxm = 3100; fym = 2950; % maximum forces [n]

4 sxm = 0.160; sym = 0.205; % s where f(s) = fm [-]

5 fxs = 2800; fys = 2800; % sliding forces [n]

6 sxs = 0.500; sys = 0.500; % s where f(s) = fs [-]

7
8 % slip normalizing factors

9 hsxn = sxm/(sxm+sym) + (fxm/dfx0)/(fxm/dfx0+fym/dfy0);

10 hsyn = sym/(sxm+sym) + (fym/dfy0)/(fxm/dfx0+fym/dfy0);

11
12 % set slip values

13 nvar = 201; sx = linspace(-1,1,nvar)*1.2*max(sxs); sy = sx;

14 % pre-allocate fx and fy to speed up loop

15 fx = zeros(length(sx),length(sy)); fy=zeros(length(sx),length(sy));

16
17 for i = 1:length(sx)

18 for j = 1:length(sy)

19 % combined slip

20 sxn = sx(i)/hsxn; syn = sy(j)/hsyn; sc = sqrt ( sxn^2 + syn^2 );

21 if sc>0, cphi=sxn/sc;sphi=syn/sc; else cphi=sqrt(2)/2;sphi=sqrt(2)/2; end

22 % combined characteristic for normalized slip values

23 df0 = sqrt( (dfx0*hsxn*cphi)^2 + (dfy0*hsyn*sphi)^2 );

24 fm = sqrt( (fxm*cphi)^2 + (fym*sphi)^2 );

25 sm = sqrt( (sxm/hsxn*cphi)^2 + (sym/hsyn*sphi)^2 );

26 fs = sqrt( (fxs*cphi)^2 + (fys*sphi)^2 );

27 ss = sqrt( (sxs/hsxn*cphi)^2 + (sys/hsyn*sphi)^2 );

28 % combined tire force

29 [ f, fos ] = tmy_fcombined( sc, df0,fm,sm,fs,ss );

30 % longitudinal and lateral forces

31 fx(i,j) = f*cphi; fy(i,j) = f*sphi;

32 end

33 end

34
35 subplot(2,2,1), is=101:20:201; % selected lateral slips only

36 plot(sx,fx(:,is)/1000), axis([-0.6,0.6,-4,4]), grid on

37 title(’f_x=f_x(s_x,s_y)’), xlabel(’s_x’), ylabel(’kN’)

The fact that the maximum longitudinal force FMx is larger than the maximum
lateral force FMy is typical for most passenger car and truck tires. The reason
is founded in the friction law between tire and road which will react in a
degressive manner to the increase of pressure. Longitudinal forces Fx 6= 0
cause a circumferential deflection of the tire but they will have nearly no
influence on the pressure distribution. The lateral tire deflection caused by
lateral forces Fy 6= 0, however, will result in a pressure distribution that is
downscaled on one side and magnified accordingly on the other, Figure 3.33.
The change from the nearly constant pressure distribution to a trapezoidal



Tire 81

��

���

���� ��

���

����

�	
�	�

��
��
�	��
�

�	���	�

��
��
�	��
�

�� ��

������

������

������

������

FIGURE 3.33
Effects of Fx and Fy on pressure distribution in the contact patch.

shaped one will then reduce the maximum transmittable friction force in the
lateral direction due to the degressive friction law. As there is no similar effect
in longitudinal direction, FMy < FMx will be the consequence.

3.5 Bore Torque

3.5.1 Modeling Aspects

The wheel performs an angular rotation about the axis defined by the unit
vector eyR and it is forced to participate on all rotations of the wheel carrier or
knuckle that will not coincide with the wheel rotation axis. Hence, the angular
velocity of the wheel may be split into two parts,

ω0W = ω∗0R + Ω eyR , (3.126)

where the wheel rotation itself is represented by the angular velocity Ω and
the vector ω∗0R describes the angular velocities of the knuckle without any
parts in the direction of the wheel rotation axis. In particular during steering
motions, the angular velocity of the wheel has a component in the direction
of the track normal en

ωn = eTn ω0W 6= 0 , (3.127)

which will cause a bore motion of the tire contact patch. If the wheel moves
in the longitudinal and lateral direction too, then a very complicated deflec-
tion profile of the tread particles in the contact patch will occur. However,
by a simple approach, the resulting bore torque can be approximated quite
reasonably by the parameter of the combined tire force characteristic.
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At first, the complex shape of a tire’s contact patch is approximated by a
circle, Figure 3.34. By setting

RP =
1

2

(
L

2
+
B

2

)
=

1

4
(L+B) , (3.128)

the radius of the circle can be adjusted to the length L and the width B of
the actual contact patch. During pure bore motions, circumferential forces F
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FIGURE 3.34
Bore torque approximation.

are generated at each patch element dA at the radius r. The integration over
the contact patch A,

TB =
1

A

∫
A

F r dA , (3.129)

will then produce the resulting bore torque.

3.5.2 Maximum Torque

At large bore motions, all particles in the contact patch are sliding. Then, the
circumferential force F will be equal to the sliding force FS of the combined
tire characteristic and will be constant. Then, Equation (3.129) simplifies to

TmaxB =
1

A
FS

∫
A

r dA . (3.130)

The areas of the circle and the infinitesimal element are given by A = R2
P π

and dA = r dϕ dr. Then, Equation (3.130) results in

TmaxB =
1

R2
P π

FS
RP∫
0

2π∫
0

r rdϕ dr =
2

R2
P

FS
RP∫
0

r2 dr =
2

3
RP F

S = RB F
S ,

(3.131)
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where

RB =
2

3
RP (3.132)

can be considered the equivalent bore radius of the contact patch.

3.5.3 Simple Approach

Regarding the maximum bore torque, the circular patch can be substituted
by a thin ring with the radius rB . On pure bore motions, the sliding velocity
in the ring is given by RB ωn and, similar to Equations (3.88) and (3.90), the
corresponding bore slip will then be determined by

sB =
−RB ωn
rD |Ω|

. (3.133)

Replacing the sliding force FS by the slip depending force F (sB), Equa-
tion (3.131) will provide the bore torque as

TB = RB F (sB) , (3.134)

where F (sB) is determined by the combined force characteristic. On large bore
slips, F (sB) → FS holds and will limit the bore torque automatically to the
maximum torque defined in Equation (3.131). To avoid numerical problems
at a locked wheel, where Ω = 0 will hold, the modified bore slip

sB =
−RB ωn

rD |Ω|+ vN
(3.135)

can be used for practical applications, where a small fictitious positive velocity
vN > 0 is just added in the denominator.

3.5.4 Generalized Slip

Even on steering maneuvers at standstill, a longitudinal, a lateral, and a bore
slip will occur simultaneously. By extending the combined slip s defined in
Equation (3.94) with the bore slip sB to the generalized slip

sG =
√
s2 + s2

B , (3.136)

the effects of the bore motion on the combined tire forces and vice versa can be
taken into account. Similar to the procedure described in Section 3.4, where
the combined force was decomposed in the longitudinal and the lateral force,
the generalized force characteristic FG = F (sG) will now provides, by

F = FG
s

sG
and TB = RB FG

sB
sG

, (3.137)

the combined force F and the bore torque TB in the corresponding parts of
the generalized force characteristic.



84 Road Vehicle Dynamics: Fundamentals and Modeling

This simple steady-state bore torque model will serve as a rough approx-
imation only. In particular, it is less accurate at slow bore motions (sB ≈ 0)
that will occur at parking maneuvers. However, a straightforward extension
to a dynamic bore torque model will generate more realistic parking torques
later on.

3.6 Different Influences on Tire Forces and Torques

3.6.1 Wheel Load

The resistance of a real tire against deformations has the effect that with
increasing wheel load, the distribution of pressure over the contact patch be-
comes more and more uneven. The tread particles are deflected just as they
are transported through the contact patch. The pressure peak in the front of
the contact patch cannot be used, for these tread particles are far away from
the adhesion limit because of their small deflection. In the rear part of the
contact patch, the pressure drop leads to a reduction of the maximally trans-
mittable friction force. With rising imperfection of the pressure distribution
over the contact patch, the ability to transmit forces of friction between tire
and road lessens. In practice, the tire characteristics are not just scaled by
the wheel load as indicated in the simple approach in Sections 3.3.5 and 3.3.4
but they will also depend on it in a much more complicated way. In order to
respect this fact in a tire model, the characteristic data for at least two wheel
loads must be specified. Within TMeasy the payload FNz and its double 2FNz
are used for this purpose.

The influence of the wheel load Fz on the tire force characteristics Fx(sx)
and Fy(sy) is then described by the data set given in Table 3.3.

TABLE 3.3
Tire Data with Degressive Wheel Load Influence

Longitudinal Force Fx Lateral Force Fy
Fz=4.0 kN Fz=8.0 kN Fz=4.0 kN Fz=8.0 kN

dF 0
x = 120 kN dF 0

x = 200 kN dF 0
y = 55 kN dF 0

y = 80 kN

sMx = 0.110 sMx = 0.100 sMy = 0.200 sMy = 0.220

FMx = 4.40 kN FMx = 8.70 kN FMy = 4.20 kN FMy = 7.50 kN

sSx = 0.500 sSx = 0.800 sSy = 0.800 sSy = 1.000

FSx = 4.25 kN FSx = 7.60 kN FSy = 4.15 kN FSy = 7.40 kN

Assume that at vanishing wheel loads no tire forces can be transmitted,

dF 0
x (Fz=0) = 0, FMx (Fz=0) = 0, FSx (Fz=0) = 0 (3.138)
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and
dF 0

y (Fz=0) = 0, FMy (Fz=0) = 0, FSy (Fz=0) = 0 (3.139)

will hold. As the corresponding values at Fz = FNz and Fz = 2FNz are pro-
vided in Table 3.3, the initial inclinations, the maximal forces, and the sliding
forces for arbitrary wheel loads Fz may be inter- or extra-polated by quadratic
functions

Y (Fz) =
Fz
FNz

[
2Y (FNz )− 1

2Y (2FNz )−
(
Y (FNz )− 1

2Y (2FNz )
)Fz
FNz

]
, (3.140)

where Y stands for dF 0
x , dF 0

y , FMx , FMy , FSx and FSy . However, the location of

the maxima sMx , sMy and the slip values sSx , sSy at which full sliding will appear
cannot be specified at vanishing wheel loads automatically. The corresponding
data in Table 3.3 make only a linear inter- or extra-polation possible. Using
X as placeholder for sMx , sMy , sSx , and sSy , we obtain then

X(Fz) = X(FNz ) +
(
X(2FNz )−X(FNz )

)( Fz
FNz
− 1

)
. (3.141)

The resulting tire characteristics at different wheel loads are plotted in Fig-
ure 3.35. As usual, the relationship tanα = sy, previously provided in Equa-
tion (3.90), was used to convert the lateral slip sy into the slip angle α.
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FIGURE 3.35
Tire characteristics at the wheel loads Fz = [ 2, 4, 6, 8, 10 ] kN .

According to Equation (3.91), the self-aligning torque is modeled via the
lateral force and the dynamic tire offset. The lateral force characteristics are
specified in Table 3.3. In addition, the characteristic curve parameters describ-
ing the dynamic tire offset will be provided for the single and double payload
too. The resulting self-aligning torque as well as typical data are shown in
Figure 3.36.

Similar to Equation (3.141), the parameters for arbitrary wheel loads were
calculated by linear inter- or extra-polation. The degressive influence of the
wheel load on the self-aligning torque can be seen here as well. With the
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Tire Offset Data

Fz = 4.0 kN Fz = 8.0 kN

(n/L)0 = 0.178 (n/L)0 = 0.190

s0y = 0.200 s0y = 0.225

sEy = 0.350 sEy = 0.375

FIGURE 3.36
Self-aligning torque at different wheel loads and offset data.

parameters for the description of the tire offset, it has been assumed that at
the payload Fz = FNz , the related tire offset reaches the value of (n/L)0 =
1/6 = 0.167 at vanishing slip values sy = 0. The slip value s0

y, at which the tire
offset passes the x-axis, has been estimated. Usually the value is somewhat
higher than the position of the lateral force maximum. With increasing wheel
load, it will move to higher values. The values for sSy are estimated too.

The dynamic rolling radius rD is also affected by the wheel load. In ex-
tension to Equation (3.60), it will be approximated in the tire model TMeasy
by

rD = λ r0 + (1− λ) rS , (3.142)

where the weighting factors 2/3 and 1/3 are replaced by the generalized factor
λ, which in addition will be modeled as a function of the wheel load Fz.
Introducing different weighting factors λN and λ2N , which hold for the payload
Fz = FNz and double the payload Fz = 2FNz , a linear interpolation results in

λ = λN +
(
λ2N − λN

) (
Fz/F

N
z − 1

)
. (3.143)

In addition, the static tire radius is replaced by

rS = r0 − ∆r ≈ r0 − FSz /cz , (3.144)

where the radial tire deformation ∆r is approximated by the quotient of the
static wheel load F stz and the vertical tire stiffness cz. Then, the dynamic
rolling radius can be modeled as a pure function of the static wheel load

rD = λ(F stz ) r0 +
(
1− λ(F stz )

) (
r0 − F stz /cz

)
, (3.145)

where for the sake of simplicity the weighting factor λ determined in Equa-
tion (3.143) as a function of wheel load Fz is evaluated for the static wheel
load F stz too. Depending on the values for λN and λ2N , which according to
Equation (3.143) will provide the load-dependent weighting factor λ, Equa-
tion (3.145) may produce a dynamic tire radius rD that starts to decrease
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while the static wheel load F stz is further increasing. This nonphysical behav-
ior can be avoided by keeping rD constant when F stz will start to produce
decreasing values for rD.

TABLE 3.4
TMeasy Model Data for the Dynamic Rolling Radius

λN = 0.375 Weighting factor at payload, Fz = FNz
λ2N = 0.750 Weighting factor at double payload, Fz = 2FNz

The corresponding TMeasy tire model data for a typical passenger car tire
at a payload of FNz = 3.2 kN with an undeformed tire radius of r0 = 0.315m,
and a vertical tire stiffness of cz = 190kN/m are printed in Table 3.4. This sim-
ple but effective model approach fits very well to measurements, Figure 3.37,
where the deviation of the dynamic rolling radius rD from the unloaded tire ra-
dius r0 is plotted versus the wheel load Fz. In this particular case, the dynamic
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FIGURE 3.37
Wheel load influence on the dynamic rolling radius.

tire radius is kept constant at the value of rD(F stz = 4.2667 kN) = 0.304 m
even on larger static wheel loads. Note that the average of the weighting fac-
tors at Fz = FNz and Fz = 2FNz λ = (0.375+0.750)/2 = 0.5625 is rather close
to the value of λ = 2/3 = 0.6667, which was the result of the simple model
approach in Section 3.2.7.

3.6.2 Friction

The tire characteristics are valid for one specific tire road combination only.
Hence, different tire road combinations will demand different sets of model
parameters. A reduced or changed friction coefficient mainly influences the
maximum force and the sliding force, whereas the initial inclination will remain
unchanged. So, by setting

sM → µL
µ0

sM , FM → µL
µ0

FM , sS → µL
µ0

sS , FS → µL
µ0

FS , (3.146)
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the essential tire model parameter, primarily dependent on the friction coeffi-
cient µ0, are adjusted to the new or a local friction coefficient µL. The result
of this simple approach is shown in Figure 3.38.
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FIGURE 3.38
Force characteristics at different friction coefficients, µ = µL/µ0.

If the road model will not only provide the road height z as a function of
the coordinates x and y but also the local friction coefficient µL, then braking
on µ-split maneuvers can easily be simulated [41].

3.6.3 Camber

At a cambered tire, Figure 3.39, the angular velocity of the wheel Ω has a
component normal to the road,

Ωn = Ω sin γ , (3.147)

where γ denotes the camber angle. Now the tread particles in the contact
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FIGURE 3.39
Velocity state of tread particles at cambered tire.
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patch have a lateral velocity that depends on their longitudinal position ξ
within the contact patch and is provided by

vγ(ξ) = −Ωn
L

2

ξ

L/2
= −Ω sin γ ξ , −L/2 ≤ ξ ≤ L/2 . (3.148)

At the contact point (ξ = 0) it vanishes, whereas at the end of the contact
patch (ξ = L

2 ) it takes on the same value as at the beginning (ξ = −L2 ), but
pointing in the opposite direction. Assuming that the tread particles stick to
the track, the deflection profile will then be defined by

ẏγ(ξ) = vγ(ξ) . (3.149)

The time derivative of the lateral deflection y can be transformed to a space
derivative

ẏγ(ξ) =
d yγ(ξ)

d ξ

d ξ

d t
=

d yγ(ξ)

d ξ
|rD Ω| , (3.150)

where the absolute value of the average transport velocity rD Ω was used to
make the result independent of the sign of the wheel rotation. Now Equa-
tion (3.149) can be written as

d yγ(ξ)

d ξ
rD |Ω| = −Ω sin γ ξ or

d yγ(ξ)

d ξ
= −Ω sin γ

rD |Ω|
L

2

ξ

L/2
, (3.151)

where the term L/2 was used to achieve dimensionless terms. Similar to the
lateral slip sy, which is defined by Equation (3.90), we can introduce a camber
slip now

sγ =
−Ω sin γ

rD |Ω|
L

2
. (3.152)

Then, Equation (3.151) reads as

d yγ(ξ)

d ξ
= sγ

ξ

L/2
. (3.153)

The shape of the lateral displacement profile is obtained by integration over
the contact length

yγ = sγ
1

2

L

2

(
ξ

L/2

)2

+ C . (3.154)

The boundary condition y
(
ξ = 1

2L
)

= 0 can be used to determine the inte-
gration constant C. One gets

C = −sγ
1

2

L

2
. (3.155)

Then, Equation (3.154) finally results in

yγ(ξ) = −sγ
1

2

L

2

[
1−

(
ξ

L/2

)2
]
. (3.156)
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FIGURE 3.40
Displacement profiles of tread particles.

The lateral displacements of the tread particles caused by a camber slip are
compared now with the ones caused by pure lateral slip, Figure 3.40. At a tire
with pure lateral slip, each tread particle in the contact patch possesses the
same lateral velocity, which results in

dyy/dξ rD |Ω| = vy , (3.157)

where according to Equation (3.150) the time derivative ẏy was transformed
to the space derivative dyy/dξ . Hence, the deflection profile is linear and reads
as

yy = vy/(rD |Ω|) ξ = −sy ξ , (3.158)

where the definition in Equation (3.90) was used to introduce the lateral slip
sy . Then, the average deflection of the tread particles under pure lateral slip
will be given by

ȳy = −sy
L

2
. (3.159)

The average deflection of the tread particles under pure camber slip is obtained
from

ȳγ = −sγ
1

2

L

2

1

L

∫ L/2

−L/2

[
1−

(
x

L/2

)2
]
dξ = −1

3
sγ

L

2
. (3.160)

Assuming that the hereby-generated lateral forces are proportional to the
average deflections of the tread particles,

−sy
L

2
≡ −1

3
sγ

L

2
or sy ≡

1

3
sγ (3.161)

will be the consequence. In normal driving conditions, the camber angle and
thus the lateral camber slip are limited to small values, sγy � 1. So, the lateral
camber force may be modeled by

F γy = dF 0
y

1

3
sγ . (3.162)

By replacing the initial inclination of the lateral tire force characteristic with
the global derivative of the combined tire force characteristic,

dF 0
y −→

F

s
= f(s) , (3.163)
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the camber force F γy will then be automatically reduced when the combined
slip s is approaching the sliding area.

The angular velocity Ωn defined in Equation (3.147) generates a bore slip
and as a consequence a bore torque TB . The resulting tire torque around an
axis normal to the local road plane is then generated by the self-aligning and
the bore torques, Tz = TS+TB . The resulting torque as well as the lateral force
characteristic calculated by the MATLAB-Commands given in Listing 3.5 are
plotted in Figure 3.41.

��� � �������

�	�


�

�

	�

����


��

�
�
��� � �������

��

	

�

�

����

�	
����

���

�
��	

���

��


���

����������

FIGURE 3.41
Camber influence on lateral force and torque around vertical axis: γ = 0, 2, 4◦.

Listing 3.5
MATLAB-Script f steady state.m Extended to Camber Influence

41 camber = [ 0, 2, 4]*pi/180; % different camber angles [deg -> rad]

42 vt=20; rd=0.310; omega = vt/rd; % set angular velocity (omega=vt/rd)

43
44 % tire offset data

45 nto0=0.178; % tire offset @ sy = 0

46 synto0=0.20; % sy where nto passes sy-axis

47 syntos=0.35; % sy where nto approaches sy-axis again

48
49 % tire bore radius (estimated from length l and width b of contact patch)

50 l=0.14; b=0.2; rb = 2/3 * 0.5*((l/2)+(b/2));

51
52 % resize fy and allocate tz to speed up loop

53 fy=zeros(length(sy),length(camber)); tz=fy;

54
55 for i = 1:length(sy)

56 for j = 1:length(camber)

57 % bore slip

58 sb = -rb*omega*sin(camber(j))/abs(vt);

59 % generalized slip (no longitudinal slip here)

60 sg = sqrt( sy(i)^2 + sb^2 );

61 % generalized tire force
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62 [f, fos] = tmy_fcombined(sg, dfy0,fym,sym,fys,sys);

63 % lateral force (no longitudinal force here)

64 if sg>0, fy(i,j) = f*sy(i)/sg; else fy(i,j)=0; end

65 % tire offset normalized to contact length l and self aligning torque

66 nto = tmy_tireoff(sy(i), nto0,synto0,syntos); ts = -fy(i,j)*nto*l;

67 % bore torque + resulting torque

68 if sg>0, tb = rb*f*sb/sg; else tb=0; end, tz(i,j) = ts + tb;

69 % camber slip and force

70 sy_c=-omega*sin(camber(j))/abs(vt)*l/2; fy_c = fos/3*sy_c;

71 % add camber force

72 fy(i,j) = fy(i,j) + fy_c;

73 end

74 end

75 figure % open new figure

76 subplot(2,2,1), plot(atan(sy)*180/pi,fy’/1000),axis([-25,25,-4,4]), grid on

77 subplot(2,2,2), plot(atan(sy)*180/pi,tz’), axis([-25,25,-80,80]), grid on

The MATLAB-Script provided by Listing 3.3 must be executed first, because
the above commands will require the data for the lateral tire characteristic
and the values for the lateral slip. Listings 3.2 and 3.3 provide the functions
tmy tireoff and tmy fcombined, which generate the normalized tire offset and
the tire force characteristic, respectively.

As the camber angle affects the pressure distribution in the contact patch
and it changes the shape of the contact patch from rectangular to trapezoidal,
it is extremely difficult, if not impossible, to quantify the camber influence
with the aid of such a simple model approach. But, it turns out that the
results are very realistic. By introducing a load-dependent weighting factor in
Equation (3.162), the camber force can be adjusted to measurements.

3.7 First-Order Tire Dynamics

3.7.1 Simple Dynamic Extension

Measurements show that the dynamic reaction of tire forces and torques to
disturbances can be approximated quite well by first-order systems [17]. Then,
the dynamic tire forces FDx , FDy and the dynamic tire torque TDz are given by
first-order differential equations

τx Ḟ
D
x + FDx = F stx , (3.164)

τy Ḟ
D
y + FDy = F sty , (3.165)

τψ Ṫ
D
z + TDz = T stz , (3.166)

which are driven by the steady values F stx , F sty and T stz . The time constants τx,
τy, τψ can be derived from corresponding relaxation lengths rx, ry, rψ. Because
the tread particles of a rolling tire move with transport velocity rD|Ω| through
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FIGURE 3.42
Measured lateral force relaxation length for a typical passenger car tire, [17].

the contact patch,

τi =
ri

rD|Ω|
i = x, y, ψ (3.167)

will hold. But, it turned out that these relaxation lengths are functions of
the longitudinal and lateral slip sx, sy and the wheel load Fz, Figure 3.42.
Therefore, constant relaxation lengths will approximate the real tire behavior
in zero-order approximation only. An appropriate model for the dynamic tire
performance would be of great advantage because then the cumbersome task
of deriving the relaxation lengths from measurements can be avoided.

3.7.2 Enhanced Force Dynamics

The tire forces Fx and Fy acting in the contact patch deflect the tire in the
longitudinal and lateral direction, Figure 3.43. In a first-order approximation,
the dynamic tire forces in the longitudinal and lateral direction follow from

Fx (vx + ẋe)︸ ︷︷ ︸
FDx

≈ Fx (vx)︸ ︷︷ ︸
F stx

+
∂Fx
∂vx

ẋe , (3.168)

Fy (vy + ẏe)︸ ︷︷ ︸
FDy

≈ Fy (vy)︸ ︷︷ ︸
F sty

+
∂Fy
∂vy

ẏe , (3.169)

where xe and ye name the longitudinal and the lateral tire deflection, respec-
tively. In the steady state the longitudinal tire forces F stx and F sty will be

provided as functions of the normalized slips sNx and sNy . Combining the first
relation in Equation (3.137) with Equations (3.105) and (3.106) finally results
in

F stx = F
sNx
s

= FG
s

sG

sNx
s

=
FG
sG

sNx = fG s
N
x = F stx (sNx ) , (3.170)

F sty = F
sNy
s

= FG
s

sG

sNy
s

=
FG
sG

sNy = fG s
N
y = F sty (sNy ) , (3.171)
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FIGURE 3.43
Tire deflection in the longitudinal and lateral direction.

where sNx , sNy label the normalized slips in the longitudinal and lateral direc-
tion, FG = FG(sG) names the generalized tire force characteristic, and fG is
its global derivative. The derivatives of the steady-state forces with respect to
the components of the contact point velocity are then given by

∂F stx
∂vx

=
∂F stx
∂sNx

∂sNx
∂vx

=
∂F stx
∂sNx

−1

rD|Ω|ŝx + vN
, (3.172)

∂F sty
∂vy

=
∂F sty
∂sNy

∂sNy
∂vy

=
∂F sty
∂sNy

−1

rD|Ω|ŝy + vN
, (3.173)

where the definition of the normalized slips in Equations (3.97) and (3.98) were
used to generate its derivatives with respect to the components of the con-
tact point velocity. Corresponding to the first-order approximations in Equa-
tions (3.168) and (3.169), the partial derivatives of the steady-state tire forces
with respect to the normalized slips will be approximated by their global
derivatives

∂F stx
∂sNx

≈ F stx
sNx

=
fG s

N
x

sNx
= fG , (3.174)

∂F sty
∂sNy

≈
F sty
sNy

=
fG s

N
y

sNy
= fG . (3.175)

Then, Equations (3.168) and (3.169) will read as

FDx ≈ fG s
N
x + fG

−1

rD|Ω|ŝx + vN
ẋe , (3.176)

FDy ≈ fG s
N
y + fG

−1

rD|Ω|ŝy + vN
ẏe , (3.177)

where according to Equations (3.170) and (3.171), the steady-state tire forces
F stx and F sty were replaced by the terms fG s

N
x and fG s

N
y . On the other hand,

the dynamic tire forces can be derived from

FDx = cx xe + dx ẋe , (3.178)

FDy = cy ye + dy ẏe , (3.179)
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where cx, cy and dx, dy denote stiffness and damping properties of the tire in
the longitudinal and lateral direction. Inserting the normalized slips defined
by Equations (3.97) and (3.98) into Equations (3.176) and (3.177) and com-
bining them with Equations (3.178) and (3.179) yields first-order differential
equations for the longitudinal and lateral tire deflection,(

dx + fG
1

rD|Ω|ŝx + vN

)
ẋe = fG

− (vx − rD Ω)

rD|Ω|ŝx + vN
− cx xe , (3.180)

(
dy + fG

1

rD|Ω|ŝy + vN

)
ẏe = fG

−vy
rD|Ω|ŝy + vN

− cy ye . (3.181)

Multiplying these differential equations with the modified transport velocities

v∗Tx = rD |Ω| ŝx + vN and v∗Ty = rD |Ω| ŝy + vN (3.182)

finally results in

(v∗Tx dx + fG ) ẋe = − v∗Tx cx xe − fG (vx−rD Ω) , (3.183)(
v∗Ty dy + fG

)
ẏe = − v∗Ty cy ye − fG vy . (3.184)

This first-order dynamic tire force model is completely characterized by the
generalized steady-state tire characteristics fG, and the stiffness cx, cy and
damping dx, dy properties of the tire. Via the steady-state tire characteristics,
the dynamics of the tire deflections and hence the dynamics of the tire forces
will automatically depend on the wheel load Fz and the longitudinal and
lateral slip.

According to Equation (3.167), the relaxation length for the tire deflections
and hence for the tire force is now given by

rx = rD|Ω| τx and ry = rD|Ω| τy , (3.185)

where the corresponding time constants

τx,y =
v∗Tx,y dx,y + fG

v∗Tx,y cx,y
=

dx,y
cx,y

+
fG

v∗Tx,y cx,y
(3.186)

can easily be derived from Equations (3.183) and (3.184).
This simple model approach needs steady-state tire characteristics only. It

leads to a relaxation length that is automatically adapted to the tire parame-
ters, Figure 3.44. The relaxation length ry depends on the wheel load Fz and
on the lateral slip sy or the slip angle α = arctan(sy), respectively. A compar-
ison with Figure 3.42 shows that magnitude and the overall behavior of the
lateral relaxation length are reproduced quite well. But of course a perfect
matching cannot be expected. However, by introducing nonlinear characteris-
tics for the longitudinal and lateral tire stiffness, cx → cx(xe) and cy → cy(ye),
or an appropriate weighting function, a better fitting to measured relaxation
lengths would be possible.
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FIGURE 3.44
Lateral force characteristic and relaxation length at different wheel loads.

3.7.3 Enhanced Torque Dynamics

3.7.3.1 Self-Aligning Torque

As described in Section 3.3.5, the self-aligning torque is generated by the tire
offset and the lateral force. By neglecting possible dynamics of the tire offset,
the dynamic self-aligning torque can be approximated by

TDS = −nFDy , (3.187)

where n denotes the steady-state tire offset and FDy names the dynamic tire
force. In this approach the dynamics of the self-aligning torque is controlled
by the dynamics of the lateral tire force only.

3.7.3.2 Bore Torque

Following the calculation of the steady-state bore torque in Section 3.5, the
contact patch can be approximated by an equivalent contact ring, Figure 3.45.
During bore motions, the wheel rim rotates with angle ψW around an axis

��

��������	
��

�
����	
�

�� ��

� � �

�

�

FIGURE 3.45
Simple bore torque model.
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normal to the contact patch. The position of the contact ring relative to the
wheel is described by the twist angle ψ. The contact ring with a radius that is
equal to the bore radius RB is attached to the rim by a spring damper element,
where the constants c and d represent the stiffness and damping properties of
the tire in the circumferential direction. Then, the force

F = cRB ψ + dRB ψ̇ (3.188)

applied to the ring generates the dynamic bore torque

TDB = RB F = cR2
B ψ + dR2

B ψ̇ . (3.189)

The angular velocity of the ring around an axis perpendicular to the local
road plane is simply determined by

ωn = ψ̇W + ψ̇ , (3.190)

which according to Equation (3.135) and the second part of Equation (3.137)
will result in the the bore torque

T ∗B = RB
FG
sG

−RB
(
ψ̇W + ψ̇

)
rD |Ω|+ vN︸ ︷︷ ︸

sB

, (3.191)

where sB names the bore slip. As no mass or inertia effects of the ring will
be taken into account, the dynamic torque TDB generated between rim and
tire ring must equal the torque T ∗B acting between tire ring and road. Putting
Equation (3.189) on a level with Equation (3.191) yields

cR2
B ψ + dR2

B ψ̇ = RB
FG
sG

−RB
(
ψ̇W + ψ̇

)
rD |Ω|+ vN

, (3.192)

where

cψ = cR2
B and dψ = dR2

B (3.193)

represent the twist stiffness and twist damping of the tire. By neglecting the
influence of the time derivative of the twist angle ψ̇ on the generalized slip
sG, one gets the first-order differential equation(

dR2
B +

FG
sG

R2
B

rD |Ω|+ vN

)
ψ̇ = − cR2

B ψ + RB
FG
sG

−RB ψ̇W
rD |Ω|+ vN

. (3.194)

where

T stB = cR2
B ψ

st = RB
FG
sG

−RB ψ̇W
rD |Ω|+ vN

= RB
FG
sG

sB (3.195)
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represents the steady-state bore torque, which implies a corresponding steady-
state torsional tire deflection described by the twist angle ψst. Multiplying the
differential equation with the modified transport velocity rD|Ω|+vN , abbre-
viating the global derivative of the generalized tire force characteristic FG/sG
by fG, and finally dividing by R2

B results in

(d (rD|Ω|+vN ) + fG) ψ̇ = − c ψ (rD|Ω|+vN ) − fG ψ̇W . (3.196)

The time constant

τψ =
d

c
+

fG
c (rD|Ω|+vN )

(3.197)

or the relaxation length

rψ = rD|Ω| τψ = rD|Ω|
d

c
+

fG
c

rD|Ω|
(rD|Ω|+vN )

, (3.198)

which for vN � rD|Ω| simplifies to

rψ = rD|Ω|
d

c
+

fG
c
, (3.199)

characterize the dynamics of the torsional tire deflection ψ and, hence, of
the bore torque TDB defined in Equation (3.188). The results of this simple
approach are rather close to measurements, Figure 3.46. As no further data
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FIGURE 3.46
Measured [17] and computed relaxation length of the dynamic bore torque.

are given in [17], estimated model data that represent typical passenger car
tires were used to calculate the relaxation length via Equation (3.199). The
corresponding tire data that hold for a payload of FNz = 4000N are given in
Table 3.5. In addition a transport velocity of rD|Ω|= 40 km/h was assumed
hereby.

3.7.3.3 Parking Torque

Parking maneuvers are often performed close to or in standstill situations. At
standstill, the angular velocity of the wheel Ω is zero. Then, Equation (3.196)
will simplify to

(d vN + fG) ψ̇ = − c ψ vN − fG ψ̇W . (3.200)
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The fictitious velocity vN was just introduced to avoid singularities in the slips
at standstill. A sufficiently small value will certainly imply,

d vN � fG . (3.201)

If the bore motion performed with a certain amount of the angular rotation
of the wheel carrier ψ̇W 6= 0 starts at a vanishing twist angle ψ = 0, then the
differential equation (3.200) will merge into

fG ψ̇ = −fG ψ̇W . or ψ̇ = −ψ̇W (3.202)

Hence, at the beginning of the bore motion, the torsional tire deflection rep-
resented by the twist angle ψ is just increased or decreased, depending on the
magnitude and sign of the steering motion ψ̇W , which corresponds to a simple
spring model.

TABLE 3.5
Dynamic Bore Torque Model Data

dF 0 = 90 000 Initial inclination
FM = 4, 250 Maximum force
sM = 0.18 Slip where F=FM

FS = 4100 Sliding force
sS = 0.50 Slip where F=FS

vN = 0.010 Fictitious velocity
rD = 0.310 Dynamic tire radius

RB = 0.060 Bore radius
cψ = 2700 Torsional stiffness
dψ = 1.8 Torsional damping
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FIGURE 3.47
Measured [17] and computed parking torque at standstill.

The simple dynamic torque model operates with parameter, mostly derived
from the steady-state tire properties. In particular, the data given in Table 3.5
are needed. To measure the parking effort, the wheel is rotated at standstill
(Ω = 0) with a low frequent sine input ψW = ψ0

W sin 2πfEt around an axis
perpendicular to the contact patch. The left plot in Figure 3.47 indicates an
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amplitude of ψ0
W = 20◦ and an excitation frequency of fE = 0.1 Hz. The

torsional stiffness of the tire cψ=2700Nm/rad and the maximum achievable
bore torque, which according to Equation (3.131) is given by TmaxB = RBF

S =
0.06 ∗ 4100 = 246 Nm limits the twist angle to a value of |ψ| ≤ 246/2700 =
0.091 rad=5.2◦. The simple dynamic torque model is able to generate periodic
cycles that are quite similar to measurements. Only in the beginning the
curves will differ because the simple bore torque model approximates the
contact patch by one rigid ring that is coupled to the rim by a spring damper
combination and while rotating is exposed to a generalized friction force. In
reality, all tread particles will stick to the road at first and then pass over to
a sliding motion from the outer parts of the contact patch to the inner.

Exercises

3.1 The position of the wheel rotation axis with respect to the earth-fixed
system is defined by the unit vector eyR,0 = [0.097; 0.995; −0.024]T in a
particular driving situation. Calculate the unit vectors ex,0 and ey,0 pointing
in the direction of the longitudinal and the lateral tire force as well as the tire
camber angle γ when en,0 = [0; 0; 1]T defines the track normal.

3.2 A tire with an unloaded radius of r0 = 0.546 m is exposed to a vertical
force of Fz = 35 kN . Calculate the vertical tire stiffness cz and the contact
length L if a loaded or static tire radius of rS = 0.510m is measured.

3.3 The following table lists the vertical tire deflection of a passenger car at
different loads.

∆z mm 0 5 10 15 20 25 30 35 40

Fz kN 0 0.85 1.75 2.60 3.60 4.60 5.60 6.55 7.55

Plot the tire deflection versus the wheel load. Calculate the tire stiffness at
the payload FNz = 3.2 kN and its double. Estimate the length of the contact
patch at Fz = FNz and the equivalent bore radius when the unloaded tire
radius and the width of the tire are given by r0 = 293mm and b = 205mm,
respectively.

3.4 Measurements at a payload of FNz = 3.2 kN result in

sx [%] 0 2 4 6 8 10 14 18 22 26 30

Fx [kN ] 0 2.00 2.95 3.25 3.30 3.35 3.35 3.32 3.30 3.28 3.26

α [deg] 0 2 4 6 8 10

Fy [kN ] 0 1.75 2.55 2.92 3.05 3.14

Plot the tire characteristics Fx(sx) and Fy(sy) by converting the slip angle
α into the corresponding lateral slip sy. Deduce by simple inspection the
characteristic data tire model data dF 0

x , FMx , sMx , FSx , sSx and dF 0
y , FMy ,

sMy , FSy , sSy . Generate the combined force characteristics using the MATLAB-
Script given in Listing 3.4.
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4.1 Components and Concepts

4.1.1 Conventional Drive Train

The drive train serves two functions: it transmits power from the engine to
the drive wheels, and it varies the amount of torque. The main parts of a
drive train for conventional ground vehicles are engine, clutch, transmission,
differentials, shafts, brakes, and wheels, Figure 4.1.

On heavy trucks, planetary gears are imbedded into the wheels in order to
reduce the amount of torque transmitted by the drive- and half-shafts. Most
passenger cars have rear- or front-wheel drive. All-wheel drive is often used on
upper-class cars and sport utility vehicles. Front-wheel drive is very common
on light trucks. Advanced drive trains make use of electronically controlled

101
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FIGURE 4.1
Components of a conventional drive train.

differentials in order to transfer the driving torque properly to the axles and
wheels.

Different kinds of driving concepts can be found on heavy trucks. Here, the
notation w×d, where d names the number of wheels in total and d the number
of driven wheels, is usually used to specify the driving concept. Hence, 4× 4
stands for all-wheel drive on a truck with two axles, and 8× 4 names a truck
with four axles (= eight wheels) in total, where two axles (= four wheels)
are driven. Note that the number of tires and the number of wheels may be
different because on solid axles usually on one wheel, two tires (double tires)
are mounted.

4.1.2 Hybrid Drive

Nowadays hybrid driven cars have become very popular. At present, many
hybrid models are already available and most automobile manufacturers have
announced plans to put their own versions on the market. A hybrid drive train
combines two or more power sources in general. Only the gasoline-electric
hybrid is currently commercially available. Both, at present, available drive
sources may operate in series or parallel, Figure 4.2.

In the serial arrangement, the vehicle is driven by the electric motor, which
provides an adequate torque over a wide speed range and does not necessarily
require a bulky transmission. As the combustion engine will drive the electric
generator only, it can be run at a constant and efficient rate even as the vehicle
changes speed. Series-hybrids can be also fitted with a capacitor or a flywheel
to store regenerative braking energy.

In the parallel layout, both drive sources can be used jointly or separately
to accelerate the vehicle. The possibility for power addition permits relatively
small dimensioning of the machines, without having to accept disadvantages
in the driving performance. As only one electric motor is integrated, it can
only be either generative or motive.
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FIGURE 4.2
Typical layout of serial and parallel hybrid drives.

The powersplit hydro drive combines the serial and parallel hybrid to a
strong hybrid drive. A transmission (planetary gear) splits the power of the
internal combustion engine in one portion that is transmitted directly (me-
chanically) to the drive shaft, while the other portion is converted into elec-
trical energy and optionally stored in the battery or consumed by the electric
motor. Both the combustion engine and the electric motor can be used to
drive the vehicle. Even a purely electric drive will be possible.

The hybrid is a compromise. It attempts to significantly increase the
mileage and reduce the emissions of a gasoline-powered car while overcom-
ing the shortcomings of an electric car.

4.1.3 Electric Drive

In an electric drive vehicle, the torque is supplied to the wheels by one or more
electric motors. Attaching electric motors to each driven wheel will require no
drive line at all but will increase the unsprung mass of the wheel significantly.
The possibility to provide individual and easily controllable driving torques
at the wheels offers a lot options to improve the traction and the handling of
a vehicle.

If the electric motor is powered solely by a battery, the vehicle will cre-
ate less pollution than a gasoline-powered one. A large array of batteries is
needed in order to achieve a reasonable range of miles per charge. In addi-
tion, recharging the batteries will take a long time. Purely electric driven cars
usually are restricted to specific operating conditions. That is why “extended
range” electric vehicles as one variant of hydro drive are at present available



104 Road Vehicle Dynamics: Fundamentals and Modeling

on the market only. Here, the batteries are charged from the grid and by a
small internal combustion engine that powers a generator which powers the
batteries.

4.2 Wheel and Tire

4.2.1 Wheel Dynamics

Besides the longitudinal tire force Fx that generates a torque around the wheel
rotation axis eyR via the static tire radius rS and the rolling resistance torque
Ty, the rotation of a wheel is influenced by the driving torque TD and the
braking torque TB , Figure 4.3. The driving torque may either applied directly

TD

TB

Fx

rS

�

Ty

eyR

FIGURE 4.3
Wheel and tire.

to the wheel by an electric motor TD = TE or transmitted to the wheel by
the half-shaft, TD = TS . The dynamics of the wheel rotation is governed by
the angular momentum around the wheel rotation axis

Θ Ω̇ = TD − TB − rS Fx + Ty , (4.1)

where Θ and Ω denote the inertia and the angular velocity of the wheel.

4.2.2 Eigen-Dynamics

4.2.2.1 Steady-State Tire Forces

The dynamics of a wheel that is neither driven (TD = 0) nor braked (TB = 0)
may be simplified to

Θ Ω̇ = −rS Fx , (4.2)

where torque Ty which represents the rolling resistance and usually is very
small, was neglected in comparison to the term rS Fx. Within handling tire
models like TMeasy, the longitudinal tire force Fx is described as a function
of the longitudinal slip sx. For vanishing lateral slips, the normalization factor
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ŝx in Equation (3.97) can be set to one. Then, the longitudinal slip is given
by

sx =
−(vx − rD Ω)

rD |Ω|+ vN
, (4.3)

where vx denotes the longitudinal component of the contact point velocity and
the small but positive fictitious velocity vN > 0 avoids numerical problems
when the wheel will be locked, Ω = 0. Now, the angular velocity of the wheel
is approximated by

Ω =
vx
rD

+ ∆Ω or rD Ω = vx + rD ∆Ω , (4.4)

where in addition

|rD∆Ω| � |vx| (4.5)

is assumed, which means that the angular velocity ∆Ω describes small devia-
tions from the rolling condition rDΩ = vx. Then, the longitudinal slip defined
by Equation (4.3) simplifies to

sx =
− (vx − (vx + rD ∆Ω))

|vx + rD ∆Ω|+ vN
≈ −rD ∆Ω

|vx|+ vN
. (4.6)

According to Equation (4.5), the longitudinal slip will be small too, sx � 1,
and the steady-state longitudinal tire force can be approximated by

Fx = F stx ≈ dF 0
x sx = dF 0

x

rD ∆Ω

|vx|+ vN
, (4.7)

where dF 0
x describes the initial inclination of the longitudinal tire charac-

teristic Fx = Fx(sx). Now the angular momentum of the wheel defined in
Equation (4.2), simplifies to a linear first-order differential equation,

Θ ∆Ω̇ = −rS dF 0
x

rD ∆Ω

|vx|+ vN
. (4.8)

The dynamics of this simple wheel tire model is then characterized by the
eigenvalue

λ = − dF 0
x

|vx|+ vN

r2
S

Θ
, (4.9)

where rS ≈ rD was assumed in addition. In drive away or braking to standstill
maneuvers where vx = 0 will hold, the eigenvalue is proportional to 1/vN .
This strong dependency on the fictitious velocity causes problems because
small values for vN will result in a very large eigenvalue, which indicates a
stiff differential equation for the wheel rotation. On the other hand, too large
values for vN will produce results with poor accuracy [39].
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4.2.2.2 Dynamic Tire Forces

However, a simple but effective extension to first-order dynamic tire forces
gets rid of the strong influence of the fictitious velocity vN and produces good
results in any driving situation [36]. As shown in Section 3.7, the dynamic
longitudinal tire force can be modeled by

Fx = FDx = cx xe + dx ẋe , (4.10)

where xe describes the longitudinal tire deflection, and cx and dx denote the
corresponding stiffness and damping properties. Then, the angular momentum
of the wheel provided in Equation (4.2) reads as

Θ ∆Ω̇ = −rS (cx xe + dx ẋe) . (4.11)

The tire deflection xe is defined by the first-order differential equation (3.183),
which in the case of pure longitudinal slip will read as(

v∗Tx dx + dF 0
x

)
ẋe = − v∗Tx cx xe − dF 0

x (vx−rD Ω) , (4.12)

where the global derivative fG of the generalized tire force characteristic was
approximated by the initial inclination of the longitudinal tire force character-
istic dF 0

x . As no lateral slip is considered here, a slip normalization is obsolete
(ŝx = 1) and Equation (3.182) will deliver by

v∗Tx = rD |Ω|+ vN (4.13)

the modified transport velocity slightly simplified. Then, Equation (4.12) can
be written as(

(|vx + rD ∆Ω|+ vN ) dx + dF 0
x

)
ẋe =

− (|vx + rD ∆Ω|+ vN ) cx xe − dF 0
x (vx − (vx + rD ∆Ω)) .

(4.14)

where Equation 4.4 was used in addition to introduce the small angular veloc-
ity ∆Ω describing the deviation from the rolling condition. In normal driving
situations, the longitudinal tire deflection xe and its time derivative ẋe will
remain small too. Then, Equation (4.14) simplifies further to(

|vx+vN | dx + dF 0
x

)
ẋe = rD dF

0
x ∆Ω − |vx+vN | cx xe . (4.15)

Now the time derivative of Equation (4.15) can be combined with Equa-
tion (4.11) to one differential equation,

(
|v| dx + dF 0

x

)
ẍe =

rD dF
0
x

Θ
(−rS cx xe − rS dx ẋe) − |v| cx ẋe , (4.16)

where the abbreviation v = vx+vN was introduced in addition. Collecting the
terms with ẋe and isolating the steady-state longitudinal tire force cxxe, the
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second-order differential equation defined in Equation (4.16) can be written
as (

|v| dx
dF 0

x

+ 1

)
Θ

rSrD︸ ︷︷ ︸
m

ẍe︸︷︷︸
ẍ

+

(
dx +

|v| cx Θ

dF 0
x rSrD

)
︸ ︷︷ ︸

d

ẋe︸︷︷︸
ẋ

+ cx︸︷︷︸
c

xe︸︷︷︸
x

= 0 ,

(4.17)
which corresponds with a single mass oscillator. As a consequence, the eigen-
values given by

λ1,2 = − d

2m
± i

√
c

m
−
(
d

2m

)2

(4.18)

will characterize the dynamics of the wheel and the longitudinal tire force.
The MATLAB-Script in Listing 4.1 calculates the eigenvalues, the eigenfre-
quencies, and the damping ratios1 for different driving velocities. The results
are plotted in Figure 4.4.

Listing 4.1
Script eigenvalues wheel dynamics.m: Wheel Tire Dynamics

1 Theta = 1.2; % [kgm^2] inertia of wheel

2 r = 0.3; % [m] wheel radius (dynamic = static)

3 dfx0 = 100000; % [N/-] initial incl. force char.

4 cx = 160000; % [N/m] longitudinal tire stiffness

5 dx = 500; % [N/(m/s)] longitudinal tire damping

6 vN = 0.01; % [m/s] fictitious velocity

7
8 % set velocity range and allocate space to speed up loop

9 vi=linspace(0,210/3.6,101); la1=zeros(size(vi));la2=la1; freq=la1;dratio=la1;

10
11 for i=1:length(vi)

12 % corresponding mass oscillator

13 v = vi(i) + vN;

14 m = Theta/r^2*(1+v*dx/dfx0); d = dx + v*cx*Theta/(r^2*dfx0); c = cx;

15 % eigenvalues

16 la1(i) = -d/(2*m) + sqrt( (d/(2*m))^2 - c/m );

17 la2(i) = -d/(2*m) - sqrt( (d/(2*m))^2 - c/m );

18 % frequency [Hz] and damping ratio [-]

19 freq(i) = imag(la1(i))/(2*pi);

20 dratio(i) = d / ( 2*sqrt(c*m) );

21 end

22
23 % plots

24 subplot(1,3,1), hold on, grid on, title(’Eigenvalues’),axis equal

25 plot(real(la1),imag(la1)), plot(real(la2),imag(la2))

26 subplot(1,3,2), hold on, grid on, title(’Eigenfrequencies [Hz]’)

27 plot(vi,freq)

28 subplot(1,3,3), hold on, grid on, title(’Damping ratio [-]’)

29 plot(vi,dratio)

1The damping parameter d = dC = 2
√
cm, which happens to satisfy the condition

(d/(2m))2 = c/m, is called critical damping because Equation (4.18) will deliver only one
real double eigenvalue λ1 = λ2 then.
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FIGURE 4.4
Wheel tire dynamics for different driving velocities.

The wheel tire dynamics are not sensitive to the fictitious velocity vN as
long as

vNdx
dF0

� 1 or vN �
dF0

dx
(4.19)

and
vNcxΘ

dF0rSrD
� dx or vN �

dxdF0rSrD
cxΘ

(4.20)

will be granted. In this case the demands will deliver

vN � 100 000 [N/−]/500N/(m/s) = 200m/s and

vN�
500Ns/m ∗ 100 [kN/−] ∗ 0.3m ∗ 0.3m

160 [kN/m] ∗ 1.2 [kgm2]
= 23.4m/s

in particular. Note that for standard wheel tire data, any value of vN < 1m/s
will be appropriate; vN = 0.01m/s was chosen here.

4.2.3 Simple Vehicle Wheel Tire Model

4.2.3.1 Equations of Motion

The wheel tire model in Section 4.2.2.2 is now supplemented by a chassis
mass and will be put on a grade, Figure 4.5. The mass m includes the mass
of the wheel suspension system and represents the part of the overall vehicle
mass that is related to one wheel. The inertia of the wheel is denoted by Θ,
the grade angle is named by α, and r serves as simple approximation for the
static (rS ≈ r) as well as the dynamic tire radius (rD ≈ r). The vehicle is
supposed to move along the grade only. Its actual position is determined by
the coordinate x, and

Fz = mg cosα (4.21)
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FIGURE 4.5
Simple vehicle model

will provide a constant wheel load here. Then, the equations of motion con-
sisting of the linear momentum for the vehicle, the angular momentum for the
wheel, and the dynamics of the longitudinal tire deflection read as

mẍ =

FDx︷ ︸︸ ︷
cxxe + dxẋe−mg sinα , (4.22)

Θ Ω̇ = TD − TB − r (cxxe + dxẋe)︸ ︷︷ ︸
FDx

, (4.23)

(v∗Tx dx + fG ) ẋe = − v∗Tx cx xe − fG (vx−rD Ω) , (4.24)

where cx and dx describe the stiffness and damping properties of the tire in
the longitudinal direction, and all forces and torques of resistance were ne-
glected. In addition, the special case of pure longitudinal slip was assumed,
which according to Equation (4.13) will simplify the modified transport ve-
locity to v∗Tx = rD|Ω|+vN and reduce the global derivative of the generalized
force characteristic to the corresponding derivative of the longitudinal force
characteristic. For given driving and braking torques, the equation of motion
can be solved numerically.

4.2.3.2 Driving Torque

Usually, the driving torque TD is transmitted by the half-shaft. By modeling
the torsional flexibility of the drive-shaft by a linear spring damper model,
one gets

TD = TS = −cS ∆ϕS − dS (Ω− ωS) , (4.25)

where cS and dS describe the torsional stiffness and damping properties of the
half-shaft, Ω denotes the angular velocity of the wheel, and ωS is the angular
velocity of the half-shaft. Finally, the twist angle ∆ϕS of the half-shaft is
defined by the differential equation

d

dt
(∆ϕS) = Ω− ωS . (4.26)
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If, however, a wheel hub motor is used as the driving source instead, the engine
torque TE will be applied directly to the wheel. Then

TD = TE (4.27)

simply holds.

4.2.3.3 Braking Torque

The braking torque applied to the wheel usually is generated by friction,
Figure 4.6. However, a simple dry friction model will cause severe numerical
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FIGURE 4.6
Coulomb dry friction model and enhanced brake torque model.

problems because it is not defined in a locking situation (∆Ω = 0). The regu-
larized model that is mostly used in commercial software packages avoids this
problem but becomes less accurate when approaching the locking situation.
The enhanced dry friction model avoids the jump at ∆Ω = 0 and provides an
appropriate locking torque [37]. So, the braking torque will here be modeled
by

TB = T stB + dN ∆Ω and |TB | ≤ TmxB , (4.28)

where T stB names the static or locking torque, dN > 0 is a constant with the
dimension of Nm/(rad/s), TmxB denotes the maximum braking torque, and

∆Ω = Ω− ωK (4.29)

describes the relative angular velocity between the wheel and the body where
the brake caliper is mounted. Usually this will be the knuckle.

The static part provides a steady-state locking torque when the relative
angular velocity is vanishing, T stB (∆Ω = 0) = T stB . In the steady state when
Ω̇ = 0 holds in addition, Equation (4.23) delivers

0 = TD − T stB − r FDx . (4.30)

Hence, the static braking torque

T stB = TD − r FDx (4.31)
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will counteract appropriately the resulting torque applied to the wheel, namely
consisting of the driving torque TD and the torque r FDx generated by the
longitudinal tire force. Just like the overall braking torque TB , the steady-
state part is bounded to the maximum braking torque∣∣T stB ∣∣ ≤ TmxB . (4.32)

The numeric constant dN is chosen such that the dynamics of a fully braked
and freely rolling wheel will be similar. According to Equation (4.23), the
dynamics of a fully braked wheel will be approximately described by

Θ Ω̇ = −
(
T stB + dN Ω

)
− r FSx , (4.33)

where in a fully braking maneuver the dynamic longitudinal force FDx can be
replaced by the steady-state sliding force FSx and a vanishing driving torque
(TD = 0) was stated in addition. Within this simple vehicle model, the knuckle
rotation is not taken into account. That is why the relative angular velocity
∆Ω required in the braking torque model in Equation (4.28) may be substi-
tuted by the absolute angular wheel velocity Ω here. The eigenvalue of the
first-order differential equation provided by Equation (4.33), is simply given
by

λ = dN/Θ . (4.34)

The eigenvalues of a freely rolling wheel are provided in Equation (4.18). Their
absolute value is given by

|λ1,2| =
√

(Re(λ))
2
+(Im(λ))

2
=

√(
− d

2m

)2

+
c

m
−
(
d

2m

)2

=

√
c

m
, (4.35)

where the generalized mass m and the stiffness c = cx are related to the wheel
tire data by Equation (4.17). Hence, by setting

dN = Θ
√
c/m , (4.36)

the dynamics of the braking torque model can be adjusted to the freely rolling
wheel that features the highest eigenfrequencies at vanishing driving velocities.
At v = 0, the generalized mass simplifies to m = Θ/(rsrD) or to m = Θ/r2

within this simple model approach. Then

dN = Θ

√
cx

Θ/r2
= r

√
cx Θ (4.37)

will provide an appropriate value for the “damping” constant required in the
enhanced braking torque model.

