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Preface

Conferences “Shell Structures: Theory and Applications” are traditionally organized by the Section of Structural
Mechanics of the Committee for Civil Engineering of the Polish Academy of Sciences in co-operation with
other scientific and technological organizations. Previous SSTA conferences were held in Cracow (1974), Gołuń
(1978), Opole (1982), Szklarska Poręba (1986), Janowice (1992), Jurata (1998, 2002, 2005, 2009) and Gdańsk
(2013). The aim of the meetings is always the same: to bring together scientists, engineers, and other specialists
of shell structures in order to discuss important results and new ideas in the field. The goal is to pursue more
accurate theoretical models, to develop more powerful and versatile methods of analysis, as well as to disseminate
expertise in design and maintenance of shell structures.

Three volumes Shell Structures: Theory and Applications published by Taylor & Francis Group, London
2006, 2010, and 2014 contained full texts of papers presented at the 8th, 9th and 10th SSTA Conferences held
in Gdańsk (Poland), respectively. These three books have met with a considerable response of the international
shell community.

This fourth volume of the series contains full texts of 132 papers selected for presentation at the 11th Confer-
ence “Shell Structures: Theory and Applications” to be held on October 11–13, 2017 in Gdańsk (Poland). The
papers reflect a wide spectrum of scientific and engineering problems of shell structures. For readers convenience,
the contents of the book is divided into eight thematic groups of papers: general lectures, theoretical modelling,
stability, dynamics, numerical analyses, engineering problems, biomechanical applications, and miscellaneous
topics. We do hope that information presented in this volume will be of interest to academics, students, designers
and engineers dealing with various problems of thin-walled shell structures.

We would like to express our gratitude to all Authors for their valuable contributions and for their willingness
to share their research and development activities with the shell international community. We are particularly
grateful to the Authors of Invited General Lectures, Professors: E. Carrera & M. Petrolo (Italy), H. Fu & Y.
Zhang (PR China), T. Lewiński et al. (Poland), S. Reese et al. (Germany), and J.M. Rotter (United Kingdom)
for their exceptionally valuable and extensive contributions to this volume.

Each manuscript submitted to 11th SSTA and printed in this volume has been reviewed by a member of
the International Advisory Board and then refined by the Author(s) according to the referee comments. We
are deeply indebted to all members of the International Advisory Board for their important role in shaping the
Conference program and for their great help in bringing all the papers to highest research standards. Most of
the final texts have additionally been adjusted to technical requirements of the publisher, remaining printing
errors have been corrected, and the English of some texts has been refined. We would like to thank very much
indeed our associates T. Ferenc, D. Bruski, K. Daszkiewicz, R. Kędra, B. Kotarska-Lewandowska, M. Kujawa,
J. Lachowicz, A. Sabik, M. Skowronek, B. Sobczyk, B. Zima for their invaluable help in bringing the book to its
final form.

Financial support provided by SOFiSTiK AG, Nürnberg, Germany; Pomorska Okregowa Izba Inzynierów
Budownictwa, Gdansk, Poland; PORR S.A., Warsaw, Poland; Gotowski BKiP, Bydgoszcz, Poland; Sika Poland
Sp. z o.o, Warsaw, Poland; Design Office of Municipal Engineering (BPBK S.A.), Gdańsk, Poland is gratefully
acknowledged.

Gdańsk, July 2017 Wojciech Pietraszkiewicz
Wojciech Witkowski
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Stanisław Burzyński, Tomasz Ferenc – Secretaries,
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Computational models for the multifield analysis of laminated
shells and related best theory diagrams

E. Carrera & M. Petrolo
MUL2 Group, Department of Mechanical and Aerospace Engineering,
Politecnico di Torino, Italy

ABSTRACT: This paper presents plate and shell models for multifield problems and proposes methodologies
to refine structural models according to given accuracy and computational cost requirements. In multifield
problems for multilayered structures, refined models are necessary to deal with many non-classical effects due,
for instance, to the presence of large variations of properties among layers. In such research scenario, the Carrera
Unified Formulation (CUF) is a well-established framework. Via the CUF, the 3D structural problem is reduced
to a 2D or 1D variant. In other words, the 3D unknown variables become 2D or 1D, and expansion functions
along the thickness or the cross-section of the structure define the order of the model, or computational cost and
its accuracy. The CUF models proved to be able to detect 3D-like accuracies in multifield structural problems
with very low computational costs. In the CUF framework, the axiomatic-asymptotic method (AAM) has been
recently proposed by the authors to investigate the influence of each unknown variable on the solution of a given
problem. Additionally, using the AAM, Best Theory Diagrams (BTD) have been obtained to read the minimum
number of terms of a refined model for a given accuracy. The BTD generates guidelines to develop and evaluate
structural models. In other words, via the BTD, a trade-off between accuracy and computational cost can be
made. In this paper, mechanical, thermal and electrical fields are considered and BTDs are presented for various
problems.

1 INTRODUCTION

Many engineering structures require multifield analy-
ses for their proper design. For instance, thermal and
mechanical loads and interaction thereof are important
for space vehicles and turbine blades. Piezoelectric
and mechanical loads are fundamental in smart struc-
tures.An accurate structural analysis of such structures
requires refined structural models to capture non-
classical effects. In particular, the paper presents plate
and shell models for multifield analysis and a tech-
nique to build the models to fit the given problems
precisely.

The refinement process of a plate or shell model,
referred to as 2D models, is aimed at the improve-
ment of the accuracy of classical models, such as
the Kirchhoff-Love (Kirchhoff 1850, Love 1927)
and Reissner-Mindlin theory (Reissner 1945, Mindlin
1951). The examples of refined 2D models are given
by Vlasov (1957), Hildebrand, Reissner, & Thomas
(1938), and the Zig-Zag model of Lekhnitskii (1968).
In the case of multilayered structures, models are
usually developed according to two approaches: the
Equivalent Single Layer (ESL) and the Layer Wise
(LW) schemes. According to the ESL scheme, the
number of the unknowns is not affected by the number

of layers, while, the LW scheme models each layer
of the plate with its displacement unknowns, and,
therefore, the number of unknowns of the model is
related to the number of layers of the plate (Reddy
1997).

A review of methodologies for thermoelasticity can
be found in (Hetnarski & Eslami 2009). The 2D struc-
tural models for thermoelasticity have been developed
over the last decades for isotropic, anisotropic and het-
erogeneous structures (Tauchert 1991, Noor & Burton
1992, Murakami 1993, Argyris & Tenek 1997). Par-
ticular attention was paid to predictor-corrector pro-
cedures, the effect of temperature-dependence of the
material properties, and the sensitivity of the thermo-
mechanical response to variations in the material
parameters, and non-linear effects.

Electromechanical effects must be considered in
piezoelectric structures. Such systems are increas-
ingly used as sensors, actuators and energy harvesters
for various applications, including control and health-
monitoring. The 2D reference ESL structural models
for piezoelectric structures can be found in (Tiersten
1969, Mindlin 1972, Yang & Yu 1993). On the other
hand, an LW model for the electric potential cou-
pled with an ESL displacement field can be found in
(Mitchell & Reddy 1995).

3



Figure 1. The Best Theory Diagram.

This work makes use of the Carrera Unified Formu-
lation (CUF) to build refined 2D models (Carrera et al.
2014). The CUF introduced a systematic approach to
develop any-order structural model via a few funda-
mental nuclei whose formal expressions do not depend
neither on the order of the model nor on the type
of expansions adopted to describe the unknown vari-
able fields (Carrera 2003). In particular, ESL, LW and
mixed variational formulations can be implemented
(Carrera et al. 2011). The CUF has been extensively
used for multifield analyses over the recent years.
Reference works are those by Carrera (2002) and
Ballhause et al. (2005).

In the CUF framework, the axiomatic-asymptotic
method (AAM) has been recently proposed by the
authors to investigate the influence of each unknown
variable on the solution of a given problem (Carrera &
Petrolo 2010, Carrera & Petrolo 2011). In the AAM
the starting model is used with a full expansion of
variables. The influence of each variable, or groups
of variables, is evaluated by deactivating it. Only
those variables exhibiting an influence are retained
and reduced models are built in which the number
of unknown variables is less or equal to the starting
full model. The method can be iterated to evaluate the
influence of characteristic parameter such as thick-
ness or orthotropic ratios, similarly to an asymptotic
method. Recently, the AAM has been applied to mul-
tifield problems (Cinefra et al. 2015, Carrera et al.
2015). A systematic use of CUF and AAM led to the
definition of Best Theory Diagrams (BTD) in which,
for a given accuracy and problem, the minimum num-
ber of required unknown variables can be read, as
shown in Fig. 1. The BTD can be seen as a tool to eval-
uate the accuracy and the computational efficiency of
any given structural model against the best available.
The BTD for multifield problems has been recently
presented in (Cinefra et al. 2017). This paper is orga-
nized as follows: the CUF is introduced in Section 2,
governing equation in Section 3, the AAM and BTD
in Section 4. The results are presented in Section 5 and
Conclusions in Section 6.