4.2.3.4 Simulation Results

The equations of motion for the simple vehicle wheel tire model including the
enhanced braking torque model are provided by the function in Listing 4.2 as
a set of first-order differential equations.
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Listing 4.2
Function Chassis Wheel Tire f.m: Vehicle Wheel Tire Model Dynamics

1 function xp=Chassis_Wheel_Tire_f(t,x)

2 % simple vehicle model including wheel and tire dynamics

3
4 global gravity al mass Theta r dfx0 fxm sxm fxs sxs vN cx dx

5 global t_Drive Drive_Torque t_Brake Brake_Torque dN

6 global sx fxd tq_B tq_D

7
8 % get states

9 v = x(1); o = x(2); % vehicle velocity and angular velocity of wheel

10 xe= x(3); xv= x(4); % longitudinal tire deflection and vehicle position

11
12 % actual driving and maximum braking torque via linear interpolation

13 tq_D = interp1(t_Drive,Drive_Torque,t);

14 tq_Bmx = interp1(t_Brake,Brake_Torque,t);

15 % modified transport velocity and long. slip without normalization

16 vt = abs(r*o) + vN; vs = v-r*o; sx = -vs/vt;

17 % generalized tire characteristics (sx only)

18 [ f, fos ] = tmy_fcombined( abs(sx), dfx0,fxm,sxm,fxs,sxs ) ;

19 % time derivative of long. tire deflection and long. dynamic tire force

20 xedot = -(cx*xe*vt+fos*(v-r*o))/(dx*vt+fos); fxd = cx*xe+dx*xedot;

21 % applied braking torque (enhanced dry friction model)

22 tq_B = tq_D-r*fxd + dN*o ; tq_B = sign(tq_B) * min( abs(tq_B), tq_Bmx );

23 % derivatives

24 odot = ( tq_D - tq_B - r*fxd ) / Theta; % angular momentum wheel

25 vdot = ( fxd - mass*gravity*sin(al) ) / mass; % linear momentum chassis

26 xp = [ vdot; odot; xedot; v ]; % state derivatives

27
28 end

The function tmy fcombined.m that generates the combined force character-
istic is given in Listing 3.3. The time history of the driving and the maxi-
mum braking torques is stored as lookup tables in the vectors t Drive and
Drive Torque and t Brake and Brake Torque, respectively. The MATLAB-
Function interp1 calculates the actual values via a linear interpolation. The
MATLAB-Script in Listing 4.3 performs a simulation with the simple vehicle
model. The results are plotted in Figure 4.7.

Listing 4.3
Script Chassis Wheel Tire main.m: Vehicle Wheel Tire Model

1 global gravity al mass Theta r dfx0 fxm sxm fxs sxs vN cx dx

2 global t_Drive Drive_Torque t_Brake Brake_Torque dN

3 global sx fxd tq_B tq_D

4
5 % chassis and wheel data

6 gravity = 9.81; % [m/s^2] constant of gravity

7 al = 20/180*pi; % [degree-->rad] grade angle

8 mass = 400; % [kg] chassis mass

9 Theta = 1.2; % [kgm^2] inertia of wheel

10 r = 0.3; % [m] wheel radius

11
12 % long. tire characteristic with linear wheel load influence

13 fzN = 3100; fz = mass*gravity*cos(al);
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14 dfx0 = 100000*fz/fzN; % [N/-] initial incl. long. force char.

15 fxm = 3200*fz/fzN; % [N] maximum long. force

16 sxm = 0.1; % [-] sx where fx=fxm

17 fxs = 3000*fz/fzN; % [N] long. sliding force

18 sxs = 0.8; % [-] sx where fx=fxs

19 cx = 160000; % [N/m] longitudinal tire stiffness

20 dx = 500; % [N/(m/s)] longitudinal tire damping

21 vN=0.01; % [m/s] fictitious velocity

22
23 % adjust "damping" constant in enhanced braking torque model to wheel/tire

24 dN = r * sqrt(cx*Theta);

25 % set driving torque (time [s], torque [Nm])

26 t_Drive = [ 0.0 0.9 1.1 3.9 4.1 20.0 ];

27 Drive_Torque = [ 0.0 0.0 1.0 1.0 0.0 0.0 ]*fxm*r;

28 % set braking torque (time [s], torque [Nm])

29 t_Brake = [ 0.0 5.95 6.05 17.95 18.05 20.0 ];

30 Brake_Torque = [ 0.0 0.00 1.50 1.50 0.00 0.0 ]*fxm*r;

31 % perform simulation

32 tE = min(max(t_Drive),max(t_Brake)); % duration

33 x0=[ 0; 0; 0; 0]; % simple initial states

34 tic; [t,xout] = ode23(@Chassis_Wheel_Tire_f,[0,tE],x0); toc

35 % get additional output quantities

36 sxi=t; fxi=t; tqb=t; tqd=t;

37 for i=1:length(t)

38 xp = Chassis_Wheel_Tire_f(t(i),xout(i,:)’);

39 sxi(i)=sx; fxi(i)=fxd; tqb(i)=tq_B; tqd(i)=tq_D;

40 end

41 % plot results

42 subplot(2,2,1); hold on, grid on

43 plot(t,xout(:,1),’k’,’Linewidth’,1), plot(t,r*xout(:,2),’--r’,’Linewidth’,1)

44 title(’Velocities: v and r*Omega’)

45 subplot(2,2,2); hold on, grid on

46 plot(t,xout(:,4),’k’,’Linewidth’,1)

47 title(’vehicle position’)

48 subplot(2,2,3); hold on, grid on

49 plot(t,tqd,’k’,’Linewidth’,1), plot(t,tqb,’--r’,’Linewidth’,1)

50 title(’Driving and braking torque [Nm]’)

51 subplot(2,2,4); hold on, grid on

52 plot(t,fxi,’k’,’Linewidth’,1)

53 title(’Longitudinal force [N]’)

The vehicle starts from standstill on a grade. At first it rolls backward,
v = rΩ < 0; then the vehicle is accelerated by the driving torque TD that
causes the wheel to spin, rΩ> v. After a short period a braking torque TB
is applied that forces the wheel to lock in an instant, rΩ = 0. When the
vehicle comes to a standstill rΩ = 0, v= 0 at t ≈ 6 s, the enhanced braking
torque model automatically changes the sign in order to prevent the vehicle
from moving downhill again. As the brake is not released yet, the vehicle
oscillates some time in the longitudinal direction. During this period where the
wheel is locked, the system vehicle and tire represent a damped oscillator. The
stiffness and damping properties of the tire in the longitudinal direction cx =
160 000N/m and dx = 500N/(m/s), together with the corresponding vehicle
mass of m = 400 kg, result in a frequency f =

√
c/m− (d/(2m)2/(2pi) =



114 Road Vehicle Dynamics: Fundamentals and Modeling

� � �� �� ��

���

�

��

��

��

��

��

���

�

��

��

��

��

�����

����

�

���

����

����

����

�	
��
�
	����������

�

��
�
�������
����
������� 	��!��

"� "#

�����

�����

�

����

����

�����

$���
� �
��
��
�	�%���	��!�

�	&
�
	�'��
�
������

� � �� �� �������

( )

" " "

FIGURE 4.7
Driving and braking on a grade.

3.2Hz. Inspecting the time history of the longitudinal force Fx(t) in Figure 4.7,
one counts approximately three cycles in the interval 7s ≤ t ≤ 8s, which is
enlarged in the lower right corner of the graph. This results in a vibration
period of T = 1/3 s or a frequency of f = 1/T = 3Hz, which corresponds
quite well with the predicted result. Finally, the vehicle comes to a complete
standstill, v = 0, Ω = 0. The tire force of Fx ≈ 1340 N that is needed to
compensate the downhill force mg sinα = 1342N is maintained as long as the
brake is applied. At t = 18 s, the brake is released and the vehicle starts to
roll downhill again.

The MATLAB-Solver ode23, which is an implementation of an explicit
low-order (2,3) Runge-Kutta algorithm, was used for the simulation because
the brake torque model features sharp bends when reaching the maximum.
The MATLAB-Script in Listing 4.3 calls ode23 at line 34 by specifying the
starting time t0 = 0 and the final time tE only. Then, the ode solver will
adjust the integration step size appropriately in order to match the default
relative error tolerance 1e-3 and the default absolute tolerance of 1e-6 for
each component of the state vector. Supplementing the MATLAB-Script in
Listing 4.3 by the lines

figure
semilogy(0.5*(t(1:length(t)-1)+t(2:length(t))),diff(t),’ok’,’MarkerSize’,3)

will open a new figure and plot the time history of the integration step size cal-
culated via the MATLAB-Function diff(t) in a semi-logarithmic graph versus
the intermediate value of each integration step, Figure 4.8

The maneuver includes all driving situations, which encompasses stand-
still, a rolling, a spinning, a braked, and a locked wheel. Despite all that, the
time history of integration step size h that is automatically adjusted by the
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FIGURE 4.8
Integration step size h versus time t.

ode23 solver to the dynamics of the system is quite smooth. Only at the be-
ginning (t = 0) when the solver is in the start-up phase and at t = 18 s when
the brake is released again and the wheel changes all of a sudden from lock-
ing to rolling, few smaller step sizes will be needed to maintain the required
accuracy.

4.3 Differentials

4.3.1 Classic Design

If a vehicle is driven by a single engine, the drive torque must be transmitted
to the wheels by allowing them to rotate at different speeds. This is achieved
through differentials. Whereas front- or rear-wheel driven cars are equipped
with one differential only, all-wheel driven vehicles usually have three differ-
entials. The differentials at the front and the rear axle split the torque equally
to the left and to the right. The center differential, however, usually transmits
more driving torque to the rear than to the front. This can be achieved by
implementing different sized sun gears, Figure 4.9.

Taking no account of the mass and inertia properties of the planetary gears,
the differential can be modeled by four rigid bodies that perform rotations
only. They are listed in Table 4.1.

TABLE 4.1
Bodies of a Differential (Inertia of Planetary Gears Neglected)

# Body
Angular
Velocity

Inertia
Applied
Torques

1 Output shaft and pinion 1 Ω1 Θ1 T1

2 Output shaft and pinion 2 Ω2 Θ2 T2 − TL
3 Crown wheel and housing ΩC ΘC TL
4 Input shaft and pinion Ω0 Θ0 T0



116 Road Vehicle Dynamics: Fundamentals and Modeling

��

��

��

�

��

�	

��

��

��

�


�����
���
����

	���������

�������
����

	���������

��

��
��

�������

��

FIGURE 4.9
Differential with different sun gears.

The torque T0 is applied to the input and the torques T1, T2 are applied
to the output shafts. The torque TL is generated by friction plates between
the output shaft 2 and the housing, and it will model the effects of a locking
device. The gear ratio between the input pinion and the crown wheel is given
by iD. Then,

Ω0 = iD ΩC (4.38)

represents a first constraint equation. In addition, the rotation of the input
shafts are coupled by the planet gears. The velocities in the contact points Q1

and Q2 are simply given by

vQ1 = r1 Ω1 and vQ2 = r2 Ω2 , (4.39)

and its the mean value

vP =
1

2
(vQ1 + vQ2) =

1

2
(r1 Ω1 + r2 Ω2) (4.40)

determines the velocity of its center point P . As P is located on the rotation
axis of a planet gear that is fixed to the housing,

vP =
r1 + r2

2
ΩC (4.41)

will hold in addition. Combining both relations finally results in a second
constraint equation,

ΩC =
r1

r1 + r2
Ω1 +

r2

r1 + r2
Ω2 , (4.42)

which couples the angular velocity of the housing to the angular velocities of
the output shafts. Introducing the internal ratio

% =
r1

r1 + r2
, (4.43)
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the two constraint equations (4.42) and (4.38) will finally result in

ΩC = %Ω1 + (1−%) Ω2 , (4.44)

Ω0 = iD (%Ω1 + (1−%) Ω2) . (4.45)

The equation of motion will be generated via Jordain’s Principle of virtual
power. Taking only the angular momentum of the bodies into account, it will
read as

δΩ1

(
Θ1 Ω̇1 − T1

)
+ δΩ2

(
Θ2 Ω̇2 − (T2 − TL)

)
+ δΩC

(
ΘC Ω̇C − TL

)
+ δΩ0

(
Θ0 Ω̇0 − T0

)
. = 0

(4.46)

Considering the constraint equations yields

δΩ1

(
Θ1 Ω̇1 − T1

)
+ δΩ2

(
Θ2 Ω̇2 − (T2 − TL)

)
+ (% δΩ1 + (1−%) δΩ2)

(
ΘC

(
% Ω̇1 + (1−%) Ω̇2

)
− TL

)
+ iD (% δΩ1 + (1−%) δΩ2)

(
Θ0 iD

(
% Ω̇1 + (1− %) Ω̇2

)
− T0

)
= 0 .

(4.47)
Collecting all terms with δΩ1 and δΩ2 results in two coupled differential equa-
tions that in matrix form read as[

Θ1 + %2Θ∗ % (1−%)Θ∗

% (1−%)Θ∗ Θ2 + (1−%)2Θ∗

][
Ω̇1

Ω̇2

]
=

[
T1 + % TL + % iD T0

T2 − % TL + (1−%) iD T0

]
,

(4.48)
where the abbreviation Θ∗ = ΘC + i2DΘ0 was used to shorten the elements of
the mass matrix.

The locking torque TL is generated by friction plates between the sun
gear 2 and the crown wheel. Corresponding to the braking torque specified in
Equation (4.28), it will be modeled by

TL = T stL + dN (Ω2 − ΩC) and |TL | ≤ TmxL , (4.49)

where TmxL denotes the maximum torque that can be transmitted by the
friction plates between the sun gear 2 and the crown wheel, and dN > 0 is
a fictitious damping parameter that generates an appropriate torque when
the angular velocities of the sun gear 2 and the crown wheel differ. Finally,
a steady-state locking torque is provided by T stL even if Ω2 = ΩC holds.
In this particular case, the equations of motion for the differential given in
Equation (4.48) deliver two demands on the steady-state locking torque,

0 = T1 + % T stL + % iD T0 and 0 = T2 − % T stL + (1−%) iD T0 . (4.50)

These two equations f1(x) = 0 and f2(x) = 0 for one unknown x = T stL can
be solved by a least squares approach as best as possible,

1
2 f

2
1 (x) + 1

2 f
2
2 (x) −→ Min or

d f1

dx
f1(x) +

d f2

dx
f2(x) = 0 . (4.51)
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Here, it yields at first

%
(
T1 + % T stL + % iD T0

)
+ (−%)

(
T2 − % T stL + (1−%) iD T0

)
= 0 (4.52)

and will deliver the steady-state locking torque

T stL =
1

2%
(T2 − T1) +

(
1

2%
− 1

)
T0 , (4.53)

which depends on the internal ratio % of the differential and is adjusted to the
torque difference T2 − T1 at the output shafts associated with the torque T0

applied to the input shaft.

4.3.2 Active Differentials

Today, advanced drive trains include an electronically active center differen-
tial and an active yaw control rear differential unit. The active center differ-
ential (ACD) is an electronically controlled hydraulic multi-plate clutch that
distributes torque between the front and rear to improve traction under ac-
celeration out of a corner. It works in conjunction with active yaw control
(AYC), which can actively split torque based on input from various sensors in
the vehicle measuring longitudinal and lateral acceleration, steering, brakes,
and throttle position.

The recently developed sport differential supplements the classic differen-
tial at the rear axle with gearboxes on the left and right whose drive super-
position stages are rotating 10% faster than the half-shafts, ΩS1 = 1.1 Ω1 and
ΩS2 = 1.1 Ω2. The two components can be coupled by a multi-plate clutch
running in an oil bath, Figure 4.10.

��

��

��

��

��

��

��

��

	
��


���
�

����
��


�����

	
��


���
�

��� ���

������
�������
�
��� ���

FIGURE 4.10
Enhanced rear axle differential.

When the car is accelerated in a left corner for example, the clutch on the
outer side (clutch 2) is engaged, which by friction will generate a torque (TF2)
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and speed up the corresponding half-shaft (Ω2 ↑) and finally the attached
wheel too. As a result, the longitudinal slip at the outer tire is increased,
which induces an additional driving force and reduces or completely elimi-
nates the understeer tendency of the car. As the friction torque reacts on the
gearbox too, the drive torque transferred to the opposite wheel is decreased
accordingly. Thus, this active differential is able to torque the drive torque
(torque vectoring) to the left and to the right wheel as needed in specific driv-
ing situations. Usually, almost the complete input torque can be diverted to
one rear wheel in this way.

4.4 Generic Drive Train

The subsystem consisting of the drive shafts, the differentials, and the half-
shafts interacts on one side with the engine and on the other side with the
wheels, Fig. 4.11. Engine, clutch, transmission, wheels, and tires are described
separately. Hence, the angular velocities of the wheels ω1, . . . , ω4, and the
engine or respectively the transmission output angular velocity ωT , serve as
inputs for this subsystem. The angular velocities of the drive shafts ωS1: front
left, ωS2: front right, ωSF : front, ωSR: rear, ωS3: rear left, ωS4: rear right
specify the generalized coordinates within this generic 4 × 4 all-wheel drive
model. Via the tire forces and torques, the whole drive train is coupled with
the steering system and the vehicle framework.

The generic drive train includes three differentials that may include locking
or active parts. Their dynamic behavior can be described by adjusting the
equations of motion deduced in Section 4.3 appropriately. The internal ratios
of the front and rear differential defined in Equation (4.43) amount to %F =
%R = 1

2 , which means that the driving torque will be distributed equally2 to
the left and right wheels. Via the internal ratio %C of the center differential,
different drive types can be distinguished. A value of %C = 1 means front-
wheel drive, 0 < %C < 1 stands for all-wheel drive, and %C = 0 will model a
rear-wheel drive. The equation of motion for the generic drive train including
the modeling of torques and hints for real-time applications can be found in
[38].

2Note: The effect of active differentials will be modeled by additional torques generated
by friction or electric motors.
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FIGURE 4.11
Drive train model.

4.5 Transmission

The transmission or gearbox allows the gear ratio to be adjusted. This is nec-
essary because combustion engines work best if they run at a limited rate of
revolutions. By shifting the gears, which can be done manually or automati-
cally, the engine is kept at its most efficient rate while allowing the vehicle to
run at a large range of speed. Operating the gear lever of a manual transmis-
sion brings a different train of gear wheels into play, Figure 4.12.

The different ratios of teeth on the gear wheels involved produce different
speeds. If a gear is selected, the dog teeth lock the required upper gear wheel
to the transmission shaft. Then, the transmission goes from the clutch shaft
via the counter shaft and the lower gear wheels to the upper gear wheels and
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FIGURE 4.12
Manual transmission.

finally to the transmission shaft. Selecting reverse gear introduces the idler
wheel, which reverses the rotation of the transmission shaft. Usually the gear
ratio is defined as

rG =
ωT
ωC

, (4.54)

where ωT and ωC denote the angular velocities of the transmission and the
clutch shaft. Typical gear ratios are given in Table 4.2. The angular momentum

TABLE 4.2
Typical Gear Ratios for a Passenger Car

gear reverse neutral first second third fourth fifth
ratio −4.181 0 3.818 2.294 1.500 1.133 0.911

for the transmission shaft results in

ΘT ω̇T = rG TC − TFRT − TT , (4.55)

where ΘT is a generalized inertia that includes all rotating parts of the trans-
mission. That is why it will depend on the gear ratio ΘT = ΘT (rG). The
friction in the transmission is described by TFRT , and the torque TT repre-
sents the external load that can be modeled by a torsional spring damper
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model

TT = −cT ∆ϕT0 − dT (ωT − ωC) , (4.56)

where cT , dT describe the stiffness and damping properties of the shaft con-
necting the transmission with the differential, and ωT , ωC name the angular
velocities of the flexible shaft at the transmission output and the input from
the clutch. Finally, the differential equation

d

dt
∆ϕT0 = ωT − ωC (4.57)

defines the torsional angle between the input and the output shaft.
For a gear to be engaged, the different speeds of the rotating parts need

to be matched and locked together. The synchromesh uses friction to do this
smoothly and quietly. Pushed by the selector fork, the collar slides along the
transmission shaft, rotating with it. The collar fits over a cone on the upper
gear wheel, making the wheel speed up or slow down until both are moving
with the same speed. Then, the dog teeth are engaged, locking the upper gear
wheel to the collar and, hence, to the transmission shaft.

The synchromesh mode of action can be approximated by a first-order
differential equation

Hsyn ṙ
D
G = −rDG + rG , (4.58)

where rDG denotes the dynamic gear ratio, Hsyn is the time constant of the
synchromesh process, and rG denotes the static gear ratio. By this differential
equation the jump from one static gear ratio to another will be dynamically
smoothed, which comes very close to the real synchromesh process. This dy-
namic gear ratio will then be used instead of the static one.

4.6 Clutch

The clutch makes use of friction to transmit the rotation of the engine
crankshaft to the transmission. When the clutch pedal is released (pG = 0),
the clutch spring forces the clutch plate and the flywheel, which is turned
by the crankshaft, together, Fig. 4.13. Then, the angular momentum for the
clutch plate read as

ΘP ω̇P = TC − TD (4.59)

where ΘP , ωP describe the inertia and the angular velocity of the clutch plate.
According to the principle “actio” equals “reactio,” the torque TC represents
the load applied to the engine. The torque in the drive disk can be modeled by
a torsional spring damper combination. Assuming linear characteristics, one
gets

TD = −cD ∆ϕPC − dD (ωP − ωC) , (4.60)
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FIGURE 4.13
Clutch model without clutch pedal mechanism.

where ωC names the angular velocity of the clutch shaft and cD, dD describe
the stiffness and damping properties of the drive disk. The differential equation

d

dt
∆ϕPC = ωP − ωC (4.61)

defines the torsional angle ϕPC in the drive disk. Similar to the brake torque
defined in Equation (4.28), the friction based clutch torque is described by

TC = T stC + dN (ωE − ωP ) with |TC | ≤ TmxC , (4.62)

where ωE denotes the angular velocity of the engine and dN > 0 is a constant.
The static part T stC provides a steady-state locking torque when the angular
velocities of the engine ωE and the clutch plate ωP are equal. In steady state,
and when ωE = ωP will hold in addition, Equations (4.66) to (4.62) simply
yield

0 = TE − TFR − T stC and 0 = T stC − TD . (4.63)

These two equations for one unknown are again solved by a least squares
approach that here will result in

∂

∂T stC

(
ε21 + ε22

)
= 2

(
TE − TFR − T stC

)
(−1) + 2

(
T stC − TD

)2
= 0 . (4.64)

Thus, the steady-state locking torque

T stC =
1

2
(TE − TFR + TD) (4.65)

will be adjusted to the torques TE − TFR applied at the engine and to the
torque in the drive disk TDD as best as possible.

The maximum friction torque TmxC transmitted by the clutch depends on
the position of the clutch pedal pC , Figure 4.14. Pressing the clutch pedal
reduces the normal force between the clutch plate and the flywheel and hence
reduces the maximum friction torque.



124 Road Vehicle Dynamics: Fundamentals and Modeling

���

���

���

���

�
� ���� ���� ���� �

			
��


���������������

��
��

��	
�


FIGURE 4.14
Example of the maximum friction torque transmitted by a clutch.

4.7 Power Sources

4.7.1 Combustion Engine

Combustion engines are very common in ground vehicles. In a first approxima-
tion, the torque TE of a combustion engine can be characterized as a function
of its angular velocity ωE and the gas pedal pG, Fig. 4.15. Then, the dynamics
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FIGURE 4.15
Example of a combustion engine torque: TE = TE (ωE , pG).

of the engine can be described by the angular momentum

ΘE ω̇E = TE − TFR − TC , (4.66)

where ΘE labels the inertia of the engine, TFR names the friction torque, and
TC is the external load from the clutch.
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This simple approach usually is sufficient for vehicle handling and ride
analysis. It is even used to design automotive control systems [19]. A sophis-
ticated combustion engine model en-DYNA R©, where the air flow, the fuel
supply, the torque calculation, and the exhaust system are modeled in detail,
will be provided by TESIS3.

4.7.2 Hybrid Drive

The power sources of a hybrid vehicle can be combined in two different ways. In
a series hybrid, the combustion engine turns a generator, and the generator
can either charge the batteries or power an electric motor that drives the
transmission. Thus, the gasoline engine never directly powers the vehicle. A
parallel hybrid has a fuel tank that supplies gasoline to the combustion engine
and a set of batteries that supplies power to the electric motor. The batteries
store energy recovered from braking or generated by the engine. Both the
engine and the electric motor can turn the transmission at the same time.
Hence, a significant increase in the drive torque is possible, Figure 4.16.
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FIGURE 4.16
Hybrid drive torque characteristics.

Usually the combustion engine in a conventional car will be sized for the
peak power requirement. Whereas, the hybrid car may use a much smaller en-
gine, one that is sized closer to the average power requirement than to the peak
power. Hence, fuel consumption and pollution may be reduced significantly.

Exercises

4.1 Estimate the inertia of a wheel of radius r = 0.3 m and mass m = 15 kg
by approximating it as a homogenous cylinder.

3www.tesis.de.



126 Road Vehicle Dynamics: Fundamentals and Modeling

4.2 A wheel tire combination is characterized by the data Θ = 7.5kgm2, rS ≈
rD = 0.54 m, dF 0

x = 360 000 N/m, cx = 680 000 N/m, dx = 1000 N/(m/s),
and vN = 0.02m/s.

Calculate and plot the eigenvalues, the eigenfrequencies and the damping ratio
for different driving velocities 0 ≤ v ≤ 25 m/s by using the MATLAB-Script
in Listing 4.1.

Check the influence of the fictitious velocity vN on the results.

4.3 Use the MATLAB-Script in Listing 4.3 in combination with the functions
in Listing 4.2 and 3.3 to perform simulations with the grade angles α = 0,
α = 30◦, and α = 45◦.

Analyze and discuss the simulation results.

Change the lookup tables defined by the vectors t Drive and Drive Torque
as well as t Brake and Brake Torque, which determine the time histories of
the drive and brake torque appropriately so that various driving and braking
maneuvers can be simulated.

4.4 Extend the MATLAB-Script in Listing 4.3 in such a way that the vehicle
wheel tire model can run on surfaces with different friction coefficients.
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5.1 Purpose and Components

The automotive industry uses different kinds of wheel/axle suspension sys-
tems. Important criteria are costs, space requirements, kinematic properties,
and compliance attributes. The main purposes of a vehicle suspension system
are

• Carry the car and its weight,

• Maintain correct wheel alignment,

• Control the vehicle’s direction of travel,

• Keep the tires in contact with the road,
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• Reduce the effect of shock forces.

Vehicle suspension systems consist of

• Guiding elements:

– Control arms, links
– Struts
– Leaf springs

• Force elements:

– Coil spring, torsion bar, air spring, leaf spring
– Anti-roll bar, anti-sway bar or stabilizer
– Damper
– Bushings, hydro-mounts

• Tires

From a modeling point of view, force elements may be separated into static
and dynamic systems. Examples and modeling aspects will be discussed in
Chapter 6. Tires are some kind of air springs that support the total weight of
the vehicle. The spring action of the tire is very important to the ride quality
and safe handling of the vehicle. In addition, the tire must provide the forces
and torque that keep the vehicle on track. The tire was already discussed in
detail in Chapter 3.

5.2 Some Examples

5.2.1 Multipurpose Systems

The double wishbone suspension, the McPherson suspension, and the multi-
link suspension are multipurpose wheel suspension systems, Figure 5.1. They
are used as steered front or nonsteered rear axle suspension systems. These
suspension systems are also suitable for driven axles. Usually, the damper is
attached to the knuckle, whereas the coil spring is connected to one control
arm of the double wishbone or the multi-link suspension. In a McPherson
suspension however, the spring is attached to the knuckle and will have a
well-defined inclination to the strut axis. Thus, bending torques at the strut,
which cause high friction forces between the damper piston and the housing,
can be reduced.

On pickups, trucks, and buses, solid axles are used often. They are guided
either by leaf springs or by rigid links, Figure 5.2. Solid axles tend to tramp
on rough roads. Leaf-spring-guided solid axle suspension systems are very
robust. Dry friction between the leafs leads to locking effects in the suspension.
Although the leaf springs provide axle guidance on some solid axle suspension
systems, additional links in longitudinal and lateral direction are used. Thus,
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FIGURE 5.1
Double wishbone, McPherson, and multi-link suspensions.
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FIGURE 5.2
Solid axles guided by leaf springs and links.

the typical wind-up effect on braking can be avoided. Solid axles suspended
by air springs need at least four links for guidance. In addition to good driving
comfort, air springs allow level control too.

5.2.2 Specific Systems

The semi-trailing arm, the short-long arm axle (SLA), and the twist beam
axle suspension are suitable only for non-steered axles, Figure 5.3. The semi-

FIGURE 5.3
Semi-trailing arm, short-long arm, and twist beam suspension.
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trailing arm is a simple and cheap design that requires only a small space.
It is mostly used for driven rear axles. The short-long arm axle design allows
a nearly independent layout of longitudinal and lateral axle motions. It is
similar to the central control arm axle suspension, where the trailing arm
is completely rigid and, hence, only two lateral links are needed. The twist
beam axle suspension exhibits either a trailing arm or a semi-trailing arm
characteristic. It is used for nondriven rear axles only. The twist beam axle
provides enough space for spare tire and fuel tank.

5.2.3 Steering Geometry

On steered front axles, the McPherson-damper strut axis, the double wishbone
axis, and the multi-link wheel suspension or the enhanced double wishbone
axle are mostly used in passenger cars, Figures 5.4 and 5.5. The wheel body
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FIGURE 5.4
Double wishbone wheel suspension.
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FIGURE 5.5
McPherson and multi-link wheel suspensions.

rotates around the kingpin line at steering motions. For the double wishbone
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axle, the ball joints A and B, which determine the kingpin line, are both fixed
to the wheel body. Whereas the ball joint A is still fixed to the wheel body at
the standard McPherson wheel suspension, the top mount T is now fixed to
the vehicle body. On a multi-link axle the kingpin line is no longer defined by
real joints. Here, as well as with an enhanced McPherson wheel suspension,
where the A-arm is resolved into two links, the momentary rotation axis serves
as the kingpin line. In general, the momentary rotation axis is neither fixed
to the wheel body nor to the chassis, and it will change its position during
wheel travel and steering motions.

The unit vector eS describes the direction of the kingpin line. Within the
vehicle-fixed reference frame F , it can be fixed by two angles. The caster angle
ν denotes the angle between the zF -axis and the projection line of eS into the
xF zF -plane. In a similar way, the projection of eS into the yF zF -plane results
in the kingpin inclination angle σ, Figure 5.6. On many axles the kingpin and
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FIGURE 5.6
Kingpin inclination as well as caster and steering offset.

caster angle can no longer be determined directly. Here, the current rotation
axis at steering motions, which can be taken from kinematic calculations, will
yield a virtual kingpin line. The current values of the caster angle ν and the
kingpin inclination angle σ can be calculated from the components of the unit
vector eS in the direction of the kingpin axis,

tan ν =
−e(1)

S,F

e
(3)
S,F

and tanσ =
−e(2)

S,F

e
(3)
S,F

, (5.1)

where e
(1)
S,F , e

(2)
S,F , e

(3)
S,F are the components of the unit vector eS,F expressed

in the vehicle-fixed axis system F .
The contact point P , the local track normal en, and the unit vectors ex and

ey, which point in the direction of the longitudinal and the lateral tire force,
result from the contact geometry. The axle kinematics define the kingpin axis.
In general, the point S where an extension of the kingpin axis meets the road
surface does not coincide with the contact point P , Figure 5.6. As both points
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are located on the local track plane, for the left wheel the vector from S to P
can be written as

rSP = −c ex + s ey , (5.2)

where s names the steering offset or scrub radius, and c is the caster offset.
Caster and steering offset will be positive if S is located in front of and inwards
of P . The kingpin offset d describes the distance between the wheel center C
and the king pin axis. It is an important quantity in evaluating the overall
steering behavior [24].

5.3 Steering Systems

5.3.1 Components and Requirements

The steering system is a very important interface between driver and vehicle.
Via the steering wheel the driver controls the vehicle and gets feedback by
the steering torque. The traditional steering system of high-speed vehicles is
a mechanical system consisting of the steering wheel, the steering shaft, the
steering box, and the steering linkage. Usually the steering torque produced by
the driver is amplified by hydraulic or nowadays by electric systems. Modern
steering systems use an overriding gear to amplify or change the steering
wheel angle. Recently some companies have started investigations on “steer-
by-wire” techniques. In the future, steer-by-wire systems will probably be used
as standard. Here, an electronically controlled actuator is used to convert the
rotation of the steering wheel into steering movements of the wheels. Steer-by-
wire systems are based on mechanics, micro-controllers, electro-motors, power
electronics, and digital sensors. At present, fail-safe systems with a mechanical
backup system are under investigation. Modeling concepts for modern steering
systems are discussed in [41].

The steering system must guarantee easy and safe steering of the vehicle.
The entirety of the mechanical transmission devices must be able to cope
with all loads and stresses occurring in operation. In order to achieve good
maneuverability, a maximum steering angle of approx. 40◦ must be provided
at the front wheels of passenger cars. Depending on the wheel base, buses and
trucks need maximum steering angles up to 55◦ at the front wheels.

5.3.2 Rack-and-Pinion Steering

Rack-and-pinion is the most common steering system of passenger cars, Fig-
ure 5.7. The rack may be located either in front of or behind the axle. First,
the rotations of the steering wheel δS are transformed by the steering box to
the rack travel uR = uR(δS) and then via the drag links transmitted to the
wheel rotations δ1 = δ1(uR), δ2 = δ2(uR). Hence, the overall steering ratio
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FIGURE 5.7
Rack-and-pinion steering.

depends on the ratio of the steering box and on the kinematics of the steering
linkage.

5.3.3 Lever Arm Steering System

Using a lever arm steering system, Figure 5.8, large steering angles at the
wheels are possible. This steering system is used on trucks with large wheel
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FIGURE 5.8
Lever arm steering system.

bases and independent wheel suspension at the front axle. Here, the steering
box can be placed outside the axle center. At first, the rotations of the steering
wheel δS are transformed by the steering box to the rotation of the steer
levers δL = δL(δS). The drag links transmit this rotation to the wheel δ1 =
δ1(δL), δ2 = δ2(δL). Hence, the overall steering ratio again depends on the
ratio of the steering box and on the kinematics of the steering linkage.

5.3.4 Toe Bar Steering System

On solid axles the toe bar steering system is used, Figure 5.9. The rotations
of the steering wheel δS are transformed by the steering box to the rotation
of the steering lever arm δL = δL(δS) and further on to the rotation of the
left wheel, δ1 = δ1(δL). The toe bar transmits the rotation of the left wheel to
the right wheel, δ2 = δ2(δ1). The steering ratio is defined by the ratio of the
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FIGURE 5.9
Toe bar steering system.

steering box and the kinematics of the steering link. Here, the ratio δ2 = δ2(δ1)
given by the kinematics of the toe bar can be changed separately.

5.3.5 Bus Steering System

In buses the driver sits more than 2m in front of the front axle. In addi-
tion, large steering angles at the front wheels are needed to achieve good
maneuverability. That is why more sophisticated steering systems are needed,
Figure 5.10. The rotations of the steering wheel δS are transformed by the
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FIGURE 5.10
Typical bus steering system.

steering box to the rotation of the steering lever arm δL = δL(δS). The left
lever arm is moved via the steering link δA = δA(δL). This motion is trans-
ferred by a coupling link to the right lever arm. Finally, the left and right
wheels are rotated via the drag links, δ1 = δ1(δA) and δ2 = δ2(δA).
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5.3.6 Dynamics of a Rack-and-Pinion Steering System

5.3.6.1 Equation of Motion

Modern steering systems include power assistance, some also overriding gears
or even steer-by-wire facilities [41]. The essential parts of a pure mechanical
rack-and-pinion steering system are shown in Figure 5.11. The tire forces ap-
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FIGURE 5.11
Rack-and-pinion steering system.

plied at the contact points P1, P2 are denoted by FT1, FT2, and the vectors
TT1, TT2 summarize torques acting on the tire contact patches. The torsional
compliance of the steering shaft, modeled by the stiffness cS and the damping
parameter dS , generates the torque

TS = cS (δSW − δBI) + dS

(
δ̇SW − δ̇BI

)
, (5.3)

where δSW denotes the steering angle provided by the rotation of the steer-
ing wheel. The maximum steering wheel angle δmxSW and the maximum rack
displacement umxR define the ratio of the steering box1

iSB =
δmxSW
umxR

. (5.4)

Then, the rotation angle of the steering shaft at the steering box input is
simply provided by

δBI = iSB uR . (5.5)

1Note: Some steering boxes will generate a nonlinear ratio that depends on the rack
displacement, iSB = iSB(uR).
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The steering linkage is considered a pure massless kinematical constraint here.
It transmits the rack displacements uR to the wheels and forces them to rotate
with the angles δ1 and δ2 around the kingpin axes, marked in Figure 5.11 by
the unit vectors eS1, eS2.

Applying Jordain’s principle of virtual power, the equation of motion for
the rack and the wheels including the wheel bodies will result in

mRG üR = FTG + FSM − FSF . (5.6)

The generalized mass

mRG = mR +

2∑
i=1

{(
∂vCi
∂u̇R

)T
mi

∂vCi
∂u̇R

+

(
∂ω0i

∂u̇R

)T
Θi

∂ω0i

∂u̇R

}
(5.7)

adds to the rack mass mR essential parts of the mass m1, m2 and the inertias
Θ1, Θ2 of the wheel bodies and the wheels. The partial derivatives of the
wheel center velocities vC1, vC2 and the partial derivatives of the angular
velocities ω01, ω02 of the wheel bodies with respect to the time derivative of
the rack displacement u̇R will result from a kinematic analysis of the specific
steering linkage, which will be done in Section 5.4 elaborately. Furthermore,
the principle of virtual power transforms the tire forces FT1, FT2 applied at
the contact points P1, P2 and the tire torques TT1, TT2 to a generalized force
acting at the rack:

FTG =

(
∂vP1

∂u̇R

)T
FT1 +

(
∂ω01

∂u̇R

)T
TT1 +

(
∂vP2

∂u̇R

)T
FT2 +

(
∂ω02

∂u̇R

)T
TT2 . (5.8)

Here, the partial derivatives of the contact point velocities vP1, vP2 with
respect to the rack displacement uR will also be required.

The torque TS acting in the steering shaft provides the steering force

FSM = iSB TSS . (5.9)

Finally, the friction force is approximated similar to the braking torque defined
in Equation (4.28) by an enhanced dry friction model. It provides the friction
force as

FSF = F stSF + dN u̇R and |FSF | ≤ FmxSF , (5.10)

where FmxSF denotes the maximum friction force. In steady state when u̇R = 0
and üR = 0 will hold, the static or locking force

F stSF = FTG + FSM (5.11)

counteracts all other forces applied to the rack and will prevent movements as
long as |F stSF | ≤ FmxSF is assured. If the rack is exposed to the steering force
FSM only (steering motions in a liftoff situation), the critical damping of free
rack oscillations will be given by

dCR = 2
√
i2SB cTBmRG = 2 iSB

√
cTBmRG . (5.12)
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By setting
dN = 1

2 dCR = iSB
√
cTBmRG , (5.13)

the numerical damping in the friction model can be adjusted to the specific
steering system.

5.3.6.2 Steering Forces and Torques

According to Equation (5.6), the force balance

0 = FTG + FSM − FSF (5.14)

characterizes the steering system at steady-state. Neglecting the friction force
FSF ≈ 0, the steering force FSM that in compliance with Equation (5.9) is
generated by the steering torque TSS must counteract the the generalized tire
force FTG. Hence, at steady-state, the generalized tire force provides, by

T stSS = − 1

iSB
FTG , (5.15)

the most part of the steering torque.
In general, the partial angular velocities of the wheel bodies, which ac-

cording to Equation (5.8) are required to calculate the generalized tire force
can be written as

∂ω0i

∂u̇R
= eSi

∂δ̇i
∂u̇R

= eSi iSLi , i = 1, 2 , (5.16)

where eS1, eS2 denote the unit vectors in the direction of the king pin axes
and iSL1, iSL2 characterize the ratios of the left and the right steering linkage,
which in general are not constant but will depend on the rack displacement.
The king pin axis will not change its position and orientation during steer
motions on standard double wishbone and McPherson suspension systems.
Then, the points S1, S2 where the king pin axis intersects the local road plane
stay where they are and the velocity of the contact points P1 and P2 induced
by steering motions is just given by

vPi = ω0i × rSiPi = eSi δ̇i × rSiPi = eSi × rSiPi δ̇i , i = 1, 2 . (5.17)

As a consequence, the corresponding partial velocities read as

∂vP1

∂u̇R
= eSi × rSiPi iSLi , i = 1, 2 , (5.18)

where according to Equation (5.16) iSL1, iSL2 denote the ratios of the steering
linkage. Inserting Equations (5.16) and (5.18) into Equation (5.8) results in

FTG= iSL1

[
(eS1×rS1P1)

T
FT1+eTS1 TT1

]
+ iSL2

[
(eS2×rS2P2)

T
FT2+eTS2 TT2

]
.

(5.19)
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Taking into account that

(a×b)T c = (−b×a)
T
c =

(
−b̃ a

)T
c =

(
b̃Ta

)T
c = aT b̃ c = aT (b×c) (5.20)

holds for arbitrary vectors a, b, c, Equation (5.19) can be rearranged to

FTG= iSL1 e
T
S1 (rS1P1×FT1+TT1) + iSL2 e

T
S2 (rS2P2×FT2+TT2) . (5.21)

Referring to Figure 5.6, the orientation of the king pin axis can be described
by the kingpin and caster angle. According to Equation (5.1),

eS1,F =
1√

tan2 ν + tan2 σ + 1

[− tan ν
− tanσ

1

]
(5.22)

holds for the left wheel and

eS2,F =
1√

tan2 ν + tan2 σ + 1

[− tan ν
+ tanσ

1

]
(5.23)

for the right wheel, where the left/right symmetry of a standard suspension
system was taken into account. In addition, the vectors from S1 to P1 and
from S2 to P2 can be expressed by the caster offset c and steering offset s.
According to Equation (5.2),

rS1P1 =

[−c
s
0

]
and rS2P2 =

[−c
−s

0

]
(5.24)

will hold at the left and the right wheel in design position when symmetry
is taken into account again. Combining Equations (5.22), (5.23), (5.24) with
Equations (5.21) and (5.15) finally provides the steady-state steering torque
in design position as

T stSS = −iS1

− tan ν
− tanσ

1

T −c+s
0

×
 Fx1

Fy1

Fz1

+

 Tx1

Ty1

Tz1


−iS2

− tan ν
+ tanσ

1

T −c−s
0

×
 Fx2

Fy2

Fz2

+

 Tx2

Ty2

Tz2

 ,

(5.25)

where Fxi, Fyi, Fzi, i = 1, 2, are the components of the tire force vectors
FT1, FT2 expressing the longitudinal, the lateral, and the vertical tire forces
or wheel loads, and Txi, Tyi, Tzi, i = 1, 2, name the components of the tire
torque vectors TT1, TT2 representing the tipping torque, the rolling resistance
torque, and the sum of the bore and the self-aligning torque. Furthermore,
the abbreviations

iSi =
iSLi

iSB
√

tan2 ν + tan2 σ + 1
, i = 1, 2 (5.26)
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define generalized ratios of the steering system. They will be equal or at least
approximately equal to or close to the design position. Taking iS1 = iS2 = iS
for granted, Equation (5.25) simplifies to

T stSS = iS
[
s (Fx1−Fx2) + c (Fy1+Fy2) + (s tan ν+c tanσ) (Fz1−Fz2)

= tan ν (Tx1+Tx2)− tanσ (Ty1−Ty2) + Tz1 + Tz2
]
.

(5.27)
In normal driving situations, Fx1 ≈ Fx2, Fz1 ≈ Fz2, Tx1 ≈ −Tx2, and Ty1 ≈
Ty2 will hold. Then, the steering torque

T stSS ≈ c (Fy1+Fy2) + Tz1 + Tz2 (5.28)

is dominated by the lateral forces and the bore and the self-aligning torques.
However, during cornering, the term

(s tan ν+c tanσ) (Fz1−Fz2) (5.29)

will provide an additional steering torque due to the load transfer from the
inner to the outer wheel, which will increase according to the lateral accelera-
tion. Modern vehicles are often equipped with an Electronic Stability Program
(ESP) that may activate the brake at a single wheel. Then, Fx1 6= Fx2 will be
the case and the term

s (Fx1−Fx2) (5.30)

will contribute to the steering torque unless the suspension system exhibits
a vanishing or at least a sufficient small steering offset, s ≈ 0. In parking
maneuvers, the steering torque is dominated by the tire bore torques.

5.3.6.3 Parking Effort

One major design task of a steering system is the investigation of the parking
effort. During a static parking maneuver, the steering wheel is turned while
the vehicle is still at full stop. In this case, the forces and torques applied
to the wheels are dominated by the tire bore torque. The motions of the
vehicle can be neglected for a basic study. In addition, we assume here that
the steering motion of the wheels is a simple rotation around a vertical axis
running through the wheel centers C1, C2 and the contact points P1, P2. Then,
the partial velocities needed in Equations (5.7) and (5.8) will simplify to

∂vCi
∂u̇R

=
∂vPi
∂u̇R

=

[
0
0
0

]
and

∂ω0i

∂u̇R
=

[
0
0
1

]
iSLi , i = 1, 2 , (5.31)

where according to Equation (5.16), iSL1, iSL2 abbreviate the partial deriva-
tives of the time derivatives of the wheel steering angles δ1, δ2 with respect to
the time derivative of the rack displacement uR. Then, the generalized mass
and the generalized rack force simplify to

mRG = mR + i2SL1 Θz1 + i2SL2 Θz2 , (5.32)
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FTG = iSL1 (TS1 + TB1) + iSL1 (TS2 + TB2) , (5.33)

where Θz1, Θz2 denote the inertias of the left and the right wheel and wheel
body around the vertical z-axis. According to Equation (3.1), the tire torques
around the z-axis consist of the self-aligning torques TS1, TS2 and the bore
torques TB1, TB2.

If the steering linkage is designed to satisfy the Ackermann geometry, the
steering angles of the left and the right wheel will be provided by

tan δ1,2 =
a tan (iSL uR)

a∓ 1
2s tan (iSL uR)

, (5.34)

where iSL denotes the ratio of the steering linkage at uR = 0, s describes
the track width, and a the wheel base of the vehicle. The time derivative of
Equation (5.34) results in

1

cos2 δ1,2
δ̇1,2 =

a2(
a∓ 1

2s tan (iSL uR)
)2 1

cos2 (iSL uR)
iSL u̇R (5.35)

and provides the ratios of the steering linkage defined by the partial derivatives

iSL1,2 =
∂δ̇1,2
∂u̇R

= iSL
a2(

a∓ 1
2s tan (uR)

)2 cos2 δ1,2
cos2 (iSL uR)

(5.36)

as functions of the rack displacement uR because the corresponding steering
angles δ1,2 = δ1,2(uR) will be delivered by Equation (5.34).

The performance of the simple steering system model can be studied in a
stand-alone simulation, now. The MATLAB-function provided in Listing 5.1
describes the dynamics of the simple steering system model during a parking
maneuver by a set of first-order differential equations.

Listing 5.1
Dynamics of a Simple Steering System Model

1 function xdot = steering_system_f(t,x)

2
3 % data + output quantities

4 global A_SW f_SW

5 global a s m_R Thetaz i_SB i_SL c_S d_S fr_mx

6 global df_0 f_m s_m f_s s_s vt_n c_bo d_bo r_b

7 global dsw d1 d2 ftg fsf tss

8
9 % states (standalone model without steering wheel)

10 ur = x(1); urdot = x(2); % rack displacement and velocity

11 ga1 = x(3); ga2 = x(4); % left and right tire torsional deflection

12
13 % soft periodic steering wheel input

14 dsw = A_SW*sin(2*pi*f_SW*t)^2; dswdot=2*A_SW*sin(4*pi*f_SW*t)*pi*f_SW;

15 if t > 0.5/f_SW, dsw=-dsw; dswdot = -dswdot; end

16 d = i_SL*ur; tand = tan(d); % average wheel steering angle

17
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18 % kinematics of steering linkage (ackermann geometry)

19 d1 = atan2( a*tand , a-0.5*s*tand );

20 dd1 = i_SL * a^2/(a-0.5*s*tand)^2 * cos(d1)^2/cos(d)^2 ; d1dot= dd1*urdot;

21 d2 = atan2( a*tand , a+0.5*s*tand );

22 dd2 = i_SL * a^2/(a+0.5*s*tand)^2 * cos(d2)^2/cos(d)^2 ; d2dot= dd2*urdot;

23
24 mrg = m_R+(dd1^2+dd2^2)*Thetaz; % general. rack mass, thetaz1=thetaz2=thetaz

25 tss = c_S*(dsw-i_SB*ur)+d_S*(dswdot-i_SB*urdot); % torque in steering column

26 fsm = i_SB*tss; % steering torque converted to rack force

27
28 % left bore torque (enhanced model @ stand still, vt=vt_n)

29 sb = -r_b*d1dot/vt_n; sg = abs(sb); % bore slip and generalized slip

30 [f,fos] = tmy_fcombined(sg,df_0,f_m,s_m,f_s,s_s); % combined tire force

31 ga1dot=-(c_bo*ga1*vt_n+fos*d1dot*r_b^2)/(d_bo*vt_n+fos*r_b^2); % twist dyn.

32 tbo1 = c_bo*ga1 + d_bo*ga1dot ; % bore torque

33
34 % right bore torque (enhanced model @ stand still, vt=vt_n)

35 sb = -r_b*d2dot/vt_n; sg = abs(sb); % bore slip and generalized slip

36 [f,fos] = tmy_fcombined(sg,df_0,f_m,s_m,f_s,s_s); % combined tire force

37 ga2dot=-(c_bo*ga2*vt_n+fos*d2dot*r_b^2)/(d_bo*vt_n+fos*r_b^2); % twist dyn.

38 tbo2 = c_bo*ga2 + d_bo*ga2dot ; % bore torque

39
40 ftg = dd1*tbo1 + dd2*tbo2 ; % generalized tire torques applied to rack

41
42 % enhanced dry friction model

43 fsfst = ftg + fsm ; % static part

44 dN = i_SB * sqrt( c_S * mrg ) ; % numerical damping adjusted to data

45 fsf = fsfst + dN*urdot; fsf = sign(fsf)*min(abs(fsf),fr_mx); % friction force

46
47 urdotdot = ( ftg+fsm-fsf ) / mrg ; % rack acceleration (equations of motion)

48 xdot = [ urdot; urdotdot; ga1dot; ga2dot ]; % state derivatives

49
50 end

The function assumes a periodic steering input with a soft transition from
positive to negative angles achieved by a squared sine function, and it in-
cludes a small part of the TMeasy tire model that automatically generates
the dynamic bore torques. The MATLAB-Script provided in Listing 5.2 sets
the required data, performs a time simulation, and finally plots some results.

Listing 5.2
Simulation of the Parking Effort

1 % data + output quantities

2 global A_SW f_SW

3 global a s m_R Thetaz i_SB i_SL c_S d_S fr_mx

4 global df_0 f_m s_m f_s s_s vt_n c_bo d_bo r_b

5 global dsw d1 d2 ftg fsf tss

6
7 A_SW = 540/180*pi; % steering wheel amplitude [rad]

8 f_SW = 0.2; % steering frequency [Hz]

9 a = 2.7; % wheel_base [m]

10 s = 1.5; % track_width [m]

11 m_R = 2.5; % mass of rack [kg]

12 Thetaz = 1.3; % inertia of wheel body and wheel around z-axis [kgm^2]

13 i_SB = 125; % ratio steering wheel angle / rack displacement [rad/m]
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14 i_SL = 9.3; % ratio wheel steering angle / rack displacement [rad/m]

15 c_S = 573; % stiffness of steering shaft [Nm/rad]

16 d_S = 5; % damping of steering shaft [Nm/(rad/s)]

17 fr_mx = 120; % maximum friction force in steering box [N]

18 df_0 = 90000; % tire force initial inclination [N/-]

19 f_m = 4250; % maximum tire force [N]

20 s_m = 0.18; % slip where f=f_m [-]

21 f_s = 4100; % sliding force [N]

22 s_s = 0.5; % slip where f=f_s [-]

23 vt_n = 0.01; % fictitious velocity [m/s]

24 c_bo = 2400; % torsional tire stiffness [Nm/rad]

25 d_bo = 2; % torsional tire damping [Nm/(rad/s)]

26 r_b = 0.065; % equivalent bore radius [m]

27
28 % perorm simulation over one period of a sinusoidal steer input

29 t0=0; tE=1/f_SW; x0 = [0; 0; 0; 0 ];

30 tic; [tout,xout]=ode23(@steering_system_f,[t0,tE],x0); toc

31
32 % pre-allocate output-quantities to speed up loop and plot some results

33 io=length(tout); z=zeros(io,1); dswi=z;d1i=z;d2i=z; ftgi=z;fsfi=z; tssi=z;

34 for i=1:io

35 xp=feval(@steering_system_f,tout(i),xout(i,:));

36 dswi(i)=dsw; d1i(i)=d1; d2i(i)=d2; ftgi(i)=ftg; fsfi(i)=fsf; tssi(i)=tss;

37 end

38 subplot(2,2,1)

39 plot(dswi*180/pi,-tssi), grid on

40 title(’steering torque [Nm] / steering wheel angle [Grad]’)

41 xy=axis; axis([[-1,1]*A_SW*180/pi,xy(3),xy(4)])

42 subplot(2,2,2)

43 plot(tout,(xout(:,1)*i_SB-dswi)*180/pi), grid on,

44 title(’twist angle of steering shaft [Grad]’)

45 xy=axis; axis([0,tE,xy(3),xy(4)])

46 subplot(2,2,3)

47 plot(tout,[d1i,d2i,-xout(:,3:4)]*180/pi), grid on

48 legend(’wheel left’,’wheel right’,’tire twist left’,’tire twist right’)

49 xy=axis; axis([0,tE,xy(3),xy(4)])

50 subplot(2,2,4)

51 [AX,H1,H2]=plotyy(tout,ftgi/1000,tout,fsfi); grid on

52 legend(’generalized tire force [kN]’,’friction force [N]’)

53 set(AX(1),’XLim’,[0 tE]); set(AX(2),’XLim’,[0 tE])

The chosen wheelbase of a = 2.7 m and the track width of s = 1.5 m
match typical mid-sized passenger cars. The rack mass mR = 2.5kg is roughly
estimated. The inertia of wheel and wheel body are calculated on the basis of
a cylindrical body of mass m = 50 kg, radius r = 0.3m, and width b = 0.2m,
where a homogeneous mass distribution was also assumed. Then, the inertia
is given by Θ = 1

12m
(
b2 + 3r2

)
= 1.3 kgm2. The ratios of the steering system

are sized up by specifying the maximum steering wheel amplitude with δmxSW =
540◦ and estimating the maximum rack displacement with umxR = 0.075 m.
Then, the ratio of the steering wheel angle to rack displacement results in
iSB = 540π/180/0.075 ≈ 125 rad/m. Assuming an average wheel steering
angle of δ = 40◦ the ratio of the wheel steering angle to the rack displacement
will be obtained as iSL = 40π/180/0.075/ = 9.3 rad/m. So, the overall ratio
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of steering wheel angle to wheel steering angle is given by iS = 125/9.3 =
13.44 rad/rad, which corresponds quite well with mechanical rack-and-pinion
steering systems. The torsional stiffness cS = 10/(1π/180) = 573 Nm/rad
would allow the steering shaft to twist up to 1◦ when the rack is locked
and a torque of 10 Nm is applied at the steering wheel. The damping value
dS = 5 Nm/(rad/s) is roughly estimated. The tire data represent a typical
passenger car tire.

The MATLAB solver ode23, an explicit Runge-Kutta (2,3) pair of Bogacki
and Shampine, is slightly more efficient here than the MATLAB standard
solver ode45 because the enhanced friction model is based on a simple function
with sharp bends. The results of the plot commands2 are shown in Figure 5.12.
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FIGURE 5.12
Stand-alone simulation results for periodic steer input.

Here, the maximum bore torque is obtained by TmxB = rBF
M = 0.065 ∗

4250=276.25Nm at each tire. Then, in a first approximation, the maximum
steering torque is given by TmxS =2TmxB /iS=2 ∗ 276.25/13.44=41Nm, where
iS names the overall ratio of the steering system. This corresponds quite well
with the first graph in Figure 5.12, where the steering wheel torque is plotted
versus the steering wheel angle. The lower left graph shows the time histories
of the tire twist angles and the wheel steering angles. As long as the tire patch
sticks to the road, the tire twist angles will follow the wheel steering angles.
When the tire patches start to slide, the maximum tire twist angles are limited
to ±6.4◦, which corresponds to the value 0.065 ∗ 4100/2400 ∗ 180/π = 6.4◦,
which is calculated with the actual bore radius rB=0.065m, the sliding force

2Note: plotyy generates graphs with y tick labels on the left and right.
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FS=4100N , and the torsional tire stiffness cBO=2400Nm/rad. The steering
motions of the wheels are point-symmetric, ranging from +47.4◦ to −34.1◦ or
+34.1◦ to −47.4◦, respectively. Amplifying the average value by the overall
ratio of steering system results in δmxM =0.5(±47.4±34.1)iS=±40.75∗13.44=
±547.7◦, which is slightly larger than the amplitude of the periodic steering
wheel angle input δmxS =±540◦.

The friction in the steering box, which is approximated by an enhanced dry
friction model where the maximum friction force is limited to FmxF = 120 N ,
causes the steering shaft to twist, which reduces the effective steering angle
at the steering box input. At times 1.25 s and 3.75 s, the friction force, which
is plotted in the lower right graph of Figure 5.12, jumps from +120 N to
−120N and back again. At the time 2.5 s the steering wheel input, provided
by a series of two squared sine functions with opposite signs, shows a point of
inflection that causes the friction force to drop to zero at this very moment.
On closer inspection of the upper right graph in Figure 5.12 discontinuities
are noticeable in the time history of the steering shaft twist angle at these
particular times.

5.4 Kinematics of a Double Wishbone Suspension

5.4.1 Modeling Aspects

A classical double wishbone suspension consists of two control arms, the wheel
carrier, and the wheel, Figure 5.13. An additional subframe, which will often
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FIGURE 5.13
Double wishbone kinematic model.

be present in sophisticated suspension systems is not considered here. Then,
the lower and upper control arms will be attached directly to the chassis. In
addition, the compliance of the corresponding bushings in A, B and D, E will
be neglected. Ball joints in C and F connect the control arms with the wheel
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body. The rotation with the angle δ around the kingpin axis defined by C
and D is controlled by the drag link. Via appropriate joints it is attached at
point R to the rack and at point Q to the wheel body. The double wishbone
suspension has two degrees of freedom. The hub motion is mainly controlled
by the rotation of the lower control arm around the axis A-B and the steer
motion is mainly induced by the rack movements. Hence, the angle ϕ and the
displacement u are taken as generalized coordinates.

5.4.2 Position and Orientation

The momentary position and orientation of the wheel body is described with
respect to the vehicle-fixed axis system with origin V located in the midst of
the axle and where the axes xV , yV , and zV point to the front to the left and
upward. The axes xW , yW , and zW are fixed to the wheel body. They will
be parallel to the corresponding axes of the vehicle-fixed system in the design
position. The vector

rVW,V = rV A,V +Aϕ rAC,ϕ +AVW rCW,W (5.37)

specifies the momentary position of the wheel center W , where the vectors
rV A,V , rAC,ϕ, rCW,W are fixed by the topology of the suspension and Aϕ, AVW
are matrices describing the rotation of the lower wishbone and the wheel body
with respect to the vehicle-fixed axis system. The lower control arm rotates
with the angle ϕ around an axis that is determined by the location of the
bushings A and B. Then, the relation

Aϕ = eAB,V e
T
AB,V +

(
I3×3 − eAB,V eTAB,V

)
cosϕ+ ẽAB,V sinϕ (5.38)

defines the corresponding rotation matrix [25], where eAB,V is a unit vector
pointing into the direction A→B, I3×3 is the 3 × 3 matrix of identity, and
ẽAB,V denotes the skew-symmetric matrix defined by the components of the
vector eAB,V . The rotation matrix of the wheel body is composed of three
rotations,

AVW = AαAβ Aδ , (5.39)

where

Aα =

 1 0 0
0 cosα − sinα
0 sinα cosα

 , Aβ =

 cosβ 0 sinβ
0 1 0

− sinβ 0 cosβ

 (5.40)

are elementary rotations around the corresponding x- and y-axis and

Aδ = eCF,W eTCF,W +
(
I3×3 − eCF,W eTCF,W

)
cos δ + ẽCF,W sin δ (5.41)

defines similar to Equation 5.38 the rotation of the wheel body around the
kingpin axis defined by the balljoints C and F .
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5.4.3 Constraint Equations

5.4.3.1 Control Arms and Wheel Body

The ball joint F connects the upper control arm to the wheel body. Similar
to Equation (5.37), the momentary position of F attached to the wheel body
is defined by the vector

rV F,V = rV A,V +Aϕ rAC,ϕ +AVW rCF,W , (5.42)

where the vector rCF,W , measured in the wheel body-fixed axis system, is
given by data and describes the position of the upper ball joint F relative
to the lower ball joint C. As F is located on the upper control arm too, the
vector

rV F,V = rV D,V +Aψ rDF,ψ (5.43)

will represent another way to determine the momentary position of the upper
ball joint. The vector rV D,V describes the location of bushing D with respect
to the vehicle-fixed axis system, and the vector rDF,ψ defines the location of
the ball joint F relative to D. Both vectors are defined by the topology of the
suspension. Similar to Equation (5.38), the matrix

Aψ = eDE,V e
T
DE,V +

(
I3×3 − eDE,V eTDE,V

)
cosψ + ẽDE,V sinψ (5.44)

describes the rotation of the upper control arm with the angle ψ around an
axis determined by the location of the bushings D and E. Equation (5.42)
with Equation (5.43) results in a first constraint equation

rV A,V +Aϕ rAC,ϕ +AVW rCF,W = rV D,V +Aψ rDF,ψ . (5.45)

Using Equation (5.39) and rearranging some terms results in

AαAβ Aδ︸ ︷︷ ︸
AVW

rCF,W = rV D,V − (rV A,V +Aϕ rAC,ϕ)︸ ︷︷ ︸
rCD,V (ϕ)

+Aψ rDF,ψ . (5.46)

The rotation matrixAδ given by Equation (5.41) describes the rotation around
the kingpin axis defined by the unit vector eCF,W . As the vector rCF,W coin-
cides with the rotation axis eCF,W , it will be not affected by this rotation,

Aδ rCF,W = rCF,W . (5.47)

Then, Equation (5.46) simplifies to

AαAβ rCF,W = rCD,V (ϕ) +Aψ rDF,ψ , (5.48)

which makes it possible to calculate the angles α, β, and ψ as a function of
the rotation angle ϕ, which was chosen as a generalized coordinate. Although
Equation (5.48) results in three nonlinear trigonometric relations, an algebraic
solution is possible here.
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Squaring3 both sides of Equation (5.48) results in

(AαAβrCF,W )
T
(AαAβrCF,W ) = (rCD,V +AψrDF,ψ)

T
(rCD,V +AψrDF,ψ) ,

(5.49)
where rCD,V (ϕ) was shortened by rCD,V . Taking the orthogonality, which
is defined in Equation (1.8), for the rotation matrices Aα, Aβ , and Aψ into
account, one gets

rTCF,W rCF,W︸ ︷︷ ︸
CF 2

= rTCD,V rCD,V︸ ︷︷ ︸
CD2

+2 rTCD,V AψrDF,ψ + rTDF,ψrDF,ψ︸ ︷︷ ︸
DF 2

. (5.50)

Making use of Equation (5.44) and rearranging some terms yields

rTCD,V
{
eeT +

(
I−eeT

)
cosψ+ẽ sinψ

}
rDF,ψ + 1

2

(
CD2+DF 2−CF 2

)
= 0 ,
(5.51)

where subscripts of eDE,V and I3×3 were just omitted. By using the abbrevi-
ations

a = rTCD,V
(
I−eeT

)
rDF,ψ , b = rTCD,V ẽ rDF,ψ = rTCD,V e× rDF,ψ (5.52)

and
c = −

[
rTCD,V ee

T rDF,ψ + 1
2

(
CD2+DF 2−CF 2

)]
, (5.53)

Equation (5.51) can be written as

a cosψ + b sinψ = c . (5.54)

Interpreting the terms a/
√
a2 + b2 and b/

√
a2 + b2 as the sine and cosine of a

fictitious angle ϑ, Equation (5.54) will read as

sinϑ cosψ + cosϑ sinψ =
c√

a2 + b2
. (5.55)

Using the addition theorem sinϑ cosψ + cosϑ sinψ = sin (ϑ+ψ) and taking
into account that the fictitious angle is defined by the relationship tanϑ = a/b,
one finally gets

sin (ϑ+ψ) =
c√

a2 + b2
or ψ = arcsin

c√
a2 + b2

− arctan
a

b
. (5.56)

Note that practical results will be achieved only if the parameter b is not neg-
ative. In this case, multiplication of Equation (5.54) with −1 will change the
sign appropriately. Equation (5.56) provides the rotation angle of the upper
control arm as a function of the lower one, ψ = ψ(ϕ). Then, the corresponding
rotation matrix is determined via Equation (5.44) and the right-hand side of
Equation (5.48) can be summarized in the vector

rCF,V (ϕ) = rCD,V (ϕ) +Aψ (ψ(ϕ)) rDF,ψ . (5.57)

3Note: Squaring a vector is equivalent to its scalar product, r2 = rT r.
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Multiplying the constraint equation (5.48) by ATα and taking Equations (5.57)
and (5.40) into consideration results in

cosβ 0 sinβ

0 1 0

− sinβ 0 cosβ



r

(1)
CF,W

r
(2)
CF,W

r
(3)
CF,W

 =


1 0 0

0 cosα sinα

0 − sinα cosα



r

(1)
CF,V

r
(2)
CF,V

r
(3)
CF,V

 , (5.58)

which immediately will deliver two4 equations,

r
(1)
CF,W cosβ + r

(3)
CF,W sinβ = r

(1)
CF,V , (5.59)

r
(2)
CF,V cosα+ r

(3)
CF,V sinα = r

(2)
CF,W . (5.60)

These equations of the type of Equation (5.54) are solved similar to Equa-
tion (5.56) and will provide the angles α = α(ϕ), β = β(ϕ) needed to compose
the elementary rotation matrices Aα and Aβ .

5.4.3.2 Steering Motion

The drag link is attached in R to the rack and in Q to the wheel body. The
momentary positions of these points are determined by

rV R,V = rKVR,V +

[
0
u
0

]
(5.61)

and
rV Q,V = rV A,V +Aϕ rAC,ϕ +AαAβ Aδ rCQ,W , (5.62)

where the vectors rKVR,V , rV A,V , rAC,ϕ, rCQ,W are determined by the topology
of the suspension and a pure lateral movement of the rack was assumed. The
drag link is supposed to be rigid, which results in a second constraint equation

(rV Q,V −rV R,V )
T

(rV Q,V −rV R,V ) = `2RQ , (5.63)

where `RQ denotes the length of the drag link. Introducing the abbreviation

rRC,V = rV A,V +Aϕ rAC,ϕ − rV R,V , (5.64)

the constraint equation will read as

(rRC,V +AαAβ Aδ rCQ,W )
T

(rRC,V +AαAβ Aδ rCQ,W ) = `2RQ , (5.65)

which results in

rTRC,V rRC,V︸ ︷︷ ︸
RC2

+ 2 rTRC,V AαAβ︸ ︷︷ ︸
rTRC,H

Aδ rCQ,W + rTCQ,W rCQ,W︸ ︷︷ ︸
CQ2

= `2RQ . (5.66)

4Note: The third equation corresponds with Equation (5.49) and thus can provide no
additional information.
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Inserting the rotation matrix Aδ defined in Equation (5.41) finally yields

rTRC,H
(
I−eeT

)
rCQ,W cos δ + rTRC,H ẽ rCQ,W sin δ =

−
[
rTRC,Hee

T rCQ,W + 1
2

(
RC2+CQ2−`2RQ

)]
.

(5.67)

where the subscripts of the identity matrix I3×3 and the unit vector eCF,W
were omitted. Equation (5.67) is again of the type of Equation (5.54) and can
be solved accordingly. As the movements of points R and Q depend on the
rack displacement and on the rotation of the lower control arm, the steering
angle δ will be a function of u and ϕ. The corresponding rotation matrix Aδ
is defined by Equation (5.41).

Now, the momentary position of the wheel center W relative to the vehicle-
fixed axis system can be computed. According to Equation (5.37), one gets

rVW,V (ϕ, u) = rV A,V +Aϕ(ϕ) rAC,ϕ +AVW (ϕ, u) rCW,W , (5.68)

where the rotation matrix

AVW (ϕ, u) = Aα(ϕ)Aβ(ϕ)Aδ(ϕ, u) (5.69)

describes the orientation of the wheel body-fixed axis system relative to the
vehicle-fixed axis system. Within the wheel body-fixed axis system, the unit
vector in the direction of the wheel rotation axis may be determined by the
toe angle δ0 and the camber angle γ̂0. According to Equation (1.2), one gets

eyR,V =
1√

tan2 δ0 + 1 + tan2 γ̂0

 tan δ0
1

− tan γ̂0

 . (5.70)

Then, the orientation of the wheel rotation axis with respect to the vehicle-
fixed axis system is simply given by

eyR,V = AVW eyR,V . (5.71)

A standard McPherson suspension is modeled in [44]. Besides an analytical
solution, the multibody approach with commercial software packages is pre-
sented.

5.4.4 Velocities

The time derivative of Equation (5.68) provides the velocity of the wheel cen-
ter with respect to the vehicle-fixed axis system V ,

ṙVW,V = ωϕ,V ×Aϕ(ϕ) rAC,ϕ︸ ︷︷ ︸
rAC,V

+ωVW,V ×AVW (ϕ, u) rCW,W︸ ︷︷ ︸
rCW,V

, (5.72)

where rV A,V =const. was already taken into account. The rotation matrix Aϕ
defined in Equation (5.38) describes the orientation of the lower control arm
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around an axis that is defined by the unit vector eAB,V . Then, the angular
velocity of the lower control arm is simply given by

ωϕ,V = eAB,V ϕ̇ . (5.73)

According to Equation (5.39), the rotation matrix AVW describing the ori-
entation of the wheel body W relative to the vehicle-fixed axis system V is
composed of a series of rotations which are defined in Equations (5.40) and
(5.41). Then, the corresponding angular velocity is given by

ωVW,V = exV ,V α̇ + Aα eyα,α︸ ︷︷ ︸
eyα,V

β̇ + AαAβ eCF,W︸ ︷︷ ︸
eCF,V

δ̇ , (5.74)

where

exV ,V =

[
1
0
0

]
and eyα,α =

[
0
1
0

]
(5.75)

denote unit vectors in the direction of the corresponding rotation axis. The
time derivative of the first constraint equation (5.45) yields

ωϕ,V × rAC,V + ωVW,V × rCF,V = ωψ,V ×Aψ rDF,ψ︸ ︷︷ ︸
rDF,V

, (5.76)

where the position vectors rAC,V , rCW,V are defined in Equation (5.72). In-
serting the angular velocities provided by Equations (5.73) and (5.74) results
in

eAB,V ×rAC,V ϕ̇+
(
exV ,V α̇+ eyα,V β̇ + eCF,V δ̇

)
×rCF,V = eDE,V ×rDF,V ψ̇ ,

(5.77)
where the angular velocity of the upper control arm is given by

ωψ,V = eDE,V ψ̇ (5.78)

and eDE,V denotes the unit vector in the direction of the rotation axis. The
unit vector eCF,V points in the direction of the vector rCF,V . Then, the cor-
responding cross-product vanishes, eCF,V × rCF,V = 0, and Equation (5.77)
simplifies to

eAB,V×rAC,V ϕ̇+ exV ,V×rCF,V α̇+ eyα,V×rCF,V β̇ = eDE,V×rDF,V ψ̇ . (5.79)

The kinematics of the double wishbone suspension is fully determined by the
generalized coordinates ϕ and u, which represent the rotation of the lower
control arm and the rack displacement. The constraint equation (5.48) pro-
vides the angles α and β as well as the rotation angle of the upper control
arm ψ as functions of ϕ,

ψ = ψ(ϕ), α = α(ϕ), β = β(ϕ) . (5.80)
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Whereas according to the constraint equation (5.67), the angle δ depends on
ϕ and u,

δ = δ(ϕ, u) , (5.81)

then the time derivatives of the corresponding angles are obtained as

α̇ =
∂α

∂ϕ
ϕ̇, β̇ =

∂β

∂ϕ
ϕ̇, ψ̇ =

∂ψ

∂ϕ
ϕ̇, δ̇ =

∂δ

∂ϕ
ϕ̇+

∂δ

∂u
u̇ . (5.82)

Although only the angle δ depends on both generalized coordinates, the partial
derivatives were used here for all angles in order to keep the calculations more
general.

Inserting Equation (5.82) into Equation (5.79), rearranging some terms,
and canceling the angular velocity of the lower control arm ϕ̇ finally results
in

eDE,V ×rDF,V
∂ψ

∂ϕ
− exV ,V ×rCF,V

∂α

∂ϕ
− eyα,V ×rCF,V

∂β

∂ϕ
= eAB,V ×rAC,V ,

(5.83)
which represents three scalar equations for the three unknown partial deriva-
tives, ∂ψ/∂ϕ, ∂α/∂ϕ, ∂β/∂ϕ.

The time derivative of the second constraint equation (5.63) results in

2
(
rV Q,V −rV R,V︸ ︷︷ ︸

rRQ,V

)T(
ṙV Q,V −ṙV R,V︸ ︷︷ ︸

ṙRQ,V

)
= 0 , (5.84)

where the position vectors rV R,V , rV Q,V are defined in Equations (5.61),
(5.62), and their time derivatives are given by

ṙV R,V =

[
0
u̇
0

]
=

[
0
1
0

]
u̇ = eyV ,V u̇ , (5.85)

ṙV Q,V = ωϕ,V × rAC,V + ωVW,V × rCQ,V . (5.86)

The angular velocities ωϕ,V and ωVW,V are defined in Equations (5.73) and
(5.74). Taking, in addition, Equation (5.82) into account provides the time
derivative of the vector rV Q,V as a function of the angular velocity of the
lower control arm ϕ̇ and the rack velocity u̇,

ṙV Q,V =
∂ṙV Q,V
∂ϕ̇

ϕ̇ +
∂ṙV Q,V
∂u̇

u̇ , (5.87)

where the corresponding partial derivatives are given by

∂ṙV Q,V
∂ϕ̇

= eAB,V×rAC,V +

(
exV ,V

∂α

∂ϕ
+eyα,V

∂β

∂ϕ
+eCF,V

∂δ

∂ϕ

)
×rCQ,V , (5.88)

∂ṙV Q,V
∂u̇

= eCF,V
∂δ

∂u
× rCQ,V . (5.89)
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Now, Equation (5.84) reads as

rTRQ,V

(
∂ṙV Q,V
∂ϕ̇

ϕ̇+
∂ṙV Q,V
∂u̇

u̇− eyV ,V u̇
)

= 0 , (5.90)

where the factor 2 was simply canceled. The time derivatives of the general-
ized coordinates ϕ̇ and u̇ are completely independent. Then, Equation (5.90)
requires that

rTRQ,V
∂ṙV Q,V
∂ϕ̇

= 0 and rTRQ,V

(
∂ṙV Q,V
∂u̇

− eyV ,V
)

= 0 (5.91)

holds separately. By using Equations (5.88) and (5.89), the demands result in

rTRQ,V

(
eAB,V ×rAC,V +

[
exV ,V

∂α
∂ϕ+eyα,V

∂β
∂ϕ

]
×rCQ,V +eCF,V ×rCQ,V ∂δ

∂ϕ

)
=0 ,

(5.92)
rTRQ,V

(
eCF,V ×rCQ,V ∂δ

∂u − eyV ,V
)

= 0 , (5.93)

which will deliver the partial derivatives ∂δ/∂ϕ and ∂δ/∂u in a few steps.
Now, the angular velocity of the wheel body-fixed axis system W with

respect to the vehicle-fixed axis system V defined by Equation (5.74) can be
written as

ωVW,V =
∂ωVW,V
∂ϕ̇

ϕ̇ +
∂ωVW,V
∂u̇

u̇ , (5.94)

where the corresponding partial derivatives are given by

∂ωVW,V
∂ϕ̇ = exV ,V

∂α
∂ϕ + eyα,V

∂β
∂ϕ + eCF,V

∂δ
∂ϕ and

∂ωVW,V
∂u̇ = eCF,V

∂δ
∂u . (5.95)

Finally, the velocity of the wheel center with respect to the vehicle-fixed axis
system V defined by Equation (5.72) is just obtained as

ṙVW,V =
∂ṙVW,V
∂ϕ̇

ϕ̇ +
∂ṙVW,V
∂u̇

u̇ , (5.96)

where the corresponding partial derivatives are provided by

∂ṙVW,V
∂ϕ̇ =eAB,V ×rAC,V +

∂ωVW,V
∂ϕ̇ ×rCW,V and

∂ṙVW,V
∂u̇ =

∂ωVW,V
∂u̇ ×rCW,V .

(5.97)
The partial derivatives of the angular velocity and the velocity with respect to
the generalized velocities, which here equals the time derivatives of the gen-
eralized coordinates, form the basis of Jourdain’s principle. They are simply
called partial velocities in Section 1.4.

5.4.5 Acceleration

The time derivatives of Equations (5.94) and (5.96) provide the angular ac-
celeration of the wheel body-fixed axis system W and the acceleration of the
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wheel center with respect to the vehicle-fixed axis system V . Although the
kinematics of nearly all suspension systems is nonlinear, the partial deriva-
tives of the angular velocity and the velocity of the wheel center defined by
Equations (5.95) and (5.97) do not change very much in the normal range of
motion. Then, the accelerations can be approximated by

ω̇VW,V ≈
∂ωVW,V
∂ϕ̇

ϕ̈ +
∂ωVW,V
∂u̇

ü , (5.98)

r̈VW,V ≈
∂ṙVW,V
∂ϕ̇

ϕ̈ +
∂ṙVW,V
∂u̇

ü . (5.99)

Neglecting the time derivatives of the partial derivatives saves a lot of com-
puting time and still generates very accurate results [35].

5.4.6 Kinematic Analysis

The function dblwb kin.m provided by Listing 5.3 calculates the kinemat-
ics of a double wishbone suspension system by computing the corresponding
equations in the previous subsections. It uses the functions skewsym.m and
trigon.m, which are given in Listings 5.4 and 5.5, to generate a skew-symmetric
matrix according to Equation (1.13) and to solve trigonometric equations of
the type of Equation (5.54).

Listing 5.3
Function dblwb kin.m: Kinematics of a Double Wishbone Axle

1 function [ avw ... % rotation matrix wheel rim / ref-sys

2 , rvwv ... % actual position of wheel center

3 , del ... % rotation angle arround king pin

4 , pv ... % partial velocities

5 ] = ...

6 dblwb_kin( phi ... % rotation angle of lower control arm

7 , u ... % rack displacement

8 , dt ... % model data

9 )

10 % kinematics of a double whisbone axle with rack and pinion steering

11
12 % lower wishbone

13 rab = dt.rvbk-dt.rvak; eab = rab / norm(rab); eabs = skewsym(eab);

14 eabeab = eab*eab’; eyeab = eye(3,3)-eabeab;

15 aphi = eabeab + eyeab*cos(phi) + eabs*sin(phi);

16
17 % upper wishbone

18 rcfk = dt.rvfk-dt.rvck; rdfk = dt.rvfk-dt.rvdk;

19 racv=aphi*(dt.rvck-dt.rvak); rcdv=dt.rvdk-(dt.rvak+racv);

20 rde=dt.rvek-dt.rvdk; ede=rde/norm(rde); edeede=ede*ede’; edes=skewsym(ede);

21 a = rcdv’*(eye(3,3)-edeede)*rdfk; b = rcdv’*cross(ede,rdfk);

22 c = -rcdv’*edeede*rdfk-0.5*(rdfk’*rdfk+rcdv’*rcdv-rcfk’*rcfk);

23 psi = trigon(a,b,c);

24 apsi = edeede + (eye(3,3)-edeede)*cos(psi) + edes*sin(psi);

25
26 % orientation of wheel body due to control arm motion
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27 rvcv = dt.rvak + racv;

28 rdfv = apsi*(dt.rvfk-dt.rvdk); rvfv = dt.rvdk + rdfv; rcfv = rvfv - rvcv;

29 be = trigon(rcfk(1),rcfk(3),rcfv(1));

30 abe = [ cos(be) 0 sin(be) ; ...

31 0 1 0 ; ...

32 -sin(be) 0 cos(be) ];

33 al = trigon(rcfv(2),rcfv(3),rcfk(2));

34 aal = [ 1 0 0 ; ...

35 0 cos(al) -sin(al) ; ...

36 0 sin(al) cos(al) ] ;

37
38 % rotation arround king pin

39 rvrv = dt.rvrk + [ 0; u; 0 ]; rrcv = rvcv - rvrv; rrcht=rrcv’*aal*abe;

40 rrqk = dt.rvqk-dt.rvrk; rcqk = dt.rvqk-dt.rvck; rcfk = dt.rvfk-dt.rvck;

41 ecf = rcfk / norm(rcfk); ecfecf = ecf*ecf’; ecfs = skewsym(ecf);

42 a = rrcht*(eye(3,3)-ecfecf)*rcqk; b = rrcht*cross(ecf,rcqk);

43 c = -( rrcht*ecfecf*rcqk + 0.5*(rrcv’*rrcv + rcqk’*rcqk - rrqk’*rrqk) );

44 del=trigon(a,b,c); adel=ecfecf+(eye(3,3)-ecfecf)*cos(del)+ecfs*sin(del);

45
46 % wheel body orientation and position

47 avw = aal*abe*adel; rcwv = avw*(dt.rvwk-dt.rvck); rvwv = rvcv + rcwv;

48
49 % partial derivatives: dpsi/dphi, dal/dphi, dbe/dphi

50 exvv=[1;0;0]; eyalv=aal*[0;1;0];

51 a = [ cross(ede,rdfv) -cross(exvv,rcfv) -cross(eyalv,rcfv) ];

52 c = a \ cross(eab,racv); dpsidphi=c(1); daldphi=c(2); dbedphi=c(3);

53
54 % partial derivatives: ddel/dphi, ddel/du

55 eyvv=[0;1;0]; ecfv=rcfv/norm(rcfv);

56 rcqv=avw*rcqk; rvqv=rvcv+rcqv; rrqv=rvqv-rvrv;

57 a = exvv*daldphi + eyalv*dbedphi; b = cross(eab,racv) + cross(a,rcqv);

58 c = rrqv’*cross(ecfv,rcqv); ddeldphi = -rrqv’*b/c; ddeldu = rrqv’*eyvv/c;

59
60 % partial angular and partial velocities of wheel carrier

61 dodphi=exvv*daldphi+eyalv*dbedphi+ecfv*ddeldphi; dodu=ecfv*ddeldu;

62 dvdphi=cross(eab,racv)+cross(dodphi,rcwv); dvdu = cross(dodu,rcwv);

63 pv = [ dodphi dodu dvdphi dvdu ];

64
65 end

Listing 5.4
Function skewsym.m: Generate Skew-Symmetric Matrix

1 function matrix = skewsym( vector ) % create skew-symmetric matrix from vector

2 matrix = [ 0 -vector(3) vector(2) ; ...

3 vector(3) 0 -vector(1) ; ...

4 -vector(2) vector(1) 0 ];

5 end

Listing 5.5
Function trigon.m: Solve Trigonometric Equation

1 function psi = trigon( a, b, c ) % solve a*cos(psi) + b*sin(psi) = c

2 if b<0

3 psi = asin(-c/sqrt(a^2+b^2)) - atan2(-a,-b);
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4 else

5 psi = asin( c/sqrt(a^2+b^2)) - atan2( a, b);

6 end

7 end

The MATLAB-Script in Listing 5.6 provides the data for a typical passenger
car front suspension and performs a kinematic analysis of the double wishbone
suspension. At first, some relevant properties are computed in the design posi-
tion and displayed via the MATLAB-Function disp. The calculation of kingpin
and caster angle is straightforward because its orientation is determined by
the ball joints C and F which are defined by the substructures dt.rvck and
dt.rvfk in the design position. The caster offset c and the scrub radius s are
visualized in Figure 5.6 and defined by Equation 5.2. Here, the vector from
the point S where an extension of the kingpin axis intersects the road surface
to the contact point P is given by

−c ex + s ey︸ ︷︷ ︸
rSP

= λ eCF︸ ︷︷ ︸
rSC

+ rCW + rWP︸ ︷︷ ︸
rCP

, (5.100)

where the caster offset c, the scrub radius s, and the parameter λ are yet
unknown. The unit vector eCF in the direction of the kingpin axis is defined
by the ball joints C and F , and the vectors rCW , rWP are given by data in
the design position. The unit vectors ex, ey in the longitudinal and the lateral
direction are perpendicular to each other and both perpendicular to the road
normal, which is defined by the unit vector en. Then, scalar multiplication of
Equation 5.100 results in

0 = λ eTn eCF + eTn rCP , (5.101)

which immediately delivers the parameter λ or the vector

rSC = λ eCF = − eTn rCP
eTn eCF

eCF . (5.102)

Finally, the caster offset and the scrub radius,

c = −eTx (rSC + rCP ) and s = eTy (rSC + rCP ) , (5.103)

are obtained by scalar multiplication of Equation 5.100 with ex and ey, re-
spectively. Running the MATLAB-Script will provide the following results:
kingpin angle = 10.5182, caster angle = 7.0561, caster offset = 0.030326, and
scrub radius = 0.0010327, which are typical values for modern passenger car
front suspension systems. In addition, the script generates some plots, which
are shown in Figure 5.14 and Figure 5.15.

Listing 5.6
MATLAB-Script dblwb kin test.m: Double Wishbone Kinematic Analysis

1 % suspension kinematics (typical passenger car front left)
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2 dt.umx = 0.0745; % max. rack displacement

3 dt.phimx= 10/180*pi; % max rotation of lower control arm

4 dt.rvwk= [ 0.0000; 0.7680; 0.0000]; % W: wheel rim center

5 dt.rvak= [-0.2510; 0.3200; -0.0800]; % A: lower control arm @ chassis rear

6 dt.rvbk= [ 0.1480; 0.3200; -0.0940]; % B: lower control arm @ chassis front

7 dt.rvck= [ 0.0130; 0.7370; -0.1450]; % C: lower control arm @ wheel body

8 dt.rvdk= [-0.1050; 0.4350; 0.1960]; % D: upper control arm @ body rear

9 dt.rvek= [ 0.1220; 0.4350; 0.2300]; % E: upper control arm @ body front

10 dt.rvfk= [-0.0250; 0.6800; 0.1620]; % F: upper control arm @ wheel body

11 dt.rvrk= [-0.1500; 0.3800; -0.0380]; % R: drag link @ rack

12 dt.rvqk= [-0.1370; 0.6900; -0.0880]; % Q: drag link @ wheel body

13 % additional data

14 toe0 = 0.0000/180*pi; % initial toe angle (sign according to ISO def)

15 camb0= 0.8000/180*pi; % initial camber angle (sign accord. to ISO def)

16 rs = 0.2850; % steady state tire radius

17 en0 = [ 0; 0; 1 ]; % road normal (flat horizontal road)

18
19 % wheel/tire orientation in design position

20 eyrk = [toe0; 1; -camb0]; eyrk = eyrk/norm(eyrk); % wheel rot. axis

21 exk = cross(eyrk,en0); exk=exk/norm(exk); % longitudinal direction

22 eyk = cross(en0,exk); % lateral direction

23 ezk = cross(exk,eyrk); % radial direction

24 rwpk= -rs*ezk; % wheel center W --> reference point P (contact in design pos.)

25
26 % kingpin and caster angle in design position

27 rcfk = dt.rvfk-dt.rvck; ecfk=rcfk/norm(rcfk); % kingpin orientation

28 si = atan2(-ecfk(2),ecfk(3)); disp([’kingpin angle = ’,num2str(si*180/pi)])

29 nu = atan2(-ecfk(1),ecfk(3)); disp([’caster angle = ’,num2str(nu*180/pi)])

30
31 % caster offset and scrub radius in design position

32 rcpk = dt.rvwk + rwpk - dt.rvck ; rsck = -(en0’*rcpk)/(en0’*ecfk)*ecfk ;

33 co = -exk’*(rsck+rcpk); disp([’caster offset = ’,num2str(co)])

34 sr = eyk’*(rsck+rcpk); disp([’scrub radius = ’,num2str(sr)])

35
36 % range of motion (rotation of lower control arm and rack displacement)

37 n=11; phi=linspace(-1,1,n)*dt.phimx; m=15; u=linspace(-1,1,m)*dt.umx;

38
39 % pre-allocate vars to speed up loops

40 xw=zeros(n,m);yw=xw;zw=xw; xp=xw;yp=xw;zp=xw; del=xw; toe=xw; camb=xw; ddel=xw;

41 for i=1:n

42 for j=1:m

43 [avw,rvwv,del(i,j),pd] = dblwb_kin(phi(i),u(j),dt); % suspension kinematics

44 eyrv = avw*eyrk; % actual orientation of wheel rotation axis

45 rvpv = rvwv + avw*rwpk; % actual position of reference point P

46 xw(i,j)=rvwv(1);yw(i,j)=rvwv(2);zw(i,j)=rvwv(3); % wheel center coord.

47 xp(i,j)=rvpv(1);yp(i,j)=rvpv(2);zp(i,j)=rvpv(3); % ref. point coord.

48 toe(i,j) = atan2(-eyrv(1), eyrv(2)); % toe angle (+ rot. z-axis)

49 camb(i,j)= atan2( eyrv(3), eyrv(2)); % camber angle (+ rot. x-axis)

50 ddel(i,j)=norm(pd(:,2)); % partial derivative ddel/du

51 end

52 end

53
54 n0=round(n/2); m0=round(m/2); rvpk = dt.rvwk + rwpk ;

55 axes(’position’,[0.05,0.05,0.20,0.90]),hold on,axis equal,grid on,title(’xz’)

56 plot(xw(:,m0),zw(:,m0)),plot(xp(:,m0),zp(:,m0),’--’)

57 plot(dt.rvwk(1),dt.rvwk(3),’ok’), plot(rvpk(1),rvpk(3),’ok’)

58 axes(’position’,[0.30,0.05,0.20,0.90]),hold on,axis equal,grid on,title(’yz’)



Suspension System 157

59 plot(yw(:,m0),zw(:,m0)), plot(yp(:,m0),zp(:,m0),’--’)

60 plot(dt.rvwk(2),dt.rvwk(3),’ok’),plot(rvpk(2),rvpk(3),’ok’)

61 axes(’position’,[0.60,0.05,0.35,0.40]), colormap(’white’)

62 surf(u,phi*180/pi,toe*180/pi), grid on, view(-40,10), title(’toe’)

63 axes(’position’,[0.60,0.55,0.35,0.40]), colormap(’white’)

64 surf(u,phi*180/pi,camb*180/pi), grid on, view(-40,10), title(’camber’)

65 figure % open new figure

66 d1 = del(n0,:); d2 = -d1(m:-1:1); % wheel steering angles in design position

67 a=2.7; s=2*dt.rvwk(2); d2a = atan2(a*tan(d1),a+s*tan(d1)); % ackermann angle

68 axes(’position’,[0.05,0.55,0.40,0.30]), title(’\delta_1(u), \delta_2(u)’)

69 plot(u,[d1;d2]*180/pi), grid on, legend(’left’,’right’)

70 axes(’position’,[0.05,0.15,0.40,0.30]), title(’d\delta/du’)

71 plot(u,ddel(n0,:)), grid on

72 axes(’position’,[0.55,0.30,0.40,0.40]), axis equal, title(’\delta_2(\delta_1)’)

73 plot(d1*180/pi,[d2;d2a]*180/pi),grid on, legend(’kinematics’,’ackermann’)

At first, the motion of the wheel center W and the wheel body-fixed reference
point P, which in design position coincides with the contact point, are plotted
in the xz- and the yz-plane. By fixing the second index in the corresponding
matrices xw, yw, zw, and xp, yp, zp to m0, the motions induced by varying
the rotation angle ϕ are considered only. As typical for most passenger car
front axle suspension systems, the reference point moves slightly forward when
the wheel goes upward. At the same time, the wheel center travels backward
here. This is achieved by a different inclined rotation axis of the lower and
the upper control arm. The MATLAB-Function surf is used to plot the toe
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FIGURE 5.14
Double wishbone kinematics.

and the camber angle which define the momentary orientation of the wheel
rotation axis as two-dimensional functions of the rack displacement u and the
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rotation angle ϕ of the lower control arm. Positive signs in the toe and camber
angle indicate here positive rotations of the left wheel body about the z- and
x-axis, which does not match the definitions in Sections 1.3.3 and 1.3.4 but
corresponds with the multibody system approach. Due to different-sized con-
trol arms, the wheel body rotates around the x-axis when the wheel is moved
up and down. As the kingpin is fixed to the wheel body, it will change its
orientation at the same time. Thus the camber angle depends on the gener-
alized coordinates u and ϕ. The toe angle, however, is mainly influenced by
the rack displacement u. A potential dependency on the hub motion (rotation
angle ϕ), which becomes visible here on extreme hub and steer motions, will
influence the driving behavior of the vehicle and should therefore be designed
properly.

The function dblwb kin provides the rotation angle δ around the kingpin
too. The MATLAB command d1 = del(n0,:) extracts the angle of the left
wheel in design position as a function of the rack displacement u only. Taking
a left/right symmetry for granted, the MATLAB command d2 = -d1(m:-1:1)
generates the corresponding angle at the right wheel. Both angles are plotted
versus the rack displacement u in the upper left graph of Figure 5.15. The
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FIGURE 5.15
Double wishbone steering kinematics.

MATLAB-Script given in Listing 5.2 is based on a simple steering system
model. A constant ratio of the steering linkage of iSL = 9.3 was assumed. As
can be seen in the lower left graph of Figure 5.15, the ratio is quite nonlinear
here. In a wide range it is close to the mean value of 8.8 rad/m. If the rack
displacement approaches its left maximum at u = −umax = −0.0745 m the
ratio goes up rather rapidly to 18.1 rad/m which indicates that the steering
linkage comes close to a kinematical singularity. Assuming a wheel base of
a = 2.7m and assigning s = 2*dt.rvwk(2), the track width via the y-coordinate
of the wheel center, the suspension kinematics can be compared with the
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Ackermann steering geometry. Similar to Equation (5.34), the relation

tan δA2 =
a tan δ1

a+ s tan δ1
(5.104)

provides the Ackermann wheel steering angle at the second wheel δA2 as a
function of the steering angle at the first wheel δ1. As can be seen from the
graph on the right of Figure 5.15 this double wishbone suspension system is
designed to match the Ackermann steering geometry quite closely.

Note that the kinematics of a double wishbone suspension combined with
a rack-and-pinion steering system are sensitive to the geometric data and
may come to singular positions where the kinematics is not defined any more.
That is why the maximum rotation angle of the lower control arm and the
maximum rack displacement are specified here via the parameter dt.umx and
dt.phimx. Increasing these values or changing the geometric data too much or
improperly may cause MATLAB to generate warnings or error messages.

Exercises

5.1 Use part of the MATLAB-Script in Listing 5.6 to study the influence of
the initial toe and camber angle set by the variables toe0 and camb0 on the
caster offset and scrub radius.

5.2 The figure where the underlaying grid is based on a distance of 0.05 m
shows the layout of a simple double wishbone suspension for the left rear wheel
of a passenger car.
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The absence of a steering system is taken
into account by a vanishing maximum rack
displacement, dt.umx=0. In addition, the
wheel is mounted on the wheel body with-
out an initial toe and camber angle, toe0=0
and camb0=0. Furthermore, a flat horizon-
tal road can be assumed, en0 = [ 0; 0; 1
].

Complete the data set needed to analyze the
double wishbone suspension by inspecting
the sketch. Estimate the maximum possible
rotation angle of the lower control arm.

Modify the MATLAB-Script given in
Listing 5.6 appropriately to restrict the
kinematic analysis to the hub motion of the
wheel induced by the rotation of the lower
control arm.
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5.3 A passenger car is equipped with double wishbone suspension systems at
both axles. The specific data for the front and rear axle are given by

% suspension kinematics (front left)

dt.umx = 0.0745; % max. rack displacement

dt.phimx= 10/180*pi; % max rotation of lower control arm

dt.rvwk= [ 0.0000; 0.7680; 0.0000]; % W: wheel rim center

dt.rvak= [-0.2510; 0.3200; -0.0800]; % A: lower control arm @ chassis rear

dt.rvbk= [ 0.1480; 0.3200; -0.0940]; % B: lower control arm @ chassis front

dt.rvck= [ 0.0130; 0.7370; -0.1450]; % C: lower control arm @ wheel body

dt.rvdk= [-0.1050; 0.4350; 0.1960]; % D: upper control arm @ body rear

dt.rvek= [ 0.1220; 0.4350; 0.2300]; % E: upper control arm @ body front

dt.rvfk= [-0.0250; 0.6800; 0.1620]; % F: upper control arm @ wheel body

dt.rvrk= [-0.1500; 0.3800; -0.0381]; % R: drag link @ rack

dt.rvqk= [-0.1370; 0.6900; -0.0879]; % Q: drag link @ wheel body

% suspension kinematics (rear left)

dt.umx = 0.0; % max. rack displacement

dt.phimx= 12/180*pi; % max rotation of lower control arm

dt.rvwk= [ 0.0000; 0.7675; 0.0000]; % W: wheel rim center

dt.rvak= [-0.2900; 0.3200; -0.0890]; % A: lower control arm @ chassis rear

dt.rvbk= [ 0.0500; 0.3200; -0.0725]; % B: lower control arm @ chassis front

dt.rvck= [-0.0260; 0.7370; -0.1435]; % C: lower control arm @ wheel body

dt.rvdk= [-0.2220; 0.4530; 0.2245]; % D: upper control arm @ body rear

dt.rvek= [ 0.0370; 0.4530; 0.2020]; % E: upper control arm @ body front

dt.rvfk= [ 0.0200; 0.6800; 0.1630]; % F: upper control arm @ wheel body

dt.rvrk= [-0.1540; 0.3160; 0.0120]; % R: drag link @ rack

dt.rvqk= [-0.1550; 0.6900; -0.0470]; % Q: drag link @ wheel body

The data are based on local vehicle-fixed coordinate systems that are located
in the corresponding axle center. Both axles are characterized by the addi-
tional data

toe0 = 0.00/180*pi; % initial toe angle (sign accord. rot. around z-axis)

camb0=-0.50/180*pi; % initial camber angle (sign accord. rot. around x-axis)

rs = 0.3450; % steady-state tire radius

en0 = [ 0; 0; 1 ]; % road normal (flat horizontal road)

Modify the MATLAB-Script given in Listing 5.6 appropriately so that the
kinematics of both axles can be analyzed. Note that the rear axle is not
steered, but is simply realized by setting the maximum rack displacement
to zero. Compare the results of the movements of the wheel center W and
the reference point P in particular. Adjust the inner loop and the plotting
commands appropriately.
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6.1 Standard Force Elements

6.1.1 Springs

Springs support the weight of the vehicle. In vehicle suspensions, coil springs,
air springs, torsion bars, and leaf springs are used, Figure 6.1.
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FIGURE 6.1
Vehicle suspension springs.
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Coil springs, torsion bars, and leaf springs absorb additional load by com-
pressing. Thus, the ride height depends on the loading condition. Air springs
are rubber cylinders filled with compressed air. They are becoming more pop-
ular on passenger cars, light trucks, and heavy trucks because here the correct
vehicle ride height can be maintained regardless of the loading condition by
adjusting the air pressure. A linear coil spring may be characterized by its
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FIGURE 6.2
Linear coil spring and general spring characteristics.

free length LF and the spring stiffness c, Figure 6.2. The force acting on the
spring is then given by

FS = c
(
LF − L

)
= c∆L , (6.1)

where L denotes the actual length and ∆L the overall deflection of the spring.
Mounted in a vehicle suspension, the spring has to support the correspond-
ing chassis weight. Hence, the spring will be compressed to the configuration
length L0 < LF . Now, Equation (6.1) can be written as

FS = c
(
LF − (L0 − s)

)
= c

(
LF − L0

)
+ c s = F 0

S + c s , (6.2)

where F 0
S denotes the spring preload and s = L0−L describes the spring

displacement measured from the spring’s configuration length. Note, s > 0
indicates compression. In general, the spring force FS can be defined by a
nonlinear function of the spring displacement s,

FS = FS(s) = FS(L0 − L) . (6.3)

Now, arbitrary spring characteristics can be approximated by elementary func-
tions, like polynomials, or by tables that are then inter- and extrapolated by
linear functions or cubic splines. The complex behavior of leaf springs and air
springs can only be approximated by simple nonlinear spring characteristics,
FS = FS(s). For detailed investigations, sophisticated [42] or even dynamic
spring models [8] must be used.
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6.1.2 Anti-Roll Bar

The anti-roll or anti-sway bar or stabilizer is used to reduce the roll angle
during cornering and to provide additional stability. Usually, it is simply a
U-shaped metal rod connected to both of the lower control arms, Figure 6.3.
Thus, the two wheels of an axle are interconnected by a torsion bar spring.
This affects each one-sided bouncing. The axle with the stronger stabilizer is
rather inclined to breaking out, in order to reduce the roll angle.
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FIGURE 6.3
Axle with anti-roll bar attached to lower control arms.

When the suspension at one wheel moves up and on the other down, the
anti-roll bar generates a force acting in the opposite direction at each wheel.
In a good approximation, this force is given by

Farb = ± carb (s1 − s2) , (6.4)

where s1, s2 denote the vertical suspension motions of the left and the right
wheel center, and cWarb in [N/m] names the stiffness of the anti-roll bar with
respect to the vertical suspension motions of the wheel centers.

Assuming a simple U-shaped anti-roll bar, the stiffness of the anti-roll bar
is defined by the geometry and material properties. Vertical forces with the
magnitude F applied in the opposite direction at both ends of the the anti-roll
bar, result in the vertical displacement4z measured between both ends of the
anti-roll bar, Figure 6.4. The stiffness of the anti-roll bar itself is then defined
by

c =
F

4z
. (6.5)

Neglecting all bending effects and taking small deflections for granted, one
gets

4z = a4ϕ = a
Fa b

G
π

32
D4

, (6.6)
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FIGURE 6.4
Anti-roll bar loaded by vertical forces.

where G denotes the modulus of shear and the distances a, b are defined in
Figure 6.4. Hence, the stiffness of the anti-roll bar is given by

c =
π

32

G D4

a2 b
. (6.7)

Depending on the axle design, the ends of the ant-roll bar are attached via
links to the knuckle or, as shown in Figure 6.3, to the lower control arm. In
both cases, the displacement of the anti-roll bar end is given as a function of
the vertical suspension motion of the wheel center. For small displacements,
one gets

z1 = iarb s1 and z2 = iarb s2 , (6.8)

where iarb denotes the ratio of the vertical motions of the wheel centers s1, s2

and the anti-roll bar ends z1, z2. Now, the stiffness of the anti-roll bar with
respect to the vertical suspension motions of the wheel centers is given by

carb = i2arb
π

32

G D4

a2 b
. (6.9)

The stiffness strongly depends (fourth power) on the diameter of the anti-roll
bar.

For a typical passenger car, the following data will hold: a = 230 mm,
b = 725mm, D = 20mm and iarb = 2/3. The shear modulus of steel is given
by G = 85 000N/mm2. Then, one gets

carb =

(
2

3

)2
π

32

85 000N/mm2 (20mm)
4

(230mm)
2

725mm
= 15.5N/mm = 15 500N/m

(6.10)
This simple calculation will not produce the real stiffness exactly, because
bending effects and compliancies in the anti-roll bar bearings will reduce the
stiffness of the anti-roll bar.
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6.1.3 Damper

Dampers are basically oil pumps. As the suspension travels up and down, the
hydraulic fluid is forced by a piston through tiny holes, called orifices. This
slows down the suspension motion. Today, twin-tube and mono-tube dampers
are used in vehicle suspension systems, Figure 6.5. Whereas the twin-tube
layout stores the oil that is displaced by the piston rod when entering the
cylinder in a remote oil chamber, the mono-tube type uses a floating piston
that operates against a gas chamber and makes the capacity of the cylinder
adaptable.
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FIGURE 6.5
Types of suspension dampers: (a) twin-tube and (b) mono-tube.

In standard vehicle dynamics applications, simple characteristics

FD = FD(v) , (6.11)

are used to describe the damper force FD as a function of the damper velocity
v = u̇. To obtain this characteristics, the damper is excited with a sinusoidal
displacement signal u = u0 sin 2πft. By varying the frequency in several steps
from f = f0 to f = fE , different force displacement curves FD = FD(u) are
obtained, Figure 6.6. By taking the peak values of the damper force at the
displacement u = 0, which corresponds with the velocity v(u = 0) = ±2πfu0,
the characteristics FD = FD(v) is generated now. Here, the compression cy-
cle is associated with positive and the rebound cycle with negative damper
velocities. Typical passenger car or truck dampers will have more resistance
during the rebound cycle than the compression cycle.

Usually, nonlinear damper characteristics are simply provided by lookup
tables. A simple linear or a smoother spline inter- or extrapolation will provide
the damping forces. The MATLAB-Script provided in Listing 6.1 provides
the lookup table for the damper characteristic FD = FD(v), computes the
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FIGURE 6.6
Damper characteristics generated from measurements [17].

damping force generated by a sine excitation with different frequencies, and
plots the damping characteristic as well as the force displacement curves.

Listing 6.1
MATLAB-Script damper char.m: Nonlinear Damper Characteristic

1 % nonlinear damper characteristics F=F(v) provided by lookup table [ v F ]

2 damper_table = ...

3 [ -1.5080 -3500; ...

4 -1.1310 -2800; ...

5 -0.5655 -1500; ...

6 -0.4524 -1250; ...

7 -0.3016 -1000; ...

8 -0.1508 -650; ...

9 -0.0377 -200; ...

10 0.0000 0; ...

11 0.0377 100; ...

12 0.1508 150; ...

13 0.3016 200; ...

14 0.4524 250; ...

15 0.5655 300; ...

16 1.1310 500; ...

17 1.5080 600 ];

18
19 subplot(1,2,1), hold on % generate F=F(u) via sine excitation

20 u0=0.06; freq=[0.1 0.4 0.8 1.2 1.5 3.0 4.0]; % amplitude [m] & frequencies [Hz]

21 for i=1:length(freq)

22 t=linspace(0,1/freq(i),101); % time intervals

23 u=zeros(size(t)); F=u; % pre-allocate vars to speed up inner loop

24 for j=1:length(t)

25 u(j)=u0*sin(2*pi*freq(i)*t(j)); vij=2*pi*freq(i)*u0*cos(2*pi*freq(i)*t(j));

26 F(j)=interp1q(damper_table(:,1),damper_table(:,2),vij);

27 end

28 plot(u,F), grid on % force displacement curve at freq(i)

29 end

30
31 subplot(1,2,2) % plot characteristics F=F(v) and mark given points

32 plot(damper_table(:,1),damper_table(:,2),’-ok’,’MarkerSize’,5), grid on
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The lookup table was generated by simply inspecting the damper character-
istics FD = FD(v) provided in Figure 6.6. According to [17], the damper was
excited with a sinusoidal displacement signal at different frequencies and an
amplitude of approximately half the maximum stroke of the damper. Esti-
mating the amplitude with u = 0.06 m and detecting the velocity values in
the damper characteristics with v ≈ [0.04 0.15 0.30 0.45 0.57 1.13 1.51] m/s
results via the relationship v = 2π f u in the excitation frequencies defined
in Listing 6.1. The MATLAB-Function interp1q provides the actual force for
each velocity in between the range defined by the lookup table by a simple
linear interpolation. Note that this function is fast, but does not extrapolate.

The results generated by the script just copy the force velocity character-
istic and generate force displacement characteristics that are quite similar to
the ones in Figure 6.6. However, the specific shape of the curves cannot be
reproduced exactly by this simple model approach.

Dynamic damper models, like the one presented in [1], calculate the
damper force via the fluid pressure applied to each side of the piston. The
dynamic changes of the fluid and gas pressures in the compression and re-
bound chambers as well as in the gas chamber are calculated by applying
physical principles.

6.1.4 Point-to-Point Force Elements

6.1.4.1 Generalized Forces

Usually, the mounts that connect springs, dampers, and actuators to different
bodies can be regarded as ball joints, Figure 6.7. Then, the action line of the

��

�� ��

�

��

�� ��

�

��

��

��
�

���
���

�

	

���
�

�
�
��

������

������

FIGURE 6.7
Point-to-point force element
A point-to-point force element attached between two bodies.

force generated by the element that is mounted between the points P and Q
is defined by the unit vector

ePQ,0 =
rPQ,0
|rPQ,0|

=
r0Q,0 − r0P,0

|r0Q,0 − r0P,0|
, (6.12)

where

L = |rPQ,0| =
√
rTPQ,0rPQ,0 (6.13)
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defines the actual length of the force element in addition. The point P is
attached to body i and point Q to body j. The vectors r0i,0, r0j,0 and the
rotation matrices A0i, A0j describe the momentary position and orientation
of axis systems fixed in the center of each body with respect to the earth-fixed
reference frame 0. Then, the position of the attachment points is defined by

r0P,0 = r0i,0 +A0i riP,i︸ ︷︷ ︸
riP,0

and r0Q,0 = r0j,0 +A0j rjQ,j︸ ︷︷ ︸
rjQ,0

, (6.14)

where the vectors riP,i, rjQ,j characterize the position of P and Q with re-
spect to the corresponding body-fixed axis systems. The deflection of the force
element is just given by

s = L0 − L , (6.15)

where L0 denotes the length of the force element in the design position and
the actual length L is defined by Equation (6.13).