2 CARRERA UNIFIED FORMULATION

In the CUF, the displacement field for a 2D model can
be written as

where the Einstein notation is assumed on the index
τ. u is the displacement vector (ux uy uz). Fτ are the
so-called thickness expansion functions and uτ is the
vector of the generalized unknown displacements. In
ESL, Fτ are defined on the overall thickness of the
plate, while, in LW, for each k-layer. For ESL, Fτ can
be Mc-Laurin expansions of z, defined as Fτ = zτ−1. In
the following, the ESL models are indicated as EDN,
in which N is the expansion order. For instance, the
ED3 displacement field is

The LW models can be obtained via Legendre polyno-
mial expansions in each layer,

where NL is the number of the layers. Subscripts
t and b correspond to the top and bottom surfaces
of the layer. Functions Fτ depend on the coordinate
ζk , −1≤ ζk ≤ 1. Fτ are linear combinations of the
Legendre polynomials,

In the following, the LW models are denoted by the
acronym as LDN, where N is the expansion order. For
instance, LD3 is

The ESL and LW descriptions can be used for mul-
tifield variables, such as temperature or potential.
For instance, the LW description of the temperature
distribution is

where θk
τ are

θ
k
τ is the effective temperature distribution. The tem-

perature distribution can be defined by solving the

4

If 
0 
0 
z 

Con tan! 
number 

of 

• • 6 

• 6 • 

• !:,. • • • 

.¥ Reduced 
_/refined r model 

I 
uxl + zu x2 

zuv, + z3uv4 

U,1 + ZU,2 + Z2 U,3 + Z4 U,5 

T = 1, ... ' N + 1 ( 1) 

Ux = Ux 1 + Z Ux 2 + z2 Ux3 + z3 U x 4 

Uy = Uy1 + Z Uy2 + z2 Uy3 + z3 Uy4 
U z = U z1 + Z U z2 + z2 Uz3 + z3 U z4 

u k = Ft · u~ + Fb · u~ + Fr · u~ = Fr u~ 
T = t , b, r r = 2, 3, ... , N k = 1, 2, ... , NL 

Ft = Po"iP' Fb = Po;P1 

Fr = Pr - Pr- 2 r = 2, 3, ... , N 

&k(x, y, z) = Ft · B~(x , y) + Fr · B~(x , y)+ 
+Fb · B~(x , y) = F7B~(x,y) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 



conduction equation for a given temperature distri-
bution over the lateral, top and bottom surfaces. The
approach proposed in Eq. (6) offers the possibility
to impose continuity of the temperature distribution
along the thickness direction. In (Carrera 2002), fur-
ther details on the temperature distribution evaluation
can be found. On the other hand the assumed profiles
can be used, such as the linear one,

where h is the total thickness of the plate and the
parameters θ0

z and θ0 are the imposed top and bottom
values.

In an electro-mechanical problem, the potential
distribution can be defined as

3 CONSTITUTIVE AND GOVERNING
EQUATIONS

In this section, a brief overview of some of the con-
stitutive equations adopted for multifield problems
are given. For a more comprehensive overview, books
from the authors can be referred to (Carrera et al. 2014,
Carrera et al. 2011). Linear strain-displacement rela-
tions are assumed and strain components are grouped
into in-plane (p) and out-of-plane (n), components,

For a pure mechanical case, stress components for
a generic layer k can be obtained by means of the
Hooke law,

The virtual variation of the strain energy is

In the case of the uncoupled thermo-mechanical anal-
ysis, thermal stresses are given by

Applying the thermal expansion coefficient vector α,

where θk (x, y, z) is the relative temperature distribution
in a generic k layer referred to a reference temperature
θe. The virtual variation of the strain energy is

where stresses σp and σn are considered as the sum of
the mechanical (H ) and thermal (T ) contributions,

The constitutive equations for piezoelectric materials
are

where D̃k is the dielectric displacement and Ek is
the electric field. ek is the matrix of the piezoelectric
constants,

and εk is the matrix of the permittivity coefficients of
the k-layer,

Introducing the usual in-plane (p) and out-of-plane (n)
grouping,

The electric field Ek can be derived from the Maxwell
equations,

where�k is the electric potential. The virtual variation
of the strain energy is

The governing equations are obtained substituting the
geometrical relations, the constitutive equations and
the variable assumptions via CUF in the variational
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statements. The derivation is herein omitted for the
sake of brevity; details can be found in the already
mentioned CUF works and books.