According to Equation (6.3), spring forces can be described by appropri-
ate force displacement characteristics, FS = FS(s). In the approach of Equa-
tion (6.11), the force provided by a hydraulic damper can be described as a
function of the damper velocity FD = FD(v). Corresponding to the nonlinear
characteristic plotted in Figure 6.6, v > 0 will indicate compression, which is
in conformity with the sign definition of the spring deflection s too. The time
derivative of the force element deflection s given in Equation (6.15) delivers
the damper velocity at first as

v = ṡ =
d

dt
(L0−L) = −L̇ . (6.16)

By using Equation (6.13) it results in

v = −
2 rTPQ,0ṙPQ,0

2
√
rTPQ,0rPQ,0

= −
rTPQ,0
|rPQ,0|

ṙPQ,0 = −eTPQ,0 (ṙ0Q,0−ṙ0P,0) , (6.17)

where Equation (6.12) was used to reinsert the unit vector ePQ and to put the
time derivative of the vector rPQ down to the time derivatives of the position
vectors r0Q and r0P . According to Equation (6.14), the time derivatives of the
position vectors are given by

ṙ0P,0 = v0i,0 + ω0i,0 × riP,0 and ṙ0Q,0 = v0j,0 + ω0j,0 × rjQ,0 , (6.18)

where v0i,0 = ṙ0i,0, v0j,0 = ṙ0j,0 name the absolute velocities of the body
centers and ω0i,0, ω0j,0 denote the absolute angular velocities of the bodies.
Finally, the force acting in an arbitrary point-to-point force element can be
described by

F = F (s, v, u, x) , (6.19)

where the dependency on a control signal u will include actuators and the
vector x collects the internal states that are needed to model dynamic force
elements too.
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The equations of motion for different vehicle models are generated by ap-
plying Jourdain’s principle of virtual power throughout this textbook. The
forces and torques applied to the bodies are converted via partial velocities to
generalized forces hereby. Similar to the appropriate terms in Equation (1.28),
the force F acting in a point-to-point element is transformed by

qF =

(
∂v

∂z

)T
F (s, v, u, x) (6.20)

to the corresponding parts of the generalized force vector q. According to
Equation (6.17), the partial derivatives of the force element deflection velocity
v with respect to the vector of the generalized velocities z are given by

∂v

∂z
= −eTPQ,0

(
∂ṙ0Q,0

∂z
− ∂ṙ0P,0

∂z

)
= eTPQ,0

∂ṙ0P,0

∂z
− eTPQ,0

∂ṙ0Q,0

∂z
, (6.21)

which, by using Equation (6.18), results in

∂v

∂z
= eTPQ

(
∂v0i

∂z
+
∂ω0i

∂z
×riP

)
− eTPQ

(
∂v0j

∂z
+
∂ω0j

∂z
×rjQ

)
, (6.22)

where the comma-separated subscript 0, which indicates that all vectors are
expressed in the earth-fixed axis system, was omitted. Then, the part qF of the
generalized force vector q related to the force F that acts in a point-to-point
force element is given by

qF =

(
∂v0i

∂z
+ r̃TiP

∂ω0i

∂z

)T
ePQF −

(
∂v0j

∂z
+ r̃TjQ

∂ω0j

∂z

)T
ePQF , (6.23)

where the cross-products in the partial velocities were replaced by the corre-
sponding skew-symmetric matrix vector multiplications via the relationship
ω×r=−r×ω=−r̃ ω= r̃Tω. Rearranging some terms and reintroducing the
cross-product notation finally results in

qF =
∂vT0i
∂z

FPQ +
∂ωT0i
∂z

riP×FPQ −
∂vT0j
∂z

FPQ −
∂ωT0j
∂z

rjQ×FPQ , (6.24)

where FPQ = ePQ F simply defines the vector that vectorially describes the
magnitude and the orientation of the force acting in the point-to-point ele-
ment. If body i and j are moving without kinematical constraints, the com-
ponents of the vectors v0i, v0j , ω0i, ω0j can be used as generalized velocities.
Then, the partial derivatives are trivial and Equation (6.24) simply yields

qF =


FPQ

riP×FPQ
−FPQ

−rjQ×FPQ


← force applied to body i

← torque applied to body i

← force applied to body j

← torque applied to body j

(6.25)

which satisfies the “actio=reactio” principle and produces via appropriate
cross-products the torques applied to body i and j automatically.
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6.1.4.2 Example

For the sake of simplicity, the quarter car model in Section 1.5 was equipped
just with a torsional spring damper combination in a first model approach.
Now, the torsional damper will be replaced by a point-to-point damper ele-
ment that is attached to the knuckle in point D and to the chassis in point
E, Figure 6.8. Similar to Equation (6.12), the action line of the damper force
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FIGURE 6.8
Quarter car model with a point-to-point damper element.

is defined in the chassis-fixed axis system C by the unit vector

eDE,C =
rDE,C
|rDE,C |

=
rCE,C − rCD,C
|rCE,C − rCD,C |

, (6.26)

where C denotes the center of the chassis mass and

LDE = |rDE,C | =
√
rTDE,CrDE,C (6.27)

defines the actual length of the damper element according to Equation (6.13).
Here, the attachment point E is fixed to the chassis, which is common for
most suspension systems. Its position relative to the chassis is simply defined
by data and is given here by

rCE,C =
[
−e 0 f

]T
. (6.28)

The attachment point D is fixed to the knuckle. In general, its momentary
position may be described via the knuckle center, which here results in

rCD,C = rCK,C + ACK rKD,K , (6.29)

where rCK,C describes the momentary position of the knuckle center K and
ACK the rotation matrix of the knuckle that is defined by Equation (1.33).
The vector rKD,K defines the position of D relative to K. It is expressed in the
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knuckle-fixed axis system and simply given by data. In this particular case,
where it was assumed that the attachment point D is located on a line with
the knuckle center K and the revolute joint in B, one gets

rCD,C =

 −s cosβ
0

−b+ s sinβ

 +

 − (d− s) cosβ
0

(d− s) sinβ

 =

 −d cosβ
0

−b+ d sinβ

 .
(6.30)

The damper force FD depends on the damper velocity v, which is defined as
the time derivative of the element deflection s. According to Equation (6.17),
one gets

v = ṡ = −L̇DE = −eTDE,C (ṙCE,C−ṙCD,C) . (6.31)

Here, the time derivative of the vector rCE,C will vanish because the attach-
ment point E is fixed to the chassis. Then, Equation (6.31) simplifies to

v = eTDE,C ṙCD,C . (6.32)

The unit vector eDE,C is defined by Equation (6.26) and the time derivative
of Equation (6.30) results in

ṙCD,C =

 s sinβ
0

s cosβ

 β̇
︸ ︷︷ ︸
ṙCK,C

+

0
1
0

 β̇
︸ ︷︷ ︸
ωCK,C

×

−(d− s) cosβ
0

(d− s) sinβ


︸ ︷︷ ︸

rKD,C

. (6.33)

In this particular case, Equation (6.33) simplifies to

ṙCD,C =
∂rCD,C
∂β

β̇ =

 d sinβ
0

d cosβ

 β̇ . (6.34)

The use of the partial derivative should indicate that in general the momentary
position of the point D, where the damper is attached to the knuckle, may
depend on more than one generalized coordinate. Hence, the damper velocity
is given by

v = eTDE,C
∂rCD,C
∂β

β̇ =
∂v

∂β̇
β̇ = ṡ =

∂s

∂β
β̇ , (6.35)

where β̇, the time derivative of the generalized coordinate β, serves as the
trivial generalized velocity. Then, the relationship

∂v

∂β̇
=

∂s

∂β
, (6.36)

which can be deduced from Equation (6.35) by simply inspecting the corre-
sponding terms, will hold in general. As mentioned in Section 6.1.3 the damper
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force FD is provided as a function of the damper velocity v in standard ap-
plications. According to Equation (6.20), the contribution to the generalized
force related to the knuckle motion β is obtained finally as

qβFD =

(
∂v

∂β̇

)T
FD (v) , (6.37)

where the partial derivative of the damper velocity v with respect to the
angular velocity of the knuckle β̇ is provided in Equation (6.35).

A simple quarter car model with a trailing arm suspension and a linear
torsional spring damper combination acting in the revolute joint was presented
in Section 1.5. Replacing the torsional damper by a nonlinear point-to-point
damper model requires just a few changes in the corresponding MATLAB
programs. At first, the function given in Listing 1.4 is extended and slightly
modified to the function provided by Listing 6.2

Listing 6.2
Function qcm nl f.m: Quarter Car Model with Point-to-Point Damper Ele-
ment

1 function xdot = qcm_nl_f(t,x)

2 % quarter car model with trailing arm suspension and nonlinear damper

3
4 global g s a b d e f h r0

5 global mC mK mW ThetaK ThetaW

6 global Ts0 cs cx cz dx damper_table

7 global ustep tstep

8
9 % state variables

10 z = x(1); beta = x(2); phi = x(3); zd = x(4); betad = x(5); phid = x(6);

11
12 % step input to actuator @ t = tstep

13 if t < tstep, u = 0; else u = ustep; end

14
15 % torque in revolute joint (preloaded linear torsional spring only)

16 Ts = - ( Ts0 + cs*beta );

17
18 % point to point damper element with non linear characteristic

19 rCDC=[-d*cos(beta);0;-b+d*sin(beta)]; rCEC=[-e;0;f]; % attachment points

20 rDEC = rCEC-rCDC; LDE=norm(rDEC); eDEC = rDEC/LDE; % action line

21 dvdbed=eDEC’*[d*sin(beta);0;d*cos(beta)]; v = dvdbed*betad; % velocity

22 FD=-interp1l(damper_table,v); qFDbe = dvdbed*FD; % element and general. force

23
24 % tire deflection (static tire radius)

25 rS = h + z - b + a*sin(beta) - u ;

26
27 % longitudinal tire force (adhesion assumed)

28 Fx = - cx*(a*(1-cos(beta))-rS*phi) - dx*(a*sin(beta)*betad-rS*phid);

29
30 % vertical tire force (contact assumed)

31 Fz = cz *( r0 - rS );

32
33 % mass matrix

34 Massma=[ mC+mK+mW (s*mK+a*mW)*cos(beta) 0 ; ...
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35 (s*mK+a*mW)*cos(beta) ThetaK+s^2*mK+a^2*mW 0 ; ...

36 0 0 ThetaW ];

37
38 % vector of generalized forces and torques

39 qgen=[ Fz-(mC+mK+mW)*g+(s*mK+a*mW)*sin(beta)*betad^2 ; ...

40 Ts-(s*mK+a*mW)*cos(beta)*g+a*(Fx*sin(beta)+Fz*cos(beta))+qFDbe; ...

41 -rS*Fx ];

42
43 % state derivatives

44 xdot = [ zd; betad; phid; Massma\qgen ];

45
46 end

The global variables d, e, f describe the damper attachment points according
to Figure 6.8 and the nonlinear damper characteristic, defined by a look-up
table, is stored in the global variable damper table. Extending the Listing 1.2
by the lines
d = 0.425; % [m] distance joint B damper attachment at knuckle

e = 0.420; % [m] damper attachment at chassis (horizontal position C-E)

f = 0.020; % [m] damper attachment at chassis (vertical position C-E)

and adding the look-up table given in Listing 6.1 will provide the complete
model data. The torque Ts in the revolute joint, calculated in line 17, is
reduced to a preloaded linear torsional spring. The calculations for the point-
to-point damper element are done in lines 20 to 23. The function interp1l,
provided in Listing 6.3, calls the MATLAB-Function interp1q for a fast linear
interpolation in the look-up table and performs a linear extrapolation for
values of xi that exceed the range of the x-values defined in the first column
of the table.

Listing 6.3
Function interp1l.m: Evaluation of a Look-Up Table

1 function fi = interp1l( table, xi )

2 % linear inter- and extrapolation in lookup table: table = [x, f]

3
4 [n,m] = size(table); % size of table

5
6 if xi >= table(1,1) && xi <= table(n,1) % intermediate points

7 fi = interp1q(table(:,1),table(:,2),xi);

8 return

9 end

10 if xi < table(1,1) % linear extrapolation to the left

11 dfdx = ( table(2,2) - table(1,2) ) / ( table(2,1) - table(1,1) );

12 fi = table(1,2) + dfdx * ( xi - table(1,1) );

13 return

14 end

15 if xi > table(n,1) % linear extrapolation to the right

16 dfdx = ( table(n,2) - table(n-1,2) ) / ( table(n,1) - table(n-1,1) );

17 fi = table(n,2) + dfdx * ( xi - table(n,1) );

18 return

19 end

20
21 end
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In addition, the generalized damper force assigned to the variable qFDbe is
appropriately added in line 42 to the generalized force vector. The simulation
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FIGURE 6.9
Simulation results with linear and nonlinear damper.

results of a step input are shown in Figure 6.9. As done in Section 1.5.5, the
quarter car model is exposed at t = 0.75 s to a step input. The simulation
results of the model extended to a point-to-point damper element with a non-
linear characteristic are compared to those generated with the model equipped
with a simple linear torsional damper. The time histories of the chassis dis-
placements z and the knuckle rotation β, as well as the vertical chassis accel-
eration z̈, are quite different although the overall damping behavior is rather
the same. Due to the fact that the nonlinear damper has less resistance during
compression than rebound, the knuckle rotation induced by the step input is
faster and much larger in the nonlinear case. As a consequence, the impact
to the chassis mass is reduced, which results in a significantly less maximum
acceleration (2.76g instead of 3.59g). Thus, the ride comfort can be improved
using appropriate nonlinear damper characteristics.

6.1.5 Rubber Elements

Force elements made of natural rubber or urethane compounds are used in
many locations on the vehicle suspension system, Figure 6.10. Those elements
require no lubrication, isolate minor vibration, reduce transmitted road shock,
operate noise-free, offer high load carrying capabilities, and are very durable.
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FIGURE 6.10
Rubber elements in vehicle suspension.

During suspension travel, the control arm bushings provide a pivot point
for the control arm. They also maintain the exact wheel alignment by fixing the
lateral and vertical location of the control arm pivot points. During suspension
travel, the rubber portion of the bushing must twist to allow control arm
motion. Thus, an additional resistance to suspension motion is generated.

Bump and rebound stops limit the suspension travel. The compliance of
the topmount avoids the transfer of large shock forces to the chassis. The
subframe mounts isolate the suspension system from the chassis and allow
elasto-kinematic steering effects of the whole axle.

It turns out that those elastic elements can hardly be described by simple
spring and damper characteristics, FS = FS(u) and FD = FD(v), because
their stiffness and damping properties change with the frequency of the mo-
tion. Here, more sophisticated dynamic models are needed.

6.2 Dynamic Force Elements

6.2.1 Testing and Evaluating Procedures

6.2.1.1 Simple Approach

The effect of dynamic force elements is usually evaluated in the frequency
domain. For this, on test rigs or in a simulation, the force element is excited
by sine waves

xe(t) = A sin(2π f t) = A sin
(

2π
T t
)

(6.38)
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with different frequencies f0 ≤ f ≤ fE and amplitudes Amin ≤ A ≤ Amax,
where T = 1/f denotes the time period of the excitation. Starting at t = 0,
the force element will be in steady state after several periods t ≥ nT where
the number of cycles n = 2, 3, . . . must be chosen appropriately. The system
response is periodic F (t + T ) = F (T ) due to nonlinearities, it will be not
harmonic, however. That is why the measured or calculated force signal F =
F (t) will be approximated by harmonic functions as much as possible. The
first harmonic approximation is defined by

F (t)︸︷︷︸
measured/
calculated

≈ F0 + α sin( 2π
T t) + β cos( 2π

T t)︸ ︷︷ ︸
first harmonic approximation

. (6.39)

A least squares approach over one period from nT to (n+1)T

1

2

(n+1)T∫
nT

{
F0+α sin

(
2π
T t
)
+β cos

(
2π
T t
)
− F (t)

}2
dt −→ Minimum (6.40)

grants an approximation that fits the original at best. The differentiation of
Equation (6.40) with respect to the coefficients F0, α, and β provides the
necessary conditions for a minimum. It results in a system of linear equations∫(

F0 + α sin
(

2π
T t
)

+ β cos
(

2π
T t
)
− F (t)

)
dt = 0 ,∫(

F0 + α sin
(

2π
T t
)

+ β cos
(

2π
T t
)
− F (t)

)
sin
(

2π
T t
)
dt = 0 ,∫(

F0 + α sin
(

2π
T t
)

+ β cos
(

2π
T t
)
− F (t)

)
cos
(

2π
T t
)
dt = 0 ,

(6.41)

where the integral limits from nT to (n+1)T were just omitted. As the in-
tegration is performed here exactly over one period from nT to (n+1)T , the
integrals in Equation (6.41) will simplify to∫

dt = T,
∫

sin dt=
∫

cos dt=
∫

sin cos dt=0 ,
∫

sin2 dt=
∫

cos2 dt= 1
2T ,

(6.42)
which immediately deliver the coefficients as

F0 = 1
T

∫
F dt , α = 2

T

∫
F sin dt , β = 2

T

∫
F cos dt . (6.43)

However, these are exactly the first coefficients of a Fourier approximation.
The first-order harmonic approximation in Equation (6.39) can now be written
as

F (t) = F0 + F̂ sin
(

2π
T t+ Ψ

)
= F0 + F̂ sin (2π f t+ Ψ) , (6.44)

where the amplitude and the phase angle of the sine function are defined by

F̂ =
√
α2 + β2 and tan Ψ =

β

α
. (6.45)
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FIGURE 6.11
Linear preloaded spring and linear damper in parallel.

Figure 6.11 shows a simple nondynamic force element consisting of a linear
spring with the stiffness c that is preloaded by the force F0 and a linear
damper with the constant d in parallel. It responds to the periodic excitation
u = A sin(2πft) = A sin

(
2π
T t
)

with the force

F (t) = F0 + c u + d u̇ = F0 + cA︸︷︷︸
α

sin (2πft) + d 2πf︸ ︷︷ ︸
β

A cos (2πft) , (6.46)

which represents exactly the first harmonic signal defined in Equation (6.39).
Using Equation (6.45), it can be written in the form of Equation (6.44) where
the amplitude and the phase angle are simply given by

F̂ = A

√
c2 + (2πfd)

2
and tan Ψ =

d 2πf A

cA
= 2πf

d

c
. (6.47)

Hence, the response of a pure spring element (c 6= 0 and d = 0) is characterized
by a force signal with the amplitude F̂ = Ac and a vanishing phase angle
Ψ = 0, or respectively, tan Ψ = 0. Whereas, a pure damper element (c = 0
and d 6= 0) will respond with a force signal of the amplitude F̂ = 2πfdA
and a maximum phase angle of Ψ = 90◦, which corresponds to tan Ψ →
∞. As a consequence, the stiffness and damping properties of general force
elements (nonlinear and/or dynamic) will be characterized in the sense of a
first harmonic approximation by the dynamic stiffness, defined by

cdyn =
F̂

A
, (6.48)

and the phase angle Ψ, which is also called the dissipation angle.

6.2.1.2 Sweep Sine Excitation

In practice, the frequency response of a system is not determined punctually,
but continuously. For this, the system is excited by a sweep sine. In analogy
to the simple sine function

xe(t) = A sin(2π f t) , (6.49)

where the period T = 1/f appears as prefactor at differentiation

ẋe(t) = A 2π f cos(2π f t) =
2π

T
A cos(2π f t) . (6.50)
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A generalized sine function can be constructed now. Starting with

xe(t) = A sin(2π h(t)) , (6.51)

the time derivative results in

ẋe(t) = A 2π ḣ(t) cos(2π h(t)) . (6.52)

In the following we demand that the function h(t) generates periods fading
linearly in time;

ḣ(t) =
1

T (t)
=

1

p− q t
, (6.53)

where p > 0 and q > 0 are constants yet to determine. Equation (6.53) yields

h(t) = − 1

q
ln(p− q t) + C . (6.54)

The initial condition h(t = 0) = 0 fixes the integration constant to

C =
1

q
ln p . (6.55)

With Equations (6.55) and (6.54), Equation (6.51) results in a sine-like func-
tion

xe(t) = A sin
(2π

q
ln

p

p− q t

)
, (6.56)

which is characterized by linear fading periods. The important zero values for
determining the period duration lie at

1

q
ln

p

p− q tn
= 0, 1, 2, · · · or

p

p− q tn
= en q , with n = 0, 1, 2, · · · (6.57)

and
tn =

p

q

(
1− e−n q

)
, n = 0, 1, 2, · · · (6.58)

The time difference between two zero values yields the period

Tn = tn+1 − tn = p
q

(
1−e−(n+1)q − 1+e−nq

)
= p

q

(
−e−nq e−q + e−nq

)
= p

q e
−nq (1− e−q) , n = 0, 1, 2, · · · (6.59)

For the first (n = 0) and last (n = N) period, one finds

T0 = 1
f0

= p
q

(
1− e−q

)
,

TN = 1
fe

= p
q

(
1− e−q

)
e−N q = T0 e

−N q = 1
f0
e−N q .

(6.60)

With the frequency range to investigate, given by the initial f0 and final fre-
quency fE , the parameter q and the ratio q/p can be calculated from Equa-
tion (6.60),

q =
1

N
ln
fE
f0

and
q

p
= f0

{
1−

[
fE
f0

] 1
N
}
, (6.61)
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with N + 1 fixing the number of cycles. The passing of the whole frequency
range will then take the time

tN+1 =
p

q

(
1− e−(N+1) q

)
. (6.62)

Even if the period of the cycles is changed rather rapidly, the sweep sine gen-
erated by Equation (6.56) is close to pure sine functions calculated with the
periods of the corresponding cycles, Figure 6.12. In this simple example the
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FIGURE 6.12
Sweep sine example.

sine-like function sweeps from f0 = 1 Hz to fe = 2 Hz in N + 1 = 4 cy-
cles. The parameter q = 0.2310 and the ratio q/p = 0.2063 are determined
by Equation (6.61) and the duration tN+1 = 2.9237 s is provided by Equa-
tion (6.62). This method is very efficient in practical applications because it
allows sweeping through large frequency ranges in a rather short time.

6.2.2 Spring Damper in Series

6.2.2.1 Modeling Aspects

Usually, suspension dampers are attached at the chassis via rubber topmounts.
This combination represents a dynamic force element where a spring is ar-
ranged in series to a damper, Figure 6.13. The coordinate s describes the
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FIGURE 6.13
Spring and damper in series.

displacements of the force element and u denotes the overall deflection of
the force element. Then, the forces acting in the spring and the damper are
modeled as

FS = FS(s) and FD = FD(v) = FD (u̇− ṡ) , (6.63)
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where v = u̇− ṡ denotes the time derivative of the damper displacement. For
this massless element, the force balance

FD (u̇− ṡ) = FS(s) (6.64)

must hold. By introducing F−1
D as the inverse damper characteristic, Equa-

tion (6.64) converts into a nonlinear first-order differential equation for the
force displacement s,

ṡ = − F−1
D (FS(s)) + u̇ , (6.65)

which is driven by the time derivative u̇ of the overall element deflection and
characterizes the dynamic behavior of this force element.

6.2.2.2 Linear Characteristics

If the spring and the damper are modeled by linear characteristics, the forces
in the spring and the damper are simply given by

FS = c s and FD = d (u̇− ṡ) , (6.66)

where c names the spring stiffness and d denotes the damping constant. Now,
the force balance FS = FD delivers a linear first-order differential equation
for the spring displacement s,

d (u̇− ṡ) = c s or ṡ = − c
d
s+ u̇ or

d

c
ṡ = −s+

d

c
u̇ , (6.67)

where the ratio between the damping coefficient d and the spring stiffness c
acts as time constant T = d/c hereby. In this simple case, the steady-state
response to a pure harmonic excitation

u(t) = u0 sin Ωt , and u̇ = u0Ω cos Ωt , respectively, (6.68)

can be calculated quite easily. The steady-state response will be of the same
type as the excitation. Inserting

s∞(t) = u0 (a sin Ωt+ b cos Ωt) (6.69)

into Equation (6.67) results in

d

c
u0 (aΩ cos Ωt− bΩ sin Ωt)︸ ︷︷ ︸

ṡ∞

= −u0 (a sin Ωt+ b cos Ωt)︸ ︷︷ ︸
s∞

+
d

c
u0Ω cos Ωt︸ ︷︷ ︸

u̇

.

(6.70)
Collecting all sine and cosine terms, we obtain two equations,

− d

c
u0 bΩ = −u0 a and

d

c
u0 aΩ = −u0 b +

d

c
u0Ω , (6.71)
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which can be solved for the two unknown parameters,

a =
Ω2

Ω2 + (c/d)
2 and b =

c

d

Ω

Ω2 + (c/d)
2 . (6.72)

Then, the steady-state force response reads as

FS = c s∞ = c u0
Ω

Ω2 + (c/d)
2

(
Ω sin Ωt +

c

d
cos Ωt

)
, (6.73)

which can be transformed to

FS = F̂S sin (Ωt+ Ψ) , (6.74)

where the force magnitude F̂S and the dissipation angle Ψ are given by

F̂S=
c u0 Ω

Ω2+(c/d)2

√
Ω2+(c/d)2 =

c u0 Ω√
Ω2 + (c/d)2

, (6.75)

Ψ=arctan
c/d

Ω
, (6.76)

The dynamic stiffness cdyn = F̂S/u0 and the dissipation angle Ψ are plotted in
Figure 6.14 for different damping values. With increasing frequency, the spring
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FIGURE 6.14
Frequency response of a linear spring damper combination.

damper combination changes from a pure damper performance (cdyn → 0 and
Ψ ≈ 90◦) to a pure spring behavior (cdyn ≈ c and Ψ → 0). The frequency
range, where the element provides stiffness and damping, is controlled by the
value for the damping constant d.
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6.2.2.3 Nonlinear Damper Topmount Combination

In Listing 6.1, a nonlinear damper characteristic FD = FD(v) is described by
a look-up table, which can easily be converted to the inverse characteristic.
For the sake of simplicity, the compliance of the topmount will be described by
a linear spring here. The function damper topmount f in Listing 6.4 provides
the sweep sine excitation and computes the dynamics of the damper topmount
combination.

Listing 6.4
Function damper topmount f.m: Damper Topmount Dynamics

1 function sdot = damper_topmount_f(t,s)

2 % damper topmount dynamics including sweep sine excitation

3
4 global damper_inv c p q amp

5
6 % sweep excitation

7 ud = 2*pi*amp/(p-q*t)*cos(2*pi/q*log(p/(p-q*t)));

8 % spring force (linear)

9 fs = c*s;

10 % force element dynamics

11 sdot = -interp1l(damper_inv,fs) + ud ;

12
13 end

The corresponding MATLAB-Script damper topmount main provided in List-
ing 6.5 sets the data, runs the simulation in the frequency range from f0 =
0.1Hz to fE = 25Hz, performs the least squares approximation in each cycle
by solving the appropriate overdetermined system of linear equations, com-
putes the dynamic stiffness as well as the dissipation angle, and finally plots
the results. The stiff low-order solver ode23s is used for the time integration
because the stiffness of the topmount is considerably large.

Listing 6.5
Function damper topmount main.m: Damper Topmount Frequency Response

1 global damper_inv c p q amp

2
3 % damper characteristics F_D=F_D(v) as lookup table [ v F_D ]

4 ffr = 100; % define friction force and extend lookup table appropriately

5 damper_table = ...

6 [ -1.5080 -3500-ffr; ...

7 -1.1310 -2800-ffr; ...

8 -0.5655 -1500-ffr; ...

9 -0.4524 -1250-ffr; ...

10 -0.3016 -1000-ffr; ...

11 -0.1508 -650-ffr; ...

12 -0.0377 -200-ffr; ...

13 0.0000 0-ffr; ...

14 0.0000 0+ffr; ...

15 0.0377 100+ffr; ...

16 0.1508 150+ffr; ...

17 0.3016 200+ffr; ...
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18 0.4524 250+ffr; ...

19 0.5655 300+ffr; ...

20 1.1310 500+ffr; ...

21 1.5080 600+ffr ];

22
23 % inverse damper characteristic (lookup table)

24 damper_inv = [damper_table(:,2),damper_table(:,1)];

25
26 % topmount stiffness [N/m]

27 c = 400000;

28
29 % define sweep sine excitation

30 f0 = 0.1; % lowest frequency [Hz]

31 fe = 25; % highest frequency [Hz]

32 n = 50; % number of frequency interval

33 amp= 0.01; % amplitudes [m]

34
35 % sweep sine parameter

36 q = 1/n * log ( fe/f0 ) ; p = q / ( f0 * ( 1 - (f0/fe)^(1/n) ) ) ;

37
38 % pre-allocate vars to speed up loop

39 freq=zeros(n+1,1); f0=zeros(n+1,1); fs=zeros(n+1,1); fc=zeros(n+1,1);

40
41 t0=0; s0=0; x0=s0;% initial conditions for first cycle

42 for ifreq=1:n+1

43
44 % Integrate from t0 to te results in freq = 1/(te-t0)

45 te=p/q*(1-exp(-ifreq*q));

46 freq(ifreq)=1/(te-t0); disp([’f=’,num2str(freq(ifreq))])

47 [t,xout] = ode23s(@damper_topmount_f,[t0,te],x0);

48
49 % excitation

50 arg = 2*pi/q*log(p./(p-q*t)); se=sin(arg); ce=cos(arg);

51
52 % element force = force in topmount

53 s = xout(:,1); f = c*s;

54
55 % curve fit to force (1. harmonic): f = f0 + fs*sin(arg) + fc*cos(arg)

56 A = [ones(size(arg)) se ce ] ; coeff = A \ f ;

57 f0(ifreq) = coeff(1); % offset

58 fs(ifreq) = coeff(2); % sine part

59 fc(ifreq) = coeff(3); % cosine part

60
61 % set initial conditions for next cycle

62 t0=te; x0=xout(length(t),:)’;

63
64 end

65
66 % calculate dynamic stiffness and phase angle (tan(psi)=beta/alpha)

67 cdyn = sqrt(fs.^2+fc.^2)/amp; psi = atan2(fc,fs)*180/pi;

68
69 % plot frequence response

70 subplot(3,1,1), plot(freq,cdyn,’k’,’Linewidth’,1), grid on

71 subplot(3,1,2), plot(freq, psi,’k’,’Linewidth’,1), grid on

72 subplot(3,1,3), plot(freq, f0,’k’,’Linewidth’,1), grid on
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Note that the nonlinear damper characteristic is extended to a dry friction
component. This will cause the damper force FD to jump from −FFr to −FFr
at vanishing damper velocities v = 0, which results in a discontinuous damper
characteristic. However, the dynamics of the damper topmount combination
is computed via the inverse damper characteristic, which is still nonlinear and
may have sharp bends but nevertheless is a continuous function, Figure 6.15.
The frequency response of the damper topmount combination is shown in
Figure 6.16. Besides the results for an excitation amplitude of A = 1 cm that
will be generated by the MATLAB-Script in Listing 6.5, the results for the
excitation amplitude of A = 1mm and A = 2 cm are plotted too.
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FIGURE 6.15
Nonlinear damper characteristic with dry friction and its inverse.
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FIGURE 6.16
Frequency response of a damper topmount combination.

The overall behavior is similar to the linear spring damper element in se-
ries shown in Figure 6.14. Again, the damping properties decay with higher
frequencies. This reduces the impact to the chassis when the vehicle is driven
on a surface like cobble stones where higher frequencies are dominating the
excitation. The frequency axis is scaled linearly because of the small frequency
range. Due to the sharp bends in the inverse damper characteristic, the force
element is not always perfectly in a steady-state condition, which causes small
fluctuations in the frequency response, in particular visible in the phase angle
ψ. In addition, the response depends on the excitation amplitude A, which



Force Elements 185

is typical for nonlinear force elements. As the damper shows more resistance
during its rebound cycle than its compression cycle, the least squares approx-
imation results in a force offset that increases with higher frequencies.

Force displacement diagrams for different amplitudes and frequencies il-
lustrate the complex nonlinear behavior of this force element, Figure 6.17. In
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FIGURE 6.17
Force displacement diagrams of a damper topmount combination

particular, at low frequencies (f = 0.5 Hz and f = 1 Hz) and small ampli-
tudes (A = 2mm) the force displacement curves show typical stick slip cycles
with an inclination at the left and right side corresponding with the stiffness
c = 400 kN/m of the topmount and a a magnitude that is nearly entirely
determined by the friction force FFr = 0.1 kN . The results for a larger exci-
tation amplitude (A = 2 cm) are close to the pure damper response shown in
Figure 6.6. However, the compliance of the topmount adds some spring effects
that distort the force displacement curves accordingly.

6.2.3 General Dynamic Force Model

To approximate the complex dynamic behavior of bushings and elastic mounts,
different spring damper models can be combined. Usually, several dynamic
force elements consisting of a spring in series to a damper are arranged in
parallel to a single spring that carries the static load and a damper, Fig-
ure 6.18. Spring damper elements in series are often referred as Maxwell mod-
els, whereas spring damper elements in parallel are known as Kelvin-Voigt or
just Voigt models.

Springs and dampers may be described quite simply by their stiffness
c0, c1 . . . cN and their damping constants d0, d1 . . . dN , or by nonlinear char-
acteristics. As done within the damper topmount model (c.f. Section 6.2.2.3),
each dynamic force element may be supplemented by a dry friction compo-
nent, FFi, i = 1(1)N , which will make it possible to describe hysteresis effects
and to take even a stress history into account.
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FIGURE 6.18
General dynamic force model.

6.2.4 Hydro-Mount

At first, hydro-mounts were introduced in the elastic suspension of engines
to provide sufficient damping on one side and to achieve acoustic decoupling
on the other side. Today, these dynamic force elements are also employed
in axle suspensions. The principle and a dynamic model of a hydro-mount
are shown in Figure 6.19. At small deformations, the change in the volume
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FIGURE 6.19
Hydro-mount: Layout and dynamic model.

in chamber 1 is compensated by displacements of the membrane. When the
membrane reaches the stop, the liquid in chamber 1 is pressed through a ring
channel into chamber 2. The ratio of the chamber cross-section to the ring
channel cross-section is very large. Thus the fluid is moved through the ring
channel at very high speed. This results in remarkable inertia and resistance
forces (damping forces). The force effect of a hydro-mount is combined from
the elasticity of the main spring and the volume change in chamber 1. The
actual mass MFR of the fluid in the ring channel is amplified by the ratio of
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the cross-section areas AC and AR of the chamber and the ring channel and
yields the generalized fluid mass

MF =
(AC
AR

)2

MFR . (6.77)

The motions of the fluid mass cause friction losses in the ring channel, which
in a first approximation are modeled proportional to the velocity of the gen-
eralized fluid mass,

FD = dF ṡ , (6.78)

where dF denotes the corresponding damping constant. The force generated
by the hydro-mount is given by

F = cM u + FF (u− s) , (6.79)

where u and s denote the overall displacement and the displacement of the
generalized fluid mass MF , respectively. The force effect of the main spring
FM = cM u is simply modeled by a linear spring with the constant cM and
the fluid force FF = FF (u− s) combines the compliance of the fluid and the
elasticity of the membrane bearing. The fluid compliance is modeled by a
linear spring with the stiffness cF and the membrane bearing is approximated
by a rounded clearance. Then, the force FF will be provided by the function
f smooth clear given in Listing 6.6

Listing 6.6
Function f smooth clear: Force Characteristic with Smoothed Clearance

1 function f = f_smooth_clear( x, c, s )

2 if abs(x) >= 2*s

3 f = sign(x) * c * ( abs(x) - s ) ;

4 else

5 f = sign(x) * c/(4*s) * x^2 ;

6 end

7 end

The spring is characterized by its stiffness c and the clearance, defined by
the displacement s, is smoothed in the interval −2s ≤ x ≤ +2s by appropriate
parabolas. This is a quite realistic behavior in the case of the membrane
bearing and avoids flutter problems that would occur when a sharp bend forms
the transition from the clearance to the spring force. Then, the equation of
motion for the fluid mass reads as

MF s̈ = − FF − FD . (6.80)

The membrane clearance makes Equation (6.80) nonlinear and affects the
overall force in the hydro-mount provided by Equation (6.79) too. The
dynamic equations of the hydro-mount are provided in the Function hy-
dro mount f, which is given in Listing 6.7.
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Listing 6.7
Function hydro mount f.m: Hydro-Mount Dynamics

1 function xdot = hydro_mount_f(t,x)

2 % hydro mount including sweep sine excitation

3
4 global mf cf sf df p q amp

5 % get states

6 s = x(1); sdot = x(2);

7 % sweep sine excitation

8 arg=2*pi/q*log(p/(p-q*t)); u=amp*sin(arg);

9 % fluid force including membran clearance

10 ff = f_smooth_clear((u-s), cf, sf);

11 % acceleration of generalized fluid mass

12 sddot = ( ff - df*sdot ) / mf ;

13 % state derivatives

14 xdot = [ sdot; sddot ] ;

15
16 end

The MATLAB-Script in Listing 6.5 that computes the frequency response
for a damper topmount combination can easily be adapted to the hydro-
mount. The appropriately modified MATLAB-Script is provided in List-
ing 6.8.

Listing 6.8
Script hydro mount main.m: Hydro-Mount Frequency Response

1 global mf cf sf df p q amp

2
3 % define sweep sine excitation

4 f0 = 1; % lowest frequency [Hz]

5 fe = 100; % highest frequency [Hz]

6 n = 50; % number of frequency interval

7 amp= 0.0005; % amplitude [m]

8
9 % sweep sine parameter

10 q = 1/n * log ( fe/f0 ) ; p = q / ( f0 * ( 1 - (f0/fe)^(1/n) ) ) ;

11
12 % model data

13 mf=25; % generalized fluid mass [kg]

14 cm=125000; % stiffness of main spring [N/m]

15 df=750; % fluid damping [N/(m/s)]

16 cf=100000; % fluid stiffness [N/m]

17 sf=0.0002; % clearance in mebrane support [m]

18
19 % pre-allocate vars to speed up loop

20 freq=zeros(n+1,1); f0=zeros(n+1,1); fs=zeros(n+1,1); fc=zeros(n+1,1);

21
22 t0=0; s0=0; sd0=0; x0 = [ s0 sd0 ]; % initial condition first cycle

23 for ifreq=1:n+1

24
25 % Integrate from t0 to te results in freq = 1/(te-t0)

26 te=p/q*(1-exp(-ifreq*q));

27 freq(ifreq)=1/(te-t0); disp([’f=’,num2str(freq(ifreq))])

28 [t,xout] = ode45(@hydro_mount_f,[t0,te],x0);
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29
30 % excitation

31 arg=2*pi/q*log(p./(p-q*t)); se=sin(arg); ce=cos(arg);

32
33 % element force = force in main spring + fluid force

34 u=amp*se; f = cm*u;

35 for i=1:length(f), f(i)=f(i)+f_smooth_clear((u(i)-xout(i,1)),cf,sf); end

36
37 % curve fit to force (1. harmonic): f = f0 + fs*sin(arg) + fc*cos(arg)

38 A = [ ones(size(arg)) se ce ] ; coeff = A \ f ;

39 f0(ifreq) = coeff(1); % offset

40 fs(ifreq) = coeff(2); % sine part

41 fc(ifreq) = coeff(3); % cosine part

42
43 % set initial conditions for next cycle

44 t0=te; x0=xout(length(t),:)’;

45
46 end

47
48 % calculate dynamic stiffness and phase angle (tan(psi)=beta/alpha)

49 cdyn = sqrt(fs.^2+fc.^2)/amp; psi = atan2(fc,fs)*180/pi ;

50
51 % plot frequence response

52 subplot(3,1,1), semilogx(freq,cdyn,’k’,’Linewidth’,1), grid on

53 subplot(3,1,2), semilogx(freq, psi,’k’,’Linewidth’,1), grid on

54 subplot(3,1,3), semilogx(freq, f0,’k’,’Linewidth’,1), grid on

Note that the standard solver ode45 is used for the time integration because
the dynamics of the hydro-mount are not stiff. The results, plotted in a semi
logarithmic scaling, are shown in Figure 6.20. The dissipation angle ψ illus-
trates that the damping properties of the hydro-mount are limited to a small
frequency range and reaches its maximum at f ≈ 8Hz here. In particular, at
higher frequencies, damping is not noticeable at all, which represents a very
good compromise between noise isolation at higher frequencies (f > 20 Hz)
and vibration damping in the range from 5 to 15 Hz. However, the dynamic
stiffness cdyn hardens significantly at higher frequencies, which will change
the soft layout of an engine suspension to hard and transmit the engine shake
caused by unbalanced masses to the chassis. The clearance in the membrane
bearing bypasses this effect, at least at small amplitudes (A = 0.5 mm) but
will then provide no damping.

Exercises

6.1 According to Figure 6.4, the layout of a U-shaped anti-roll bar is defined
by a = 220mm, b = 700mm and D = 19mm. The ratio between the vertical
displacements of the wheel center and the attachment points of the anti-roll
bar is given by iarb = 0.7.
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FIGURE 6.20
Frequency response of a hydro-mount.

Calculate its stiffness with respect to the vertical displacements of the attach-
ment points and the wheel centers when the shear modulus of steel is given
by G = 85 000N/mm2.

6.2 A damper is excited periodically with u = u0 sin(2πft) on a test rig.
The tests are performed with the fre-
quencies

f1 = 0.3Hz, f2 = 0.6Hz, f3 = 1.0Hz,
f4 = 1.5Hz, f5 = 2.5Hz, f6 = 4.0Hz

and an amplitude of u0 = 0.04m. The
results are displayed in a force displace-
ment diagram.

Generate the corresponding look-up
table that describes the nonlinear
damper characteristic F = F (u̇). ����� �
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6.3 Verify the results in Figure 6.9. Change the nonlinear damping charac-
teristic, which according to Listing 6.1 is provided as look-up table, by mul-
tiplying the force values with appropriate factors and study its influence on
the simulation results.
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7.1 Goals

The aim of vertical dynamics is the tuning of body suspension and damping
to guarantee good ride comfort, respectively a minimal stress of the load at
sufficient safety. The stress of the load can be judged fairly well by maximal
or integral values of the body accelerations. The wheel load Fz is linked to
the longitudinal force Fx and the lateral force Fy by the coefficient of friction.
The degressive influence of Fz on Fx and Fy as well as nonstationary pro-
cesses at the increase of Fx and Fy in the average lead to lower longitudinal
and lateral forces at wheel load variations. Maximal driving safety can there-
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fore be achieved with minimal variations in the wheel load. Small variations
of the wheel load also reduce road damage. The comfort of a vehicle is subjec-
tively judged by the driver and passengers. The vibration of a vehicle occurs
in several directions, contains many frequencies, and changes over time. Via
the seat it is transferred to all passengers. The driver is also exposed to the
vibration of the steering wheel. Whole-body vibration may cause sensations
(e.g., discomfort or annoyance), influence human performance capability, or
present a health and safety risk. According to ISO-Directive 2631 [15], root-
mean-square (r.m.s.) values of the body accelerations are used to judge the
the effects of vibration on health and comfort. Because the human response
to vibration is a function of frequency, the accelerations are filtered with fre-
quency weighting curves. Different approaches of describing the human sense
of vibrations by different metrics can be found in the literature [22].

The road excitation is transferred via the tire to the wheel, via the suspen-
sion system to the chassis and via the seat to the passengers. Soft suspension
systems reduce the r.m.s. acceleration values of the chassis but will need a
large suspension travel. Hence, a good ride comfort will always be a com-
promise between low acceleration values and limited suspension travel. The
chassis acceleration and the suspension travel will thus be used as objective
criteria.

7.2 From Complex to Simple Models

For detailed investigations of ride comfort and ride safety, sophisticated road
and vehicle models are needed [46]. The three-dimensional vehicle model,

FIGURE 7.1
Full vehicle model.

shown in Figure 7.1, includes an elastically suspended engine and dynamic
seat models. The elasto-kinematics of the wheel suspension was described as
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fully nonlinear. In addition, dynamic force elements for the damper topmount
combination and the hydro-mounts are used. Such sophisticated models not
only provide simulation results that are in good conformity to measurements
but also make it possible to investigate the vehicle dynamic attitude at an
early design stage.

Much simpler models can be used, however, for fundamental studies of
ride comfort and ride safety. If the vehicle is mainly driving straight ahead
at constant speed, the hub and pitch motion of the chassis as well as the
vertical motion of the axles will dominate the overall movement. Then, planar
vehicle models can be used. A nonlinear planar model consisting of five rigid
bodies with eight degrees of freedom is discussed in [45]. The model, shown
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FIGURE 7.2
Sophisticated planar vehicle model.

in Figure 7.2, considers nonlinear spring characteristics of the vehicle body
and the engine suspension, as well as degressive characteristics of the shock
absorbers. Even the suspension of the driver’s seat is taken into account here.
Planar vehicle models suit perfectly with a single track road model.

In a further simplification, the chassis is considered as one rigid body. The
corresponding simplified planar model has four degrees of freedom then, which
at first are characterized by the hub and pitch motion of the chassis zC , βC ,
and the vertical motion of the axles zA1 and zA2, Figure 7.3. By assuming
small pitch motions (βC � 1), the hub and pitch motion of the chassis can be
combined to two new coordinates

zC1 = zC − a1 βC and zC1 = zC + a2 βC , (7.1)

which describe the vertical motions of the chassis in the front and in the rear.
In addition, mass and inertia properties of the chassis originally characterized
by M and Θ are now represented by three point masses M∗, M1, M2, which
are located in the chassis center C and on top of the front and the rear axle.
The point masses must add up to the chassis mass

M1 +M∗ +M2 = M , (7.2)
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FIGURE 7.3
Vehicle model for basic comfort and safety analysis.

and they have to provide the same inertia around an axis located in the chassis
center C and pointing into the lateral direction

a2
1M1 + a2

2M2 = Θ . (7.3)

The correct location of the center of gravity is assured by

a1M1 = a2M2 . (7.4)

Now, Equations (7.3) and (7.4) yield the main masses

M1 =
Θ

a1(a1+a2)
and M2 =

Θ

a2(a1+a2)
, (7.5)

and the coupling mass

M∗ = M

(
1− Θ

Ma1a2

)
(7.6)

follows from Equation (7.2). If the mass and the inertia properties of a real
vehicle happen to result in a vanishing or at least in a neglectible coupling mass
M∗ � M1,M2, then the planar model with four degrees of freedom can be
represented by two separate models with two degrees of freedom that describe
the vertical motion of the axle and the hub motion of the corresponding chassis
mass on top of each axle. By using half the chassis and half the axle mass, we
finally end up in quarter car models.

The data in Table 7.1 show that for a wide range of passenger cars the
coupling mass is smaller than the corresponding chassis masses, M∗ < M1

and M∗ < M2. In these cases, the two mass models or the quarter car model
represent quite a good approximation of the simple planar model. For com-
mercial vehicles and trucks, however, where the coupling mass has the same
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TABLE 7.1
Mass and Inertia Properties of Vehicles and Corresponding Model Data2

Vehicle and
Model Properties

Mid-
Size
Car

Full-
Size
Car

Sports
Utility
Vehicle

Com-
mercial
Vehicle

Heavy
Truck

Front
axle
mass

m1 [kg] 80 100 125 120 600

Rear
axle
mass

m2 [kg] 80 100 125 180 1100

Center
of
gravity

a1 [m]
a2 [m]

1.10
1.40

1.40
1.40

1.45
1.38

1.90
1.40

2.90
1.90

Chassis
mass M [kg] 1100 1400 1950 3200 14300

Chassis
inertia Θ [kgm2] 1500 2350 3750 5800 50000

Discrete
mass
model

M1 [kg]
M∗ [kg]
M2 [kg]

545
126
429

600
200
600

914
76

960

925
1020
1255

3592
5225
5483

magnitude as the corresponding chassis masses, the quarter car model will
serve for very basic studies only.

Finally, the function zR(s) provides road irregularities in the space domain,
where s denotes the distance covered by the vehicle and measured at the
chassis center of gravity. Then, the irregularities at the front and the rear axle
are given by zR(s + a1) and zR(s − a2), respectively, where a1 and a2 locate
the position of the chassis center of gravity C in the longitudinal direction. A
quarter car model with a trailing arm suspension was presented in Section 1.5,
further quarter car models are provided in this chapter.

For most vehicles, c.f. Table 7.1, the axle mass is much smaller than the
corresponding chassis mass, mi�Mi, i = 1, 2. Hence, for a first basic study,
axle and chassis motions can be investigated independently. Now, the quarter
car model is further simplified to two single mass models, Figure 7.4. The
chassis model neglects the tire deflection and the inertia forces of the wheel.
For the high frequent wheel motions, the chassis can be considered fixed to the
inertia frame. The equations of motion for the chassis and the wheel model
read as

M z̈C + dS żC + cS zC = dS żR + cS zR , (7.7)

m z̈W + dS żW + (cS + cT ) zW = cT zR , (7.8)

where zW and zC define the vertical motions of the wheel mass and the corre-
sponding chassis mass with respect to the steady-state position. The constants

2The commercial vehicle and the heavy truck is assumed to be fully laden, whereas the
cars are only partly loaded by two passengers at the front seats.
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FIGURE 7.4
Simple vertical vehicle models.

cS , dS describe the suspension stiffness and damping. The dynamic wheel load
is calculated by

FDT = cT (zR − zW ) , (7.9)

where cT is the vertical or radial stiffness of the tire and zR denotes the road
irregularities. In this simple approach the damping effects in the tire are not
taken into account.

7.3 Basic Tuning

7.3.1 Natural Frequency and Damping Ratio

At an ideally even track, the right side of the equations of motion provided
in Equations (7.7) and (7.8) vanishes because zR = 0 and żR = 0 will hold
then. The remaining homogeneous second-order differential equations can be
written in a more general form as

z̈ + 2 ζ ω0 ż + ω2
0 z = 0 , (7.10)

where ω0 represents the undamped natural frequency and ζ is a dimensionless
parameter called viscous damping ratio. For the chassis and the wheel model,
the new parameter are defined by

z → zC

ζ → ζC

ω2
0→ω2

0C

 Chassis: ζC =
dS

2
√
cSM

, ω2
0C =

cS
M

,

z→zW

ζ→ζW

ω2
0→ω2

0W

 Wheel: ζW =
dS

2
√

(cS+cT )m
, ω2

0W =
cS+cT
m

.

(7.11)
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The solution of Equation (7.10) is of the type

z(t) = z0 e
λt , (7.12)

where t denotes the time and z0, λ are constants yet to determine. Inserting
Equation (7.12) into Equation (7.10) results in

(λ2 + 2 ζ ω0 λ+ ω2
0) z0 e

λt = 0 . (7.13)

Nontrivial solutions z0 6= 0 are possible if

λ2 + 2 ζ ω0 λ+ ω2
0 = 0 (7.14)

will hold. The roots of the characteristic equation (7.14) depend on the mag-
nitude of the viscous damping ratio

ζ < 1 : λ1,2 = −ζ ω0 ± i ω0

√
1−ζ2 ,

ζ ≥ 1 : λ1,2 = −ω0

(
ζ ∓

√
ζ2−1

)
.

(7.15)

Figure 7.5 shows the root locus of the eigenvalues for different values of the
viscous damping ratio ζ. For damping ratios ζ ≥ 1, the eigenvalues λ1,2 are
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FIGURE 7.5
Eigenvalues λ1 and λ2 for different damping ratios ζ.

both real and negative. Hence, Eq. (7.12) will produce an exponentially decay-
ing solution. If ζ < 1 holds, the eigenvalues λ1,2 will become complex, where
λ2 is the complex conjugate of λ1. Now, the solution can be written as

z(t) = Ae−ζω0t sin
(
ω0

√
1−ζ2 t−Ψ

)
, (7.16)

where A and Ψ are constants that must be adjusted to given initial condi-
tions z(0) = z0 and ż(0) = ż0. The real part Re (λ1,2) = −ζω0 is always
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negative and determines the decay of the solution over time. The imaginary
part Im (λ1,2) = ω0

√
1−ζ2 defines the actual frequency of the vibration. The

actual frequency

ω = ω0

√
1−ζ2 (7.17)

tends to zero, ω → 0, if the viscous damping ratio will approach the critical
damping value ζ = 1. In a more general way, the relative damping may also
be judged by the ratio

Dλ =
−Re(λ1,2)

|λ1,2 |
. (7.18)

For complex eigenvalues that characterize vibrations with viscous damping
ratios ζ < 1, the relative damping ratio equals the viscous damping ratio
because the absolute value of the complex eigenvalues is given by

|λ1,2| =
√
Re(λ1,2)2 + Im(λ1,2)2 =

√
(−ζ ω0)

2
+
(
±ω0

√
1−ζ2

)2

= ω0 .

(7.19)
Then, Equation (7.18) simply results in

Dζ<1
λ =

+ζ ω0

ω0
= ζ . (7.20)

For ζ ≥ 1, the eigenvalues become real but are still negative. Then, its absolute
value equals the negative real part and Equation (7.18) will always produce

the relative damping ratio Dζ≥1
λ = 1. In this case, the viscous damping ratio

is more sensitive because, according to Equation (7.11), ζ is proportional to
the damping value d.

The dimensionless ratios ζ and Dλ can be used to classify the type of
the motion, Table 7.2, but they will not serve as proper judging criteria.

TABLE 7.2
Type of Motion for Single Mass Models

Damping
Ratio

/ Type of
Motion

Undamped
Oscillation

Damped
Oscillation

Damped
Motion

Relative
damping ratio Dλ = 0 0 < Dλ < 1 Dλ = 1

Viscous
damping ratio ζ = 0 0 < ζ < 1 ζ ≥ 1

Even in this simple single mass model, the dimensionless damping ratios are
a combination of several parameters. Hence, in order to evaluate the effect of
the suspension damping dS on the chassis motions and on the wheel load, the
influence of the suspension stiffness cS , the tire stiffness cT , and the model
masses M , m must also be taken into account.
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7.3.2 Minimum Spring Rate

The suspension spring is loaded with the corresponding vehicle weight. For
linear spring characteristics, the steady-state spring deflection is calculated
from

u0 =
F0

cS
= F0

M g

cS
, (7.21)

where M denotes the corresponding chassis mass and F0 = M g the preload
of the the suspension spring, which is supposed to have a linear characteristic
defined by its stiffness cS . For a conventional suspension without niveau reg-
ulation, a load variation M → M + ∆M changes the spring deflections from
u0 to u0 + ∆u. Analogous to Equation (7.21), the additional spring deflection
follows from

∆u =
∆M g

cS
. (7.22)

However, the suspension travel and hence the additional spring deflection will
be limited, ∆u ≤ ∆umax. Then, the suspension spring rate can be estimated
by a lower bound

cS ≥
∆Mmax g

∆umax
, (7.23)

where ∆Mmax denotes the maximum permissible load. In the standard design
of a passenger car, the engine is located in the front and the trunk in the rear
part of the vehicle. Hence, most of the load is supported by the rear axle
suspension.

7.3.3 Example

As an example, we assume that 150 kg of the permissible load of 500 kg
are going to the front axle. Then, each front wheel is loaded by ∆MFW =
150kg/2 = 75kg and each rear wheel by ∆MRW = (500−150)kg/2 = 175kg.
For standard passenger cars, the maximum wheel travel on compression is in
the range of umax ≈ 0.08 m to umax ≈ 0.10 m. By setting ∆umax = umax/2,
we demand that the spring deflection caused by the load should not exceed
half of the maximum value. Then, according to Equation (7.23), a lower bound
of the spring rate at the front axle can be estimated by

cminSF = ( 75 kg ∗ 9.81m/s
2

)/(0.08/2)m = 18400N/m . (7.24)

The maximum load over one rear wheel amounts here to ∆MRW = 175 kg.
Assuming that the suspension travel at the rear axle is slightly larger, umax ≈
0.10m, the minimum spring rate at the rear axle can be estimated by

cminSR = ( 175 kg ∗ 9.81m/s2 )/(0.10/2)m = 34300N/m , (7.25)

which is nearly two times the minimum value of the spring rate at the front
axle. To reduce this difference, a spring rate of cSF = 20 000 N/m will be
chosen at the front axle as a compromise.
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7.3.4 Undamped Eigenfrequencies

In Table 7.1 the discrete mass chassis model of a full-size passenger car is
described by M1 = M2 = 600 kg and M∗ = 200 kg. To separate the model
into two decoupled two mass models, we have to neglect the coupling mass
or, in order to achieve the same chassis mass, to distribute M∗ equally to the
front and the rear. Then, the corresponding chassis mass over one front wheel
is obtained as

MFW =
(
M1 +M∗/2

)
/2 = (600 kg + 200/2 kg)/2 = 350 kg . (7.26)

According to Equation (7.11), the undamped natural eigenfrequency of the
simple chassis model is given by ω2

0C = cS/M . Hence, for the chosen spring
rate of cSF = 20000 N/m, the undamped natural frequency of the unloaded
car amounts to

f0
0C =

1

2π

√
20000N/m

350 kg
= 1.2Hz , (7.27)

which is a typical value for most passenger cars. Due to the small amount of
load, the undamped natural frequency for the loaded car does not change very
much,

fL0C =
1

2π

√
20000N/m

(350 + 75) kg
= 1.1Hz . (7.28)

The corresponding chassis mass over the rear axle is given here by

MRW =
(
M2 +M∗/2

)
/2 = (600 kg + 200/2 kg)/2 = 350 kg . (7.29)

The undamped natural frequencies for the quarter car chassis model at the
rear axle result in

f0
0C =

1

2π

√
34 300N/m

350 kg
= 1.6Hz , (7.30)

fL0C =
1

2π

√
34 300N/m

(350 + 175) kg
= 1.3Hz . (7.31)

Now, the frequencies for the loaded and unloaded car differ more and are
larger than the ones at the front axle.

7.3.5 Influence of Damping

To investigate the influence of suspension damping on the chassis and wheel
motion, the simple vehicle models are exposed to initial disturbances. Both
time simulations start at t = 0 with vanishing velocities, żC(t = 0) = 0,
żW (t = 0) = 0 and displacements, which by zC(t = 0) = M g/cS and
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zW (t = 0) = (M + m) g/cT , are adjusted to the system parameters such
that the suspension spring and the tire, respectively are unloaded at the very
beginning. The time response of the chassis displacement zC(t) and the wheel
displacement zW (t) as well as the chassis acceleration z̈C and the wheel load
or the vertical tire force FT are shown in Figure 7.6 for different damping
rates ζC and ζW . The wheel load is composed of the the static wheel load
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FIGURE 7.6
Time response of simple vehicle models to initial disturbances.

F 0
T = (M +m) g and the dynamic wheel load FDT , which follows from Equa-

tion (7.9). To achieve the same damping rates for the chassis and the wheel
model, different values for the damping parameter dS were needed.

With increased damping, the overshoot effect in the time history of the
chassis displacement and the wheel load becomes smaller and smaller until
it vanishes completely at ζC = 1 and ζW = 1. Note that the periods of
the chassis and the wheel oscillations differ quite a lot, which justifies the
decoupling of the quarter car model into two single mass oscillators. Usually,
as it is here, the corresponding damping values will be different. Hence, a
simple linear damper can either avoid overshoots in the chassis motions or
in the wheel loads. However, the overshoot in the time history of the chassis
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accelerations z̈C(t) will only vanish for ζC →∞, which surely is not a desirable
configuration, because then, it will take a very long time for the initial chassis
displacement to fully disappear.