The governing equations in the case of pure-
mechanical analysis can be written as

and the boundary conditions on the edge �k as

where Pτdτ is the external load. The fundamental
nucleus of the stiffness matrix, Kτs

d , is assembled
through the indexes τ and s, which consider the order
of the expansion in z for the displacements. �kτs

d is
the fundamental nucleus of the boundary conditions
deriving from the integration by parts of the PVD. The
explicit form of the fundamental nuclei can be found
in (Carrera 2003).

The governing equations for the thermo-mechanical
problem, that are

with the related boundary conditions are

Temperature is considered an external load and it is
assigned. The definition of the fundamental nuclei
Kkτs

uu , Kkτs
uθ and �kτs

uu can be found in (Carrera &
Brischetto 2010).

The governing equations for the electro-mechanical
problem are:

with the boundary conditions,

The definition of the fundamental nuclei Kkτs
uu , Kkτs

ue ,
Kkτs

eu , Kkτs
ee , �kτs

uu , �kτs
ue , �kτs

eu and �kτs
ee can be found in

(Ballhause et al. 2005).
In the CUF, the adoption of the fundamental nucleus

to assemble the problem matrices allows us set the
order and the type of the expansion as an input of the
analysis. In other words, the theory of structures is an
input of the analysis.

Table 1. ED4 model with
uy3 inactive.

4 THE AXIOMATIC/ASYMPTOTIC METHOD
AND BEST THEORY DIAGRAMS

In the CUF framework, the axiomatic/asymptotic
method (AAM) has been recently developed to eval-
uate the influence of an unknown variable on a given
structural problem as we vary the problem charac-
teristics, e.g. thickness, orthotropic ratio, stacking
sequence, etc.Also, theAAM leads to the definition of
reduced models with a lower computational cost than
full models but with the same accuracy (Carrera &
Petrolo 2010, Carrera & Petrolo 2011).A typicalAAM
analysis consists of the following steps:

1. Parameters, such as the geometry, BC, loadings,
materials and layer layouts, are fixed.

2. A starting theory is fixed (axiomatic part). That is,
the displacement field is defined; usually a theory
which provides 3D-like solutions is chosen and a
reference solution is defined.

3. The CUF is used to generate the governing equa-
tions for the theories considered.

4. The effectiveness of each term of the adopted
expansion is evaluated by measuring the error due
to its deactivation.

5. The most suitable structural model for a given
structural problem is then obtained discarding the
non-effective displacement variables.

A graphical notation is introduced to show the
results. It consists of a table with three lines, and
columns equal to the number of the variables used
in the expansion. For example, if an ED4 model
is considered with uy3 deactivated, the displacement
field is

Such a displacement field is depicted by Table 1. The
use of the AAM can be extended to all the possible
combinations of active/inactive variables of a given,
starting theory. Each reduced model can be related to
the number of the active terms and its error computed
on a reference solution as reported in Fig. 1. The error
values are reported on the abscissa, and the number
of active terms is reported on the ordinate. Each black
dot represents a reduced refined model and its position
on the Cartesian plane is defined considering its error
and the number of the active terms. Also, the repre-
sentation of the active/non-active terms is reported for
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Figure 2. Generalized variables as genes in a genetic
algorithm.

some reduced models. Among all the models, it is pos-
sible to note that some of them present the lowest error
for a given number of active terms. These models are
labeled as 1, 2, 3, 4, 5, they represent a Pareto front for
the considered problems. The Pareto front is defined
in this work as the Best Theory Diagram. This curve
can be constructed for several problems, for exam-
ple considering several types of materials, geometries
and boundary conditions. Moreover, the information
reported in a BTD makes it possible to evaluate the
minimum number of terms, Nmin, used to achieve a
desired accuracy.