7.4 Optimal Damping

7.4.1 Disturbance Reaction Problem

A vehicle running over a rough road will be exposed to a series of disturbances.
So, a suspension system designed such that the time history of the chassis
displacement, the chassis acceleration, and the wheel load to an arbitrary
disturbance will approach the corresponding steady-state values as fast as
possible may be regarded as perfect or optimal. The typical time response
of a damped single-mass oscillator to the initial disturbance defined by z(t=
0) = z0 and ż(t=0) = 0 is shown in Figure 7.7.

��

��

��
����

�

FIGURE 7.7
Evaluating a damped oscillation.

Counting the differences of the system response z(t) from the steady-state
value zS = 0 as errors allows one to judge the attenuation. If the overall
quadratic error calculated in an appropriate time interval 0 ≤ t ≤ tE becomes
a minimum,

ε2 =

t=tE∫
t=0

z(t)2 dt → Min , (7.32)

then the system will surely approach the steady-state position as fast as possi-
ble. In theory, tE →∞ will hold; for practical applications, a finite tE must be
chosen appropriately. For nonlinear systems, Equation (7.32) must be solved
numerically, which may be quite time consuming. However, there exists an
algebraic solution for linear systems.

In general, linear dynamic systems are described by the state equation

ẋ = Ax + B u with x(t = 0) = x0 , (7.33)

where x denotes the state vector that collects generalized coordinates and
their derivatives, the state matrix A represents the dynamics of the system,
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the term B u describes the excitation, and x0 describes the initial state. The
steady-state solution x(t → ∞) = xS to a step input at t = 0 with u = u0

results in
0 = AxS + B u0 or xS + A−1B u0 . (7.34)

Applying the state transformation x = x̄− xS to Equation (7.33) results in

d

dt
(x̄− xS) = A (x̄− xS) + B u with x(t = 0) = x0 = x̄(t0)−xS , (7.35)

which, using Equation (7.34), simplifies to

˙̄x = A x̄ with x̄(t0) = x̄0 = x0 + xS . (7.36)

So, the response of a linear dynamic system to a step input u = u0 at t = 0 is
equivalent to an initial disturbance x̄0 = x0 + xS applied to the transformed
system. As an extension to Equation (7.32), the transition of the state x̄(t)
to its steady-state value x̄(t → ∞) = 0 may be judged by the more general
disturbance-reaction problem

ε2 =

t=tE∫
t=0

x̄T Q x̄ dt → Min , (7.37)

where Q = QT is a symmetric matrix of appropriate size that allows one to
weight the components of the state vector x individually [7]. For tE →∞, the
integral in Equation (7.37) is solved by

t→∞∫
t=0

x̄T Q x̄ dt = x̄T0 R x̄0 , (7.38)

where x̄(t → ∞) = 0 was taken for granted. The symmetric matrix R = RT

is defined by the Ljapunov equation,

ATR + RA + Q = 0 . (7.39)

In general, the Ljapunov equation will be solved numerically by appropriate
algorithms. For the single-mass oscillator described by Equation (7.10), the
state equation (7.36) reads as[

ż
z̈

]
︸ ︷︷ ︸

˙̄x

=

[
0 1
−ω2

0 −2ζω0

]
︸ ︷︷ ︸

A

[
z
ż

]
︸ ︷︷ ︸
x̄

. (7.40)

Then, the Ljapunov equation[
0 −ω2

0

1 −2ζω0

] [
R11 R12

R12 R22

]
+

[
R11 R12

R12 R22

] [
0 1
−ω2

0 −2ζω0

]
+

[
Q11 Q12

Q12 Q22

]
(7.41)
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delivers three linear equations,

−ω2
0 R12 − ω2

0 R12 + Q11 = 0 ,

−ω2
0 R22 +R11 − 2ζω0R12 + Q12 = 0 ,

R12 − 2ζω0R22 +R12 − 2ζω0R22 + Q22 = 0 ,

(7.42)

which can easily be solved for the elements of R. The first and third equations
deliver

R12 =
Q11

2ω2
0

, R22 =
1

4ζω0

(
Q11

ω2
0

+Q22

)
. (7.43)

Finally, the second equation provides

R11 =

(
ζ+

1

4ζ

)
Q11

ω0
−Q12 +

ω0

4ζ
Q22 . (7.44)

If the initial state is characterized by an initial displacement z(t = 0) = z0

and a vanishing initial velocity ż(t = 0) = 0, the disturbance reaction problem
defined in Equation (7.38) will simplify to

t→∞∫
t=0

xT (t)Qx(t) dt = [ z0 0 ]
T

[
R11 R12

R12 R22

] [
z0

0

]
= z2

0R11

= z2
0

[(
ζ+

1

4ζ

)
Q11

ω0
−Q12 +

ω0

4ζ
Q22

]
,

(7.45)

where ζ and ω0 denote the viscous damping and the natural eigenfrequency
of the single-mass oscillator.

7.4.2 Optimal Safety

Ride safety may be judged by dynamic wheel load variations. In the absence of
road irregularities zR=0, the dynamic wheel load computed in Equation (7.9)
simplifies to FDT =−cT zW . Then, optimal ride safety is achieved by

ε2S =

t→∞∫
t=0

(
FDT
)2
dt =

t→∞∫
t=0

(
−cT zW

)2
dt =

t→∞∫
t=0

c2T z
2
W dt → Min . (7.46)

This demand can easily be transformed to the corresponding general distur-
bance reaction problem,

ε2S =

t→∞∫
t=0

c2T z
2
W dt =

t→∞∫
t=0

[
zW żW

] [ c2T 0
0 0

] [
zW
żW

]
→ Min , (7.47)

where xTW =
[
zW żW

]
denotes the state vector of the wheel model and the

weighting matrix Q is defined by the coefficients

Q11 = c2T , Q12 = 0 , Q22 = 0 . (7.48)
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According to Equation (7.45), the integral in Equation (7.47) is solved by

ε2S =

t→∞∫
t=0

c2T z
2
W dt = z2

0W

(
ζW +

1

4ζW

)
c2T
ω0W

, (7.49)

where the specific coefficients of the weighting matrix Q provided by Equa-
tion (7.48) were already taken into account.

A soft tire (cT → 0) makes the safety criteria in Equation (7.49) small
(ε2S → 0) and thus reduces the dynamic wheel load variations. However, the
tire spring stiffness cannot be reduced to arbitrary low values because this
would cause too large tire deformations and finally damage the tire.

Small wheel masses (m → 0) will increase the natural eigenfrequency
(ω0W =

√
(cS+cT )/m) and thus reduce the safety criteria in Equation (7.49)

too. So, the use of light metal rims will indeed improve the ride safety of a car
because of the wheel weight reduction.

In principle, large values for the natural eigenfrequency ω0W could be
achieved by hardening the suspension spring cS →∞ but this will contradict
good driving comfort.

With fixed values for cT and ω0W , the merit function in Equation (7.49)
will become a minimum if

∂ε2S
∂ζW

=
z2

0W

ω0W

(
1 +

−1

4ζ2
W

)
c2T = 0 (7.50)

will hold. Hence, a viscous damping rate of

ζoptW

∣∣
Safety

=
1

2
(7.51)

will guarantee optimal ride safety by minimizing the merit function in Equa-
tion (7.49). According to Equation (7.11), this corresponds to the damping
parameter

doptS

∣∣
Safety

=
√

(cS + cT )m . (7.52)

7.4.3 Optimal Comfort

To judge the ride comfort, the hub motion of the chassis zC and its acceleration
z̈C can be used as objective criteria. Hence, the demand

ε2C =

t=tE∫
t=0

[ (
α z̈C

)2
+
(
β zC

)2 ]
dt → Min (7.53)

will guarantee optimal ride safety. By the factors α and β the acceleration and
the hub motion can be weighted differently.
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The equation of motion for the chassis model provided by Equation (7.7)
can be resolved for the acceleration

z̈C = −
(
ω2

0C zC + 2ζCω0C żC
)
, (7.54)

where the absence of road irregularities zR=0, żR=0 was taken into account
and, as done in Equation (7.11), the system parameters M , cS , and dS are
summarized in the viscous damping ratio ζC and in the undamped natural
eigenfrequency ω0C . Then, the problem in Equation (7.53) can be written as

ε2C =

t=tE∫
t=0

[
α2
(
ω2

0CzC + 2ζCω0C żC
)2

+ β2 z2
C

]
dt

=

t=tE∫
t=0

[
zC żC

][ α2
(
ω2

0C

)2
+ β2 α2ω2

0C2ζCω0C

α2ω2
0C2ζCω0C α2(2ζCω0C)

2

][
zC

żC

]
→ Min ,

(7.55)
where xTC =

[
zC żC

]
is the state vector of the chassis model and the weight-

ing matrix Q is defined by the coefficients

Q11 = α2
(
ω2

0C

)2
+ β2 , Q12 = 2α2ζCω

3
0C , Q22 = 4α2ζ2

Cω
2
0C . (7.56)

According to Equation (7.45), the integral in Equation (7.55) evaluating the
ride comfort is solved by

ε2C = z2
C0

[(
ζC+

1

4ζC

)
Q11

ω0C
−Q12 +

ω0C

4ζC
Q22

]
= z2

0C

[(
ζC+

1

4ζC

)
α2
(
ω2

0C

)2
+β2

ω0C
− 2α2ζCω

3
0C +

ω0C

4ζC
4α2ζ2

Cω
2
0C

]
= z2

0C

[
α2 ω

3
0C

4ζC
+ β2

(
ζC +

1

4ζC

)
1

ω0C

]
.

(7.57)
By setting α = 1 and β = 0, the time history of the chassis acceleration z̈C is
weighted only. Equation (7.57) then simplifies to

ε2C
∣∣
z̈C

= z2
0C

ω3
0C

4ζC
, (7.58)

which will become a minimum if either the viscous damping ratio tends to
infinity or the undamped natural frequency to zero. As mentioned before,
ζC → ∞ surely is not a desirable configuration. A low undamped natural
frequency ω0C → 0 is achieved by a soft suspension spring cS → 0 or a large
chassis mass M → ∞. However, a large chassis mass is not economical and
the suspension stiffness is limited by the loading conditions. Hence, weighting
the chassis accelerations only does not lead to a specific result for the system
parameters here.
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Practical results can be achieved if the attenuation of the chassis accelera-
tion z̈C and the chassis displacement zC are evaluated simultaneously. To do
so, appropriate weighting factors must be chosen. In the equation of motion
for the chassis mass (7.7), the terms M z̈C and cS zC are added. Hence, α = M
and β = cS or

α = 1 and β =
cS
M

= ω2
0C (7.59)

will provide weighting factors that are automatically adjusted to the relevant
system parameters. Now, Equation (7.57) reads as

ε2C = z2
0C

[
ω3

0C

4ζC
+
(
ω2

0C

)2(
ζC+

1

4ζC

)
1

ω0C

]
= z2

0Cω
2
0C

[
ω0C

2ζC
+ζC ω0C

]
.

(7.60)
Again, good ride comfort will be achieved by ω0C → 0. For finite undamped
natural frequencies, Equation (7.60) becomes a minimum if the viscous damp-
ing rate ζC satisfies

d ε2C
∣∣
zC

d ζC
= z2

0C ω
2
0C

[
−ω0C

2ζ2
C

+ ω0C

]
= 0 . (7.61)

Hence, a viscous damping rate of

ζComfortC =
1

2

√
2 (7.62)

or a damping parameter of

doptS

∣∣ζC= 1
2

√
2

Comfort
=
√

2 cSM (7.63)

will provide optimal comfort by minimizing the merit function in Equa-
tion (7.60).

7.4.4 Example

For the passenger car with sprung and unsprung masses of M = 350 kg and
m = 50kg and spring rates for the suspension and the tire of cS = 20 000N/m
and cT = 220 000N/m the damping parameter for optimal ride safety will now
amount to

doptS

∣∣ζW= 1
2

Safety
=
√

(20 000N/m+ 220 000N/m) ∗ 50 kg = 3464N/(m/s)

(7.64)
and the one for optimal ride comfort to

doptS

∣∣ζC= 1
2

√
2

Comfort
=
√

2 20 000N/m ∗ 350 kg = 3742N/(m/s) . (7.65)

As it is here, the values will not coincide in general. Hence, a vehicle suspen-
sion with a simple linear damper can either provide optimal ride comfort or
optimal ride safety, but not both. Improvements may be achieved by nonlinear,
dynamic, and active or semi-active force elements. But then, more complex
vehicle models must be used.
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7.5 Practical Aspects

7.5.1 General Remarks

The disturbance reaction problem in combination with two single-mass oscilla-
tors for the chassis and the wheel just provides a first approach to determine
optimal values for the damping parameter. In practice, the performance of
vehicles driving on real roads is of greater importance. The merit function
defined in Equation (7.46) represents an objective criteria to judge the ride
safety of a vehicle. In general, road irregularities are of a stochastic nature.
According to Section 2.3.1, the standard deviation, which is the square root of
the variance, characterizes the statistical properties of a stationary Gaussian
random process. Then, optimal ride safety may be achieved by minimizing the
variance of the dynamic wheel load,

σ2
S =

1

tE − t0

tE∫
t0

FDT (t)

FST
dt → Min , (7.66)

where the time history of the dynamic wheel load FDT = FDT (t) is normalized
to the static wheel load FST and evaluated in an appropriate time interval from
t = t0 to t = tE .

The demand in Equation (7.53) that provides optimal ride comfort in com-
bination with the weighting factors defined in Equation (7.59) will hold for the
simple chassis model only. In practice, the focus in evaluating the ride comfort
is usually placed on the chassis accelerations at the seat mountings. During the
optimization process, at least the suspension travel have to be monitored too,
because it is limited by the suspension design. As a consequence, optimal driv-
ing comfort may be achieved now by minimizing an appropriate combination
of the acceleration variance and the suspension travel,

σ2
C =

1

tE − t0

tE∫
t0

[(
¨z(t)

g

)2

+

(
s(t)

sR

)2
]
dt → Min , (7.67)

where instead of using weighting factors, the acceleration a = a(t) is nor-
malized to the constant of gravity g and the suspension travel s = s(t) to a
reference value sR.

For linear systems, the covariance analysis can be used to determine the
corresponding variances. As shown in [29], an algebraic solution for a single
wheel mass oscillator is possible again. It turns out, that a viscous damping
ratio of ζW = 0.5 minimizes the wheel load variance and hence will provide
optimal ride safety in the case of stochastic excitation. This value exactly co-
incides with the value found by solving the corresponding disturbance reaction
problem.
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7.5.2 Quarter Car Model on Rough Road

In standard vehicle suspension systems, springs, and dampers are mounted
between the wheel and the chassis. As a consequence, body and wheel/axle
motions will be affected simultaneously. That is why a simple quarter car
model will be used further on instead of the separate mass models for the
chassis and the wheel. The equations of motion for the quarter car model,
shown in Figure 7.4, are given by

M z̈C = FS + FD − M g ,
m z̈W = FT − FS − FD − mg ,

(7.68)

where the displacements of the chassis zC and the wheel zW are measured
from the equilibrium position. The terms Mg and mg represent the weights
of the chassis and the wheel. Assuming linear characteristics, the suspension
forces and the wheel load are provided by

FS=F 0
S+cS (zW−zC) , FD=dS (żW−żC) , FT =F 0

T+cT (zR−zW ) , (7.69)

where zW describes the irregularities of the road, the constants cS , dS charac-
terize the stiffness and damping properties of the suspension, and cT denotes
the tire stiffness. The preloads of the suspension spring and the tire are simply
given by

F 0
S = M g , F 0

T = (M +m) g , (7.70)

and the demand FT ≥ 0 will take wheel liftoff into account.
The MATLAB-Script qcm simple main provided in Listing 7.1 performs

simulations of a simple quarter car model driving at constant speed on a
rough road with different values of the suspension damping.

Listing 7.1
Script qcm simple main.m: Evaluating Ride Comfort and Safety

1 global grav M m cS dS cT FS0 FT0 FT

2 global v_veh Amp Om Psi

3
4 grav=9.81; sR=0.05; % gravity [m/s^2] & reference susp. travel [m]

5 M=350; m= 50; % chassis & wheel mass (quarter car) [kg]

6 cS=20000; cT=220000; % suspension & tire stiffness [N/m]

7 dSvar=1000:200:5000; % suspension damping [N/(m/s)]

8 tE=10; v_veh=100/3.6; % simulation time [s] & vehicle velocity [km/h->m/s]

9 Phi0=10e-6;w=2;n=1000; % spectral density, waviness & number of samples

10 Omin=2*pi/200; Omax=2*pi/0.2; % range of frequencies

11
12 % compute amplitudes and random phases

13 Om0=1; dOm=(Omax-Omin)/(n-1); Om=Omin:dOm:Omax;

14 Phi=Phi0.*(Om./Om0).^(-w); Amp=sqrt(2*Phi*dOm);

15 RandStream.setDefaultStream(RandStream(’mt19937ar’,’seed’,5489));

16 Psi=2*pi*rand(size(Om));

17
18 FS0 = M*grav; FT0 = (m+M)*grav; % spring and tire preload

19
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20 % initial values (adjust to road height)

21 zr0=sum(Amp.*sin(Psi)); x0 = [ zr0; zr0; 0; 0 ] ;

22
23 % calculate merit functions for different damping values

24 eps_safety=zeros(size(dSvar)); eps_comfort=zeros(size(dSvar));

25 for k=1:length(dSvar)

26
27 dS=dSvar(k); disp([’perform simulation for dS=’,num2str(dS)])

28 [tout,xout] = ode45(@qcm_simple_f,[0,tE],x0);

29
30 % normalized suspension travel

31 st = ( xout(:,1)-xout(:,2) ) / sR ;

32
33 % get normalized acceleration and normalized dynamic wheel load

34 zcdd = zeros(size(tout)); FD = zeros(size(tout));

35 for i=1:length(tout)

36 xdot = qcm_simple_f(tout(i),xout(i,:)’);

37 zcdd(i) = xdot(3)/grav; FD(i)= (FT-FT0)/FT0;

38 end

39
40 % merit functions (variation of dyn. wheel load, accel. & susp travel )

41 eps_safety(k) = var(FD); eps_comfort(k) = var(zcdd) + var(st);

42
43 end

44
45 % plot criteria versus damping values

46 plot(dSvar,eps_safety,’r’), hold on, grid on

47 plot(dSvar,eps_comfort,’--k’), legend(’safety’,’comfort’)

As in Section 2.3.4, the random road, defined by its power spectral density, is
approximated by a series of sine functions. In line 15, the seed for the random
number generator is explicitly set to the MATLAB default. This will force
the MATLAB-Function rand to produce exactly the same series of random
numbers not only when a new MATLAB session is started, but also each
time when running the script qcm simple main. The data correspond with
the single-mass models for the wheel and the chassis. According to Equa-
tion (7.67), the ride comfort is judged by the sum of the effective values of the
normalized chassis acceleration and the suspension travel. The effective value
of the dynamic wheel load normalized to the static load evaluates the ride
safety. The MATLAB-Function var computes the variances. The state equa-
tion of the simple quarter car model as well as the computation of pseudo-
random road irregularities are provided in the function qcm simple f, which
is given in Listing 7.2.

Listing 7.2
Function qcm simple f.m: Simple Quarter Car Model on Random Road

1 function xp = qcm_simple_f(t,x) % simple quarter car model

2
3 global grav M m cS dS cT FS0 FT0 FT

4 global v_veh Amp Om Psi

5
6 zc=x(1); zw=x(2); zcd=x(3); zwd=x(4); % local state variables
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7 s=v_veh*t; zr=sum(Amp.*sin(Om*s+Psi)); % generate pseudo random road

8
9 FS = FS0 + cS*(zw-zc); % linear spring force

10 FD = dS*(zwd-zcd); % linear damper force

11 FT = max([0, FT0+cT*(zr-zw)]); % wheel load (including lift off)

12
13 zcdd = ( FS + FD - M*grav ) / M ; % chassis acceleration

14 zwdd = (FT - FS - FD - m*grav ) / m ; % wheel acceleration

15
16 xp = [ zcd; zwd; zcdd; zwdd ]; % state derivatives

17
18 end

The simulation results are plotted in Figure 7.8. A simple inspection of the
plot provides the damping parameter dSS = 2600Ns/m and dCS = 3000Ns/m,
which correspond to the minimum of the variances σ2

S and σ2
C and thus will

provide optimal ride safety or optimal comfort respectively. Again, either op-
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FIGURE 7.8
Variances to judge ride comfort and safety for different damping values.

timal safety or optimal comfort can be achieved here. Compared to the results
of the single-mass models computed in Equations (7.64) and (7.65), the damp-
ing parameter that grants optimal safety is 25%, and the one that provides
optimal comfort is 20% less than the corresponding values.

Optimization is always a delicate task. The results strongly depend on
the merit function and on the complexity of the vehicle model. As shown in
[46], the engine suspension for instance will have a significant influence on the
chassis accelerations. Results that are in good conformity to measurements
demand complex vehicle models, which include friction effects and nonlineari-
ties. In addition, matching objective comfort criteria with the human sense of
comfort is still a problem. The corresponding DIN/ISO directive [15] tries to
evaluate the human exposure to whole-body vibration via frequency depen-
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dent weighting functions. However, the main focus is placed here on physical
fatigue and health hazards.

7.6 Nonlinear Suspension Forces

7.6.1 Progressive Spring

In order to reduce the spring rate and to avoid too large spring deflections
when loaded, nonlinear spring characteristics are usually used, Figure 7.9.
Adding soft bump stops, the overall spring force in the compression mode
u ≥ 0 can be modeled by the nonlinear function

FS = F 0
S + c0 u

(
1 + k

( u

∆u

)2
)
, (7.71)

where F 0
S denotes the spring preload, c0 describes the spring rate at u = 0, and

k ≥ 0 characterizes the intensity of the nonlinearity. The linear characteristic
provides at u = ∆u the value F linS (∆u) = F 0

S + cS ∆u. To achieve the same
value with the nonlinear spring,

F 0
S + c0 ∆u (1 + k) = F 0

S + cS ∆u or c0 (1 + k) = cS (7.72)

must hold, where cS describes the spring rate of the corresponding linear
characteristics. The local spring rate is determined by the derivative

dFS
du

= c0

(
1 + 3 k

( u

∆u

)2
)
. (7.73)

Then, the spring rate for the loaded car at u = ∆u is given by

cL = c0 (1 + 3 k) . (7.74)

The intensity of the nonlinearity k can be fixed, for instance, by choosing
an appropriate spring rate for the unloaded vehicle. With c0 = 20 000N/m =
20 kN/m the spring rates on the front and rear axle will here be the same for
the unloaded vehicle. According to Equation (7.25), the stiffness value of a
corresponding linear spring amounts to cS = 34 300N/m = 34.3kN/m. Then,
Equation (7.72) delivers the intensity of the nonlinear spring by the value of

k =
cS
c0
− 1 =

34.300

20
− 1 = 0.715 . (7.75)

The solid line in the left plot of Figure 7.9 shows the resulting nonlinear
spring characteristic that is characterized by the spring rates c0 = 20 kN/m
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FIGURE 7.9
Principle and realizations of nonlinear spring characteristics.

and cL = c0 (1 + 3k) = 20 ∗ (1 + 3 ∗ 0.715) = 62.9 kN/m for the unloaded and
the loaded vehicle. Again, the undamped natural frequencies

f0
0C =

1

2π

√
20 kN/m

350 kg
= 1.20Hz , fL0C =

1

2π

√
62.9 kN/m

(350+175) kg
= 1.74Hz

(7.76)
for the unloaded and the loaded vehicle will differ quite a lot.

The unloaded and the loaded vehicle have the same undamped natural
frequencies if

c0
M

=
cL

M + ∆M
or

cL
c0

=
M + ∆M

M
(7.77)

holds. Combining this relationship with Equation (7.74) yields

1 + 3 k =
M

M + ∆M
or k =

1

3

(
M + ∆M

M
− 1

)
=

1

3

∆M

M
. (7.78)

Hence, for the quarter car model with M = 350 kg and ∆M = 175 kg the
intensity of the nonlinear spring reduces to k = 1/3 ∗ 175/350 = 0.167. This
value, combined with the corresponding linear spring stiffness cS = 34.3kN/m,
will produce the dotted line in Figure 7.9. The spring rates c0 = cS/(1 + k) =
34.3N/m/ (1 + 0.1667) = 29.4 kN/m and cL = c0 (1 + 3k) = 29.400 kN/m ∗
(1 + 3 ∗ 0.1667) = 44.1 kN/m, which apply for the unloaded and the loaded
vehicle result from Equations (7.73) and (7.74). Now, the undamped natural
frequency for the unloaded f0

0C =
√
c0/M = 1.46 Hz and the loaded vehicle

f0
0C =

√
cL/(M + ∆M) = 1.46Hz are indeed the same.
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7.6.2 Nonlinear Spring and Nonlinear Damper

The equations of motion for a simple quarter car model are provided in Equa-
tion (7.68). The spring travel is defined by

u = zW − zC , (7.79)

where zW and zC describe the vertical displacements of the wheel and the
chassis mass measured from the equilibrium position, Figure 7.10. Similar to
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FIGURE 7.10
Quarter car model with nonlinear spring and damper elements.

Equation (7.71), the spring force is modeled by

FS = F 0
S +

{
cS u u < 0 ,

cS u
(
1 + k∗ u2

)
u ≥ 0 ,

(7.80)

where cS defines the stiffness at u = 0 and F 0
S = M g denotes the preload.

The parameter k∗ ≥ 0 characterizes the nonlinearity in the compression cycle,
u > 0, where k∗ = 0 simply results in a linear spring with stiffness cS . The
nonlinear spring design in Section 7.6.1 provides at the rear axle the data

cS = 29 400N/m and k∗ =
k

(∆u)
2 =

0.1667

(0.05m)
2 = 66.7m−2 . (7.81)

The tire stiffness is given further on by cT = 220 000N/m and the chassis and
wheel mass are determined by M = 350 kg and m = 50 kg. The function in
Listing 7.2 computes linear suspension forces. Replacing the line

FS = FS0 + cS*(zw-zc); % linear spring force

by the code lines

u = zw - zc; % spring displacement (u>0: compression)
if u<0
FS = FS0 + cS*u; % rebound

else
FS = FS0 + cS*u*(1+kS*u^2); % compression

end

will provide a progressive spring characteristic according to Equation (7.80).
In addition, the parameter kS must be added to the list of global variables
not only in Listing 7.2, but also in Listing 7.1. Here, the parameter kS must
be assigned a value of 66.7 and the spring constant must be changed to the
value cS = 29 400N/m, which now holds for the rear axle.
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The damper element is arranged parallel to the spring, which simply acts
between the chassis and the wheel mass. Then, the time derivative of the
suspension travel

u̇ = v = żW − żC (7.82)

defines the damper velocity, where the sign convention is consistent with the
spring travel. As a consequence, u < 0, v < 0 characterize tension or rebound
and u ≥ 0, v ≥ 0 compression. As shown in Section 6.1.3, nonlinear damper
characteristics are usually modeled via look-up tables. Typically, suspension
dampers will have more resistance in the rebound than in the compression
cycle. The piecewise linear but overall nonlinear characteristic

FD(v) =

{
dRb v v < 0

dCp v v ≥ 0
(7.83)

defined by the constants dRb and dCp takes this effect into account. According
to Equation (7.82), v < 0 characterizes rebound and v ≥ 0 the compression
cycle. As a consequence, dRb describes the damping properties during rebound
and dCp in the compression mode. A slight modification in Listing 7.2 will
make the nonlinear damper available in the simple quarter car model. At
first, the line

FD = dS*(zwd-zcd); % linear damper force

must be replaced with the code lines

v = zwd-zcd; % velocity (v>0: compression)
if v<0
FD = dRb*v; % rebound

else
FD = dCp*v; % compression

end

Then, the global variable dS must be replaced by dRb and dCp not only in this
function, but also in Listing 7.1. Here, appropriate values must be assigned
to the damping parameters also. By setting dRb = dCp, the linear damper
characteristic is still available.

As done in Equation (7.69), the tire is modeled by a linear spring char-
acterized by the constant cT and the demand FT ≥ 0 takes wheel liftoff into
account.

7.6.3 Some Results

At first, the influence of the nonlinear spring on ride comfort and safety is
studied. As done in Section 7.5.2, the vehicle is driven with constant velocity
on a rough road. The corresponding simulation results, computed for differ-
ent values of a linear damper (dRb = dCp = dS) are plotted in Figure 7.11.
A comparison with the results in Figure 7.8 shows that the damping value
dSS = 2600 Ns/m, which provides optimal ride safety, is still valid. However,
the damping value that grants optimal ride comfort has slightly increased
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FIGURE 7.11
Comfort and safety for a nonlinear spring and a linear damper.

to dSS = 3200 Ns/m. The single-mass approach ends up in the algebraic
equations (7.52) and (7.63), which factor in the mass and stiffness proper-
ties of the quarter car model. Hence, increasing the suspension stiffness from
cS = 20 kN/m in Figure 7.8 to cS = 29.4 kN/m in Figure 7.11 affects ride
comfort and ride safety. However, the influence of the increased suspension
stiffness on ride safety will hardly be noticeable because the suspension stiff-
ness is much smaller than the tire stiffness, which was not changed here.

In general, a nonlinear damper layout with dCp < dRb will generate less
impact on the chassis when driving over single bumps because in the first part
of the compression cycle, spring and damper force have the same sign and
induce large chassis accelerations. Progressive spring characteristics, which
are employed at the rear suspension in particular, will intensify this effect.
Corresponding simulation results are plotted in Figure 7.12. The quarter car
model, equipped with a linear and a nonlinear damper, is driven hereby with
the velocity v = 80km/h over a single obstacle. A cosine-shaped bump with a
height of H = 0.04m and a length of L = 3.0m was used here. The damping
properties in the rebound and compression cycle, are characterized by the
constants dRb = 4200Ns/m and dCp = 1400Ns/m. The average value dS =
(dRb+dCp)/2 = 2800Ns/m describes the equivalent linear damper. Compared
to the linear damper layout, the nonlinear damper characteristic results in
significantly reduced peak values for the chassis acceleration (6.39m/s2 instead
of 8.16m/s2) and for the wheel load (7.07 kN instead of 7.48 kN). However,
the tire liftoff at t ≈ 0.16 s could not be avoided here. As a quid pro quo the
nonlinear damper requires a larger suspension travel (4.0 cm instead of 3.3 cm).
Both layouts provide similar overall damping. The nonlinear spring force is
described by Equation (7.80) and according to Equation (7.81), defined by
the parameters cS = 29 400N/m and k∗ = 66.7m−2.

While crossing a bump, large damper velocities occur in general. A low but
constant damping rate in the compression mode will generate large damping
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FIGURE 7.12
Quarter car model with nonlinear force characteristics driving over a bump.

forces that induce unnecessary chassis accelerations. Damper layouts that gen-
erate a degressive characteristic may reduce this impact on the chassis when
crossing a bump but they in turn will increase the suspension travel.

7.7 Sky Hook Damper

7.7.1 Modeling Aspects

In a standard layout of a wheel/axle suspension system, the damper acts
between the wheel or axle and the chassis, Figure 7.13a. For a linear charac-
teristic, the damper force is given by

FD = dS (żW − żC) , (7.84)

where dS denotes the damping constant and żC , żW are the time derivatives
of the absolute vertical body and wheel displacements.

The sky hook damping concept starts with two independent dampers
mounted between the chassis and the sky and the wheel or axle and the
sky, Figure 7.13b. A practical realization in form of a controllable damper,
located again in between the wheel/axle and the chassis, will then generate
the damping force

FD = dWhżW − dChżC , (7.85)

where instead of the single damping constant dS two design parameter dWh
and dCh are available now.
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FIGURE 7.13
Quarter car model with a standard and a sky hook damper.

The equations of motion for a simple quarter car model are provided in
Equation (7.68). The linear suspension spring force and the vertical tire force
are defined in Equation (7.69).

7.7.2 Eigenfrequencies and Damping Ratios

Using the force definitions in Equations (7.85) and (7.69), the equations of
motion provided in Equation (7.68) can be transformed to the state equation

żC
żW
z̈C
z̈W


︸ ︷︷ ︸
ẋ

=


0 0 1 0
0 0 0 1

− cSM
cS
M −dChM

dWh
M

cS
m − cS+cT

m
dCh
m −dWhm


︸ ︷︷ ︸

A


zC
zW
żC
żW


︸ ︷︷ ︸
x

+


0
0
0
cT
m


︸ ︷︷ ︸
B

[
zR
]︸ ︷︷ ︸

u

, (7.86)

where the weight forces Mg and mg were compensated by the preloads F 0
S

and F 0
T . The term B u describes the excitation, x denotes the state vector,

and A is the state matrix. In this linear approach the tire liftoff is not taken
into consideration. The special case dCh = dWh = dS represents the standard
layout with a linear damper.

The eigenvalues λ of the state matrix A characterize the eigendynamics3

of the quarter car model. In case of complex eigenvalues, the damped natural
eigenfrequencies are given by the imaginary parts, ω = Im(λ), and accord-
ing to Equation (7.18), ζ = Dλ = −Re(λ)/ |λ|. evaluates the damping ratio.
Figure 7.14 shows the eigenfrequencies f = ω/(2π) and the damping ratios
ζ = Dλ for different values of the damping parameter dS . Optimal ride com-
fort with a damping ratio of ζC = 1

2

√
2 ≈ 0.7 for the chassis motion can be

achieved with the damping parameter dS = 3880N/(m/s), and the damping

3The MATLAB command [EV,EW]=eig(A) computes the eigenvectors (columns of EV)
and eigenvalues (main diagonal elements of EW) of the matrix A.
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FIGURE 7.14
Quarter car model with standard damper.

parameter dS = 3220 N/(m/s) would provide for the wheel motion a damp-
ing ratio of ζW = 0.5, which corresponds to minimal wheel load variations.
These damping parameters are very close to the values 3742 N/(m/s) and
3464 N/(m/s) that were calculated in Equations (7.65) and (7.64) with the
single mass-models. Hence, the very simple single-mass models can be used
for a first damper layout. Usually, as it is here, both optimal ride comfort and
optimal ride safety cannot achieved by a standard linear damper.

The sky hook damper, modeled by Equation (7.85), provides with dCh and
dWh two design parameters. Their influence on the eigenfrequencies f and the
damping ratios ζ is shown in Figure 7.15. The sky hook damping parameters
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FIGURE 7.15
Quarter car model with sky hook damper.

dCh and dWh have a nearly independent influence on the damping ratios. The
chassis damping ratio ζC mainly depends on dCh, and the wheel damping
ratio ζW mainly depends on dWh. Hence, the damping of the chassis and the
wheel motion can be adjusted to nearly each design goal. Here, a sky hook
damper with dCh = 3900N/(m/s) and dWh = 3200N/(m/s) would generate
the damping ratios ζC = 0.7 and ζW = 0.5 and thus combine ride comfort
and ride safety within one damper layout.
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7.7.3 Technical Realization

By modifying the damper law in Equation (7.85) to

FD = dWhżW − dChżC =
dWhżW − dChżC

żW − żC︸ ︷︷ ︸
dsky

(żW − żC) , (7.87)

the sky hook damper can be realized by a standard damper in the form
of Equation (7.84). The new damping parameter dsky now nonlinearly de-
pends on the absolute vertical velocities of the chassis and the wheel dsky =
dsky(żC , żW ). As a standard damper operates in a dissipative mode only, the
damping parameter will be restricted to positive values, dsky ≥ 0. Hence, the
passive realization of a sky hook damper will only match with some properties
of the ideal damper law in Equation (7.85). But, compared with the standard
damper, it still can provide a better ride comfort combined with sufficient ride
safety.

Some continuous damping control (CDC) systems are based on the sky
hook control strategy. Twin-tube dampers equipped with electromagnetically
activated additional external valves make it possible to regulate the flow of
the hydraulic fluid between the inner and outer damper tubes and thus vary
the resistance of the damper. Vehicle sensors provide the accelerations of the
chassis and the wheels, which are processed in a control unit to the desired
damping parameter within milliseconds. Most commercial CDC-systems take
the actual driving situation into account too. For example, a temporarily
increased damping rate will reduce the pitch and roll reaction of the vehicle
when cornering fast or braking hard. However, a lower damping parameter
will grant a rather smooth ride on rough country roads.

7.7.4 Simulation Results

The function qcm skyhook f given in Listing 7.3 provides the state equation
for a simple quarter car model with a nonlinear suspension spring and a sky
hook damper.

Listing 7.3
Function qcm skyhook f.m: Quarter Car Model with Sky Hook Damper

1 function xdot = qcm_skyhook_f(t,x)

2
3 global grav M m cS kS dCh dWh TdS cT

4 global FS0 FT0 ftire z_road

5 global v_vel o_x0 o_y0 o_tp o_w o_h o_l

6
7 % get states

8 zc=x(1); zw=x(2); zcd=x(3); zwd=x(4); d=x(5);

9
10 % obstacle @ sx = o_x0, sy = o_y0

11 sx = v_vel*t; sy=0; % actual position of vehicle
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12 z_road = obstacle_f(sx-o_x0,sy-o_y0,o_tp,o_w,o_h,o_l); % road height

13
14 % tire force

15 ftire = max(0,FT0+cT*(z_road-zw));

16
17 % nonlinear spring

18 u = zw - zc; % displacement (u>0: compression)

19 if u<0,

20 fs = FS0 + cS*u; % rebound

21 else

22 fs = FS0 + cS*u*(1+kS*u^2); % compression

23 end

24
25 % damper velocity (v>0: compr.) and force via dynamic damping parameter

26 v = zwd - zcd; fd = d*v;

27
28 % compute skyhook damping parameter and its time derivative

29 if abs(v) > 0.001

30 d_sky = max(0,(dWh*zwd-dCh*zcd)/v); % nonlinear damping (d_sky>0)

31 else

32 d_sky = d; % keep old value

33 end

34 ddot = (d_sky - d)/TdS; % first order dynamics

35
36 % chassis and wheel acceleration

37 zcdd = ( (fs+fd) ) / M - grav ;

38 zwdd = ( ftire - (fs+fd) ) / m - grav ;

39
40 % state derivatives

41 xdot = [ zcd; zwd; zcdd; zwdd; ddot ];

42
43 end

The function obstacle f defined in Listing 2.1 provides the actual road height.
Again, the tire is modeled by a linear spring characterized by the constant
cT and the code line 15 takes the wheel liftoff into account too. As done in
Section 7.6.2, the parameters cS and kS model a nonlinear spring force.

In reality it will be impossible to change the resistance of a damper in
an instant. That is why, the controlled damper is characterized by a dynamic
damping parameter d, which is simply defined here by a first-order differential
equation

TdS ḋ = dsky − d . (7.88)

The time constant TdS characterizes the damper dynamics and Equa-
tion (7.87) provides the sky hook damping parameter dsky, which is restricted
to positive values. As the computation of the sky hook damping parameter
dsky, will become critical at small damper velocities, a new sky hook damping
parameter is calculated only if abs(v) > 0.001 holds.

The MATLAB-Script qcm skyhook main provided in Listing 7.4 sets the
data for a simple quarter car model equipped with a nonlinear suspension
spring and a sky hook damper, performs simulations where the vehicle drives
with constant speed over an obstacle, does some postprocessing, and finally
plots the results.



222 Road Vehicle Dynamics: Fundamentals and Modeling

Listing 7.4
Script qcm skyhook main.m: Simulation of a Quarter Car Model with Nonlin-
ear Spring and Sky Hook Damper Crossing an Obstacle

1 global grav M m cS kS dCh dWh TdS cT

2 global FS0 FT0 ftire z_road

3 global v_vel o_x0 o_y0 o_tp o_w o_h o_l

4
5 grav=9.81; % constant of gravity [m/s^2]

6 M=350; m=50; % chassis and wheel mass (Quarter Car) [kg]

7 cS=29400; kS=66.7; % spring stiffness [N/m] and nonlinerity [1/m^2]

8 dCh=4850; dWh=3200; % sky hook damping parameter

9 TdS=0.005; % time constant [s]

10 cT=220000; % Tire Stiffness [N/m]

11
12 v_vel=80/3.6; % vehicle velocity [km/h --> m/s]

13 o_x0=2.0; o_y0=0; o_tp=2; % obstacle position [m] and type [-]

14 o_w=10; o_h=0.04; o_l=3; % obstacle width, height and length [m]

15
16 % preloads

17 FS0 = M*grav; FT0 = FS0 + m*grav;

18
19 % time interval

20 t0=0; te=1;

21
22 % initial states (steady state & average damping)

23 x0=[0;0;0;0; (dCh+dWh)/2];

24
25 % perform simulation

26 [t,x] = ode23(@qcm_skyhook_f,[t0,te],x0);

27
28 % suspension travel (st>0: compression)

29 st = x(:,2) - x(:,1);

30
31 % chassis acceleration, wheel load and road

32 ac=zeros(size(t)); FT=zeros(size(t)); zr=zeros(size(t));

33 for i=1:length(t)

34 xdot=qcm_skyhook_f(t(i),x(i,:)’);

35 ac(i)=xdot(3); FT(i)=ftire; zr(i)=z_road;

36 end

37
38 % plot results

39 subplot(2,2,1)

40 plot(t,x(:,5),’k’,’Linewidth’,1), title(’damping constant’)

41 subplot(2,2,2)

42 plot(t,ac,’k’,’Linewidth’,1), title(’chassis acceleration’)

43 subplot(2,2,3)

44 plot(t,st,’k’,’Linewidth’,1), title(’suspension travel & bump’)

45 hold on, plot(t,zr,’--b’,’Linewidth’,1)

46 subplot(2,2,4)

47 plot(t,FT,’k’,’Linewidth’,1), title(’wheel load’)

As done in Section 7.7.2, the eigendynamics of the system were analyzed first.
The stiffer spring (cS = 29.4 kN/m instead of cS = 20 kN/m) results in the
sky hook damping parameters dCh = 4850N/(m/s) and dWh = 3200N/(m/s),
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which correspond with damping ratios of ζC = 0.7 and ζW = 0.5 and thus
will provide optimal ride comfort and optimal ride safety.

The solid lines plotted in Figure 7.16 represent the simulation results.
For comparison, the corresponding results of simulations with a linear and
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FIGURE 7.16
Quarter car model with different damper types crossing a bump.

a nonlinear damper are shown also. The linear damper is simply realized
by setting both sky hook parameters to the average damping parameter,
dCh = dWh = (4850 + 3200)/2 = 4025 N/(m/s). As done in Section 7.6.2,
the nonlinear damper was modeled by piecewise linear functions character-
ized by the parameters dCp = 2000N/(m/s) and dRb = 6000N/(m/s), which
describe the damper resistance in the compression and rebound mode. In both
cases, the dynamic approach was applied. The time constant of TdS = 0.005s
makes quick changes of the damping constant possible. Whereas the damp-
ing parameter d simply jumps from d = dCp to d = dRb when the nonlinear
damper is employed, it varies over a wide range when the sky hook damper is
used instead. Compared to the linear damper, the sky hook damper generates
significantly smaller peak values in the chassis acceleration (9.2 → 8.1 m/s2)
and the wheel load (7.8→ 7.5 kN) but it will require an increased suspension
travel (2.9→ 3.3 kN) instead. The nonlinear damper reduces the peak values
in the chassis acceleration and the wheel load further on (8.1 → 7.2 m/s2

and 7.5 → 7.2 kN) but needs still more suspension travel (3.3 → 3.6 kN)
and shows a significant second overshoot at t ≈ 3.7 s in the time history of
the suspension travel. So, the performance of the sky hook damper regarding
comfort and safety may be judged clearly superior to the linear and slightly
better than the nonlinear damper layout. By applying a more sophisticated
control strategy, further enhancements will be possible.
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Exercises

7.1 The equations of motion for a simple planar vehicle model read as
M z̈C = F1 + F2 −M g ,

Θ β̈C = −a1F1 + a2F2 ,
and

m1 z̈A1 = −F1 + FT1 −m1 g ,
m2 z̈A2 = −F2 + FT2 −m2 g ,

where M , Θ denote the mass and inertia of the chassis; m1, m2 describe the
masses of the front and rear axle; and a1, a2 represent the distances of the
chassis center C to the front and rear axle.
The generalized coordinates zC and βC as well
as zA1 and zA2 characterize the hub and pitch
motion of the chassis as well as the vertical
movements of the front and rear axle. The co-
ordinates are measured from the steady-state
position. The road irregularities at the front
and rear axle are described by zR1 and zR2

finally. Assuming linear force characteristics,
the suspension forces read as
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F1 =

F 0
1︷ ︸︸ ︷

Mg
a2

a1+a2
+ cS1

s1︷ ︸︸ ︷[
zA1 − (zC−a1βC)

]
+ dS1

ṡ1︷ ︸︸ ︷[
żA1 −

(
żC−a1β̇C

)]
,

F2 = Mg
a1

a1+a2︸ ︷︷ ︸
F 0

2

+ cS2

[
zA2 − (zC+a2βC)

]
︸ ︷︷ ︸

s2

+ dS2

[
żA2 −

(
żC+a2β̇C

)]
︸ ︷︷ ︸

ṡ2

,

where the preloads F 0
1 , F 0

2 just represent the corresponding parts of the
chassis weight Mg, and the displacements s1, s2 and their time deriva-
tives ṡ1, ṡ2 are defined such that positive values represent compression. Fi-
nally, the tire forces are defined by FT1 = F 0

1 + m1g + cT1 (zR1−zA1) and
FT2 = F 0

2 +m2g + cT2 (zR2−zA2), where the demands FT1 > 0 and FT2 > 0
will take tire liftoff into account.

Write a MATLAB function that provides the equations of motion in the form
of ẋ = f(t, x), where x = [ zC ; βC ; zA1; zA2; żC ; β̇C ; żA1; żA2 ] defines the
state vector and the data are supplied by global variables. Derive the linear
state equation in the form of ẋ = Ax+B u, where the vector u = [ zR1; zR2 ]
contains the road irregularities. Combine the two quarter car models defined
in Figure 7.8 and Figure 7.11 by neglecting the spring nonlinearity and by
setting a1 = a2 = 1.3 m. Then, calculate the eigenvalues of the state matrix
A and derive the eigenfrequencies and damping ratios.

7.2 Estimate appropriate values for the suspension stiffness for the vehicles
characterized by the data in Table 7.1 by assuming realistic loading scenarios.
Compute suitable values for the suspension damping that will provide opti-
mal comfort and safety. Check the results by analyzing the performance of
corresponding simple quarter car and planar models on rough road and when
crossing different obstacles.
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8.1 Dynamic Wheel Loads

8.1.1 Simple Vehicle Model

The vehicle is considered as one rigid body that moves along an ideally even
and horizontal road. At each axle, the forces in the wheel contact points are
combined into one normal and one longitudinal force. If aerodynamic forces
(drag, positive and negative lift) are neglected at first, the equations of motions
in the x-, z-plane will read as

mv̇ = Fx1 + Fx2 , (8.1)

225
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FIGURE 8.1
Simple vehicle model.

0 = Fz1 + Fz2 −mg , (8.2)

0 = −Fz1 a1 + Fz2 a2 − (Fx1 + Fx2)h , (8.3)

where v̇ = ax indicates the vehicle’s acceleration, m is the mass of the vehicle,
a1+a2 is the wheel base, and h is the height of the center of gravity.

These are only three equations for the four unknown forces Fx1, Fx2, Fz1,
Fz2. But, if we insert Equation (8.1) in Equation (8.3), we can eliminate two
unknowns at a stroke

0 = −Fz1 a1 + Fz2 a2 −mv̇ h . (8.4)

Equations (8.2) and (8.4) can be resolved for the axle loads now

Fz1 = mg
a2

a1 + a2
− h

a1 + a2
mv̇ , (8.5)

Fz2 = mg
a1

a1 + a2
+

h

a1 + a2
mv̇ . (8.6)

The static parts

F stz1 = mg
a2

a1 + a2
, F stz2 = mg

a1

a1 + a2
(8.7)

describe the weight distribution according to the horizontal position of the
center of gravity. The height of the center of gravity only influences the dy-
namic part of the axle loads,

F dynz1 = −mg
h

a1 + a2

v̇

g
, F dynz2 = +mg

h

a1 + a2

v̇

g
. (8.8)

When accelerating v̇>0, the front axle is relieved as the rear is when deceler-
ating v̇<0.
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FIGURE 8.2
Vehicle on grade.

8.1.2 Influence of Grade

For a vehicle on a grade, the equations of motion, defined by Equations (8.1)
to (8.3), can easily be extended to

mv̇ = Fx1 + Fx2 −mg sinα ,

0 = Fz1 + Fz2 −mg cosα ,

0 = −Fz1 a1 + Fz2 a2 − (Fx1 + Fx2)h ,

(8.9)

where α denotes the grade angle, Figure 8.2. Now, the axle loads are given by

Fz1 =

F stz1︷ ︸︸ ︷
mg cosα

a2 − h tanα

a1 + a2

F dynz1︷ ︸︸ ︷
− h

a1 + a2
mv̇ , (8.10)

Fz2 = mg cosα
a1 + h tanα

a1 + a2︸ ︷︷ ︸
F stz2

+
h

a1 + a2
mv̇︸ ︷︷ ︸

F dynz2

, (8.11)

where the dynamic parts F dynz1 , F dynz2 remain unchanged and the static parts
F stz1, F stz2 also depend on the grade angle α and the height of the center of
gravity h.

8.1.3 Aerodynamic Forces

The shape of most vehicles or specific wings mounted on the vehicle produce
aerodynamic forces and torques. The effect of these aerodynamic forces and
torques can be represented by a resistant force applied at the center of gravity
and “down forces” acting at the front and rear axle, Figure 8.3. If we assume
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FIGURE 8.3
Vehicle with aerodynamic forces.

a positive driving speed, v > 0, the equations of motion will read as

mv̇ = Fx1 + Fx2 − FAR ,
0 = Fz1−FD1 + Fz2−FD2 −mg ,

0 = − (Fz1−FD1) a1 + (Fz2−FD2) a2 − (Fx1 + Fx2) h ,

(8.12)

where FAR and FD1, FD2 describe the air resistance and the down forces. For
the axle loads, we get

Fz1 =

F stz1︷ ︸︸ ︷
FD1 +mg

a2

a1 + a2

F dynz1︷ ︸︸ ︷
− h

a1 + a2
(mv̇ + FAR) , (8.13)

Fz2 = FD2 +mg
a1

a1 + a2︸ ︷︷ ︸
F stz2

+
h

a1 + a2
(mv̇ + FAR)︸ ︷︷ ︸

F dynz2

. (8.14)

The down forces FD1, FD2 increase the static axle loads, and the air resistance
FAR generates an additional dynamic term.

8.2 Maximum Acceleration

8.2.1 Tilting Limits

Ordinary automotive vehicles can only apply pressure forces to the road. If
we take the demands Fz1 ≥ 0 and Fz2 ≥ 0 into account, Equations (8.10) and
(8.11) will result in

v̇

g
≤ a2

h
cosα− sinα and

v̇

g
≥ −a1

h
cosα− sinα . (8.15)
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These two conditions can be combined into one

−a1

h
cosα ≤ v̇

g
+ sinα ≤ a2

h
cosα . (8.16)

Here, aerodynamic forces are not taken into account. Then, the maximum
achievable accelerations (v̇ > 0) and decelerations (v̇ < 0) are limited by the
grade angle α and the position a1, a2, h of the center of gravity. For v̇ → 0,
the tilting condition Equation (8.16) results in

−a1

h
≤ tanα ≤ a2

h
, (8.17)

which characterizes the climbing and downhill capacity of a vehicle.
The presence of aerodynamic forces complicates the tilting condition. How-

ever, aerodynamic forces become important only at high speeds. But then, the
vehicle acceleration is normally limited by the engine power.

8.2.2 Friction Limits

The maximum acceleration is also restricted by the friction conditions

|Fx1| ≤ µFz1 and |Fx2| ≤ µFz2 , (8.18)

where the same friction coefficient µ has been assumed at the front and the
rear axle. In the limit case

Fx1 = ±µFz1 and Fx2 = ±µFz2 , (8.19)

the linear momentum in Equation (8.9) can be written as

mv̇max = ±µ (Fz1 + Fz2)−mg sinα . (8.20)

Using Equations (8.10) and (8.11), one obtains(
v̇

g

)
max

= ±µ cosα − sinα . (8.21)

That means climbing (v̇ > 0, α > 0) or downhill stopping (v̇ < 0, α < 0)
requires at least a friction coefficient µ ≥ tan |α|. On a horizontal road (α = 0),
the maximum longitudinal acceleration is simply determined by the coefficient
of friction (

v̇

g

)
max

= ±µ or amaxx = ±µ g . (8.22)

According to the vehicle dimensions a1, a2, h and the magnitude of the friction
coefficient µ, the maximal acceleration or deceleration is restricted either by
Equation (8.16) or by Equation (8.21).
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If we take aerodynamic forces into account, the maximum acceleration and
deceleration on a horizontal road (α = 0) will be limited by

−µ
(

1 +
FD1

mg
+
FD2

mg

)
− FAR
mg

≤ v̇

g
≤ µ

(
1 +

FD1

mg
+
FD2

mg

)
− FAR
mg

. (8.23)

In particular the aerodynamic forces enhance the braking performance of the
vehicle.

8.3 Driving and Braking

8.3.1 Single Axle Drive

With the rear axle driven in limit situations, Fx1 = 0 and Fx2 = µFz2 hold.
Then, using Equation (8.6) the linear momentum Equation (8.1) results in

mv̇RWD = µmg

[
a1

a1 + a2
+

h

a1 + a2

v̇RWD
g

]
, (8.24)

where the subscript RWD indicates the rear wheel drive. Hence, the maximum
acceleration for a rear wheel driven vehicle is given by

v̇RWD
g

=
µ

1− µ h

a1 + a2

a1

a1 + a2
. (8.25)

By setting Fx1 = µFz1 and Fx2 = 0, the maximum acceleration for a front
wheel driven vehicle can be calculated in a similar way. One gets

v̇FWD
g

=
µ

1 + µ
h

a1 + a2

a2

a1 + a2
, (8.26)

where the subscript FWD denotes front wheel drive. Depending on the param-
eter µ, a1, a2, and h, the accelerations may be limited by the tilting condition
v̇
g ≤

a2
h . The maximum accelerations of a single-axle driven vehicle are plotted

in Figure 8.4. Besides the friction limits, the hazard of tilting must be taken
into account. On a horizontal road (α = 0), Equation (8.16) yields

v̇

g
≤ a2

h
or

a2

a1 + a2
≥ h

a1 + a2

v̇

g
, (8.27)

where the inequality was rearranged and divided by the wheel base a1 + a2.
According to Equation (8.21), the maximum acceleration is limited to the
friction coefficient on a horizontal road(

v̇

g

)
max

= µ . (8.28)
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FIGURE 8.4
Single-axle driven passenger car: µ = 1, h = 0.55m, a1+a2 = 2.5m.

In this case, the tilting condition Equation (8.27) just delivers

a2

a1 + a2
≥ h

a1 + a2
µ =

0.55

2.5
1 = 0.22 . (8.29)

For rear wheel driven passenger cars, the parameter a2/(a1+a2) describing the
static axle load distribution is usually in the range of 0.4 ≤ a2/(a1+a2) ≤ 0.5.
For µ = 1 and h = 0.55, this results in maximum accelerations in the range
of 0.77 ≥ v̇/g ≥ 0.64. Front wheel driven passenger cars usually cover the
range 0.55 ≤ a2/(a1 +a2) ≤ 0.60, which produces accelerations in the range
of 0.45 ≤ v̇/g ≥ 0.49. Hence, rear wheel driven vehicles can accelerate much
faster than front wheel driven vehicles.

8.3.2 Braking at Single Axle

If only the front axle is braked, Fx1 =−µFz1 and Fx2 =0 will hold in the limit
case. With Equation (8.5) one gets from Equation (8.1),

mv̇FWB = −µmg

[
a2

a1 + a2
− h

a1 + a2

v̇FWB
g

]
, (8.30)

where the subscript FWB indicates front wheel braking. Then, the maximum
deceleration is given by

v̇FWB
g

= − µ

1− µ h

a1 + a2

a2

a1 + a2
. (8.31)
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If only the rear axle is braked (Fx1 = 0, Fx2 = −µFz2), one will obtain the
maximum deceleration

v̇RWB
g

= − µ

1 + µ
h

a1 + a2

a1

a1 + a2
, (8.32)

where the subscript RWB denotes rear wheel braking. The maximum decel-
erations of a single-axle braked vehicle are plotted in Figure 8.5. Depending

� ��� ��� ��� ��� �
��

����

����

����

����

�

	�
�	��	�


�	����
�����	��
�������
���������

���

 
�
�

��������
��!��
��"�

FIGURE 8.5
Single-axle braked passenger car: µ = 1, h = 0.55m, a1+a2 = 2.5m.

on the parameters µ, a1, a2, and h, the decelerations may be limited by the
tilting condition v̇/g ≥ −a1/h, which in the limit case v̇/g = −µ yields

−µ ≥ −a1

h
or −a1 ≤ −µh or (a1+a2)−a1 ≤ (a1+a2)−µh (8.33)

and finally results in

a2

a1+a2
≤ 1− µ h

a1+a2
= 1− 1

0.55

2.5
= 0.78 . (8.34)

For passenger cars, the load distribution parameter a2/(a1+a2) usually covers
the range of 0.4 to 0.6. If only the front axle is braked, decelerations from
v̇/g = −0.51 to v̇/g = −0.77 will be achieved. This is quite a large value
compared to the deceleration range of a braked rear axle, which is in the
range of v̇/g = −0.49 to v̇/g = −0.33. Therefore, the braking system at the
front axle will have a redundant design in general.

8.3.3 Braking Stability

A small yaw disturbance of the vehicle, indicated by the side slip angle β, will
cause slip angles at the wheels. Two extreme braking scenarios are shown in
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in Figures 8.6 and 8.7, where the profile pattern of the tire is fully visible at
locked wheels and slurred to gray at rotating ones
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FIGURE 8.6
Locked front wheels.
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FIGURE 8.7
Locked rear wheels.

If the front wheels are locked, the tire friction forces F1 and F2 will point
into the opposite direction of sliding velocity v, which just equals the driving
velocity of the vehicle, Figure 8.6. The forces F1 and F2, which are approxi-
mately equal in magnitude, generate the torque T12 with respect to the vehicle
center. As the lever arm s1 of the force F1 is slightly large than the lever arm
s2 of the force F2, the torque T12 will increase the side slip angle β and pro-
duce a destabilizing effect to the vehicle. The rear wheels are also braked but
will still rotate. Here, each sliding velocity in the contact point is the result
of the the driving velocity v and the corresponding transport velocity rDΩ3

or rDΩ4, respectively. As a consequence, the sliding velocities and hence the
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corresponding tire forces F3 and F4 point in a direction that is inclined to the
driving direction. Now, the lever arm s3 of the force F3 is significantly smaller
than the lever arm s4 of the force F4. The resulting torque T34 = s4F4− s3F3

is aligned opposite to the yaw disturbance. In magnitude, it is larger than T12

and will thus produce an overall stabilizing effect to the vehicle.
However, if the rear wheels are locked and the front wheels are still rotating,

s1 � s2 and s3 < s4 will hold, Figure 8.7. Then, the destabilizing torque
T12, is in magnitude, larger than the stabilizing torque T34, which as a result
will increase the yaw disturbance β, thus representing an unstable braking
situation.

8.3.4 Optimal Distribution of Drive and Brake Forces

The sum of the longitudinal forces accelerates or decelerates the vehicle. In
dimensionless style, Equation (8.1) reads as

v̇

g
=

Fx1

mg
+

Fx2

mg
. (8.35)

A certain acceleration or deceleration can only be achieved by different combi-
nations of the longitudinal forces Fx1 and Fx2. According to Equation (8.19),
the longitudinal forces are limited by wheel load and friction.

The optimal combination of Fx1 and Fx2 will be achieved when front and
rear axle have the same skid resistance:

Fx1 = ± ν µFz1 and Fx2 = ± ν µFz2 . (8.36)

Using Equations (8.5) and (8.6), one obtains

Fx1

mg
= ± ν µ

(
a2

h
− v̇

g

)
h

a1 + a2
(8.37)

and
Fx2

mg
= ± ν µ

(
a1

h
+
v̇

g

)
h

a1 + a2
. (8.38)

Combining Equation (8.35) with Equations (8.37) and (8.38) results in

v̇

g
= ± ν µ . (8.39)

Here, Fx1 and Fx2 are assumed to have the same sign. This means that either
both axles are driven or braked. Finally, inserting Equation (8.39 in Equa-
tions (8.37) and (8.38) yields

Fx1

mg
=

v̇

g

(
a2

h
− v̇

g

)
h

a1 + a2
(8.40)
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and
Fx2

mg
=

v̇

g

(
a1

h
+
v̇

g

)
h

a1 + a2
. (8.41)

Depending on the desired acceleration v̇ > 0 or deceleration v̇ < 0, the longitu-
dinal forces that grant the same skid resistance at both axles can be calculated
now.

The curve of optimal drive and brake forces for a typical passenger car
is plotted in Figure 8.8. The abscissa represents the longitudinal force at the
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FIGURE 8.8
Optimal distribution of driving and braking forces.

front axle and the ordinate the one at the rear axle. Braking forces are indi-
cated by negative longitudinal forces. In the diagram they are pointing to the
left and upward. Rearranging Equation (8.35) generates the lines of constant
acceleration and constant deceleration

Fx2

mg
=

v̇

g
− Fx1

mg
, (8.42)

which are also plotted in Figure 8.8 in the range of −1.0 ≤ v̇/g ≤ 1.0.
The initial gradient of the curve of optimal drive and brake forces only

depends on the steady-state distribution of the wheel loads. From Equa-
tions (8.40) and (8.41) it follows:

d
Fx1

mg

d
v̇

g

=

(
a2

h
− 2

v̇

g

)
h

a1 + a2
(8.43)
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and

d
Fx2

mg

d
v̇

g

=

(
a1

h
+ 2

v̇

g

)
h

a1 + a2
. (8.44)

For v̇/g = 0, the initial gradient just remains as

dFx2

dFx1

∣∣∣∣
0

=
a1

a2
. (8.45)

At the tilting limits v̇/g = −a1/h and v̇/g = +a2/h, no longitudinal forces
can be applied at the lifting axle.

8.3.5 Different Distributions of Brake Forces

Practical applications aim at approximating the optimal distribution of brake
forces by a linear, a limited, or a reduced distribution of brake forces as good
as possible in a range of physical interest that is bounded by the maximum
possible friction coefficient µM , Figure 8.9. When braking, the stability of a
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FIGURE 8.9
Different distributions of brake forces.

vehicle depends on the potential of generating a lateral force at the rear axle.
Thus, a greater skid (locking) resistance is realized at the rear axle than at the
front axle. Therefore, the brake force distributions are all below the optimal
curve in the physically relevant area. This restricts the achievable deceleration,
in particular at low friction values.

Because the optimal curve depends on the center of gravity of the vehicle,
an additional safety margin must be installed when designing real brake force
distributions. The distribution of brake forces is often fitted to the axle loads.
There, the influence of the height of the center of gravity, which may also
vary significantly on trucks, is not taken into account and must be compen-
sated by a safety margin from the optimal curve. Only the control of brake
pressure in anti-lock systems provides an optimal distribution of brake forces
independently of loading conditions.

8.3.6 Braking in a Turn

The braking stability becomes apparent when a vehicle is braked while cor-
nering. Different braking scenarios, including no braking at all, are shown in
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FIGURE 8.10
Braking in a turn with different scenarios.

Figure 8.10. At the beginning, the vehicle, a standard passenger car, is cor-
nering with a driving velocity of v = v0 = 80 km/h on a radius of R ≈ 100m,
which results in a lateral acceleration of ay ≈ (80/3.6)2/100 = 4.94m/s2. All
braking scenarios start at t = 3 s. In the standard case, the braking torques
at the front wheels are raised within 0.1 s to 900 Nm and at the rear wheels
to 270 Nm, which stops the vehicle in barely 4 seconds. The inner front wheel
strongly decelerates at first, upper left plot in Figure 8.11. This brings the
wheel close to a locking situation and reduces the transmittable lateral force.
As a consequence, the lateral acceleration and the yaw angular velocity col-
lapse for a short time, lower plots in Figure 8.11. The beginning deceleration
of the vehicle increases the wheel load at the front axle, which enables the
front tires to transmit larger lateral forces and the lateral acceleration and
the yaw angular velocity again. As the vehicle has reduced its velocity in the
meantime, the peak value of the lateral acceleration is below the initial value.
However, the resulting peak in the yaw angular velocity exceeds the initial
value and causes the vehicle to turn into the corner slightly. When the vehicle
comes to a standstill at t ≈ 7 s, the compliance of the tire causes oscillations
of the longitudinal tire forces, upper left plot in Figure 8.11.

If large braking torques of 1500 Nm are applied only at the front wheels,
the vehicle will stop in nearly the same time. But, the front wheels will lock
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FIGURE 8.11
Baking in a turn.

now and cause the vehicle to go straight ahead instead of further cornering,
third graph in Figure 8.10. If the same braking torques are put on the rear
wheels only, the vehicle becomes unstable, rotates around, is then stabilized
by the locked rear axle, which has come to the front, and finally comes to a
stand still, rightmost graph in Figure 8.11.

8.3.7 Braking on µ-Split.

If a vehicle without an anti-lock system is braked on a µ-split surface, then the
wheels running on µlow will lock in an instant, thus providing small braking
forces only. The wheels on the side of µhigh, however, generate large braking
forces, F1 � F2 and F3 > F4, Figure 8.12. The rear wheel on µlow is locked
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FIGURE 8.12
Yaw reaction when braking on µ-split.

and provides no lateral guidance at all. At full braking, the rear wheel on µhigh
is close to the friction limit and therefore is not able to produce a lateral force
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large enough to counteract the yaw impact. As a consequence, the vehicle
starts to spin around the vertical axis.

Screen shots of a commercial trailer from the company Robert Bosch
GmbH, explaining the need for the EPS system, compared with the results of
a simulation with a full vehicle model are shown in Figure 8.13. Despite dif-

t = 0 −→

−→ t = T

FIGURE 8.13
Braking on µ-split: Field test and simulation [40].

ferent vehicles and estimated friction coefficients for the dry (µhigh = 1) and
the icy part (µlow=0.05) of the test track, the simulation results are in good
conformity with field tests. Whereas the reproducibility of field tests is not
always given, a computer simulation can be repeated exactly with the same
environmental conditions.

8.3.8 Anti-Lock System

8.3.8.1 Basic Principle

On hard braking maneuvers, large longitudinal slip values occur. Then, the
stability and/or steerability is no longer given because nearly no lateral forces
can be generated. By controlling the brake torque or brake pressure, respec-
tively, the longitudinal slip can be restricted to values that allow considerable
lateral forces.

Here, the angular wheel acceleration Ω̇ is used as a control variable. Angu-
lar accelerations of the wheel are derived from the measured angular speeds
of the wheel by differentiation. The rolling condition is fulfilled with a longi-
tudinal slip of sL = 0. Then

rD Ω̇ = ẍ (8.46)

holds, where rD is the dynamic tire radius and ẍ describes the longitudinal
acceleration of the vehicle. According to Equation (8.21), the maximum accel-
eration/deceleration of a vehicle depends on the friction coefficient, |ẍ| = µ g.
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For a given friction coefficient µ, a simple control law can be realized for each
wheel,

|Ω̇| ≤ 1

rD
|ẍ| =

1

rD
|µ g| . (8.47)

Because no reliable possibility to determine the local friction coefficient µ
between tire and road has been found until now, useful information can only
be gained from Equation (8.47) at optimal conditions on dry road. Therefore,
the longitudinal slip is used as a second control variable. The control of the
brake torque is done via the brake pressure, which can be “increased,” “held,”
or “decreased” by three-way valves. To prevent vibrations, the decrement is
usually made slower than the increment. In order to calculate longitudinal
slips, a reference speed is estimated from all measured wheel speeds and is
then used for the calculation of slip at all wheels. However, this method is too
imprecise at low speeds. Therefore, no control is applied below a limit velocity.
Problems also arise when all wheels lock simultaneously, which may happen
on icy roads, for example.

Commercial anti-lock systems use the “select low” principle at the rear
wheels. When braking on µ-split, the braking pressure at both rear wheels is
controlled by the wheel running on µlow. As a result, the longitudinal force
of the wheel on µhigh is bounded to low value of the one on µlow. Thus, the
yaw reaction is reduced on one hand and the wheel on µhigh can provide a
significantly larger lateral force that counteracts the remaining yaw reaction
on the other hand. However, the maximum achievable deceleration is slightly
reduced by this.

8.3.8.2 Simple Model

The function given in Listing 8.1 provides the state equation of a simple planar
vehicle model.

Listing 8.1
Function vehicle 2d simple f: Simple Planar Vehicle Model Dynamics

1 function xp=vehicle_2d_simple_f(t,x)

2 % vehicle model including wheel/tire dynamics and simple ABS control

3
4 global gravity mass theta a1 a2 h csf dsf csr dsr thetaw r

5 global fzn dfx0 fxm sxm fxs sxs vn cx dx

6 global t_tqb set_tqb dn dtqb_inc dtqb_dec

7 global sx fx fz tqba

8
9 % get states

10 posx = x( 1); posz = x( 2); pitch = x( 3); % vehicle position and orientation

11 velx = x( 4); velz = x( 5); pdot = x( 6); % vehicle velocities

12 owh = x( 7: 8); % angular velocities of front and rear wheels

13 xt = x( 9:10); % longitudinal tire deflections

14 tqbctrl = x(11:12); % controlled braking torques

15
16 % wheel loads (linear suspension force characteristics)

17 fz = [ mass*gravity*a2/(a1+a2)-csf*(posz-a1*pitch)-dsf*(velz-a1*pdot); ...
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18 mass*gravity*a1/(a1+a2)-csr*(posz+a2*pitch)-dsr*(velz+a2*pdot)];

19
20 % get maximum braking torque via linear interpolation

21 tqb_mx = interp1(t_tqb,set_tqb,t);

22
23 % tire and wheel dynamics (front and rear wheel)

24 xtdot=[0;0]; fx=[0;0]; tqba=[0;0]; owhdot=[0;0]; % defaults

25 for i=1:2

26 % modified transport velocities and long. slips without normalization

27 vt = abs(r*owh(i))+vn; vs=(velx-r*owh(i)); sx(i)=-vs/vt;

28 % linear wheel load influence to tire parameter

29 pt = [ dfx0, fxm, sxm, fxs, sxs] * fz(i)/fzn;

30 % generalized tire characteristics (sx only)

31 [f,fos] = tmy_fcombined( abs(sx(i)), pt(1),pt(2),pt(3),pt(4),pt(5) ) ;

32 % time derivative of long. tire deflection and long. dynamic tire force

33 xtdot(i) = -(cx*xt(i)*vt+fos*vs)/(dx*vt+fos); fx(i)=cx*xt(i)+dx*xtdot(i);

34 % limit braking torque to controlled or to maximum applied torque

35 if abs(owh(i))>vn/r, tqb_l=tqbctrl(i); else tqb_l=tqb_mx; end

36 % applied braking torque (enhanced dry friction model)

37 tqba(i)=-r*fx(i)+dn*owh(i); tqba(i)=sign(tqba(i))*min(abs(tqba(i)),tqb_l);

38 % angular momentum wheel (no driving torque)

39 owhdot(i) = ( -tqba(i) - r*fx(i) ) / thetaw;

40 end

41
42 % vehicle equations of motion (longitudinal and hub as well as pitch motion)

43 velxdot = ( fx(1) + fx(2) ) / mass;

44 velzdot = ( fz(1) + fz(2) ) / mass - gravity;

45 pdotdot = (-a1*fz(1) + a2*fz(2) - (h+posz)*(fx(1)+fx(2)) )/theta;

46
47 % ABS control (simple 2-point brake torque control)

48 tqbctrldot=[0;0]; % no change in braking torques as default

49 for i=1:2

50 if velx > vn % control braking torque only if vehicle is fast enough

51 % increase up to the limit tqb_mx (normal braking)

52 if tqbctrl(i) < tqb_mx, tqbctrldot(i) = dtqb_inc; end

53 % decrease existing torque if slip is close to maximum (90% of sxm)

54 if tqbctrl(i) > 0 && sx(i) < -0.9*sxm, tqbctrldot(i) = dtqb_dec; end

55 end

56 end

57
58 % state derivatives

59 xp = [ velx;velz;pdot; velxdot;velzdot;pdotdot; owhdot; xtdot; tqbctrldot ];

60
61 end

Here, the equations of motion for the simple planar vehicle model, provided
in Section 8.1.1, are extended appropriately by the corresponding acceleration
terms

mẍ = Fx1 + Fx2 , (8.48)

m z̈ = Fz1 + Fz2 −mg , (8.49)

Θ β̈ = −Fz1 a1 + Fz2 a2 − (Fx1 + Fx2) (h+ z) , (8.50)

where the generalized coordinates x, z, and β characterize the longitudinal,
the vertical, and the pitch motion of the vehicle. The inertia of the vehicle
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about the y-axis is represented by Θ and h + z describes the actual height
of the vehicle center above a flat horizontal road. Within this simple model
approach, small pitch motions, |β| � 1, are taken for granted. Neglecting
the compliance of the tires and the dynamics of the wheel/axle masses in the
vertical direction, the wheel loads will just be provided by

Fz1 = mg
a2

a1 + a2
− cSF (z − a1β)− dSF

(
ż − a1β̇

)
, (8.51)

Fz2 = mg
a1

a1 + a2
− cSR (z + a2β)− dSR

(
ż + a2β̇

)
, (8.52)

where cSF , cSR, dSF , dSR characterize the stiffness and damping properties of
the front and rear suspension. Assuming that the longitudinal motion of the
wheels are not affected by the pitch motion, the velocities of wheel centers of
the front and rear axle are simply defined by the vehicle velocity v = ẋ. Then,
the corresponding part of the simple vehicle model provided in Section 4.2.3
can be used to describe the dynamics of the longitudinal tire forces Fx1, Fx2

and the wheel rotations. An enhanced dry friction model generates appropriate
braking torques hereby. The function tmy fcombined, which generates the tire
force characteristic, is provided by Listing 3.3.

In reality, the functionality of an anti-lock control unit is very complex.
Here, a simple two-point controller, realized in the code lines 47 to 64, is
applied instead. As done in praxis, the controller operates only if the ve-
hicle drives fast enough. The state variables tqbctrl(i), i=1,2, represent the
controlled braking torques at the front and rear axle. When the brakes are
applied, the controlled braking torque will be increased up to the limit tqb mx
by the ratio dtqb inc at first. An existing controlled braking torque will be
decreased by the ratio dtqb dec if the slip exceeds 90% of the value sxm where
the longitudinal tire characteristic provides the maximum force.

The MATLAB-Script in Listing 8.2 provides all data of the simple planar
vehicle model, performs a simulation, and plots some results.

Listing 8.2
Script vehicle 2d simple main: Simple Planar Vehicle Model

1 global gravity mass theta a1 a2 h csf dsf csr dsr thetaw r

2 global fzn dfx0 fxm sxm fxs sxs vn cx dx

3 global t_tqb set_tqb dn dtqb_inc dtqb_dec

4 global sx fx fz tqba

5
6 % vehicle data

7 v0 = 80/3.6; % [km/h -> m/s] initial vehicle velocity

8 gravity = 9.81; % [m/s^2] constant of gravity

9 mass = 700; % [kg] corresp. vehicle mass

10 theta = 1000; % [kgm^2] corresp. vehicle inertia of wheel

11 a1 = 1.2; % [m] distance vehicle center front axle

12 a2 = 1.3; % [m] distance vehicle center rear axle

13 h = 0.55; % [m] height of vehicle center

14 csf = 20000; % [N/m] suspension stiffness front

15 dsf = 3000; % [N/m] suspension damping front
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16 csr = 25000; % [N/m] suspension stiffness rear

17 dsr = 3200; % [N/m] suspension damping rear

18 thetaw = 1.2; % [kgm^2] wheel inertia

19 r = 0.3; % [m] wheel radius

20
21 % long. tire characteristic for payload only

22 mu_l = 1.0; % [-] local friction coefficient

23 fzn = 3000; % [N] payload

24 dfx0 = 100000; % [N/-] initial incl. long. force char.

25 fxm = 3200*mu_l; % [N] maximum long. force

26 sxm = 0.1*mu_l; % [-] sx where fx=fxm

27 fxs = 3000*mu_l; % [N] long. sliding force

28 sxs = 0.8*mu_l; % [-] sx where fx=fxs

29 cx = 160000; % [N/m] longitudinal tire stiffness

30 dx = 500; % [N/(m/s)] longitudinal tire damping

31 vn = 0.01; % [m/s] fictitious velocity

32
33 % adjust "damping" constant in enhanced braking torque model to wheel/tire

34 dn = r*sqrt(cx*thetaw);

35
36 % brake control (simple ABS)

37 dtqb_inc = r*fxm/0.1; % [Nm/s] amount of braking torque increase

38 dtqb_dec = -2*dtqb_inc; % [Nm/s] amount of braking torque decrease

39
40 % set braking torque (lookup table: time [s], torque [Nm])

41 t_tqb = [ 0.0 0.05 0.10 2.50 ];

42 set_tqb = [ 0.0 0.00 1.00 1.00 ]*2*fxm*r;

43
44 % simple initial states

45 x0=[ 0; 0; 0; v0; 0; 0; v0/r; v0/r; 0; 0; 0; 0 ];

46
47 % ode23 with slightly enlarged error tolerances

48 options=odeset(’AbsTol’,1.e-5,’RelTol’,5.e-3);

49 tic, [t,xout]=ode23(@vehicle_2d_simple_f,[0,max(t_tqb)],x0,options); toc,

50
51 % post processing

52 n=length(t);sxi=zeros(n,2);fxi=sxi;fzi=sxi;tqbi=sxi;xpi=zeros(size(xout));

53 for i=1:n

54 xp = vehicle_2d_simple_f(t(i),xout(i,:)’);

55 sxi(i,:)=sx’; fxi(i,:)=fx’; fzi(i,:)=fz’; tqbi(i,:)=tqba’; xpi(i,:)=xp’;

56 end

57
58 subplot(2,3,1)

59 plot(t,tqbi(:,1:2)), grid on, axis([0,max(t_tqb),0,2000])

60 title(’applied braking torques [Nm]’), legend(’front’,’rear’)

61 subplot(2,3,2)

62 plot(t,xpi(:,4)/gravity), grid on, axis([0,max(t_tqb),-1.2,0])

63 legend(’normalized vehicle acceleration [-]’)

64 subplot(2,3,3);

65 plot(t,[r*xout(:,7:8),xout(:,4)]), grid on, axis([0,max(t_tqb),0,25])

66 title(’Velocities [m/s]’), legend(’v’,’r \Omega_1’,’r \Omega_2’)

67 subplot(2,3,4)

68 plot(t,fxi(:,1:2)/(mass*gravity)), grid on, axis([0,max(t_tqb),-1,0])

69 title(’normalized Longitudinal forces [N]’), legend(’front’,’rear’)

70 subplot(2,3,5)

71 plot(t,fzi(:,1:2)/(mass*gravity)), grid on, axis([0,max(t_tqb),0,1])

72 title(’normalized Vertical forces [N]’), legend(’front’,’rear’)
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73 subplot(2,3,6)

74 plot(t,sxi(:,1:2)), grid on, axis([0,max(t_tqb),-0.2,0])

75 title(’longitudinal slips’), legend(’front’,’rear’)

The local friction coefficient mu l makes it possible to adjust the tire char-
acteristic to different tire/road friction values. The amount of braking torque
increase is adjusted to the wheel tire data and amounts to dtqb inc = 9600
Nm/s here. The amount of braking torque decrease is just set to double the
value of the braking torque increase.

Within the simple two-point controller, the time derivatives of the con-
trolled braking torques may jump from plus to minus, which will cause prob-
lems in the step size control of an ode solver. That is why ode23 with slightly
reduced error tolerances is applied to this problem. Some results of simu-
lations with mu l = 1.0 (dry road) and mu l = 0.4 (wet road) are plotted in
Figure 8.14 and Figure 8.15. Each simulation is performed in the same time
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FIGURE 8.14
Controlled braking on dry road.

interval 0 ≤ t ≤ 2.5 s, with the same braking torque input and with the same
initial vehicle velocity of 80 km/h or 22.22 m/s, respectively. On dry road,
the vehicle decelerates with v̇/g ≈ −1 and comes to a full stop in the end,
Figure 8.14. The wet surface reduces the deceleration to v̇/g ≈ −0.4, which
cannot stop the vehicle in the time period under consideration, Figure 8.15.
The simple two-point controller causes the longitudinal slips to oscillate rather
rapidly about the desired slip values of −0.09 and −0.036, respectively. The
controller of a commercial anti-lock system processes several signals and op-
erates with more sophistication.

In steady-state, the normalized vertical wheel loads correspond with the
results obtained in Section 8.1.1. Using the data provided by Listing 8.2 Equa-
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FIGURE 8.15
Controlled braking on wet road.

tions (8.5) and (8.6 deliver

v̇/g = −1.0 | Fz1/(mg) = 0.74 Fz2/(mg) = 0.26 ,

v̇/g = −0.4 | Fz1/(mg) = 0.61 Fz2/(mg) = 0.39 .
(8.53)

In steady-state, the normalized longitudinal forces are close to the optimal
ones, which are defined by Equations (8.40) and (8.41) and will produce

v̇/g = −1.0 | Fx1/(mg) = −0.74 Fx2/(mg) = −0.24 ,

v̇/g = −0.4 | Fx1/(mg) = −0.26 Fx2/(mg) = −0.16 .
(8.54)

Regardless of the vehicle properties, an anti-lock system provides braking
forces or braking torques, respectively, which are close to the optimal one.
Besides avoiding completely locked wheels, this is a mayor benefit of an anti-
lock system.

The slightly increased complexity of the vehicle model takes the hub and
pitch motion of chassis into account too. On hard braking maneuvers, a strong
pitch reaction will occur hereby, Figure 8.16. The movements of the chassis
result in large suspension travel. In steady-state, the compression at the front
axle amounts to 6 cm and the rebound at the rear axle to slightly more than 7
cm, c.f. rightmost plot in Figure 8.16. Most drivers do not like their vehicle to
take a deep “bow” when braking. The straightforward solution to harden the
suspension is not practicable because this will worsen the comfort significantly.
A possible solution is discussed in the next section.
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FIGURE 8.16
Brake pitch reaction of simple planar vehicle model v̇/g = −1.

8.4 Drive and Brake Pitch

8.4.1 Enhanced Planar Vehicle Model

The planar vehicle model shown in Figure 8.17 consists of five rigid bodies:
the chassis and one wheel and one knuckle at each axle. The coordinates xC ,
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FIGURE 8.17
Planar vehicle model.

zC , and βC characterize the longitudinal, the vertical, and the pitch motion
of the chassis. The centers of each wheel and knuckle are supposed to coincide
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and z1, z2 represent their vertical motion relative to the chassis. Finally, the
rotation angles ϕW1 and ϕW2 characterize the wheel rotations relative to the
knuckles. The height of the chassis center is defined by h = R+ hR, where R
denotes the wheel radius and hr the height of the chassis center with respect
to the wheel center. The distances a1 and a2 define the location of the chassis
center with respect to the front and rear axle.

The suspension forces acting between the knuckle and the chassis are la-
beled FS1 and FS2. At the wheels, drive torques TD1, TD2; brake torques TB1,
TB2; longitudinal forces Fx1, Fx2; and the wheel loads Fz1, Fz2 apply. In gen-
eral, the brake torques are directly supported by the wheel bodies, whereas
the drive torques are transmitted by the drive shafts to the chassis.

The velocity and the angular velocity of the chassis are given by

v0C,0 =

 ẋC0
0

 +

 0
0
żC

 and ω0C,0 =

 0

β̇C
0

 . (8.55)

The kinematical analysis of a double wishbone suspension system, performed
in Section 5.4.6, shows that knuckle and wheel will not move simply up and
down in practice. For example, the movements of the wheel center at a simple
trailing arm suspension, discussed in Section 1.5, are determined by the rota-
tion of the trailing arm about the revolute joint in B, Figure 8.18. The design
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FIGURE 8.18
Trailing arm suspension.

position of the trailing arm is defined by the angle β0. Then, the longitudinal
and vertical motion of the wheel center W with respect to the chassis are just
given by

x = a sin (β0 + β) and z = a cos (β0 + β) , (8.56)

where a denotes the distance of the wheel center W to the joint in B. Within
this planar model, the vertical movements of the front and rear wheel center
(z1, z1) are used as generalized coordinates. Then, the longitudinal (x1, x2)
and rotational motions (β1, β2) of each knuckle are described via functions of
the corresponding vertical motions

x1 = x1(z1) , β1 = β1(z1) and x2 = x2(z2) , β2 = β2(z2) . (8.57)
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Under normal driving situations, small vertical displacements and a small
pitch motion may be taken for granted. Then, the velocities of the knuckles
and wheels are obtained by

v0K1,0 = v0W1,0 =

 ẋC0
0

+

 0
0
żC

+

−hR β̇C0

−a1 β̇C

+

 ∂x1

∂z1
ż1

0
ż1

 , (8.58)

v0K2,0 = v0W2,0 =

 ẋC0
0

+

 0
0
żC

+

−hR β̇C0

+a2 β̇C

+

 ∂x2

∂z2
ż2

0
ż2

 , (8.59)

where higher-order terms were neglected. In general, the constraint motions,
here defined by Equation (8.57), may depend on more than one generalized
coordinate. That is why partial derivatives are used in this approach. Finally,
the angular velocities of the knuckles and wheels are defined by

ω0K1,0 =

 0

β̇C
0

+

 0

β̇1

0

 , ω0W1,0 =

 0

β̇C
0

+

 0

β̇1

0

+

 0
ϕ̇1

0

 (8.60)

and

ω0K2,0 =

 0

β̇C
0

+

 0

β̇2

0

 , ω0W2,0 =

 0

β̇C
0

+

 0

β̇2

0

+

 0
ϕ̇2

0

 . (8.61)

Collecting the time derivatives of the generalized coordinates in the vector of
generalized velocities

z =
[
ẋC żC β̇C β̇1 ϕ̇1 β̇2 ϕ̇2

]T
, (8.62)

the velocities and angular velocities given by Equations (8.55), (8.58), (8.59),
(8.60), and (8.61) can be written as

v0i =

7∑
j=1

∂v0i

∂zj
zj and ω0i =

7∑
j=1

∂ω0i

∂zj
zj . (8.63)

The partial velocities ∂v0i/∂zj and partial angular velocities ∂ω0i/∂zj for the
planar vehicle model are arranged in Tables 8.1 and 8.2. The last column lists
the forces and torques that apply to the corresponding model body, where g
denotes the constant of gravity and mC , mK1, mW1, mK2, mW2, ΘC , ΘK1,
ΘW1, ΘK2, ΘW1 denote the mass and inertia properties.
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TABLE 8.1
Partial Velocities and Applied Forces

Partial Velocities ∂v0i/∂zj Applied Forces

Bodies ẋC żC β̇C ż1 ϕ̇1 ż2 ϕ̇2 F ai

Chassis
mC

1
0
0

0
0
1

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0

FS1+FS2−mCg

Knuckle
front
mK1

1
0
0

0
0
1

−hR
0

−a1

∂x1
∂z1
0
1

0
0
0

0
0
0

0
0
0

0
0

−FS1−mK1g

Wheel
front
mW1

1
0
0

0
0
1

−hR
0

−a1

∂x1
∂z1
0
1

0
0
0

0
0
0

0
0
0

Fx1
0

Fz1−mW1g

Knuckle
rear
mK2

1
0
0

0
0
1

−hR
0
a2

0
0
0

0
0
0

∂x2
∂z2
0
1

0
0
0

0
0

−FS2−mK2g

Wheel
rear
mW2

1
0
0

0
0
1

−hR
0
a2

0
0
0

0
0
0

∂x2
∂z2
0
1

0
0
0

Fx2
0

Fz2−mW2g

TABLE 8.2
Partial Angular Velocities and Applied Torques

Partial Angular Velocities ∂ω0i/∂zj Applied Torques

Bodies ẋC żC β̇C ż1 ϕ̇1 ż2 ϕ̇2 T ai

Chassis
ΘC

0
0
0

0
0
0

0
1
0

0
0
0

0
0
0

0
0
0

0
0
0

0
−TD1−TD2−a1 FS1+a2 FS2

0

Knuckle
front
ΘK1

0
0
0

0
0
0

0
1
0

0
∂β1
∂z1
0

0
0
0

0
0
0

0
0
0

0
TB1

0

Wheel
front
ΘW1

0
0
0

0
0
0

0
1
0

0
∂β1
∂z1
0

0
1
0

0
0
0

0
0
0

0
TD1−TB1−RFx1

0

Knuckle
rear
ΘK2

0
0
0

0
0
0

0
1
0

0
0
0

0
0
0

0
∂β2
∂z2
0

0
0
0

0
TB2

0

Wheel
rear
ΘW2

0
0
0

0
0
0

0
1
0

0
0
0

0
0
0

0
∂β2
∂z2
0

0
1
0

0
TD2−TB2−RFx2

0

8.4.2 Equations of Motion

As shown in Section 1.4.3 the accelerations and angular accelerations split into
two parts. Similar to Equation (1.26), one gets

a0i =

7∑
j=1

(
∂v0i

∂zj
żj + aR0i

)
and α0i =

7∑
j=1

(
∂ω0i

∂zj
żj + αR0i

)
. (8.64)
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The remaining terms in the accelerations,

aR0i =

7∑
j=1

d

dt

(
∂v0i

∂zj

)
żj and αR0i =

7∑
j=1

d

dt

(
∂ω0i

∂zj

)
żj , (8.65)

will contain only higher-order terms here and may be neglected for basic stud-
ies. Jourdain’s principle of virtual power delivers the equations of motion in
the form of

M ż = Q , (8.66)

where

M(i, j) =

5∑
k=1

(
∂v0k

∂zi

)T
mk

∂v0k

∂zj
+

5∑
k=1

(
∂ω0k

∂zi

)T
Θk

∂ω0k

∂zj
(8.67)

defines the elements of the 7×7 mass matrix and the 7×1 generalized force
vector

Q(i) =

5∑
k=1

(
∂v0k

∂zi

)T
F ek +

5∑
k=1

(
∂ω0k

∂zi

)T
Me
k (8.68)

only processes applied forces and torques in this particular case.

8.4.3 Equilibrium

Introducing the abbreviations

m1 =mK1+mW1, m2 =mK2+mW2, mV =mC+m1+m2, h=hR+R , (8.69)

the components of the vector of generalized forces and torques will read as

Q(1) = Fx1 + Fx2 ,

Q(2) = Fz1 + Fz2 −mV g

Q(3) = −a1(Fz1−m1g) + a2(Fz2−m2g)− h(Fx1 + Fx2) ,

Q(4) = Fz1−m1g − FS1 + ∂x1

∂z1
Fx1 + ∂β1

∂z1
(TD1 −RFx1) ,

Q(5) = TD1 − TB1 −RFx1 ,

Q(6) = Fz2−m2g − FS2 + ∂x2

∂z2
Fx2 + ∂β2

∂z2
(TD2 −RFx2) ,

Q(7) = TD2 − TB2 −RFx2 .

(8.70)

Without any driving and braking torques,

TD1 = 0 , TD2 = 0 , TB1 = 0 , TB2 = 0 , (8.71)

one gets the steady-state longitudinal forces, the suspension preloads, and the
wheel loads as

F stx1 = 0 , F stx2 = 0 ,

F stS1 =
a2

a1 + a2
mCg , F stS2 =

a1

a1 + a2
mCg ,

F stz1 =
a2

a1 + a2
mCg +m1g , F stz2 =

a1

a1 + a2
mCg +m2g .

(8.72)
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As distinct from Equation (8.7), the static wheel loads are now composed of
the corresponding chassis and the axle weight.

8.4.4 Driving and Braking

Assuming that on accelerating or decelerating the vehicle, the wheels neither
slip nor lock, then

R ϕ̇1 = ẋC − hR β̇C +
∂x1

∂z1
ż1 and R ϕ̇2 = ẋC − hR β̇C +

∂x2

∂z2
ż2 (8.73)

will hold. In steady-state, the pitch motion of the body and the vertical motion
of the knuckles and the wheels reach constant values,

βC = βstC = const. , z1 = zst1 = const. , z2 = zst2 = const. . (8.74)

Then Equation (8.73) simplifies to

R ϕ̇1 = ẋC and R ϕ̇2 = ẋC . (8.75)

In addition, the time derivative of the generalized velocities reduces to

żst =
[
ẍC 0 0 0 1

R ẍC 0 1
R ẍC

]T
(8.76)

in this particular case. Then, the equation of motion (8.66) will result in

mV ẍC = F dynx1 + F dynx2 , (8.77)

0 = F dynz1 + F dynz2 , (8.78)[
−hR(m1+m2)+ ΘW1

R + ΘW2

R

]
ẍC = −a1F

dyn
z1 +a2F

dyn
z2 −h(F dynx1 +F dynx2 ), (8.79)[

∂x1

∂z1
m1+ ∂β1

∂z1
ΘW1

R

]
ẍC = F dynz1 −F

dyn
S1 +

∂x1

∂z1
F dynx1 +

∂β1

∂z1
(TD1−RF dynx1 ) , (8.80)

ΘW1

R
ẍC = TD1−TB1−RF dynx1 , (8.81)[

∂x2

∂z2
m2+ ∂β2

∂z2
ΘW2

R

]
ẍC = F dynz2 −F

dyn
S2 +

∂x2

∂z2
F dynx2 +

∂β2

∂z2
(TD2−RF dynx2 ) , (8.82)

ΘW2

R
ẍC = TD2−TB2−RF dynx2 , (8.83)

where Equations (8.74), (8.75), and (8.69) were taken into account and the
steady-state spring forces, longitudinal forces, and wheel loads have been sep-
arated into steady-state and dynamic terms

F stxi = F stxi +F dynxi , F stzi = F stzi +F dynzi , F stSi = F stSi+F
dyn
Si , i=1, 2 . (8.84)

Combining Equation (8.77) with Equations (8.81) and (8.83) simply results

ẍC =
(TD1 + TD2 − TB1 − TB2) /R

mV + ΘW1/R2 + ΘW2/R2
. (8.85)
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The terms in the numerator characterize the overall driving and braking forces
and the denominator represents the generalized vehicle mass, which expresses
the fact that besides the vehicle mass mV , the wheels with the inertias ΘW1

and ΘW2 must be accelerated or decelerated too. Then, the tire forces are
obtained as

F dynx1 =
TD1 − TB1

R
− ΘW1

R2
ẍC , F dynx2 =

TD2 − TB2

R
− ΘW2

R2
ẍC , (8.86)

F dynz1 = −
(

ΘW1 + ΘW2

R
+m1R+m2R+mCh

)
ẍC

a1 + a2
, (8.87)

F dynz2 =

(
ΘW1 + ΘW2

R
+m1R+m2R+mCh

)
ẍC

a1 + a2
. (8.88)

Neither the vehicle acceleration or deceleration nor the tire forces are affected
by the kinematic properties of the suspension.

In general, the inertias of the wheels are small compared to the vehicle
mass on normal passenger cars and may be neglected in practice. Then, the
dynamic wheel loads simplify to

F dynz1,z2 ≈ ∓ (m1R+m2R+mCh)
ẍC

a1 + a2
= ∓mV

hV
a1 + a2

ẍC , (8.89)

where mV = m1 +m2 +mC denotes the overall vehicle mass and hV defines
the height of the vehicle center of gravity. This coincides perfectly with the
results obtained in Section 8.1.1.

A simple rearrangement of Equations (8.80) and (8.82) provide the sus-
pension forces as

F dynS1 = F dynz1 +
(
∂x1

∂z1
−R∂β1

∂z1

)
F dynx1 + ∂β1

∂z1
TD1 −

[
∂x1

∂z1
m1+ ∂β1

∂z1
ΘW1

R

]
ẍC , (8.90)

F dynS2 = F dynz2 +
(
∂x2

∂z2
−R∂β2

∂z2

)
F dynx2 + ∂β2

∂z2
TD2 −

[
∂x2

∂z2
m2+ ∂β2

∂z2
ΘW2

R

]
ẍC . (8.91)

A complete algebraic solution is very cumbersome and will result in extremely
complicated expressions. The suspension forces FS1, FS2 and the wheel loads
Fz1, Fz2 support the chassis and the knuckles with the wheels. In steady-state,
it holds that

F dynS1 = cS1z
dyn
1 ,

F dynS2 = cS2z
dyn
2 ,

F dynz1 =−cT1(zdynC −a1β
dyn
C +zdyn1 ) ,

F dynz2 =−cT2(zdynC +a2β
dyn
C +zdyn2 ) ,

(8.92)

where linear spring characteristics are assumed and the tire liftoff is not taken
into account.
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8.4.5 Drive Pitch

The MATLAB-Script in Listing 8.3 provides the data of the enhanced pla-
nar vehicle model, sets the driving and braking torques, calculates for a fast
steady-state acceleration the forces, the suspension travel, the pitch and hub
motion of the chassis, and finally plots the chassis pitch angle versus different
inclinations of the front knuckle/wheel motion.

Listing 8.3
MATLAB-Script pitch reaction drive dx1: Anti-Squat

1 % vehicle data

2 g = 9.81; % Constant of Gravity

3 R = 0.30; % Tire Radius [m]

4 h = 0.59; % Height of Center of Gravity [m]

5 a1 = 1.20; % Center of Gravity --> Front Axle [m]

6 a2 = 1.30; % Center of Gravity --> Rear Axle [m]

7 mC = 600; % Mass of Chassis (half vehicle) [kg]

8 m1 = 50; % Mass of Front Axle [kg]

9 m2 = 50; % Mass of Rear Axle [kg]

10 ThW1 = 1.2; % Inertia of Front Wheels [kg m^2]

11 ThW2 = 1.2; % Inertia of Rear Wheels [kg m^2]

12 cS1 = 22000; % Stiffness of Front Axle Suspension [N/m]

13 cS2 = 28600; % Stiffness of Rear Axle Suspension [N/m]

14 cT1 = 220000; % Stiffness of Front Wheels [N/m]

15 cT2 = 200000; % Stiffness of Rear Wheels [N/m]

16
17 % overall and generalized vehicle mass

18 mV=mC+m1+m2; mg = mV+ThW1/R^2+ThW2/R^2;

19
20 % static wheel loads

21 Fz1_st = a2/(a1+a2)*mC*g + m1*g; Fz2_st = a1/(a1+a2)*mC*g + m2*g;

22
23 % all wheel drive no braking

24 TD1=643; TD2=1497; TB1=0; TB2=0;

25
26 % default axle kinematics

27 dx1 = 0; dx2 = 0; % inclination of front and rear wheel motion [-]

28 db1 = 0; db2 = 0; % y-rotation of front and rear knuckle [rad/m]

29
30 % change inclination of front knuckle/wheel motion [-]

31 ivar=25; dx_min=tan(-12/180*pi); dx_max=tan(12/180*pi);

32
33 for i=1:ivar

34
35 dx1 = dx_min + (dx_max-dx_min)*(i-1)/(ivar-1);

36
37 % vehicle acceleration

38 xddot = 1/R*(TD1+TD2-TB1-TB2)/mg;

39
40 % dynamic tire forces

41 Fx1=(TD1-TB1)/R - ThW1/R^2*xddot;

42 Fx2=(TD2-TB2)/R - ThW2/R^2*xddot;

43 Fz1=-xddot*((ThW1+ThW2)/R+(m1+m2)*R+mC*h)/(a1+a2);

44 Fz2= xddot*((ThW1+ThW2)/(R*h)+(m1+m2)*R/h+mC)*h/(a1+a2);

45
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46 % dynamic suspension forces

47 FS1=Fz1+(dx1-R*db1)*Fx1+db1*TD1-(dx1*m1+db1*ThW1/R)*xddot;

48 FS2=Fz2+(dx2-R*db2)*Fx2+db2*TD2-(dx2*m2+db2*ThW2/R)*xddot;

49
50 % suspension travel

51 z1 = FS1/cS1; z2=FS2/cS2;

52
53 % pitch and hub motion of chassis

54 bC = (Fz1/cT1-Fz2/cT2+z1-z2)/(a1+a2); zC = a1*bC-z1-Fz1/cT1;

55
56 % plot pitch angle

57 plot(dx1,bC*180/pi,’ok’,’MarkerSize’,5), hold on, grid on

58
59 end

The driving torques TD1 = 643 Nm and TD2 = 1497 Nm accelerate the ve-
hicle with ẍC/g = 1. The complete results, obtained by simply omitting the
semicolon at the corresponding code lines, for a plain suspension kinematics
(db1=0, dx1=0, db2=0, dx2=0), where both wheels just move straight up
and down are shown in Table 8.3. In this particular case, the required friction

TABLE 8.3
Vehicle with Plain Suspension Kinematics Accelerated Fast (ẍC/g = 1)

Longitudinal Wheel Load Suspension Chassis
Tire Force Static+Dynamic Forces Travel Motion

Fx1=2012N

Fx2=4859N

Fz1=2012N

Fz2=4855N

FS1=−1539N

FS2= 1539N

z1=−70mm

z2= 54mm

zC = 10.5mm

βC=−3.17◦

coefficients at the front and rear wheels amount to µ1 = |Fx1| /Fz1 = 1 and
µ2 = |Fx2| /Fz2 =1, which will represent an all wheel drive with perfect driving
torque distribution.

The suspension kinematics are characterized by the parameters db1, db2,
which describe the y-rotation of the knuckles caused by their vertical mo-
tion z1, z2, and the parameters dx1, dx2, which define the inclination of the
wheel motions in the xz-plane. The MATLAB-Script in Listing 8.3 varies the
inclination of front knuckle/wheel movement only. A simple and straightfor-
ward code extension will produce the results plotted in Fig, 8.19. The drive
shafts transmit the driving torques directly from the chassis to the wheels in
a standard drive train layout. That is why the knuckle rotations caused by
the jounce and rebound motion of the knuckles, here characterized by db1
and db2, will have no influence at all on the steady-state chassis pitch angle
when the vehicle accelerates. “Anti-squat” suspension kinematics, which are
characterized by dx1>0 and dx2<0, will reduce the pitch angle βC when the
vehicle is accelerated. However, a longitudinal motion of the knuckle caused
by the suspension travel (dx1 6=0, dx2 6=0) forces the wheel to spin faster or
slower when riding on a rough road and may excite drive train vibrations. In
addition, a front axle designed with dx1>0 will cause severe problems when
crossing a bump in forward drive, because knuckle and wheel will be moved
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FIGURE 8.19
Influence of suspension kinematics on the chassis pitch when accelerating.

toward the bump on compression then. In practice, only sport cars are able
to accelerate really fast. However, these vehicles have a rather low center of
gravity, which reduces the pitch reaction anyway. In addition, a strong drive
pitch reaction indicates the power of the engine and is therefore more welcome
than a brake pitch.

8.4.6 Break Pitch

Vanishing driving torques TD1 = 0, TD2 = 0 and braking torques of
TB1 = 1566 Nm, TB2 = 572.5 Nm will decelerate the vehicle with ẍC/g = −1.
The results for plain suspension kinematics (db1=0, dx1=0, db2=0, dx2=0),
where both wheels just move straight up and down, are shown in Table 8.4.
The required friction coefficients at the front and rear wheels amount again

TABLE 8.4
Vehicle with Plain Suspension Kinematics Braked Hard (ẍC/g = −1)

Longitudinal Wheel Load Suspension Chassis
Tire Force Static+Dynamic Forces Travel Motion

Fx1=−5089N

Fx2=−1778N

Fz1=5089N

Fz2=1778N

FS1= 1538N

FS2=−1538N

z1= 70mm

z2=−54mm

zC =−10.5mm

βC=3.17◦

to µ1 = |Fx1| /Fz1 = 1 and µ2 = |Fx2| /Fz2 = 1, thus representing an opti-
mal braking force distribution. The results correspond quite well with those
shown in Figure 8.16 generated with the simple planar model. The simple pla-
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nar model, presented in Section 8.3.8.2, neglects the compliance of the tires
and the masses of the wheels. Thus, the parameters csf = 20000 N/m and
csr = 25000 N/m represent an overall suspension stiffness that describes the
effect of a suspension spring in series to the tire spring. The corresponding
parameters, given in Listing 8.3, indeed result in

csf =
cS1 cT1

cS1 + cT1
=

22000 ∗ 220000

22000 + 220000
= 20000N/m , (8.93)

csr =
cS2 cT2

cS2 + cT2
=

28600 ∗ 200000

28600 + 200000
= 25022N/m . (8.94)

The masses of the chassis mC = 600 kg and the wheels m1 = m2 = 50 kg
amount to the overall vehicle mass of 700 kg, which represents half of a vehicle.
Here, the height of the overall vehicle center above the road is given by

hV =
mCh+m1R+m2R

mc +m1 +m2
=

600 ∗ 0.59 + 50 ∗ 0.3 + 50 ∗ 0.3

600 + 50 + 50
= 0.55 , (8.95)

which matches the value used in the simple model approach. The suspension
travel plotted in Figure 8.16 includes the tire deflection too. That is why the
steady-state results zst1 ≈ 73mm and zst2 ≈ −59mm are slightly larger than the
corresponding values given in Table 8.4. “Anti-dive” suspension kinematics,
which are characterized by db1<0, dx1>0 and db2>0 and dx2<0, will reduce
the pitch angle βC significantly when the vehicle is braked, Figure 8.20. As
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FIGURE 8.20
Influence of suspension kinematics on the chassis pitch when braking hard.

mentioned before, a longitudinal motion of the knuckle caused by the sus-
pension travel (dx16=0, dx26=0) is not really desirable. That is why most axle
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layouts will realize the “anti-dive” effect by just rotating the knuckles appro-
priately (db1<0, dx1=0 and db2>0, dx2=0).

8.4.7 Brake Pitch Pole

The pitch of the vehicle caused by braking will be felt as annoying, if too
distinct. The brake pitch angle can be reduced by rotating the knuckle ap-
propriately during suspension travel. For real suspension systems, the brake
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FIGURE 8.21
Brake pitch pole.

pitch pole can be calculated from the motions of the wheel contact points in
the x-, z-plane, Figure 8.21. Increasing the pitch pole height above the track
level means a decrease in the brake pitch angle. However, the pitch pole is not
set above the height of the center of gravity in practice, because the front of
the vehicle would rise at braking then.

Exercises

8.1 A minibus with a wheel base of a = a1 + a2 = 4m is characterized by the
following parameters:

unladen laden

Axle load front FZ1 =15 kN FZ1 =20 kN

Axle load rear FZ2 =14 kN FZ2 =23 kN

COG height h=1.2m h=1.4m

�

�

��� ���
�� ��

Determine the mass of the vehicle and the horizontal position of the center
of gravity (COG) defined by the parameters a1 and a2 for the unladen and
laden vehicle.
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The wheels have radius R = 0.372m and the vehicle is supposed to decelerate
with v̇/g = −0.6 now. Calculate the required braking torques at the front and
rear axle when an optimal distribution is taken for granted.

8.2 The weight G = 660 kN of a heavy-duty dumper distributes to the front
and rear axle with the ratio of 1:2 on a horizontal road. The height of the center
of gravity is determined by h = 2500 mm hereby. Each wheel has radius of
R = 938.5mm and the wheel base amounts to a = 3700mm.

Determine the downhill and climbing capacity of the vehicle, αD ≤ α ≤ αC .

The dumper moves downhill now and is
supposed to decelerate with v̇ = −2m/s

2
.

The inclination of the road is given by
α = −17.72◦. Determine the required coef-
ficient of friction between the tires and the
road when the dumper decelerates with an
optimal braking force distribution. Specify
the required braking torques too.

�

�

�

�

�

�

8.3 A pickup is all-wheel driven. The engine provides a maximum torque of
TE = 480 Nm. The ratio of the first gear is given by iG = 3.5. The center
differential distributes the driving torque with a ratio of 40:60 to the front and
rear axles. The differentials at the front and rear axle provide an additional
gear ratio of iD = 3.7 and finally distribute the torque equally to the left and
right wheels. The vehicle has mass m = 2700 kg. The position of the center of
gravity is determined by a1 = 1.7m, a2 = 1.5m, h = 0.9m, and the radius of
each wheel is given by R = 0.36m.

Determine the maximum
acceleration of the vehicle.

Calculate the hereby re-
quired friction coefficients
between tire and road at
the front and rear axle. ��

�

�

� �

��

8.4 Extend the MATLAB-Script given in Listing 8.3 in order to produce the
plots shown in Figs. 8.19 and 8.20.

Use part of the MATLAB-Script then to check the results of Exercise 8.1.
Estimate suitable values for the axle masses, the suspension stiffness, and the
tire stiffness. Try to reduce the brake pitch by an appropriate layout of the
suspension kinematics.

Modify the MATLAB-Script to generate the results for vehicles with rear
wheel and front wheel drive.



9

Lateral Dynamics

CONTENTS

9.1 Kinematic Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
9.1.1 Kinematic Tire Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
9.1.2 Ackermann Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
9.1.3 Space Requirement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
9.1.4 Vehicle Model with Trailer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

9.1.4.1 Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
9.1.4.2 Vehicle Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
9.1.4.3 Entering a Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
9.1.4.4 Trailer Motions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
9.1.4.5 Course Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

9.2 Steady-State Cornering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
9.2.1 Cornering Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

9.2.1.1 Two-Axled Vehicle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
9.2.1.2 Four-Axled Vehicle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

9.2.2 Overturning Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
9.2.2.1 Static Stability Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
9.2.2.2 Enhanced Rollover Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

9.2.3 Roll Support and Camber Compensation . . . . . . . . . . . . . . . . . . . . . . . . . 280
9.2.4 Roll Center and Roll Axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
9.2.5 Wheel Load Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

9.3 Simple Handling Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
9.3.1 Modeling Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
9.3.2 Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
9.3.3 Tire Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
9.3.4 Lateral Slips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
9.3.5 Equations of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
9.3.6 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290

9.3.6.1 Eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
9.3.6.2 Low-Speed Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
9.3.6.3 High-Speed Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
9.3.6.4 Critical Speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
9.3.6.5 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293

9.3.7 Steady-State Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
9.3.7.1 Steering Tendency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
9.3.7.2 Side Slip Angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
9.3.7.3 Curve Radius . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
9.3.7.4 Lateral Slips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

9.3.8 Influence of Wheel Load on Cornering Stiffness . . . . . . . . . . . . . . . . . . 298
9.4 Mechatronic Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

9.4.1 Electronic Stability Control (ESC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
9.4.2 Steer-by-Wire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

259



260 Road Vehicle Dynamics: Fundamentals and Modeling

9.1 Kinematic Approach

9.1.1 Kinematic Tire Model

When a vehicle drives through a curve at low lateral acceleration, small lateral
forces will be needed for course holding. Then, lateral slip hardly occurs at
the wheels. In the ideal case at vanishing lateral slip, the wheels only move
in a circumferential direction. The velocity component of the contact point in
the lateral direction of the tire then vanishes

vy = eTy v0P = 0 . (9.1)

This constraint equation can be used as a “kinematic tire model” for course
calculation of vehicles moving in the low lateral acceleration range.

9.1.2 Ackermann Geometry

Within the validity limits of the kinematic tire model, the necessary steering
angle of the front wheels can be constructed via the given momentary pivot
pole M , Figure 9.1. For slowly moving vehicles, the layout of the steering
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FIGURE 9.1
Ackermann steering geometry at a two-axled vehicle.

linkage is usually done according to Ackermann geometry. Then, the following
relations apply,

tan δ1 =
a

R
and tan δ2 =

a

R+ s
, (9.2)
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where s is the track width and a denotes the wheel base. Eliminating the
radius of curvature R, we get

tan δ2 =
a

a

tan δ1
+ s

or tan δ2 =
a tan δ1

a+ s tan δ1
. (9.3)

The deviations 4δ2 = δa2 − δA2 of the actual steering angle δa2 from the Ack-
ermann steering angle δA2 , which follows from Equation (9.3), are used, espe-
cially on commercial vehicles, to judge the quality of a steering system.

At a rotation around the momentary pivot pole M , the direction of the
velocity is fixed for every point of the vehicle. The angle β between the velocity
vector v and the longitudinal axis of the vehicle is called the side slip angle.
The side slip angle at point P is given by

tanβP =
x

R
or tanβP =

x

a
tan δ1 , (9.4)

where x defines the distance of P to the inner rear wheel.