The BTD can be obtained via genetic algorithms in
which each structural theory is considered an individ-
ual. The genes are the terms of the expansion, and each
gene can be active or not active as in Fig. 2. Therefore,
each individual is described by the number of active
terms and its error computed on a reference solution.
Through these two parameters, it is possible to apply
the dominance rule in order to evaluate the individual
fitness. For each individual copies are created accord-
ing to its dominance, next, some mutations are applied
to vary the set of new individuals. The purpose of
this analysis is to find the individuals which belong
to the Pareto front, that is the subset of individuals not
dominated by the others.

5 RESULTS

First, a simply-supported multilayered plate is con-
sidered under a transverse pressure distribution, a
temperature distribution and an electric potential dis-
tribution, separately. For the mechanical case, the
pressure distribution is

where m and n are equal to 1, the pressure distribution
is applied to the top surface of the plate, and a= b= 1.

For the thermal case, temperature distribution defined
as in

and Eq. (8), with (ttop, tbot) equal to 1 and −1,
respectively. For the piezoelectric case, two different
configurations are considered, the sensor and actuator
configurations. In the sensor case, a transverse pres-
sure is applied to the top surface of the plate and the
potential distribution is evaluated. The potential at the
top and bottom is set to zero. In the actuator case, a
potential distribution is applied to the plate, and the
value of the potential is set to 1 V at the top and to
0 V at the bottom. In the sensor case, the pressure is
assumed as in Eq. (29), while, in the actuator case, the
potential distribution is assumed as

where m= n= 1 and � is set equal to 1. The material
properties for the mechanical and thermal cases are
EL/ET = 25, GLT /ET =GTT /ET = 0.5, GLz/ET = 0.2,
ν= 0.25 and αL/αT = 1125, where E is the Young’s
modulus, G the shear modulus, ν the Poisson’s ratio
and α the coefficient of thermal expansion. Symbols
L and T denote the directions parallel and transverse
to the composite fibers, respectively. For the piezo-
electric case, the material properties of the laminated
layers are: E1= 132.38× 109 Pa, E2=E3= 10.756×
109 Pa, G12=G13= 5.6537× 109 Pa, G23= 3.606×
109 Pa,ν12= ν13= 0.24,ν23= 0.49, ε11= 3.098966×
10−11 C/Vm, ε22= ε33= 2.6562563× 10−11 C/Vm.
The thickness of each layer is equal to h= 0.4 · hTOT.
The piezoelectric layers are made of PZT-4, their
properties are E1=E2= 81.3× 109 Pa, E3= 64.5×
109 Pa, ν12= 0.329, ν13= ν23= 0.432, G44=G55=
25.6× 109 Pa, G66= 30.6× 109 Pa, e31= e32=−5.20
C/m2, e33= 15.08 C/m2, e24= e15= 12.72 C/m2, ε11/
ε0= ε22/ε0= 1475, ε33/ε0= 1300 (ε0= 8.854×
10−12 C/Vm). The thickness of each layer is equal
to h= 0.1 · hTOT. The BTDs reported in this work
are based on the solution computed using the LD4
model. In fact, the LD4 proved to agree excellently
with the elastic solutions (Carrera 2003, Carrera 2002,
Ballhause et al. 2005).

The ESL approach is considered, and the BTDs
for the ED4 model are given in Figs. 3 and 4 for
the thin and thick geometry, respectively. The results
suggest that the reduced refined models for the piezo-
electric case show a higher computational cost than
the reduced models for the mechanical and thermal
cases, since the variables of the electric potential are
retained. Models located on the BTD for both ther-
mal and mechanical cases detect the same accuracy
when a thin plate is considered, while the BTDs for
the piezoelectric case present a significant difference
between the sensor and actuator configuration. Since
the reference solution is obtained with an LD4 model,
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Figure 3. BTDs for a/h= 100.

Figure 4. BTDs for a/h= 4.

Figure 5. BTD for the asymmetric composite shells,
Rβ/h= 4.

the minimum errors are larger than zero. In fact, the
LD4 offers a better accuracy than ED4.

Next, a composite shell is considered under a pure
mechanical load, see Eq. 29. The material properties
are EL/ET = 25, ν= 0.25, GLT /ET =GTT /ET = 0.5,
GLz/ET = 0.2 and the dimensions of the shell are
a= 4Rβ and b= 2πRβ. A 0◦/90◦ stacking sequence
was considered. Figure 5 shows the BTD for stress
and displacement components. Significant differences

Table 2. BTDs for the asym-
metric composite shell, σαα

in the BTD for different outputs are observable. Table
2 shows some of the BTD models. In this case, the
FSDT is a BTD.

6 CONCLUSIONS

This paper presents the latest advances in the frame-
work of the Carrera Unified Formulation (CUF).
In particular, multifield problems for multilayered
plates and shells have been addressed. The CUF is
an established formulation to develop refined struc-
tural models via expansion functions. The order and
the type of the expansions are free parameters of the
analysis. In particular, Equivalent Single Layer (ESL)
and Layer-Wise (LW) approaches can be handled
straightforwardly.

In this work, a brief overview of the Axiomatic/
Asymptotic Method (AAM) has been given.TheAAM
has been recently developed in the CUF framework and
has two main capabilities,

• A starting structural model is set, and the influence
of each unknown variable on a given structural prob-
lem is quantified as the problem characteristics vary
(e.g. thickness, orthotropic ratio, stacking sequence,
etc.). In other words, starting from an axiomatic
approach, asymptotic-like results can be obtained.

• Retrieving only the terms affecting the solution,
reduced models are built as accurate as the full
models but computationally more efficient.

The systematic use of the AAM has led to the intro-
duction of the Best Theory Diagram (BTD). A ‘best
theory’ is the one that, given a number of unknown
variables, provides the best accuracy or, for a given
accuracy, results in the minimum number of unknown
variables. In the BTD, all the best structural models
can be read. The BTD can be considered as the Pareto
Front of an optimization problem and provides guide-
lines to develop structural models. In fact, the BTD
provides the boundary of the trade-off between accu-
racy and computational costs. In other words, accuracy
cannot be increased and computational cost lowered
better than the BTD.

The results show that the combined use of CUF
and AAM provides insights related to the decision
making in structural model choices and developments.
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In particular, the reduced models greatly increase the
computational efficiency in the LW case. Also, the use
of genetic algorithms to obtain the BTD is a pow-
erful strategy to obtain structural guidelines for any
problem.
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Micro/nanoscale assembly of three-dimensional shell/ribbon
architectures by compressive buckling

H. Fu & Y. Zhang
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Tsinghua University, Beijing, China

ABSTRACT: Assembly of three-dimensional (3D) mesostructures in advanced materials opens up many new
application opportunities across a broad range of areas. Mechanically-guided assembly that replies on controlled,
compressive buckling of 2D precursors represents an emerging method of great promise, due to the versatile
applicability, not only to a diverse set of materials (from soft polymer to plastic metal and brittle inorganic semi-
conductors), but to a broad range of length scales (from submicrometer to centimeter dimensions). This paper
presents a short review on various key aspects of this approach, including the basic principle, mechanics-inspired
design concepts, and theoretical modeling of the assembly process. In particular, the kirigami/origami inspired
designs, releasable multi-layer designs, and engineered substrate designs, are discussed in detail.

1 INTRODUCTION

Three-dimensional micro/nano-structures are of
increasing interest, owing to their widespread appli-
cations in a variety of areas, from biomedical sens-
ing devices (Feiner et al., 2016, Leong et al., 2009,
Sidorenko et al., 2007, Tian et al., 2012), to micro-
electromechanical components (Zhu & Chang, 2015),
to energy storage systems (Yoo et al., 2015, Song
et al., 2014, Wu et al., 2013, Zhang et al., 2011), to
metamaterials (Schaedler et al., 2011, Valentine et al.,
2008, Zheng et al., 2014), to electronics (Ahn et al.,
2009, Huang et al., 2012, Xu et al., 2015) and to pho-
tonics and optoelectronics (Braun, 2014, Fan et al.,
2009, Lee et al., 2014).Various fabrication approaches
were developed to form complex 3D structures at
different scales, such as those based on 3D print-
ing/writing (Gratson et al., 2004, Lewis et al., 2006,
Lewis, 2006, Ladd et al., 2013a), templated growth
(Klein et al., 2007, Kim et al., 2012, Zhu & Li, 2014,
Zhu & Li, 2013) and fluidic self-assembly (Zheng
& Jacobs, 2005, Crane et al., 2013). However, these
approaches are typically incompatible with the estab-
lished planar device technologies such as lithographic
techniques, and generally cannot be used directly with
many advanced materials (e.g., device-grade inorganic
semiconductors like silicon and GaAs) (Lewis et al.,
2006, Lewis, 2006, Ladd et al., 2013b, Gratson et al.,
2004, Fischer & Wegener, 2013, Arpin et al., 2010).
Other approaches that rely on origami-inspired recon-
figurable design (Na et al., 2015, Filipov et al., 2016,
Xia et al., 2016, Filipov et al., 2015), thin-film resid-
ual stresses (Schmidt & Eberl, 2001, Pandey et al.,
2013, Xu et al., 2009, Li, 2008, Huang et al., 2012,