9.1.3 Space Requirement

The Ackermann approach can also be used to calculate the space requirement
of a vehicle during cornering, Figure 9.2. If the front wheels of a two-axled

� ����

����

�

�

	

FIGURE 9.2
Space requirement.

vehicle are steered according to Ackermann geometry, the outer point of the
vehicle front will run on the maximum radius Rmax, whereas a point on the
inner side of the vehicle at the location of the rear axle will run on the mini-
mum radius Rmin. Within this simple approach, the outer contour of a vehicle
is just approximated by a box. Then it holds,

R2
max = (Rmin + b)

2
+ (a+ f)

2
, (9.5)
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where a, b are the wheel base and the width of the vehicle, and f specifies
the distance from the front of the vehicle to the front axle. Then, the space
requirement4R = Rmax−Rmin can be specified as a function of the cornering
radius Rmin for a given vehicle dimension,

4R = Rmax −Rmin =

√
(Rmin + b)

2
+ (a+ f)

2 − Rmin . (9.6)

The space requirement 4R of a typical passenger car and a bus is plotted in
Figure 9.3 versus the minimum cornering radius. In narrow curves, Rmin =
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FIGURE 9.3
Space requirement of a typical passenger car and bus

5.0m, a bus requires a space of 2.5 times the width, whereas a passenger car
only needs 1.5 times the width.

9.1.4 Vehicle Model with Trailer

9.1.4.1 Kinematics

A simple model for a passenger car and a trailer is shown in Figure 9.4. Vehicle
and trailer move on a horizontal track. The parameters a, b, and c describe
the wheel base, the distance of the rear axle to the coupling point, and the
distance from the coupling point to the axle of the trailer. The wheels at each
axle are substituted by fictitious center wheels whose longitudinal direction
is characterized by the axes x1, x2, and x3. The rear axle of the vehicle and
the trailer axle are not steered. Then, the position and the orientation of the
vehicle with respect to the track-fixed axis system x0, y0, z0 is defined by the
position vector from the origin 0 of the earth-fixed axis system to the center
of the rear axle

r02,0 =

 x
y
R

 (9.7)
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FIGURE 9.4
Vehicle and trailer with kinematic tire model.

and the rotation matrix

A02 =

 cos γ − sin γ 0
sin γ cos γ 0

0 0 1

 . (9.8)

Here, the tire radius R is considered constant, and x, y as well as the yaw
angle γ are used as generalized coordinates. The position vector

r01,0 = r02,0 + A02 r21,2 with r21,2 =

 a
0
0

 (9.9)

and the rotation matrix

A01 = A02A21 with A21 =

 cos δ − sin δ 0
sin δ cos δ 0

0 0 1

 (9.10)

describe the position and the orientation of the front axle, where δ denotes
the steering angle. Finally, the position vector

r03,0 = r02,0 +A02

(
r2K,2 +A23 rK3,3

)
(9.11)

with

r2K,2 =

−b0
0

 and rK3,2 =

−c0
0

 (9.12)
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and the rotation matrix

A03 = A02A23 with A23 =

 cosκ − sinκ 0
sinκ cosκ 0

0 0 1

 (9.13)

define the position and the orientation of the trailer axis. Here, K denotes the
coupling point and κ defines the bend angle between vehicle and trailer.

9.1.4.2 Vehicle Motion

According to the kinematic tire model, cf. Section 9.1.1, the velocity at the
rear axle can only have a component in the longitudinal direction of the tire,
which here corresponds with the longitudinal direction of the vehicle,

v02,2 =

 vx2

0
0

 . (9.14)

The time derivative of Equation (9.7) results in

v02,0 = ṙ02,0 =

 ẋ
ẏ
0

 . (9.15)

The vector transformation of Equation (9.14) into the earth-fixed axis system
0 yields

v02,0 = A02 v02,2 = A02

 vx2

0
0

 =

 cos γ vx2

sin γ vx2

0

 . (9.16)

Equating it with Equation (9.15) results in two first-order differential equa-
tions for the position coordinates x and y,

ẋ = vx2 cos γ , (9.17)

ẏ = vx2 sin γ . (9.18)

The time derivative of Equation (9.9) delivers the velocity at the front axle,

v01,0 = ṙ01,0 = ṙ02,0 + ω02,0 ×A02 r21,2 . (9.19)

The transformation into the vehicle-fixed axis system x2, y2, z2 results in

v01,2 =

 vx2

0
0


︸ ︷︷ ︸
v02,2

+

 0
0
γ̇


︸ ︷︷ ︸
ω02,2

×

 a
0
0


︸ ︷︷ ︸
r21,2

=

 vx2

a γ̇
0

 . (9.20)
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The unit vectors

ex1,2 =

 cos δ
sin δ

0

 and ey1,2 =

 − sin δ
cos δ
0

 (9.21)

define the longitudinal and lateral direction at the front center wheel. Ac-
cording to Equation (9.1), the velocity component lateral to the wheel must
vanish,

eTy1,2 v01,2 = − sin δ vx2 + cos δ a γ̇ = 0 . (9.22)

Whereas in longitudinal direction the velocity

eTx1,2 v01,2 = cos δ vx2 + sin δ a γ̇ = vx1 (9.23)

will remain. Rearranging Equation (9.22) results in a first-order differential
equation for the yaw angle,

γ̇ =
vx2

a
tan δ . (9.24)

The momentary position x = x(t), y = y(t) and the orientation γ = γ(t) of
the vehicle are defined by three differential equations (9.17), (9.18), and (9.24)
which are driven by the vehicle velocity vx2 and the steering angle δ.

9.1.4.3 Entering a Curve

In analogy with Equation (9.2), the steering angle δ can be related to the
current track radius R or with % = 1/R to the current track curvature

tan δ =
a

R
= a

1

R
= a % . (9.25)

Then, the differential equation for the yaw angle reads as

γ̇ = vx2 % . (9.26)

With the curvature gradient

% = %(t) = %C
t

T
, (9.27)

the entering of a curve is described as a continuous transition from a straight
line with the curvature % = 0 into a circle with the curvature % = %C . Now
the yaw angle of the vehicle can be calculated by simple integration,

γ(t) =
vx2 %C
T

t2

2
, (9.28)

where at time t = 0 a vanishing yaw angle, γ(t= 0) = 0, has been assumed.
Then the position of the vehicle follows with Equation (9.28) from the differ-
ential equations defined by Equations (9.17) and (9.18)

x = vx2

t=T∫
t=0

cos

(
vx2 %C
T

t2

2

)
dt and y = vx2

t=T∫
t=0

sin

(
vx2 %C
T

t2

2

)
dt . (9.29)
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At constant vehicle speed, vx2 = const., Equation (9.29) is the parameterized
form of a clothoide. From Equation (9.25) the necessary steering angle can be
calculated too. If only small steering angles are necessary for driving through
the curve, the tangent function can be approximated by its argument. Then,
the continuous steer motion

δ = δ(t) ≈ a % = a %C
t

T
(9.30)

will drive the vehicle along a clothoide-like curve.

9.1.4.4 Trailer Motions

The time derivative of the position vector, defined in Equation (9.11), delivers
the velocity of the trailer axis as

v03,0 = ṙ03,0 = ṙ02,0 + ω02,0 ×A02 r23,2 + A02 ṙ23,2 . (9.31)

The velocity ṙ02,0 = v02,0 and the angular velocity ω02,0 of the vehicle are
defined in Equations (9.16) and (9.20). The vector from the rear axle to the
axle of the trailer is given by

r23,2 = r2K,2 + A23 rK3,3 =

 −b − c cosκ
−c sinκ

0

 , (9.32)

where r2K,2 and rK3,3 are defined in Equation (9.12). The time derivative of
Equation (9.32) results in

ṙ23,2 =

 0
0
κ̇


︸ ︷︷ ︸
ω23,2

×

 −c cosκ
−c sinκ

0


︸ ︷︷ ︸
A23 rK3,3

=

 c sinκ κ̇
−c cosκ κ̇

0

 . (9.33)

The velocity of the trailer axle, defined in Equation (9.31), is transformed into
the vehicle-fixed axis system x2, y2, z2 now

v03,2 =

v02,2︷ ︸︸ ︷vx2

0
0

+

ω02,2︷ ︸︸ ︷ 0
0
γ̇

×
r23,2︷ ︸︸ ︷−b − c cosκ
−c sinκ

0

+

ṙ23,2︷ ︸︸ ︷ c sinκ κ̇
−c cosκ κ̇

0


=

 vx2 + c sinκ (κ̇+γ̇)
−b γ̇ − c cosκ (κ̇+γ̇)

0

 .

(9.34)

The longitudinal and lateral direction at the trailer axle are defined by the
unit vectors

ex3,2 =

 cosκ
sinκ

0

 and ey3,2 =

 − sinκ
cosκ
0

 . (9.35)
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At the trailer axle, the lateral velocity must vanish too

eTy3,2v03,2 = − sinκ
(
vx2+c sinκ (κ̇+γ̇)

)
+ cosκ

(
−b γ̇−c cosκ (κ̇+γ̇)

)
= 0 ,
(9.36)

whereas in longitudinal direction the velocity

eTx3,2v03,2 = cosκ
(
vx2+c sinκ (κ̇+γ̇)

)
+ sinκ

(
−b γ̇−c cosκ (κ̇+γ̇)

)
= vx3

(9.37)
remains. If Equation (9.24) is inserted into Equation (9.36) now, one will get
a first-order differential equation for the bend angle,

κ̇ = −vx2

a

(
a

c
sinκ+

(
b

c
cosκ+ 1

)
tan δ

)
. (9.38)

The differential equations provided by Equations (9.17), (9.18), and (9.24)
describe the position and the orientation of the vehicle within the x0, y0

plane. The differential equation (9.38), which characterizes the motion of the
trailer relative to the vehicle, depends nonlinearly on the bend angle κ and
becomes unstable for small bend angles when vehicle and trailer are driven
backward. In steady-state, the bend angle κst is defined by

0 = −vx2

a

(
a

c
sinκst +

(
b

c
cosκst + 1

)
tan δ

)
, (9.39)

which represents a trigonometric equation of type (5.54) and according to
Equation (5.56) is solved by

κst = arcsin
−c tan δ√

(b tan δ)
2

+ a2

− arctan
b tan δ

a
. (9.40)

9.1.4.5 Course Calculations

The function given in Listing 9.1 provides the state equation of the vehicle
and trailer track model.

Listing 9.1
Function track model f: Vehicle and Trailer Track Model

1 function xdot = track_model_f ( t, x )

2
3 global a b c v t_d d_i

4
5 x2=x(1); y2=x(2); ga=x(3); ka=x(4); % get states

6 d=interp1(t_d,d_i,t); % get steering angle (linear interpolation)

7
8 % vehicle and trailer dynamics

9 x2dot = v*cos(ga); y2dot = v*sin(ga); gadot = v/a*tan(d);

10 kadot =-v/a * ( a/c*sin(ka) + ( b/c*cos(ka) + 1 ) * tan(d) );

11
12 xdot = [ x2dot; y2dot; gadot; kadot ]; % state derivatives

13
14 end
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The MATLAB-Function interp1 uses a look-up table to compute the actual
steering angle δ = δ(t) via a linear interpolation. The velocity of the vehicle
v is kept constant here. The MATLAB-Script in Listing 9.2 provides all data
of the vehicle and trailer track model, performs a simulation, and plots some
results.

Listing 9.2
Script track model main: Vehicle and Trailer Track Model

1 global a b c v t_d d_i

2
3 % vehicle data

4 a = 2.6; % wheel base [m]

5 b = 1.0; % distance rear axle --> coupling point [m]

6 c = 2.0; % coupling point --> trailer axle [m]

7 v = 5./3.6; % driving velocity [km/h --> m/s]

8
9 % define lookup table for steer input [time, steering angle]

10 t_d = [ 0 20 30 ] ;

11 d_i = [ 0 45 45 ]*pi/180 ; % deg --> rad

12
13 % get time interval

14 t0 = t_d(1); te = t_d(length(t_d)) ;

15
16 % initial conditions (vehicle position and orientation)

17 x0 = 0; y0 = 0; ga0 = 0/180*pi ; % yaw angle [deg --> rad]

18 % bending angle adjusted to steering angle (steady state solution)

19 d0 = interp1 ( t_d, d_i, t0 );

20 ka0= asin(-c*tan(d0)/sqrt((b*tan(d0))^2+a^2)) - atan2(b*tan(d0),a) ;

21
22 % time simulation

23 [t,xout] = ode23(@track_model_f, [t0,te], [x0; y0; ga0; ka0]);

24
25 % post processing

26 d = interp1(t_d,d_i,t); % time history of steering angle

27 kas= asin(-c*tan(d)./sqrt((b*tan(d)).^2+a^2))-atan2(b*tan(d),a); % bend angle st

28 x1 = xout(:,1)+a*cos(xout(:,3)); y1 = xout(:,2)+a*sin(xout(:,3)); % front axle

29 x2 = xout(:,1); y2 = xout(:,2); % rear axle

30 x3 = xout(:,1)-b*cos(xout(:,3)) - c*cos(xout(:,3)+xout(:,4)); % trailer x

31 y3 = xout(:,2)-b*sin(xout(:,3)) - c*sin(xout(:,3)+xout(:,4)); % trailer y

32
33 % plot some results

34 subplot(2,2,1)

35 plot(t,d*180/pi), title(’\delta(t) [deg]’), grid on

36 subplot(2,2,2)

37 plot(t,v^2/a*tan(d)/9.81), title(’a_y/g [-]’), grid on

38 subplot(2,2,3), hold on, grid on

39 plot(x1,y1,’k’), plot(x2,y2,’--b’),plot(x3,y3,’r’), title(’path of axles’)

40 axis equal, xlabel(’[m]’), ylabel(’[m]’), legend(’Front’,’Rear’,’Trailer’)

41 subplot(2,2,4)

42 plot(t,[xout(:,4),kas]*180/pi), title(’\kappa(t) (dyn+st) [deg]’), grid on

The data1 correspond with a typical passenger car and a camping trailer. The

1Note: Negative values for c will move the coupling point in front of the rear axle of the
vehicle, which will match with the layout of a tractor semitrailer.
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look-up table [ t d, d i ] will result in a slowly increasing steering angle, which
is kept constant then (t > 25 s). The resulting paths of the axles, which are
plotted in Figure 9.5, show clothoide-like curves that end in circles when the
steering angle is finally kept constant. The dynamics of the trailer motion is
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FIGURE 9.5
Entering a curve.

visible in the lower left plot. The kinematical tire model, on which this track
model is based, is valid in the low range of lateral vehicle accelerations only.
Here, the lateral acceleration on the rear axle is simply given by ay2 = v2/R,
where the radius of curvature is provided as R = a/ tan(δ) via the Ackermann
geometry.

Setting the driving vehicle velocity to v =−2 km/h or v =−0.5556 m/s,
respectively, and replacing the code lines 10, 11 in Listing 9.2 by

t_d = [ 0 3 9 12 15 ] ; % [s]
d_i = [ 0 -45 45 0 0 ]*pi/180 ; % [deg --> rad]

will provide the steering input for backing into a parking space. Some simu-
lation results are plotted in Figure 9.6. The paths of the front and rear axle
are as expected. The rear axle just moves on an S-shaped curve and ends up
with a horizontal displacement of approximately 1.8 m. The movement of the
front axle is more complicated but arrives at same lateral shift. However, the
path of the trailer axle is quite different. When driving backward the differ-
ential equation (9.38) becomes unstable. As a result, the bend angle increases
rapidly, which would cause severe damage to the vehicle and the trailer. The
path of the trailer axle shows a bifurcation point. After this point, the trailer
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FIGURE 9.6
Backing into a parking space.

moves forward while the vehicle is still moving backward. Now, the trailer
motion is stable and will tend toward −180◦ finally.

9.2 Steady-State Cornering

9.2.1 Cornering Resistance

9.2.1.1 Two-Axled Vehicle

A two-axled vehicle is driving on a circle of the radius R with the velocity v,
Figure 9.7. Then, the velocity state of the vehicle expressed in the body-fixed
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FIGURE 9.7
Two-axled vehicle in steady-state cornering.
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axis system B is defined by

v0C,B =

 v cosβ
v sinβ

0

 and ω0F,B =

 0
0
ω

 , (9.41)

where β denotes the side slip angle of the vehicle measured at the vehicle
center of gravity. In steady-state cornering, the angular velocity ω is related
via

ω =
v

R
= % v (9.42)

to the vehicle velocity v and the circle radius R or the curvature %, respectively.
As the vehicle is supposed to drive with constant speed (v = const.), the

linear momentum applied in the direction of the xB- and yB-axis and the
angular momentum about the vertical axis result in

m
(
−% v2 sinβ

)
= Fx1 cos δ − Fy1 sin δ + Fx2 , (9.43)

m
(
% v2 cosβ

)
= Fx1 sin δ + Fy1 cos δ + Fy2 , (9.44)

0 = a1 (Fx1 sin δ + Fy1 cos δ)− a2 Fy2 , (9.45)

where m denotes the mass of the vehicle; Fx1, Fx2, Fy1, Fy2 are the resulting
forces in the longitudinal and vertical direction applied at the front and rear
axle; and δ specifies the average steering angle at the front axle.

The engine torque is distributed by the center differential to the front and
rear axle in standard drive trains. Then, under steady-state conditions

Fx1 = k FD and Fx2 = (1− k) FD (9.46)

will hold, where FD is the driving force. The dimensionless parameter k makes
it possible to model different layouts of drive trains, Table 9.1. Inserting

TABLE 9.1
Different Driving Force Distribution

k = 0 Rear-wheel drive Fx1 = 0, Fx2 = FD

0 < k < 1 All-wheel drive
Fx1

Fx2
=

k

1− k
k = 1 Front-wheel drive Fx1 = FD, Fx2 = 0

Equation (9.46) into Equation (9.43), one gets

(k cos δ + (1−k)) FD − sin δ Fy1 = −%mv2 sinβ ,

k sin δ FD + cos δ Fy1 + Fy2 = %mv2 cosβ ,

a1k sin δ FD + a1 cos δ Fy1 − a2 Fy2 = 0 .

(9.47)

These equations can be resolved for the driving force,

FD =

a2

a1 + a2
cosβ sin δ − sinβ cos δ

k + (1− k) cos δ
%mv2 . (9.48)
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The driving force will vanish if

a2

a1 + a2
cosβ sin δ = sinβ cos δ or

a2

a1 + a2
tan δ = tanβ (9.49)

holds. As a matter of fact, this fully corresponds with the Ackermann geome-
try. However, the Ackermann geometry applies for small lateral accelerations
only. In real driving situations, the side slip angle β of a vehicle at the center
of gravity will always be smaller than the Ackermann side slip angle βA. Then,
due to tanβ < tanβA = a2/(a1 + a2) tan δ, a driving force FD > 0 will be
needed to overcome the “cornering resistance” of the vehicle.

9.2.1.2 Four-Axled Vehicle

Most heavy-duty trucks have more than two axles. The special-purpose truck
shown in Figure 9.8 is equipped with two steerable, single-tired axles in the
front and two driven axles with twin-tires at the rear. Again, the wheels on
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FIGURE 9.8
Four-axled vehicle.

each axle are summarized in a fictitious center wheel and the vehicle is sup-
posed to perform a steady-state cornering. As an extension to Equation (9.43),
the linear and angular momentum will now read

−%mv2 sinβ = Fx11 cos δ11 − Fy11 sin δ11 + Fx12 +
Fx12 cos δ12 − Fy12 sin δ12 + Fx22 ,

(9.50)

%mv2 cosβ = Fx11 sin δ11 + Fy11 cos δ11 + Fy12 +
Fx12 sin δ12 + Fy12 cos δ12 + Fy22 ,

(9.51)

0 = a11(Fx11 sin δ11+Fy11 cos δ11)− a21Fy12 +
a12(Fx12 sin δ12+Fy12 cos δ12)− a22Fy22 ,

(9.52)

where δ11 and δ12 denote the average steering angles at the front axles. The
parameter a11, a12, a21, and a22 define the location of the axles with respect
to the vehicle center. All axles may be driven in general. Assuming that the
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driving torque is distributed differently to the front and rear but equally to
each front and rear axle, then the driving forces may be modeled by

Fx11 = Fx12 = Fx1 = k FD and Fx21 = Fx22 = Fx2 = (1− k) FD , (9.53)

where FD denotes the overall driving force and the parameter k makes it
possible to describe different driving scenarios according to Table 9.1. The
lateral forces are modeled as linear functions of the corresponding lateral slips
in a first approximation

Fy11 = cSF sy11 , Fy12 = cSF sy12 , Fy21 = cSRsy21 , Fy22 = cSRsy22 ,
(9.54)

where cSF and cSR summarize the cornering stiffness of all tires at each front
and rear axle. In this simple approach, it is assumed that both front and rear
axles are loaded equally and are equipped with the same tires. The vehicle is
neither braked nor accelerated. Then, all wheels are close to a rolling situa-
tion, which will be characterized by nearly vanishing longitudinal slips. Then,
rDΩ ≈ vx will hold, and the lateral slips defined in Equation (3.90) are given
by

sy11 = − − sin δ11 v cosβ + cos δ11 (v sinβ + a11ω)

| cos δ11 v cosβ + sin δ11 (v sinβ + a11ω) |
, (9.55)

sy12 = − − sin δ12 v cosβ + cos δ12 (v sinβ + a12ω)

| cos δ12 v cosβ + sin δ12 (v sinβ + a12ω) |
, (9.56)

sy21 = −v sinβ − a21ω

| v cosβ|
, and sy22 = −v sinβ − a22ω

| v cosβ |
. (9.57)

In steady-state cornering, the angular velocity ω is related to the vehicle ve-
locity v and the curvature % according to Equation (9.42).

For a given driving velocity v and various steering angles δ11, δ12, Equa-
tions (9.50) to (9.52) in combination with Equations (9.53) to (9.57) and
Equation (9.42) represent a set of nonlinear equations for the side slip an-
gle β, the curvature %, and the driving force FD or the driving resistance
fD = FD/(mg), respectively. A standard MATLAB installation provides the
function fzero to solve a nonlinear equation of type f(x) = 0 but the algorithm
is restricted to one single equation. If the MATLAB Optimization Toolbox is
available, the function fsolve will be the proper choice for solving a system of
nonlinear equations. Here, the system of nonlinear equations, arranged in the
form of a vector equation f(x) = 0, will be solved by minimizing the overall
quadratic error of the vector function

f(x) = 0 =⇒ ε2 = f(x)T f(x)→ Minimum . (9.58)

Then, the MATLAB standard function can be used to solve the problem.
The function given in Listing 9.3 provides the overall quadratic error of the
set of nonlinear equations that characterize the steady-state cornering of a
four-axled truck.
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Listing 9.3
Function track4a eps2: Four-Axled Truck in Steady-State Cornering

1 function eps2 = truck4a_eps2(x)

2
3 global grav m k a11 a12 a21 a22 csf csr v d11 d12

4
5 rho = x(1); % curvature

6 be = x(2); % side slip angle at cog

7 cr = x(3); % cornering resistance

8
9 om = v*rho; % angular velocity

10 fd = m*grav*cr; % driving force

11 vx = v*cos(be); % velocity in longitudinal direction of vehicle

12
13 % longitudinal forces

14 fx11 = 0.5*k*fd; fx12 = fx11; fx21 = 0.5*(1-k)*fd; fx22 = fx21;

15
16 % lateral slips (sx=0 assumed)

17 vy11 = v*sin(be)+a11*om;

18 sy11 = -(-sin(d11)*vx+cos(d11)*vy11)/(cos(d11)*vx+sin(d11)*vy11);

19 vy12 = v*sin(be)+a12*om;

20 sy12 = -(-sin(d12)*vx+cos(d12)*vy12)/(cos(d12)*vx+sin(d12)*vy12);

21 vy21 = v*sin(be)-a21*om; sy21 = - vy21/vx ;

22 vy22 = v*sin(be)-a22*om; sy22 = - vy22/vx ;

23
24 % lateral forces (linearized)

25 fy11 = csf*sy11; fy12 = csf*sy12; fy21 = csr*sy21; fy22 = csr*sy22;

26
27 % force and torque balances

28 fx = fx11*cos(d11)-fy11*sin(d11) + fx21 ...

29 + fx12*cos(d12)-fy12*sin(d12) + fx22 + m*v^2*rho*sin(be);

30 fy = fx11*sin(d11)+fy11*cos(d11) + fy21 ...

31 + fx12*sin(d12)+fy12*cos(d12) + fy22 - m*v^2*rho*cos(be);

32 tz = a11*(fx11*sin(d11)+fy11*cos(d11)) - a21*fy21 ...

33 + a12*(fx12*sin(d12)+fy12*cos(d12)) - a22*fy22;

34
35 % overall quadratic error

36 eps2 = fx^2 + fy^2 + tz^2;

37
38 end

The MATLAB-Script in Listing 9.4 provides the data, computes the cornering
resistance for a variety of steering angles, and plots the results as a three-
dimensional contour plot by using the MATLAB function contour3.

Listing 9.4
Script truck4a main: Cornering Resistance of a Four-Axled Truck

1 global grav m k a11 a12 a21 a22 csf csr v d11 d12

2
3 % data

4 grav = 9.81; % [m/s^2] constant of gravity

5 m = 32000; % [kg] mass of vehicle

6 k = 0.0; % [-] drive torque distribution (rear wheel drive)

7 a11 = 3.3750; % [m] cog --> midth of first front axle

8 a12 = 1.6250; % [m] cog --> midth of second front axle
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9 a21 = 1.2500; % [m] cog --> midth of first rear axle

10 a22 = 2.7500; % [m] cog --> midth of second rear axle

11 csf = 2*300000; % [N/-] front axle cornering stiffness

12 csr = 4*280000; % [N/-] rear axle cornering stiffness

13 v = 5/3.6; % [km/h --> m/s] vehicle velocity (low speed)

14 d11var=linspace(5,55,11)/180*pi; % range of steering angle 11

15 d12var=linspace(5,45, 9)/180*pi; % range of steering angle 12

16
17 % pre-allocate cornering resistance to speed up loops

18 n11=length(d11var); n12=length(d12var); crvar=zeros(n11,n12);

19
20 % solve nonlinear equations (trivial starting values)

21 for i=1:n11

22 d11=d11var(i);

23 for j=1:n12

24 d12=d12var(j);

25 x = fminsearch(@truck4a_eps2,[0; 0; 0]);

26 rho=x(1); be=x(2); cr=x(3); crvar(i,j)=cr;

27 end

28 end

29
30 % plot cornering resistance as a function of d11 and d12

31 contour3(d12var*180/pi,d11var*180/pi,crvar,100)

32 title(’Cornering resistance’),xlabel(’\delta_1_2’),ylabel(’\delta_1_1’)

33
34 % compute and plot cornering resistance for the Ackermann geometry

35 d12a=atan2(((a21+a22)/2+a12)*tan(d11var),(a21+a22)/2+a11); cr=zeros(size(d12a));

36 for i=1:length(d12a)

37 d11=d11var(i); d12=d12a(i);

38 x = fminsearch(@truck4a_eps2,[0; 0; 0]); cr(i)=x(3);

39 end

40 hold on, plot3(d12a*180/pi,d11var*180/pi,cr)

The MATLAB script also computes and plots the cornering resistance for
steering angles that are based on Ackermann geometry, Figure 9.9. A fictitious
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FIGURE 9.9
Cornering resistance of a four-axled truck for different steering angles.
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pivot point located at a line right between the two rear axles is assumed hereby.
Similar to Equation (9.2), the steering angles at the front axles will then given
by

tan δ11 =
1
2 (a21+a22) + a11

R
and tan δ12 =

1
2 (a21+a22) + a12

R
. (9.59)

Eliminating the curve radius R, one gets

tan δ12 =
1
2 (a21+a22) + a12

1
2 (a21+a22) + a11

tan δ11 . (9.60)

The broken line in Figure 9.9 represents the cornering resistance of the
four-axled truck, computed for Ackermann steering angles defined by Equa-
tion (9.60). Although the four-axled vehicle has no geometrically defined turn-
ing point, the Ackermann approach results even here in a driving performance
that is characterized by a minimized or at least nearly minimized cornering
resistance. That is why most commercial trucks or special-purpose vehicle are
equipped with steering systems that are based on the Ackermann geometry.

9.2.2 Overturning Limit

9.2.2.1 Static Stability Factor

If a vehicle of mass m is cornering with the lateral acceleration ay, then the
centrifugal force may will be generated, Figure 9.10. Similar to the maximum
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FIGURE 9.10
Vehicle in a right turn.

longitudinal acceleration amaxx provided in Equation (8.22), the maximum lat-
eral acceleration is determined by the coefficient of friction

amaxy = µ g . (9.61)

However, the risk of rollover may reduce this limit further on. If the vehicle
turns to the right, which is assumed in Figure 9.10, then a beginning rollover
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will be indicated by the liftoff of the tires on the right. For vanishing tire forces
at the right FyR = 0 and FzR = 0, the torque balance about a line that is
defined by the left contact points simply delivers

mg
s

2
−maTy h = 0 or aTy =

s/2

h
g , (9.62)

where h is the height of the center of gravity and s/2 denotes half of the track
width. The vehicle will overturn rather than slide if

aTy < amaxy or
s/2

h
< µ (9.63)

holds. As a consequence, the risk of rollover may be judged by the “static
stability factor”

sF =
s/2

h
. (9.64)

Values of sF ≤ 1 indicate a high rollover risk on paved dry roads, where µ = 1
may be assumed.

9.2.2.2 Enhanced Rollover Model

However, the static stability factor serves as a rough indicator only. To deter-
mine the overturning limit, the tire deflection and the body roll have to be
taken into account too, Figure 9.11. The balance of torques at the height of
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FIGURE 9.11
Overturning hazard on trucks.

the track plane applied at the already inclined vehicle results in

(FzL − FzR)
s

2
= may (h1 + h2) + mg [(h1 + h2)α1 + h2α2] , (9.65)
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where ay describes the lateral acceleration, m is the vehicle mass, and small
roll angles of the axle and the body were assumed, α1 � 1, α2 � 1. For a
left-hand tilt, the wheel load at the right will vanish

FTzR = 0 , (9.66)

whereas the left wheel carries the vehicle weight,

FTzL = mg . (9.67)

Inserting Equations (9.66) and (9.67) into Equation (9.65) yields the lateral
acceleration

aTy
g

=

s

2
h1 + h2

− αT1 −
h2

h1 + h2
αT2 , (9.68)

where the vehicle will start to roll over. Taking into consideration that h =
h1+h2 describes the height of the center of gravity above the road, the first
term in Equation (9.68) corresponds with the static stability factor defined
in Equation (9.64). However, the compliance of the tires and the suspension,
which in the limit case cause the axle and body roll αT1 and αT2 , will increase
the hazard of overturning.

If the vehicle drives straight ahead, the weight of the vehicle is equally
distributed to both sides

F statzR = F statzL =
1

2
mg . (9.69)

On a right turn, the wheel load at the left is increased and the one at the
right is decreased by the same amount

FTzL = F statzL +4Fz and FTzR = F statzR −4Fz . (9.70)

At the tilting limit,

4FTz =
1

2
mg (9.71)

will hold, which corresponds with the tire deflection

4rT =
4FTz
cR

=
1

2

mg

cR
, (9.72)

where cR denotes the radial tire stiffness. Because the right tire simultaneously
rebounds by the same amount, the roll angle of the axle is defined by

24rT = s αT1 or αT1 =
24r
s

=
mg

s cR
, (9.73)

where s denotes the track width.
In analogy with Equation (9.65), the balance of torques at the body applied

at its roll center yields

cW α2 = may h2 + mg h2 (α1 + α2) , (9.74)
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where cW describes the roll stiffness of the body suspension. In particular, at
the overturning limit ay = aTy ,

αT2 =
aTy
g

mgh2

cW −mgh2
+

mgh2

cW −mgh2
αT1 (9.75)

applies. Not allowing the vehicle to overturn at aTy = 0, demands a minimum

roll stiffness of cW > cminW = mgh2. With Equations (9.73) and (9.75), the
overturning condition in Equation (9.68) reads as

(h1 +h2)
aTy
g

=
s

2
− (h1 +h2)

1

c∗R
− h2

aTy
g

1

c∗W − 1
− h2

1

c∗W − 1

1

cR∗
, (9.76)

where, for abbreviation purposes, the dimensionless quantities

c∗R =
s cR
mg

and c∗W =
cW

mg h2
(9.77)

have been introduced. Resolved for the normalized lateral acceleration,

aTy
g

=

s

2

h1 + h2 +
h2

c∗W − 1

− 1

c∗R
(9.78)

will finally remain.
For heavy trucks, a twin-tire axle may be loaded with m=13 000 kg. The

radial stiffness of one tire is given by cR= 800 000N/m, and the track width
can be set to s= 2m. The values h1 = 0.8m and h2 = 1.0m or h=h1 + h2 =
1.8m define the height of the center of gravity. The corresponding results
obtained from Equations (9.78), (9.73), and (9.75) are shown in Figure 9.12.
Even with a rigid body suspension c∗W → ∞, the vehicle will turn over at a
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FIGURE 9.12
Tilting limit for a typical truck at steady-state cornering.
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lateral acceleration of ay ≈ 0.5 g. Then, the roll angle of the vehicle solely
results from the tire deflection. At a normalized roll stiffness of c∗W = 5, the
overturning limit lies at ay ≈ 0.45 g and thus reaches 90% of the maximum.
The vehicle will turn over at a roll angle of α=α1+α2 ≈ 9◦.

Depending on the shape of the tank, a liquid load may reduce the rollover
threshold further on. In particular, in non-steady-state maneuvers, such as
braking in a turn, dynamic sloshing forces affect vehicle behavior significantly
[43].

9.2.3 Roll Support and Camber Compensation

When a vehicle drives through a curve with lateral acceleration ay, centrifugal
forces are applied to the single masses. The planar vehicle model, shown in
Figure 9.13, consists of three bodies: the chassis mass mC and two knuckles
with wheels attached to each of mass mW . The generalized coordinates yC ,
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FIGURE 9.13
Simple vehicle roll model.

zC , αC characterize the lateral and vertical as well as the roll motion of the
chassis. In addition, z1 and z2 describe the vertical vertical motions of the
knuckles and wheels relative to the chassis.

In steady-state cornering, the vehicle forces are balanced. With the prin-
ciple of virtual work

δW = 0 , (9.79)

the equilibrium position can be calculated. For the vehicle roll model, the
suspension forces FS1, FS2, and the tire forces Fy1, Fz1, Fy2, Fz2, are approxi-
mated by linear spring elements with the constants cS and cy, cz, respectively.
As done in the kinematic approach, the lateral slip is neglected. The work W
of these forces can be calculated directly or much more conveniently via the
potential V , where W = −V holds. For small rotations and deflections, lin-
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earized kinematics can be applied and one gets as a consequence,

W =−mC ay yC

−mW ay (yC + hR αC + y1)−mW ay (yC + hR αC + y2)

− 1
2 cS z

2
1 − 1

2 cS z
2
2

− 1
2 cB (z1−z2)

2

− 1
2 cy (yC+h0αC+y1+r0α1)

2 − 1
2 cy (yC+h0αC+y2+r0α2)

2

− 1
2 cz

(
zA+ s

2αC+z1

)2 − 1
2 cz

(
zA− s

2αC+z2

)2
,

(9.80)

where the abbreviation hR = h0− r0 was used, and cB denotes the stiffness of
the anti-roll bar, converted to the vertical displacement of the wheel centers.
The kinematics of wheel suspensions are symmetrical in general. Then, the
lateral motion of the knuckles and wheels and their rotation about the lon-
gitudinal axis (chamber change), which results from the specific suspension
kinematics, can be approximated by

y1 = y1(z1) ≈ ∂y

∂z
z1 , α1 = α1(z1) ≈ ∂α

∂z
z1 (9.81)

and

y2 = y2(z2) ≈ −∂y
∂z

z2 , α2 = α2(z2) ≈ −∂α
∂z

z2 . (9.82)

Now, the work defined by Equation (9.80) can be described as a function of
the vector of generalized coordinates

y = [ yC , zC , αC , z1, z2 ]
T
. (9.83)

Due to W = W (y), the principle of virtual work provided in Equation (9.79)
leads to

δW =
∂W (y)

∂y
δy = 0 . (9.84)

Because the virtual displacements will not vanish in general, δy 6= 0, Equa-
tion (9.84) delivers a system of linear equations in the form of

K y = b . (9.85)

The matrix K and the vector b are given by

K =



2 cy 0 2 cy h0
∂ŷ
∂z cy −∂ŷ∂z cy

0 2 cz 0 cz cz

2 cy h0 0 cα
s
2cz+h0

∂ŷ
∂z cy −

s
2cz−h0

∂ŷ
∂z cy

∂ŷ
∂z cy cz

s
2cz+h0

∂ŷ
∂z cy c∗S + cB + cz −cB

−∂ŷ∂z cy cz − s2cz−h0
∂ŷ
∂z cy −cB c∗S + cB + cz


(9.86)
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and

b = −


mC + 2mW

0

(m1 +m2)hR

mW ∂y/∂z

−mW ∂y/∂z

 ay , (9.87)

where the abbreviations

∂ŷ

∂z
=
∂y

∂z
+r0

∂α

∂z
, c∗S = cS+cy

(
∂y

∂z

)2

, cα = 2 cy h
2
0 +2 cz

(
b

2

)2

(9.88)

have been used. The MATLAB-Script in Listing 9.5 provides the data, solves
the set of linear equations, computes the wheel loads, and displays the results.

Listing 9.5
Script roll model: Vehicle Roll Model

1 % vehicle data

2 g = 9.81 ; % [m/s^2] constant of cravity

3 ay = 0.75*g; % [m/s^2] set lateral acceleration

4 mc = 600; % [kg] chassis mass

5 mw = 50; % [kg] mass of each knuckle and wheel

6 s = 1.5; % [m] track width

7 h0 = 0.6; % [m] height of center of gravity

8 r0 = 0.3; % [m] static tire radius

9 cs = 20000; % [N/m] suspension stiffness

10 cb = 10000; % [N/m] stiffness of anti roll bar

11 cy =180000; % [N/m] tire lateral stiffness

12 cz =200000; % [N/m] tire radial stiffness

13
14 % axle kinematics

15 dydz = 0 ; % [-] lateral motion of wheel center caused by vertical

16 dadz = 0/180*pi; % [Grad/m] camber change caused by vertical motion

17
18 hr = h0-r0 ; sh = s/2; dyqdz = dydz + r0*dadz; % some abbreviations

19
20 % stiffness matrix (column by column)

21 K(:,1) = [ 2*cy ; ...

22 0 ; ...

23 2*cy*h0 ; ...

24 cy*dyqdz ; ...

25 -cy*dyqdz ];

26 K(:,2) = [ 0 ; ...

27 2*cz ; ...

28 0 ; ...

29 cz ; ...

30 cz ];

31 K(:,3) = [ 2*cy*h0 ; ...

32 0 ; ...

33 2*cz*sh^2+2*cy*h0^2 ; ...

34 sh*cz+h0*dyqdz*cy ; ...

35 -sh*cz-h0*dyqdz*cy ];

36 K(:,4) = [ cy*dyqdz ; ...
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37 cz ; ...

38 sh*cz+h0*dyqdz*cy ; ...

39 cs+cb+cz+dyqdz^2*cy ; ...

40 -cb ];

41 K(:,5) = [ -cy*dyqdz ; ...

42 cz ; ...

43 -sh*cz-h0*dyqdz*cy ; ...

44 -cb ; ...

45 cs+cb+cz+dyqdz^2*cy ];

46
47 b = -[ mc+2*mw; 0; 2*mw*hr; mw*dydz; -mw*dydz ]*ay; % right hand side

48
49 x = K\b; % solve set of linear eqautions and display results

50 disp([’lateral displacement of chassis y_C =’,num2str(x(1))])

51 disp([’vertical displacement of chassis z_C =’,num2str(x(2))])

52 disp([’roll motion of chassis alpha_C =’,num2str(x(3)*180/pi)])

53 disp([’suspension travel inner wheel z_1 =’,num2str(x(4))])

54 disp([’suspension travel outer wheel z_2 =’,num2str(x(5))])

55
56 % compute and display wheel loads

57 Fz1=(mw+mc/2)*g+cz*(x(2)+s/2*x(3)+x(4)); disp([’Fz1=’,num2str(Fz1)])

58 Fz2=(mw+mc/2)*g+cz*(x(2)-s/2*x(3)+x(5)); disp([’Fz2=’,num2str(Fz2)])

The results for simple axle kinematics (dydz=0, dadz=0), which will be gen-
erated by a trailing arm suspension, are visualized in Figure 9.14. It can be
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FIGURE 9.14
Vehicle roll for simple axle kinematics (dydz=0, dadz=0).

seen that due to simple kinematics, the roll angle of the chassis is transferred
directly to the wheels, which will result in a tire camber angle of the same
amount, γ1 = γ2 = αC .

Of course, the anti-roll bar stiffness cB affects the roll angle strongly. For
example, omitting the anti-roll bar cB = 0 will increase the roll angle up to
αC = 8◦, which certainly is too much for a passenger car even when cornering
hard with a lateral acceleration of ay = 0.75g. On the other hand, the anti-roll
bar couples the vertical motions of the left and right wheel, which affects the
ride comfort in particular when crossing a bump on one side. That is why
controlled anti-roll bars equipped with actuators are used in high-level cars
today.

Suspension kinematics, which moves the wheels outward on jounce, will
provide kinematically generated roll support, Figure 9.15. Now, the roll cen-
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FIGURE 9.15
Roll support kinematically generated (dydz=0.2, dadz=0).

ter of the chassis is located above the road, which reduces the roll angle. But,
as the wheels do not rotate on jounce and rebound, the tire camber angle is
still the same as the chassis roll angle, γ1 = γ2 = αC . This kind of suspension
kinematics will be generated, for instance, by a double wishbone suspension
with inclined mounted wishbones of the same size. It is not really practical be-
cause the lateral movements of the contact points during jounce and rebound
would cause enormous tire wear just when driving straight ahead on uneven
roads.

Large tire camber angles result in unfavorable pressure distribution in the
contact area, which leads to a reduction in maximally transmittable lateral
forces. Thus, for more sportive vehicles, axle kinematics are employed, where
the wheels are rotated around the longitudinal axis at jounce and rebound,
α1 = α1(z1) and α2 = α2(z2). Even a full “camber compensation” can be
achieved with γ1 ≈ 0 and γ2 ≈ 0. For simple wishbone suspension systems,
the rotation of the wheels around the longitudinal move the contact points
outward on jounce, which provides significant roll support in addition but will
cause severe tire wear. In practice, most suspension systems generate partial
camber compensation, Figure 9.16. If the rotation of the wheel around the
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FIGURE 9.16
Partial camber compensation (dydz=-0.1, dadz=30◦/m).

longitudinal axis (dadz>0) is combined with inward movement of the wheel
center on jounce (dydz<0), the roll center can be placed on or slightly above
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the road at least. Double wishbone suspension systems with different-sized
control arms make it possible to realize camber compensation and control the
amount of roll support. The kinematic analysis of a typical double wishbone
suspension performed in section 5.4 shows a camber change (partial camber
compensation) combined with slight outward movement of the reference point
(contact point) on jounce that generates a moderate roll support, Figure 5.14.

9.2.4 Roll Center and Roll Axis

The roll center can be constructed from the lateral motion of the wheel contact
points at each axle. The line through the roll center at the front and rear axle,
is called the roll axis, Figure 9.17. The chassis will roll about this axis when
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FIGURE 9.17
Roll axis.

cornering. The distance from the roll axis to the center of gravity is responsible
for the amount of body roll.

9.2.5 Wheel Load Transfer

The roll angle of a vehicle during cornering depends on the roll stiffness of
the axle and on the position of the roll center. Different axle layouts at the
front and rear axle may result in different roll angles of the front and rear part
of the chassis, Figure 9.18. A chassis with a significant torsional compliance
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FIGURE 9.18
Wheel load transfer on a flexible and a rigid chassis.
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would allow its front and rear part to roll nearly independently. Then, the
load transfer 4Fz from the inner to the outer wheels will be the same2 at
both axles, if the front and rear part have the same height of the center of
gravity. On most passenger cars, the chassis is rather stiff, however. In this
case, front and rear part of the chassis are forced by an internal torque TT
to an overall chassis roll angle. This torque affects the wheel loads and thus
generates a different load transfer at the front and rear wheels, 4FFz 6= 4FFz .
Due to the degressive influence of the wheel load on longitudinal and lateral
tire forces, the steering tendency of a vehicle can be affected.

9.3 Simple Handling Model

9.3.1 Modeling Concept

The main vehicle motions take place in a horizontal plane defined by the earth-
fixed axis system 0, Figure 9.19. The yaw angle γ describes the orientation of
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FIGURE 9.19
Simple handling model.

the body-fixed longitudinal axis xB , whereas β indicates the direction of travel
by measuring the angle between the vehicle velocity v and the longitudinal
axis xB . Again, the wheels at each axle are summarized in one fictitious wheel,
where δ denotes the mean steering angle at the front axle. Only the lateral
tire forces Fy1, Fy2 are taken into account because the main focus is placed
on the lateral dynamics here. In addition, aerodynamic forces and torques,
applied at the vehicle, are not taken into consideration.

2This can easily be checked by running the MATLAB-Script in Listing 9.5 with different
model data and observing the wheel loads.
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9.3.2 Kinematics

The vehicle velocity at the center of gravity can be expressed easily in the
body-fixed axis system xB , yB , zB ,

vC,B =

 v cosβ
v sinβ

0

 , (9.89)

where β is the side slip angle and v denotes the magnitude of the vehicle
velocity. The velocity vectors and the unit vectors in the longitudinal and
lateral direction of the axles are needed for computation of the lateral slips.
One gets

ex1,B =

 cos δ
sin δ

0

 , ey1,B =

 − sin δ
cos δ
0

 , v01,B =

 v cosβ
v sinβ + a1 γ̇

0


(9.90)

as well as

ex2,B =

 1
0
0

 , ey2,B =

 0
1
0

 , v02,B =

 v cosβ
v sinβ − a2 γ̇

0

 , (9.91)

where a1 and a2 are the distances from the center of gravity C to the front
and rear axle. Finally, γ̇ denotes the yaw angular velocity of the vehicle.

9.3.3 Tire Forces

Unlike the kinematic tire model, now small lateral sliding motions in the
contact points are permitted. For small lateral slips, the lateral force can be
approximated by a linear approach

Fy = cS sy , (9.92)

where the cornering stiffness cS depends on the wheel load Fz, and the lateral
slip sy is defined by Equation (3.90). Because the vehicle is neither accelerated
nor decelerated, the rolling condition

rD Ω = eTx v0P (9.93)

is fulfilled at each wheel Here, rD is the dynamic tire radius, v0P the contact
point velocity, and ex the unit vector in the longitudinal direction. With the
lateral tire velocity

vy = eTy v0P (9.94)

and the rolling condition defined in Equation (9.93), the lateral slip is given
by

sy =
−eTy v0P

| eTx v0P |
, (9.95)
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where ey defines the unit vector in the lateral direction of the tire. So, the
lateral tire forces are simply modeled as

Fy1 = cS1 sy1 and Fy2 = cS2 sy2 . (9.96)

Even if the same tires are mounted at the front and rear axle, the cornering
stiffness cS1 may vary from cS2 because of different wheel loads.

9.3.4 Lateral Slips

Using Equation (9.91), the lateral slip at the front axle defined by Equa-
tion (9.95) reads as

sy1 =
+ sin δ (v cosβ)− cos δ (v sinβ + a1 γ̇)

| cos δ (v cosβ) + sin δ (v sinβ + a1 γ̇) |
. (9.97)

The lateral slip at the rear axle,

sy2 = −v sinβ − a2 γ̇

| v cosβ |
, (9.98)

is simpler because no steer angle is considered here. Now, the yaw velocity of
the vehicle γ̇, the side slip angle β, and the steering angle δ are assumed to
be small,

| a1 γ̇ | � |v| , | a2 γ̇ | � |v| , (9.99)

|β | � 1 , and | δ | � 1 . (9.100)

Because the side slip angle β always describes the smaller angle between the
velocity vector v and the vehicle longitudinal axis xB , the straightforward
linearization v sinβ ≈ v β is replaced by the more sophisticated one,

v sinβ ≈ |v|β . (9.101)

Comparatively small values for the yaw velocity and the side slip angle cor-
respond quite well with normal driving situations. However, small steering
angles at the front axles will exclude the simulation of parking maneuvers, for
example. Now, Equations (9.97) and (9.98) result in

sy1 = −β − a1

|v|
γ̇ +

v

|v|
δ , (9.102)

sy2 = −β +
a2

|v|
γ̇ , (9.103)

where the consequences of Equations (9.99), (9.100), and (9.101) were taken
into consideration.
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9.3.5 Equations of Motion

The velocities, angular velocities, and accelerations are needed to derive the
equations of motion. For small side slip angles β � 1, Equation (9.89) can be
approximated by

vC,B =

 v
|v|β

0

 . (9.104)

The angular velocity is given by

ω0F,B =

 0
0
γ̇

 . (9.105)

The acceleration of the vehicle, expressed in the vehicle-fixed axis system xB ,
yB , zB , is given by

aC,B = ω0F,B × vC,B + v̇C,B =

 0

v γ̇ + |v| β̇
0

 , (9.106)

where a constant vehicle velocity v = const. was assumed and higher-order
terms are neglected. The angular acceleration is simply defined by

ω̇0F,B =

 0
0
ω̇

 , (9.107)

where the yaw angular velocity

ω = γ̇ (9.108)

substitutes the time derivative of the yaw angle. The linear momentum in the
lateral direction of the vehicle reads as

m (v ω + |v| β̇) = Fy1 + Fy2 , (9.109)

where, due to the small steering angle, the term Fy1 cos δ has been approxi-
mated by Fy1, and m is the vehicle mass. With Equation (9.108), the angular
momentum yields

Θ ω̇ = a1 Fy1 − a2 Fy2 , (9.110)

where Θ denotes the inertia of vehicle about a vertical axis located at the
center of gravity. Inserting the linear description of the lateral forces Equa-
tion (9.96) combined with the lateral slips Equations (9.102), (9.103) into
Equations (9.109) and (9.110) yields3

β̇ =
cS1

m |v|

(
−β − a1

|v|
ω +

v

|v|
δ
)

+
cS2

m |v|

(
−β +

a2

|v|
ω
)
− v

|v|
ω , (9.111)

3This simple planar model, often called the “bicycle model,” was first published by
P. Riekert and T. E. Schunck: Zur Fahrmechanik des gummibereiften Kraftfahrzeugs,
Ingenieur-Archiv, 11, 1940, S. 210-224. It is still used for fundamental studies or the basic
layout of control systems.
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ω̇ =
a1 cS1

Θ

(
−β − a1

|v|
ω +

v

|v|
δ
)
− a2 cS2

Θ

(
−β +

a2

|v|
ω
)
. (9.112)

This represents two coupled, but linear first-order differential equations, which
can be written in the form of a linear state equation,

[
β̇
ω̇

]
︸︷︷︸
ẋ

=


−cS1+cS2

m |v|
a2cS2−a1cS1

m |v||v|
− v

|v|
a2cS2−a1cS1

Θ
−a

2
1cS1+a2

2cS2

Θ |v|


︸ ︷︷ ︸

A

[
β
ω

]
︸︷︷︸
x

+


v

|v|
cS1

m |v|
v

|v|
a1cS1

Θ


︸ ︷︷ ︸

B

[
δ
]︸︷︷︸
u

. (9.113)

If a system can be at least approximatively described by a linear state equa-
tion, then the stability, steady-state solutions, transient response, and optimal
controlling can be calculated with classic methods of system dynamics.

9.3.6 Stability

9.3.6.1 Eigenvalues

The homogeneous state equation

ẋ = Ax (9.114)

describes the eigen-dynamics. If the approach

xh(t) = x0 e
λt (9.115)

is inserted into Equation (9.114), the homogeneous equation will remain,

(λE − A) x0 = 0 . (9.116)

One gets nontrivial solutions x0 6= 0 for

det |λE − A| = 0 . (9.117)

The eigenvalues λ provide information concerning the stability of the system.

9.3.6.2 Low-Speed Approximation

The state matrix

Av→0 =


− cS1 + cS2

m |v|
a2 cS2 − a1 cS1

m |v||v|
− v

|v|

0 − a2
1 cS1 + a2

2 cS2

Θ |v|

 (9.118)
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approximates the eigen-dynamics of vehicles at low speeds, v → 0. The matrix
in Equation (9.118) has the eigenvalues

λv→0
1 = − cS1 + cS2

m |v|
and λv→0

2 = − a2
1 cS1 + a2

2 cS2

Θ |v|
. (9.119)

Both eigenvalues are real, always negative, and independent of the model data
and the driving direction. Thus, all vehicles will possess an asymptotically
stable driving behavior at low speed!

9.3.6.3 High-Speed Approximation

At high driving velocities, v →∞, the state matrix can be approximated by

Av→∞ =

 0 − v

|v|
a2 cS2 − a1 cS1

Θ
0

 . (9.120)

Using Equation (9.120) one obtains from Equation (9.117) the relation

(λv→∞)
2

+
v

|v|
a2 cS2 − a1 cS1

Θ
= 0 (9.121)

with the solutions

λv→∞1,2 = ±
√
− v

|v|
a2 cS2 − a1 cS1

Θ
. (9.122)

When driving forward with v > 0, the root argument will be positive if

a2 cS2 − a1 cS1 < 0 (9.123)

holds. Then, one eigenvalue will be definitely positive, and the system is un-
stable. Two zero-eigenvalues λv→∞1 = 0 and λv→∞2 = 0 are obtained just
for

a1 cS1 = a2 cS2 . (9.124)

The driving behavior is indifferent then. Slight parameter variations may lead
to unstable behavior, however. A set of parameters, resulting in

a2 cS2 − a1 cS1 > 0 or a1 cS1 < a2 cS2 (9.125)

will produce a negative root argument in Equation (9.122) on forward drive,
v > 0. Then, the eigenvalues are imaginary, which characterizes undamped
vibrations. To avoid instability on forward drive with high speed, vehicles
have to satisfy the condition in Equation (9.125). However, the root argument
in Equation (9.122) changes the sign on backward drive. As a consequence,
all vehicles showing stable driving behavior at forward drive will definitely
become unstable at fast backward drive!
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9.3.6.4 Critical Speed

The condition for nontrivial solutions (9.117) results in a quadratic equation
for the eigenvalues λ here,

det |λE − A| = λ2 + k1λ+ k2 = 0 , (9.126)

which is solved by

λ1,2 = −k1

2
±

√(
k1

2

)2

− k2 . (9.127)

Asymptotically stable solutions (λ1,2 real and λ1 < 0, λ2 < 0) demand at
least for

k1 > 0 and k2 > 0 , (9.128)

which exactly corresponds with the stability criteria of Stodola and Hurwitz
[23]. According to Equation (9.113), the coefficients in Equation (9.126) can
be derived from the vehicle data

k1 =
cS1+cS2

m |v|
+
a2

1cS1+a2
2cS2

Θ|v|
, (9.129)

k2 =
cS1+cS2

m |v|
a2

1cS1+a2
2cS2

Θ|v|
− (a2cS2−a1cS1)

2

Θm |v||v|
+

v

|v|
a2cS2−a1cS1

Θ

=
cS1cS2 (a1+a2)

2

mΘ v2

(
1 +

v

|v|
a2cS2−a1cS1

cS1cS2 (a1+a2)
2 mv2

)
.

(9.130)

The coefficient k1 is always positive, whereas k2 > 0 is fulfilled only if

1 +
v

|v|
a2cS2−a1cS1

cS1cS2 (a1 + a2)
2 mv2 > 0 (9.131)

holds. Hence, a vehicle designed stable for arbitrary velocities in the forward
direction becomes unstable when it drives too fast backward. Because k2 > 0
for a2cS2−a1cS1 > 0 and v < 0 demands for v > v−C , where according to
Equation (9.131) the critical backward velocity is given by

v−C = −

√
cS1cS2 (a1 + a2)

2

m (a2cS2−a1cS1)
. (9.132)

On the other hand, vehicle layouts with a2cS2−a1cS1 < 0 are only stable
while driving forward as long as v < v+

C holds. Here, Equation (9.131) yields
the critical forward velocity of

v+
C =

√
cS1cS2 (a1 + a2)

2

m (a1cS1−a2cS2)
. (9.133)

Most vehicles are designed stable for fast forward drive. Then, the backward
velocity must be limited in order to avoid stability problems. That is why, fast
driving vehicles have four or more gears for forward drive but only one or two
reverse gears.
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9.3.6.5 Example

A passenger car is described by the data m= 1600 kg, Θ = 2000 kgm2, a1 =
1.1m, a2 =1.4m, cS1 =124 000N/−, cS2 =120 000N/−. The vehicle is stable
on forward drive because a2∗cS2 = 168 000Nm is significantly larger than a1∗
cS1 = 136 400Nm here. Then, the vehicle is unstable at fast backward drive.
According to Equation (9.132), the critical speed results in v−C = −154.4 km/h
in this specific case. The eigenvalues are plotted in Figure 9.20 for different
vehicle velocities, ranging from v = −60 km/h to v = 180 km/h. At higher
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FIGURE 9.20
Stability analysis of a typical passenger car for different vehicle velocities.

velocities (v > 24.1 km/h ) the eigenvalues become complex conjugate, which
characterizes damped vibrations. However, with increasing velocity, the real
part Re(λ), which indicates the amount of damping, becomes smaller and
smaller. At v → ∞ it will vanish completely. On backward drive, the vehicle
is stable, which is indicated by real and negative eigenvalues, as long as v < v−C
holds.

9.3.7 Steady-State Solution

9.3.7.1 Steering Tendency

At a given steering angle δ = δ0, a stable system reaches steady-state after
a certain time. Then, the vehicle will drive on a circle with the radius Rst,
which is determined by

ωst =
v

Rst
, (9.134)

where v is the velocity of the vehicle and ωst denotes its steady-state angular
velocity. With xst= const. or ẋst= 0, the state equation (9.113) simplifies to
a system of linear equations,

Axst = −B u . (9.135)



294 Road Vehicle Dynamics: Fundamentals and Modeling

Using Equation (9.134), the state vector can be described in steady-state by

xst =

[
βst

v/Rst

]
, (9.136)

where βst denotes the steady-state side slip angle. With u = [δ0], and the
elements of the state matrix A and the vector B that are defined in Equa-
tion (9.113), the system of linear equations (9.135) yields

(cS1 + cS2)βst + (mv |v|+ a1 cS1−a2 cS2)
v

|v|
1

Rst
=

v

|v|
cS1 δ0 , (9.137)

(a1 cS1 − a2 cS2)βst + (a2
1 cS1 + a2

2 cS2)
v

|v|
1

Rst
=

v

|v|
a1 cS1 δ0 , (9.138)

where the first equation has been multiplied by −m |v| and the second by −Θ.
Eliminating the steady-state side slip angle βst results in[

mv|v|(a1cS1−a2cS2) + (a1cS1−a2cS2)2

−(cS1+cS2)(a2
1cS1+a2

2cS2)
] v
|v|

1

Rst
=

[a1cS1−a2cS2 − a1(cS1+cS2)]
v

|v|
cS1δ0 ,

(9.139)

which can be simplified to[
mv|v|(a1cS1−a2cS2)−cS1cS2(a1+a2)2

] v
|v|

1

Rst
=− v

|v|
cS1cS2(a1+a2)δ0 .

(9.140)
Hence, driving the vehicle at a certain radius requires a steering angle of

δ0 =
a1 + a2

Rst
+ m

v|v|
Rst

a2 cS2 − a1 cS1

cS1 cS2 (a1 + a2)
. (9.141)

The first term is just the Ackermann steering angle, which follows from Equa-
tion (9.2) with the wheel base of a = a1 + a2 and the approximation for small
steering angles tan δ0 ≈ δ0. In fact, the Ackermann steering angle provides a
good approximation for slowly moving vehicles, because the second expression
in Equation (9.141) is negligibly small at v → 0. Depending on the value of
a2 cS2−a1 cS1 and the driving direction, forward v > 0 or backward v < 0, the
necessary steering angle differs from the Ackermann steering angle at higher
speeds. The difference is proportional to the lateral acceleration

ay =
v|v|
Rst

= ± v2

Rst
. (9.142)

Now, Equation (9.141) can be written as

δ0 = δA + k ay , (9.143)
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where δA = (a1 + a2)/Rst is the Ackermann steering angle, k summarizes the
relevant vehicle parameters, and ay = v2/Rst denotes the lateral acceleration
of the vehicle. In a diagram where the steering angle δ0 is plotted versus
the lateral acceleration ay, Equation (9.143) will represent a straight line,
Figure 9.21. On forward drive, v > 0, the inclination of this line, which is also
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FIGURE 9.21
Different steering tendencies.

called the steering gradient, is given by

d δ0
d ay

= k =
m (a2 cS2 − a1 cS1)

cS1 cS2 (a1 + a2)

[
rad

m/s2

]
. (9.144)

For steady-state cornering, the amount of the steering angle δ0
<=
> δA and

hence, the steering tendency depends at increasing velocity on the stability
condition a2cS2−a1cS1

<
=
> 0. The various steering tendencies are also arranged

in Table 9.2.

TABLE 9.2
Steering Tendencies of a Vehicle at Forward Driving

Understeer δ0 > δA0 or a1 cS1 < a2 cS2 or a1 cS1 / a2 cS2 < 1

Neutral δ0 = δA0 or a1 cS1 = a2 cS2 or a1 cS1 / a2 cS2 = 1

Oversteer δ0 < δA0 or a1 cS1 > a2 cS2 or a1 cS1 / a2 cS2 > 1

9.3.7.2 Side Slip Angle

Resolving Equations (9.137) and (9.138) for the steady-state side slip angle
yields

βst =
v

|v|
a2

Rst
−mv |v|

Rst

a1

cS2(a1+a2)
=

v

|v|

(
a2

Rst
−may

a1

cS2(a1+a2)

)
, (9.145)
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where ay = v2/Rst represents the lateral acceleration. The steady-state side
slip angle starts with the kinematic value

βv→0
st =

v

|v|
a2

Rst
. (9.146)

On forward drive (v > 0), it decreases with increasing lateral acceleration. It
changes sign at

aβst=0
y =

a2 cS2 (a1 + a2)

a1mRst
(9.147)

Note that the side slip angle defined in Equation (9.145) is not directly affected
by the steering tendency. The decay of the side slip angle with increasing
lateral acceleration on forward drive, and hence the sign change defined by
Equation (9.147) depends on the magnitude of the cornering stiffness cS2 at
the rear axle.

Some concepts for an additional steering of the rear axle were trying to
keep the side slip angle of the vehicle, measured at the center of the vehicle,
at zero by an appropriate steering or controlling. Due to numerous problems,
the production stage could not yet be reached.

9.3.7.3 Curve Radius

Usually a driver estimates the required steering angle δ = δ0 when enter-
ing a curve of a given or rated radius R. However, the actual driven radius
Rst depends on the vehicle speed v and the steering tendency of the vehicle.
Rearranging Equation (9.141) yields

Rst =
a1 + a2

δ0
+ m

v|v|
δ0

a2 cS2 − a1 cS1

cS1 cS2 (a1 + a2)
. (9.148)

The actual driven curve radius Rst is plotted in Figure 9.22 versus the driving
speed v for different steering tendencies. The steering angle has been set to
δ0 = 1.4321◦ here, in order to let the vehicle drive a circle with the radius
R0 = 100m at v → 0. Depending on the steering tendency of the vehicle, the
actual driven curve radius will increase, remain constant, or even decrease with
the vehicle velocity. In order to keep the desired path, the driver must adjust
the steering input appropriately in the case of a vehicle with an under- or an
oversteer tendency. If a vehicle with understeer tendency is cornering fast, the
driver will usually over-estimate the required steering input. As a consequence,
the vehicle will drive a curve with a smaller radius, which increases the lateral
acceleration and may result in a critical driving situation.
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m=700 kg
Θ=1000 kgm2

a1=1.2m
a2=1.3m

cS1=80 000N/− cS2 =

110 770N/−
73 846N/−
55 385N/−

FIGURE 9.22
Curve radius at steady-state cornering with different velocities.

9.3.7.4 Lateral Slips

At steady-state, β̇st = 0 and ω̇st = 0 holds. Then, the equations of motion
(9.109) and (9.110) can be resolved for the lateral forces

Fy1st =
a2

a1 + a2
m

v2

Rst
,

Fy2st =
a1

a1 + a2
m

v2

Rst
,

or
a1

a2
=

Fy2st

Fy1st

, (9.149)

where Equation (9.134) was taken into account. With the linear tire model in
Equation (9.92) one gets in addition

F sty1 = cS1 s
st
y1 and F sty2 = cS2 s

st
y2 , (9.150)

where sstyA1
and sstyA2

denote the steady-state lateral slips at the front and rear
axle. Now, the Equations (9.149) and (9.150) deliver

a1

a2
=

F sty2

F sty1

=
cS2 s

st
y2

cS1 s
st
y1

or
a1 cS1

a2 cS2
=

ssty2

ssty1

. (9.151)

Hence, the steering tendency of a vehicle is also indicated by the lateral slip
ratio. According to Equation (3.90) the lateral slip is strongly related to the
slip angle. As a consequence, the slip angles at the front axle will be larger
than the slip angles at the rear axle (ssty1 > ssty2) if a vehicle shows the tendency
to understeer (a1 cS1 < a2 cS2) at steady-state cornering.
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9.3.8 Influence of Wheel Load on Cornering Stiffness

With identical tires at the front and rear axle, given a linear influence of wheel
load on the raise of the lateral force over the lateral slip,

clinS1 = cS Fz1 and clinS2 = cS Fz2 (9.152)

holds. The weight of the vehicle G = mg is distributed over the axles according
to the position of the center of gravity,

Fz1 =
a2

a1 + a2
G and Fz2 =

a1

a1 + a2
G . (9.153)

With Equation (9.152) and Equation (9.153) one obtains

a1 c
lin
S1 = a1 cS

a2

a1 + a2
G (9.154)

and
a2 c

lin
S2 = a2 cS

a1

a1 + a2
G . (9.155)

Thus, a vehicle with identical tires would be steering neutrally with a linear
influence of the wheel load on the cornering stiffness, because of

a1 c
lin
S1 = a2 c

lin
S2 . (9.156)

In practice, the lateral force is applied behind the center of the contact patch
at the caster offset distance. Hence, the lever arms of the lateral forces will
change to a1 → a1− v

|v| nL1
and a2 → a2 + v

|v| nL1
, which stabilizes the vehicle,

independently from the driving direction.
For a real tire, a degressive influence of the wheel load on the tire forces

is observed, Figure 9.23. According to Equation (9.110), the rotation of the
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Fz [N ] Fy [N ]
0 0

1000 758
2000 1438
3000 2043
4000 2576
5000 3039
6000 3434
7000 3762
8000 4025

FIGURE 9.23
Lateral force Fy versus wheel load Fz at different slip angles.
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vehicle is stable if the torque from the lateral forces Fy1 and Fy2 is aligning,
i.e.,

a1 Fy1 − a2 Fy2 < 0 (9.157)

holds. For a vehicle with the wheel base a = 2.45m the axle loads Fz1 = 4000N
and Fz2 = 3000N yield the position of the center of gravity a1 = 1.05m and
a2 = 1.40 m. For equal slip on front and rear axle, one gets from the table
in Figure 9.23 Fy1 = 2576 N and Fy2 = 2043 N . With this, the condition
in Equation (9.157) yields 1.05 ∗ 2576 − 1.45 ∗ 2043 = −257.55 . The value is
significantly negative and thus stabilizing.

Vehicles with a1 < a2 have a stable, i.e., understeering driving behavior.
If the axle load at the rear axle is larger than at the front axle (a1 > a2),
generally a stable driving behavior can only be achieved with different tires.

At increasing lateral acceleration, the vehicle is more and more supported
by the outer wheels. The wheel load differences can differ at a sufficiently
rigid vehicle body, because of different kinematics (roll support) or different
roll stiffness. Due to the degressive influence of wheel load, the lateral force
at an axle decreases with increasing wheel load difference. If the wheel load
is split more strongly at the front axle than at the rear axle, the lateral force
potential at the front axle will decrease more than at the rear axle and the
vehicle will become more stable with an increasing lateral force, i.e., more
understeering.

9.4 Mechatronic Systems

9.4.1 Electronic Stability Control (ESC)

Electronic Stability Control (ESC) is the generic term for systems designed
to improve a vehicle’s handling, particularly at the limits where the driver
might lose control of the vehicle. Robert Bosch GmbH were the first to de-
ploy an ESC system, called Electronic Stability Program that was used by
Mercedes-Benz. ESC compares the driver’s intended direction in steering and
braking inputs, to the vehicle’s response, via lateral acceleration, rotation
(yaw), and individual wheel speeds. ESC then brakes individual front or rear
wheels and/or reduces excess engine power as needed to help correct under-
steer or oversteer, Figure 9.24. ESC also integrates all-speed traction control,
which senses drive-wheel slip under acceleration and individually brakes the
slipping wheel or wheels, and/or reduces excess engine power, until control is
regained. ESC combines anti-lock brakes, traction control, and yaw control.
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FIGURE 9.24
ESP braking concepts.

9.4.2 Steer-by-Wire

Modern steer-by-wire systems can improve the handling properties of vehi-
cles [49]. Usually an electronically controlled actuator is used to convert the
rotation of the steering wheel into steer movements of the wheels. Steer-by-
wire systems are based on mechanics, micro-controllers, electro-motors, power
electronics, and digital sensors. At present, fail-safe systems with a mechani-
cal backup system are under investigation. The potential of a modern active
steering system can be demonstrated by the maneuver of braking on a µ-split
[41]. The layout of a modern the steering system and the different reactions
of the vehicle are shown in Figure 9.25. The coefficient of friction on the left
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FIGURE 9.25
Steering system with over-riding gear and animated simulation screenshot of
braking on µ-split with a standard and an active steering system.
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side of the vehicle is supposed to be 10% of the normal friction value on the
right side. The vehicle speeds to v = 130 km/h and then the driver applies
full brake pressure and fixes the steering wheel like he would do first in a
panic reaction. During the whole maneuver, the anti-lock brake system was
disabled. The different brake forces on the left and right tires make the car
spin around the vertical axis.

Only skilled drivers will be able to stabilize the car by counter steering. The
success of counter steering depends on the reactions in the first few seconds.
A controller, who takes appropriate actions at the steering angle, can assist
the driver’s task.

Exercises

9.1 A ready-mix truck with the given dimensions is equipped with two steer-
able front axle. The maximum steering angle of the inner wheel at the first
front axle (wheel 11) amounts to δmax12 = 48◦.
To improve the cornering per-
formance, the second rear axle
is designed to be steered too.

Compute the cornering radius
R measured from the turning
pivot point to wheel 11 and all
steering angles according to the
Ackermann geometry.
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9.2 Compute the space requirement of a heavy-duty dumper with the given
dimensions when cornering at a bend angle of 40◦.
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9.3 A three-wheeled forklift has a track width of s = 1.0m at the front axle.
The wheel base is defined by a1 = a2 = 0.6 m. The coefficient of friction
between the tires and the ground is given by µ = 0.9.
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Compute the rollover threshold for the lateral acceleration when the center of
gravity is located h = 1.1m above the ground.

Hint: Identify the potential line of rollover first. Follow the approach in Sec-
tion 9.2.2.

Compute the maximum deceleration too.

9.4 Use the MATLAB-Script provided by Listing 9.2 and the MATLAB-
Function in Listing 9.1 to investigate the cornering behavior of a tractor semi-
trailer. Set a = 3.5m, b = −0.25m and c = 6.0m.

Find a steering input that generates a double lane change with a lateral devi-
ation of 5 m at a speed of 5 km/h.

9.5 A rear-wheel driven vehicle drives on a circle of radius R = 40 m with con-
stant velocity. In the vehicle-fixed axis system, the acceleration components
axB = −0.133 m/s

2
and ayB = 3.998 m/s

2
are measured in the longitudinal

and lateral direction. The average steering angle at the front axle is given by
δ = 6.2◦. The vehicle has a mass m = 1600 kg. The distances a1 = 1.3 m and
a2 = 1.4 m define the position of the center of gravity.
Determine the side slip angle β
at the vehicle center C, the ve-
locity v of the vehicle, and its
angular velocity ω. Evaluate the
steering tendency of the vehicle.

Calculate the lateral tire forces
Fy1, Fy2 that are required to
keep the vehicle in steady-state
when cornering.

Compute the required driving
force FD.
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10.1 Three-Dimensional Vehicle Model

10.1.1 Model Structure

As mentioned in Section 1.4, vehicles can be modeled by multibody systems.
A full vehicle model consists of the vehicle framework supplemented by even-
tually separate modules for the steering system, the drive train, the tires, the
load, passenger/seat models, an elastically suspended engine, and in the case
of heavy trucks by an elastically suspended driver’s cab. The vehicle frame-
work represents the kernel of such a full model. It includes at least the module
chassis and modules for the wheel/axle suspension systems. Typical passenger
cars are characterized by a sufficiently rigid chassis and independent wheel axle
suspension systems. As an extension to the enhanced planar model, described
in Section 8.4.1, the three-dimensional model for the vehicle framework now
consists of n = 9 rigid bodies: four knuckles, four wheels, and the chassis,

303
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Figure 10.1. The vehicle-fixed axis system F is located in the middle of the
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FIGURE 10.1
Bodies of the framework of a three-dimensional vehicle model.

front wheel centers; the xF -axis points forward, the yF -axis to the left, and
the zF -axis upward.

10.1.2 Position and Orientation

The position of the vehicle-fixed axis system with respect to the earth-fixed
axis system 0 is described by the components x, y, z of the position vector

r0F,0 =
[
x y z

]T
. (10.1)

Its orientation is defined by the rotation matrix

A0F,0 =

 cos γ − sin γ 0
sin γ cos γ 0

0 0 1


︸ ︷︷ ︸

Aγ

 cosβ 0 sinβ
0 1 0

− sinβ 0 cosβ


︸ ︷︷ ︸

Aβ

 1 0 0
0 cosα − sinα
0 sinα cosα


︸ ︷︷ ︸

Aα

, (10.2)

where γ denotes the yaw angle and β, α characterize the pitch and roll motion.
Now, the position and the orientation of the chassis are simply given by

r0C,0 = r0F,0 +A0F rFC,F and A0C = A0F , (10.3)

where the vector rFC,F , which describes the position of the chassis center
relative to the vehicle-fixed axis system, is constant and defined by the mass
distribution of the chassis. Each wheel is supposed to be fully balanced. Then,
its center is located on the rotation axis. In addition, it is assumed that the
center of the corresponding knuckle will be sufficiently close by or will even
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coincide with the wheel center. As a consequence, the position of each knuckle,
and simultaneously of each wheel, is defined by the vector

r0i,0 = r0F,0 +A0F rFi,F , i = 1(1)4 . (10.4)

If the rotation matricesAFi, i = 1(1)4 describe the orientation of each knuckle-
fixed axis system relative to the vehicle-fixed axis system, then the rotation
matrices

A0i = A0F AFi , i = 1(1)4 (10.5)

will define their orientation with respect to the earth-fixed axis system. A
purely kinematic suspension model describes the position and orientation of
each knuckle as a function of the jounce and rebound motion as well as the
steering motion. The vertical motion zi of each knuckle i = 1(1)4 relative to
the chassis or, as done in Section 5.4, the rotation angle of the lower wishbone
ϕi may be used to characterize the jounce and rebound motion. Assuming a
rack and pinion steering system at both axles, the rack movements uF and
uR at the front and rear axle will fully describe the steering motion at the
corresponding axle. Then, the position and orientation of each knuckle and
wheel center relative to the vehicle-fixed axis system is defined at the front
(i = 1, 2) and at the rear axle (i = 3, 4) by

rFi,F = rFi,F (zi, uF ) , AFi = AFi,F (zi, uF ) , i = 1, 2 , (10.6)

rFi,F = rFi,F (zi, uR) , AFi = AFi,F (zi, uR) , i = 3, 4 . (10.7)

Finally, the angles ϕWi, i = 1(1)4 describe the rotation of each wheel relative
to the corresponding knuckle.

10.1.3 Velocities

Expressing the absolute velocity and the absolute angular velocity of the
vehicle-fixed axis system in this axis system results in

v0F,F = AT0F ṙ0F,0 = AT0F

 ẋẏ
ż

 , (10.8)

ω0F,F =

 α̇0
0

+ATα


 0

β̇
0

+ATβ

0
0
γ̇


=

1 0 − sinβ
0 cosα sinα cosβ
0− sinα cosα cosβ

 α̇β̇
γ̇

 = KR

 α̇β̇
γ̇

 ,

(10.9)

where the components of v0F,F and ω0F,F will be used as generalized velocities
further on. Now, the absolute velocity and the angular velocity of the chassis
are defined by

v0C,F = v0F,F + ω0F,F × rFC,F and ω0C,F = ω0F,F . (10.10)
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At first, the time derivative of Equation (10.4) results in

ṙ0i,0︸︷︷︸
v0i,0

= ṙ0F,0︸︷︷︸
v0F,0

+ω0F,0A0F rFi,F +A0F ṙFi,F , i = 1(1)4 . (10.11)

Next, the transformation into the vehicle-fixed axis system yields

v0i,F = v0F,F + ω0F,F rFi,F + ṙFi,F , i = 1(1)4 , (10.12)

where the velocity state of the vehicle-fixed axis system, characterized by v0F,F

and ω0F,F , is defined in Equations (10.8) and (10.9). The time derivative of
the position vectors, provided by Equations (10.6) and (10.7), results in

ṙFi,F =
∂rFi,F
∂zi

żi +
∂rFi,F
∂uF

u̇RF = tzi,F żi + tui,F u̇RF , i = 1, 2 , (10.13)

ṙFi,F =
∂rFi,F
∂zi

żi +
∂rFi,F
∂uR

u̇RR = tzi,F żi + tui,F u̇RF , i = 3, 4 , (10.14)

where tzi,F and tui,F , i = 1(1)4 abbreviate the corresponding partial velocities.
Similary, the angular velocities of the knuckles may be written as

ω0Ki,F = ω0F,F + dzi,F żi + dui,F u̇F , i = 1(1)4 , (10.15)

where dzi,F and dui,F , i = 1(1)4 abbreviate the corresponding partial angular
velocities. Finally, the absolute angular velocity of each wheel is given by

Ω0Wi = ω0F,F + dzi,F żi + dui,F u̇R + AFi eyRi,i ˙ϕWi, i = 1(1)4 , (10.16)

where the unit vectors eyRi,i, i = 1(1)4, describe the orientation of the wheel
rotation axis in the design position. They are defined by a wheel alignment
point or via the toe and camber angles as discussed in Section 1.3.5.

The partial velocities and the partial angular velocities of the vehicle model
consisting of n = 9 model bodies are collected in the Tables 10.1 and 10.2,
where E denotes the 3×3 matrix of identity, and the cross-products in the
velocity equations are substituted via ω × r = −r × ω = −r̃ ω = r̃Tω by
multiplication with the corresponding skew symmetric matrices. In this model
approach it is assumed that the centers of each knuckle and wheel will coincide.
That is why knuckle and wheel are summarized to one body in Table 10.1. The
components vx, vy, vz of the velocity v0F,F and the the components ωx, ωy,
ωz of the angular velocity ω0F,F ; the time derivatives of vertical wheel center
displacements ż1 to ż2; the time derivatives of the lateral rack movements u̇F
and u̇R; as well as the wheel angular velocities ωWi = ϕ̇Wi, i = 1(1)4, are used
as generalized velocities here. The three-dimensional vehicle model then has
f = 3+3+4+2+4 = 16 degrees of freedom. All partial velocities and all inertia
tensors are expressed in the vehicle-fixed reference frame. In case of double
wishbone suspension systems, the partial velocities and the partial angular
velocities are provided in Section 5.4. For arbitrary suspension systems, the
position and orientation of each knuckle may be provided via look-up tables.
A spline interpolation will then provide the partial velocities too.
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TABLE 10.1
Partial Velocities: Three-Dimensional Vehicle Model

Partial Velocities ∂v0i,F /∂zj
Vehicle Front Susp. Rear Susp. Wheels

Body Name
Mass

v0F,F
vx,vy,vz

ω0F,F
ωx,ωy,ωz

ż1 ż2 u̇F ż3 ż4 u̇R ω1 ω2 ω3 ω4

Knuckle + wheel 1
mK1 +mW1

E r̃TF1,F tz1 0 tu1 0 0 0 0 0 0 0

Knuckle + wheel 2
mK2 +mW2

E r̃TF2,F 0 tz2 tu2 0 0 0 0 0 0 0

Knuckle + wheel 3
mK3 +mW3

E r̃TF3,F 0 0 0 tz3 0 tu3 0 0 0 0

Knuckle + wheel 4
mK4 +mW4

E r̃TF4,F 0 0 0 0 t4ϕ t4u 0 0 0 0

Chassis
mC

E r̃TFC,F 0 0 0 0 0 0 0 0 0 0

TABLE 10.2
Partial Angular Velocities: Three-Dimensional Vehicle Model

Partial Angular Velocities ∂ω0i,F /∂zj
Vehicle Front Susp. Rear Susp. Wheels

Body
name

Iner-
tia

v0F,F
vx,vy,vz

ω0F,F
ωx,ωy,ωz

ż1 ż2 u̇F ż3 ż4 u̇R ω1 ω2 ω3 ω4

Knuckle 1 ΘK1 0 E dz1 0 du1 0 0 0 0 0 0 0

Wheel 1 ΘW1 0 E dz1 0 du1 0 0 0 eyR1 0 0 0

Knuckle 2 ΘK2 0 E 0 dz2 du2 0 0 0 0 0 0 0

Wheel 2 ΘW2 0 E 0 dz2 du2 0 0 0 0 eyR2 0 0

Knuckle 3 ΘK3 0 E 0 0 0 dz3 0 du3 0 0 0 0

Wheel 3 ΘW3 0 E 0 0 0 dz3 0 du3 0 0 eyR3 0

Knuckle 4 ΘK4 0 E 0 0 0 0 dz4 du4 0 0 0 0

Wheel 4 ΘW4 0 E 0 0 0 0 dz4 du4 0 0 0 eyR4

Chassis ΘC 0 E 0 0 0 0 0 0 0 0 0 0

10.1.4 Accelerations

Now, the absolute acceleration of the chassis, expressed in the vehicle-fixed
axis system, is obtained as

a0C,F = v̇0F,F + ω̇0F,F × rFC,F + ω0F,F × v0C,F , (10.17)

where the fact that the vector rFC,F is constant was already taken into ac-
count. The last term, which does not depend on the time derivatives of the
generalized velocities v̇0F,F or ω̇0F,F represents the remaining term aR0C,F here.
The absolute angular acceleration, expressed in the vehicle-fixed axis system,
is given by

α0C,F = ω̇0C,F + ω0F,F × ω0C,F = ω̇0F,F + ω0F,F × ω0F,F = ω̇0F,F (10.18)
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and will contain no remaining acceleration terms, αR0C,F = 0. The absolute
acceleration of the knuckles and wheel centers, i = 1(1)4, is obtained by

a0i,F = v̇0F,F + ω̇0F,F × rFi,F + tzi,F z̈i + tui,F üj

+ ω0F,F×ṙFi,F + ṫzi,F żi + ṫui,F üj + ω0F,F×v0i,F .
(10.19)

The absolute angular acceleration of the knuckles, i = 1(1)4, is given by

α0Ki,F = ω̇0F,F + dzi,F z̈i + dui,F üj

+ ḋzi,F żi + ḋui,F üj + ω0F,F×ω0Ki,F ,
(10.20)

and the absolute angular acceleration of the wheels, i = 1(1)4, reads as

α0Wi,F = ω̇0F,F + dzi,F z̈i + dui,F üj +AFieyRi,iϕ̈Wi

+ ḋzi,F żi + ḋui,F üj + ωFi,F×AFieyRi,iϕ̇Wi + ω0F,F×ω0Wi,F .
(10.21)

The lateral rack movements were abbreviated by uj , where uj = uF holds at
the front axle (i = 1, 2) and uj = uR at the rear axle (i = 3, 4). The last
line in Equations (10.19), (10.20), and (10.21) represents the remaining terms
aR0Ki,F , aR0Wi,F , and αR0Ki,F , αR0Wi,F , respectively, which in the case of the
wheel angular acceleration include the gyroscopic torques generated by the
wheel rotation. The parts in the remaining accelerations, which are generated
by the time derivatives of the partial velocities and partial angular velocities,
are small compared to the other parts in vehicle dynamics and may thus be
neglected.

10.1.5 Applied and Generalized Forces and Torques

Similar to the procedure used in Section 8.4.1, the forces and torques applied
to each body may be specified in an additional column in Tables 10.1 and 10.2
and transformed via the partial velocities and the partial angular velocities to
the corresponding generalized forces and torques. This method is applied here
to the weight and inertia forces and to the gyroscopic torques only. According
to Equation (1.31), the contribution of body i to the vector of generalized
forces and torques is given by

q(i) =
∂vT0i,F
∂z

(
mig,F −mia

R
0i,F

)
+
∂ωT0i,F
∂z

(
−Θi,Fα

R
0i,F − ω0i,F×Θi,F ω0i,F

)
,

i = 1(1)n . (10.22)

The three-dimensional model for the vehicle framework consists here of n = 9
bodies, which in the case of translational motions are reduced to five bodies
by combining each knuckle and wheel into one body. All terms are expressed
in the vehicle-fixed axis system now. The applied torque T ai,F is omitted, and
the applied force F ai,0 is just replaced by the body weight Gi,F = mig,F , where
g,F denotes the gravity vector expressed in the vehicle-fixed axis system.
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All other applied forces and torques are transformed according to Equa-
tion (6.20) to generalized ones by just applying the principle of virtual power.
This was already practiced for point-to-point force elements in Section 6.1.4
and for the tire forces and torques in Section 5.3.6.

The general layout of the drive train generates braking torques between
knuckle and wheel and transmits driving torques via half-shafts from the
chassis-mounted differentials to the wheels. In this model approach, the wheels
are described relative to the knuckle and those relative to the vehicle (chas-
sis). Then, similar to the results achieved in Equation (8.70) for the enhanced
planar model, the driving and braking torques TDi, TBi, i = 1(1)4, will act
directly as generalized torques here in the components q(13) to q(16). Beyond
that, the driving torques TDi, i = 1(1)4, will generate the additional terms
dTzieyRiTDi, i = 1(1)4, in the components q(7), q(8), q(10), q(11), which are
related to the jounce and rebound motions z1 to z4 here.

10.1.6 Equations of Motion

The equations of motion can be generated now via Jordain’s principle of vir-
tual power. According to Section 1.4.3, the equations of motion will be pro-
vided in two sets of first-order differential equations:

K(y) ẏ = z , (10.23)

M(y) ż = q(y, z) . (10.24)

Here, the vector of the generalized coordinates and generalized velocities are
determined by

y =
[
x, y, z, α, β, γ, z1, z2, uF , z3, z4, uR, ϕW1, ϕW2, ϕW3, ϕW4

]T
, (10.25)

z =
[
vx, vy, vz, ωx, ωy, ωz, ż1, ż2, u̇F , ż3, ż4, u̇R, ω1, ω2, ω3, ω4

]T
. (10.26)

The components of the velocity vx, vy, vz and angular velocity ωx, ωy, ωz are
related via Equations (10.8) and (10.9) to the corresponding time derivatives
ẋ, ẏ, ż and α̇, β̇, γ̇ of the generalized coordinates. In addition, the wheel
angular velocities ωi = ϕ̇i, i = 1(1)4 just abbreviate the time derivatives of the
corresponding angles. That is why the kinematical differential equation (10.23)
can easily be resolved for the time derivative of the vector of generalized
coordinates.

According to Equation (1.30), the elements of the 16×16-mass-matrix are
defined by the masses and the inertias of each body as well as the partial veloc-
ities and the partial angular velocities, which are provided in the Tables 10.1
and 10.2 for the three-dimensional vehicle model.

The three-dimensional model for the vehicle framework must be supple-
mented with separate models for the tire, the drive train, and the steering
system. The sophisticated handling tire model TMeasy was presented in Chap-
ter 3. A model for a standard drive train including differentials, the gear box,
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the clutch, and the engine is discussed in Section 4.4. However, the drive train
with its model and vibrational complexity can be bypassed by simply apply-
ing given or controlled driving torques directly to the wheels. A quite simple
model approach of a steering system will just take the torsional compliance
of the steering column and the ratio of the steering box into account, c.f. Sec-
tion 5.3.6. Then, the rotation of the steering wheel provided as simple time
history or by a driver model makes it possible to simulate different driving
maneuvers.

10.2 Driver Model

10.2.1 Standard Model

Many driving maneuvers require inputs by the driver at the steering wheel and
the gas pedal that depend on the actual state of the vehicle. A real driver takes
a lot of information provided by the vehicle and the environment into account.
He acts anticipatory and adapts his reactions to the dynamics of the particular
vehicle. The modeling of human actions and reactions is a challenging task.
That is why driving simulators operate with real drivers instead of driver
models. However, offline simulations will require a suitable driver model.

Usually, driver models are based on simple, mostly linear vehicle models
where the motion of the vehicle is reduced to horizontal movements and the
wheels on each axle are lumped together [48]. Standard driver models, like
the one shown in Figure 10.2, usually consist of two levels: anticipatory feed-
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FIGURE 10.2
Two-level control driver model [22].

forward (open-loop) and compensatory (closed-loop) control. The properties
of the vehicle model and the capability of the driver are used to design ap-
propriate transfer functions for the open- and closed-loop control. The model
includes a path prediction and takes the reaction time of the driver into ac-
count.
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10.2.2 Enhanced Model

Different from technical controllers, a human driver normally does not simply
follow a given trajectory, but sets the target course within given constraints
(i.e., road width or lane width), Figure 10.3. At the anticipation level, the
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FIGURE 10.3
Enhanced driver model.

optimal trajectory for the vehicle is predicted by repeatedly solving optimal
control problems for a nonlinear bicycle model whereas on the stabilization
level, a position control algorithm precisely guides the vehicle along the op-
timal trajectory [47]. The result is a virtual driver who is able to guide the
virtual vehicle on a virtual road at high speeds as well as in limit situations
where skidding and sliding effects take place. A broad variety of drivers rang-
ing from unskilled to skilled or aggressive to nonaggressive can be described
by this driver model [14].

10.2.3 Simple Approach

Many driving maneuvers require a constant or a slowly varying driving veloc-
ity. The average of all circumferential wheel velocities,

vW =
1

4

4∑
i=1

rDiΩi , (10.27)

approximates the driving velocity vD quite well. Here, rDi is the dynamic tire
radius and Ωi describes the absolute angular velocity of each wheel, i = 1(1)4.
Then, a simple p-controller,

TD = pD (vD − vW ) , (10.28)

may be used to generate an appropriate driving torque, which will be dis-
tributed to the wheels according to the layout of the driving system. Of course,
the control parameter pD must be adjusted to the specific vehicle properties.
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Open-loop maneuvers, like a steering step input, are operated simply by
providing the steering wheel angle as a function of time. Keeping a vehicle
on a straight line when driving on a rough road or performing a steady-state
cornering on a circle with given radius will require an appropriate controller.
Again, a p-control applied to the steering wheel angular velocity may serve as
a simple driver model. In the case of steady-state cornering, the controller

δ̇SW = pSW

(vD
R
− ω0F,0(3)

)
(10.29)

generates the angular steering wheel velocity δ̇SW proportional to the devia-
tion of actual yaw velocity, which is provided by the third component ω0F,0(3)
of the angular velocity of the vehicle-fixed axis system, from the desired yaw
velocity ωz = vD/R when cornering with the velocity vD on the radius R.
Again, the control parameter pSW must be chosen appropriately.

10.3 Standard Driving Maneuvers

10.3.1 Steady-State Cornering

The steering tendency of a real vehicle is determined by the driving maneuver
called steady-state cornering. The maneuver is performed quasi-static. The
driver tries to keep the vehicle on a circle with the given radius R. He slowly
increases the driving speed v and, due to ay = v2/R, also the lateral accel-
eration until reaching the limit. Whereas in the simulation a perfectly flat
road is easily realized, field test, will usually be characterized by slight dis-
turbances induced by a nonperfect road surface, Figure 10.4. The simulation
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FIGURE 10.4
Steady-state cornering: Front-wheel driven passenger car.

results, obtained with a sophisticated three-dimensional vehicle model [46],
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match quite well with the measurements. The passenger car has a mass of
m = 1450 kg and a wheel base of a = 2.7 m. The center of gravity is located
closer to the front axle, a = 1.1 m, which is typical for front-wheel driven
cars. The maneuver was performed on a circle of radius R = 30 m here. To
drive this radius with low lateral acceleration, ay → 0, a steering angle at
the front wheel of δA = arctan (2.7/30) = 0.0898 ≡ 5.143◦ will be required.

Inspecting Figure 10.4 yields a steering wheel angle of δ
ay→0
SW ≈ 87◦, which

results in a overall steering ratio of iS = 87◦/5.143◦ = 17. The inclination in
the diagram steering angle versus lateral velocity decides about the steering
tendency and stability behavior. The tendency to understeer is significant in
the whole acceleration range here. When approaching the limit range, which
may be estimated by amaxy ≈ 0.8 g, the understeer tendency and, as a con-
sequence, the stability of the vehicle too, increase more and more. The roll
angle of the vehicle increases in proportion to the lateral acceleration with a
ratio of approximately 4.8◦/g.

Typical results for a rear-wheel driven car are displayed in Figure 10.5.
The passenger car has mass of m = 1300 kg and a wheel base a = 2.57 m.
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FIGURE 10.5
Steady-state cornering: Rear-wheel driven car.

The center of gravity is located nearly in the midst, at a = 1.25 m, which is
quite typical for rear-wheel driven cars. The vehicle is driven on a radius of
R = 100 m now, which means that the potential limit range alimity = 0.8 g is
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reached at velocity

vlimit =
√
alimity R =

√
0.8 ∗ 9.81 ∗ 100 = 28m/s or vlimit = 100.8 km/h .

(10.30)
This corresponds quite well with the typical travel velocity on country roads in
Europe. Estimating the overall steering ratio by inspecting the upper-left plot
in Figure 10.5 and computing the Ackermann angle results in iS = δSW /δA =
30◦/1.4722◦ = 20.4. In the low acceleration range, the steering tendency is
nearly neutral, which is the result of nearly equal loads at the front and rear
axle. The nonlinear influence of the wheel load on the tire performance is used
here to design a vehicle that is weakly stable but sensitive to steer input in the
lower range of lateral acceleration, and is very stable but less sensitive to steer
input in the limit range. The roll angle of the vehicle increases in proportion
to the lateral acceleration with a ratio of approximately 5◦/g here.

The side slip angle, measured at the vehicle center, starts with the
value βay→0 ≈ 0.75◦, which coincides with the Ackermann value βst =
arctan (a2/R) = arctan (2.57−1.25)/100 = 0.0132 ≡ 0.756◦. It changes sign
at aβst=0

y ≈ 0.16g. Inserting this value into Equation (9.147) delivers cornering
stiffness at the rear axle of

cS2 =
a1Rmaβst=0

y

a2 (a1 + a2)
=

1.25 ∗ 100 ∗ 1300 ∗ 0.16 ∗ 9.81

(2.57− 1.25) ∗ 2.57
= 75 186N/m (10.31)

which indicates rather soft tires but corresponds to the fact that the vehicle
under consideration is an older one. The steering gradient, which was esti-
mated here with k ≈ 0, is defined in Equation (9.144). It can also be used to
determine the cornering stiffness cS1 of the front axle.

The overturning torque is intercepted by according wheel load differences
between the outer and inner wheels. With a sufficiently rigid frame, the use
of an anti-roll bar at the front axle allows for increasing the wheel load dif-
ference there and for decreasing it at the rear axle accordingly. Thus, the
degressive influence of the wheel load on tire properties, cornering stiffness,
and maximum possible lateral forces, is stressed more strongly at the front
axle, and the vehicle becomes more under-steering and stable at increasing
lateral acceleration, until it drifts out of the curve over the front axle in the
limit situation. Problems occur with front-wheel driven vehicles, because due
to the demand for traction, the front axle cannot be relieved at will.

Having a sufficiently large test site, the steady-state cornering maneuver
can also be carried out at constant speed. There, the steering wheel is slowly
turned until the vehicle reaches the limit range. That way, weakly motorized
vehicles can also be tested at high lateral accelerations.

10.3.2 Step Steer Input

The dynamic response of a vehicle is often tested with a step steer input.
Methods for the calculation and evaluation of an ideal response, as used in
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system theory or control techniques, cannot be used with a real car, as a step
input at the steering wheel is not possible in practice. A real steering angle
gradient is displayed in Figure 10.6. Note that the angle at the steering wheel
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FIGURE 10.6
Time history of a typical step steer input.

is the decisive factor for the driving behavior, but the steering angle at the
wheels, which can differ from the steering wheel angle because of elasticities,
friction influences, and a servo-support. For very fast steering movements, the
dynamics of the tire forces also play an important role.
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FIGURE 10.7
Step steer: Passenger car at v = 100 km/h.

In practice, a step steer input is usually only used to judge vehicles subjec-
tively, Figure 10.7. Exceedances in yaw velocity, roll angle, and especially side
slip angle are felt as annoying. The vehicle under consideration behaves dy-
namically very well. Almost no overshoots occur in the time history of the roll
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angle and the lateral acceleration. However, small overshoots can be noticed
at the yaw velocity and the side slip angle.

10.3.3 Driving Straight Ahead

The irregularities of a track are of a stochastic nature in general. As discussed
in Section 2.3, stochastic track irregularities may be characterized by a refer-
ence power spectral density and the waviness. A straightforward drive on an
uneven track makes continuous steering corrections necessary. The histograms
of the steering angle at a driving speed of v = 90 km/h are displayed in Fig-
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FIGURE 10.8
Steering activity on different roads.

ure 10.8. The track quality is reflected in the amount of steering actions. The
steering activity is often used to judge a vehicle in practice or to compare
different vehicles or vehicle concepts.

10.4 Coach with Different Loading Conditions

10.4.1 Data

The difference between empty and laden is sometimes very large at trucks
and coaches. All relevant data of a travel coach under fully laden and empty
conditions are listed in Table 10.3.

The coach has a wheel base of a = 6.25 m. The front axle with the track
width sv = 2.046 m has a double wishbone, single-wheel suspension. The
twin-tire rear axle with track widths soh = 2.152m and sih = 1.492m is guided
by two longitudinal links and an A-arm. The air springs are fitted to load
variations via a niveau control.
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TABLE 10.3
Data for a Laden and Empty Coach

Vehicle Mass [kg] Center of Gravity [m] Inertias [kgm2]

Empty 12 500 −3.800 | 0.000 | 1.500
12 500 0 0

0 155 000 0
0 0 155 000

Fully laden 18 000 −3.860 | 0.000 | 1.600
15 400 0 250

0 200 550 0
250 0 202 160

10.4.2 Roll Steering

While the kinematics at the front axle hardly cause steering movements at
roll motions, the kinematics at the rear axle are tuned in a way to cause a
notable roll steering effect, Figure 10.9. This is achieved by moving the wheel
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FIGURE 10.9
Roll steer motion of a solid axle.

center on jounce to the front and on rebound to the rear. As a solid axle rigidly
connects both wheels, this will cause the axle to rotate about the vertical axis,
thus performing a steer motion when the chassis rolls and the outer wheel is
forced to a jounce and the inner to a rebound motion.

10.4.3 Steady-State Cornering

Some results of a steady-state cornering on a radius of R = 100m are plotted
in Figure 10.10. The fully laden vehicle is slightly more understeering than
the empty one. The roll steer behavior affects the steering tendency differ-
ently, because the laden vehicle exhibits a larger roll motion when cornering.
In general, vehicles with a twin-tired solid axle at the rear exhibit a basic
understeer tendency. When cornering to the left, the forward velocities of the
tire centers at the rear axle will increase from the inner left to the outer right,
Figure 10.11. Taking driving or braking maneuvers not into account, each rear
wheel will rotate with an average angular velocity ΩR, which results from the
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FIGURE 10.10
Coach at steady-state cornering.
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FIGURE 10.11
Vehicle with a twin-tired solid rear axle while cornering to the left.

rolling condition vR = rDΩR, where rD is the dynamic rolling radius and
vR = 1

2

(
vRR + vLR

)
represents the average forward velocity of the right and the

left tire center. As both twin tires are forced to rotate with the same angular
velocity, positive sRx > 0 and negative sLx > 0 longitudinal slips will result at
the right and left tire as a consequence. The thereby caused couple of longi-
tudinal forces FRx , FLx generates a torque about the vertical axes, which acts
in the opposite direction of the yaw velocity ω of the vehicle. The same effect,
which is similar to the tire bore torque mechanism, occurs on both wheels
and adds to a significant torque Tu, thus producing the understeer tendency
of those vehicles. The higher wheel loads of the laden coach will amplify this
understeer effect, in addition.

The simulation was performed with p-controllers for the driving torque and
the steering wheel angular velocity, which are provided in Equations (10.28)
and (10.29). Despite the simple driver model, the coach is kept on a circled
path quite well. When approaching the limit range, the understeer tendency
of the laden coach is increasing rapidly, which results in a slight increase in
the curve radius.

Due to the relatively high position of the center of gravity, the maximal
lateral acceleration is limited by the overturning hazard. For the empty vehicle,
the inner front wheel lifts off at a lateral acceleration of ay ≈ 0.4 g, right plot
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FIGURE 10.12
Wheel loads of a coach at steady-state cornering.

in Figure 10.12. If the vehicle is fully laden, this effect will occur at a lateral
acceleration of ay ≈ 0.35 g, left plot in Figure 10.12.

10.4.4 Step Steer Input

The results of a step steer input at the driving velocity of v = 80 km/h can
be seen in Figure 10.13. To achieve comparable acceleration values in steady-

�����

����	





��


�



��


��







�

�

�

�



 
 � � �






�

�

�

���� 
 
 � � �

�


��




�




����

�������������
�������	����

�����	�����
��������������

� ����������
�	�������

���������
�	�������

����	

�����

����	

�����

����	

�����

FIGURE 10.13
Step steer input to coach.

state condition, the step steer input was done for the empty vehicle with
δ = 90◦ and for the fully laden one with δ = 135◦. The steady-state roll angle
is 50% larger at the fully laden coach than at the empty one. By the niveau
control, the air spring stiffness increases with the load. Because the damper
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effect remains unchanged, the fully laden vehicle is not damped as well as the
empty one. This results in larger overshoots in the time histories of the lateral
acceleration, the yaw angular velocity, and the side slip angle.

10.5 Different Rear Axle Concepts for a Passenger Car

A medium-sized passenger car is equipped in standard design with a semi-
trailing rear axle. By accordingly changed data, this axle can easily be trans-
formed into a trailing arm or a single wishbone suspension. According to the
roll support, the semi-trailing axle realized in serial production represents a
compromise between the trailing arm and the single wishbone suspension,
Figure 10.14. The influences on the driving behavior at steady-state corner-
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FIGURE 10.14
Kinematics of different rear axle concepts.

ing on a radius of R = 100 m are shown in Figure 10.15. Substituting the
semi-trailing arm on the standard car by a single wishbone, one gets, with-
out adaption of the other system parameters, a vehicle oversteering in the
limit range. Compared to the semi-trailing arm, the single wishbone causes
a notably higher roll support. This increases the wheel load difference at the
rear axle, Figure 10.15. Because the wheel load difference simultaneously de-
creases at the front axle, the understeering tendency decreases. In the limit
range, this even leads to an oversteering behavior. The vehicle with a trailing
arm rear axle is, compared to the serial car, more understeering. The lack of
roll support at the rear axle also causes a larger roll angle.
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FIGURE 10.15
Steady-state cornering with different rear axle concepts.

Exercises

10.1 The solid lines represent the results of a passenger car at steady-state
cornering.
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Name at least two actions that must be taken to change the steering tendency
of the car to the one defined by the broken line. Will these actions affect the
roll angle too?

10.2 The plot shows the results of a steady-state cornering performed with a
sports car on a radius of R = 100m, where the side slip angle was measured
at the vehicle’s center of gravity.
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The sports car has a wheelbase of a = 2.35m and the wheel loads at the front
and rear axle are specified by 5600 N and 7000 N .

Compute the mass m and the location (a1, a2) of the center of gravity with
respect to the front and the rear axle.

Calculate the average steering angle δA at the front wheels and the side slip
angle βA at the vehicle’s center of gravity that hold according to Ackermann
when driving with nearly vanishing lateral acceleration ay → 0 on the given
radius.

Compute the overall steering ratio defined by iS = δSW /δA, where δSW de-
notes the steering wheel angle at ay → 0 and δA is the Ackermann steering
angle.

Calculate the cornering stiffness cSR at the rear axle, the steering gradient,
which according to Equation (9.144) will be defined here by

k =
1

iS

d δSW
d ay

,

and the cornering stiffness cSF at the front axle, which will all be valid in the
low acceleration range.

10.3 A passenger car performs a step steer maneuver at the driving velocity
of v = 120 km/h.
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Judge the results.

At what radius is the vehicle driving at the end of the maneuver (t = 4 s)?

How will the plots change if the anti-roll bar stiffness at the rear axle is
doubled?
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[20] W. Kortüm and P. Lugner. Systemdynamik und Regelung von Fahrzeu-
gen. Springer, 1993.
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µ-split, 238

Ackermann
geometry, 260
steering angle, 260, 294
steering geometry, 140

Active center differential, 118
Active yaw control, 118
Actuator, 168
Aerodynamic forces, 227
Air resistance, 227
Air spring, 161, 162
All wheel drive, 271
Angular velocity, 14
Anti-dive, 256
Anti-Lock-System, 239
Anti-roll bar, 163, 281
Anti-squat, 254
Anti-sway bar, 163
Applied forces, 17
Applied torques, 17
Auto-correlation, 32
Axle kinematics

double wishbone, 130
McPherson, 130
multi-link, 130

Axle Load, 226
Axle suspension

solid axle, 128
twist beam, 129

Bend angle, 264, 267
Brake pitch pole, 257
Braking stability, 232
Braking torque, 110

Camber angle, 8, 10
Camber compensation, 284

Caster angle, 131
Caster offset, 132
CDC, 220
Climbing capacity, 229
Coil spring, 161
Combustion engine, 124
Comfort, 191
Cornering resistance, 272
Cornering stiffness, 287
Critical damping, 198
Critical velocity, 292

D’ Alembert, 15
Damper

characteristic, 165
hydraulic, 168
mono-tube, 165
torsional, 17
twin-tube, 165

Deviation, 32
Differential, 119
Dissipation angle, 177
Disturbance-reaction problem, 203
Down forces, 227
Downhill capacity, 229
Drag link, 132, 133
Drive shaft, 119
Drive train, 101
Driver, 4, 310
Driver model, 310
Driving safety, 192
Driving torque, 109
Dynamic axle load, 226
Dynamic force elements, 175
Dynamic stiffness, 177
Dynamic wheel load, 208

Earth-fixed axis system, 6
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Effective value, 32
Eigenvalues, 290
Environment, 5
Equations of motion, 17
ESC, 299
ESP, 299
Euler, 15

First harmonic oscillation, 175
Force element

air spring, 162
anti-roll bar, 163
anti-sway bar, 163
coil spring, 162
damper, 165, 170
damper topmount, 182
leaf spring, 162
point-to-point, 167
stabilizer, 163
torsion bar, 162

Fourier-approximation, 176
Frequency domain, 175
Friction, 229
Front-wheel drive, 230, 271

Generalized force vector, 17
Grade, 227
Gyroscopic forces, 17

Half shaft, 119
Hybrid drive, 102
Hydro-mount, 186

Inertia forces, 17
Intermediate axis system, 6

Jacobian matrix, 16
Jourdain, 15, 136, 169
Jourdain’s principle, 16

Kelvin-Voigt model, 185
Kingpin, 130
Kingpin angle, 131
Kingpin offset, 132
Knuckle, 6

Lateral acceleration, 279, 294

Lateral force, 288
Lateral slip, 287, 288
Leaf spring, 161, 162
Liquid load, 280
Ljapunov equation, 203
Load, 5
Local track plane, 55

Mass matrix, 16
MATLAB-Example

camber influence, 91
combined tire force, 78
damper characteristic, 165
damper topmout dynamics, 182
damper topmout frequency re-

sponse, 182
double wishbone kinematic anal-

ysis, 155
double wishbone kinematics, 153
four-axled truck, 273, 274
hydro-mount dynamics, 187
hydro-mount frequency response,

188
least squares approximation, 64
look-up table, 173
normalized tire offset, 72
obstacle, 29
pitch reaction, 253
point-to-point force element, 172
quarter car model, 24, 36
random road excitation, 37
ride comfort and safety, 209
simple planar vehicle model, 240,

242
simple steering system, 140
simulation of the parking effort,

141
sky hook damper, 220, 221
smoothed clearance, 187
static wheel load, 64
steady-state, 22
steady-state tire forces, 79
step input, 23
vehicle and trailer model, 268
vehicle data, 22
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vehicle roll model, 282
vehicle track model, 267
vehicle wheel tire, 111, 112
wheel tire, 107

MATLAB-Function
barh, 38
contour3, 274
diff, 114
disp, 155
fminsearch, 273
fsolve, 273
fzero, 22, 273
hist, 38
interp1, 112, 268
interp1q, 167, 173
mean, 38
ode23, 114, 143
ode23s, 182
ode45, 24, 189
plotyy, 143
rand, 38
std, 38
surf, 157
var, 210

Maximum acceleration, 229, 230
Maximum deceleration, 229, 231, 232
Maxwell model, 185
Mean value, 31

Natural frequency, 196
Newton, 15

Optimal brake force distribution, 234
Optimal braking, 235
Optimal damping, 205
Optimal drive force distribution, 234
Optimal driving, 235
Overriding gear, 132
Oversteer, 295
Overturning limit, 277

Partial velocities, 16, 152
Pitch angle, 6
Pivot pole, 260
Position vector, 13
Principle of virtual power, 136, 169

Quarter car model, 194, 209, 221

Rack, 132
Random road profile, 316
Rear-wheel drive, 230, 271
Relative damping ratio, 198
Ride comfort, 191, 205
Ride safety, 204
Road, 52

deterministic obstacles, 29
OpenCRG, 27
parallel track model, 28
three-dimensional model, 27

Roll angle, 6
Roll axis, 285
Roll center, 285
Roll steer, 317
Roll stiffness, 279
Roll support, 283
Rolling condition, 287
Rollover, 277
Rotation matrix, 13

Safety, 191
Scrub radius, 132
Side slip angle, 261, 295
Skew-symmetric matrix, 14
Sky hook damper, 217
Space requirement, 261
Spring

rate, 199
torsional, 17

Stability, 290
Stabilizer, 163
State equation, 290
State matrix, 218
State vector, 218
Static stability factor, 277
Steady-state cornering, 312, 317
Steer-by-wire, 132, 300
Steering activity, 316
Steering angle, 265
Steering box, 133
Steering gradient, 295
Steering lever, 133
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Steering offset, 132
Steering system

lever arm, 133
rack-and-pinion, 132
toe bar steering system, 133

Steering tendency, 286, 295
Step steer input, 314, 319
Suspension spring rate, 199
Synchromesh, 122
System response, 175

Tilting, 229
Tire

bore torque, 45, 81
camber angle, 53
camber influence, 88
camber slip, 89
code, 2
combined slip, 73
composites, 44
contact forces, 45
contact patch, 6, 45
contact point, 6, 52, 53
contact point velocity, 60
contact torques, 45
contact width, 57
cornering stiffness, 70, 71
dynamic forces, 92
dynamic offset, 71
dynamic radius, 62, 63
force characteristics, 50
friction coefficient, 87
gemetric contact point, 53
handling model, 51
kinematic model, 260
lateral force, 45, 70, 71
lateral slip, 70
linear model, 287
loaded radius, 53
longitudinal force, 45, 68, 69
longitudinal slip, 69
milestones, 44
normal force, 45
pneumatic trail, 71
radial damping, 65

radial deflection, 56
radial stiffness, 63, 279
relaxation length, 92
rolling resistance, 45, 66
self-aligning torque, 45, 71
slip angle, 70
static contact point, 59
static radius, 53, 86
tilting torque, 45
tipping torque, 65
TMeasy, 51
transport velocity, 63
tread particles, 67
vertical deflection, 56, 57
wheel load, 45
wheel load influence, 84

TMeasy, 51
Toe angle, 8, 10
Toe-in, 8
Toe-out, 8
Torsion bar, 161
Track, 52
Track curvature, 265
Track normal, 53
Track radius, 265
Track width, 7, 261, 279
Trailer, 262, 266
Trailing arm suspension, 17

Understeer, 295

Variance, 32, 208
Vehicle, 4
Vehicle comfort, 192
Vehicle dynamics, 3
Vehicle model, 17, 192, 209, 225, 246,

262, 280, 286, 303
Vehicle-fixed axis system, 6
Velocity, 14
Vertical dynamics, 191
Virtual work, 280
Viscous damping, 196
Voigt model, 185

Wheel base, 7, 261
Wheel camber, 8
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Wheel carrier, 6
Wheel center, 6
Wheel load, 63
Wheel suspension

central control arm, 130
double wishbone, 128
McPherson, 128
multi-link, 128
semi-trailing arm, 129, 320
single wishbone, 320
SLA, 129
trailing arm, 320

Yaw angle, 6, 263, 265
Yaw velocity, 287
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