Wei et al., 2014, Schmidt et al., 2002) and capillary
forces (Li et al., 2010, Py et al., 2007, Guo et al., 2009),
avoid some of these limitations and hold great poten-
tial in microelectronics applications. However, these
approaches can only provide access to limited class of
geometries such as polyhedrons, tubes and variants of
these; and the latter two are, in most cases, irreversible
and have limited control over critical parameters such
as the folding angle (Arora et al., 2006, Randhawa
et al., 2008, Leong et al., 2009, Pandey et al., 2011, Li,
2011, Huang et al., 2011, Bishop et al., 2012).

Recently, a conceptually different approach that
exploits controlled, compressive buckling was devel-
oped to achieve deterministic assembly of 3D
mesostructures from patterned 2D films (Yan et al.,
2016a, Yan et al., 2016b, Xu et al., 2015, Nan
et al., 2016, Zhang et al., 2015, Shi et al., 2017).
Here, thin 2D precursors are fabricated by well-
established techniques of semiconductor processing,
followed by selective bonding onto a prestretched elas-
tomer at lithographically defined locations. Release
of the prestrain in the elastomer provides compressive
forces that induce 2D-3D transformation of precur-
sors, in terms of spatial translations/rotations and
bending/twisting deformations (Figure 1). Due to the
elastic nature of the assembly scheme, the resulting 3D
configurations can be controlled actively, in a continu-
ous and reversible manner. This mechanically-guided
assembly method applies to a broad set of materials
from soft polymer to brittle inorganic semiconductors,
over length scales from submicrometer to centimeter
dimensions. Moreover, it is compatible with the state-
of-art planar technologies, and is capable of forming
multiple 3D structures in parallel, thereby providing
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an efficient route to developments of functional 3D
devices, such as tunable optical transmission window
(Zhang et al., 2015), microconcave mirror (Nan et al.,
2016), tunable inductor (Xu et al., 2015) and 3D
NFC device (Yan et al., 2016a). In addition, the 3D
mesostructures can serve as vibrational platforms with
tunable resonant frequencies and improved bandwidth,
which hold potentials for application in 3D MEMS
(Ning et al., 2017).

This review summarizes a set of design concepts
for this mechanically-guided 3D assembly, to pro-
vide access to four representative classes of topolo-
gies, including open-mesh, filamentary networks (Xu
et al., 2015), kirigami-inspired membrane architec-
tures (Zhang et al., 2015), origami-inspired folding
structures (Yan et al., 2016b), and dense, multilayer
frameworks (Yan et al., 2016a). Quantitative mechan-
ics modeling serves as a tool to guide the selections
of 2D precursors and prestrains to form desired 3D
geometries. For a certain class of 2D precursors with
representative serpentine layout, an analytical model
(Liu et al., 2016) is discussed, which reveals the under-
lying relations between the 3D configurations and
fabrication parameters.

2 DESIGN CONCEPTS FOR
MECHANICALLY-GUIDED 3D ASSEMBLY

2.1 Assembly of open-mesh, filamentary networks

To form open-mesh, filamentary networks through
this assembly scheme, the 2D precursors are usu-
ally composed of a collection of ribbons with large
width to thickness ratio (w/t). As such, the out-
of-plane bending stiffness (∝wt3) is much smaller
than the in-plane value (∝w3t). Upon release of pre-
strain in the substrate, lateral buckling occurs in the
2D precursors to reduce the strain energy. In spe-
cific, the non-bonded regions undergo coordinated
translational and rotational motions as well as bend-
ing/twisting deformations, leading to the formation
of open-mesh, filamentary networks (Xu et al., 2015)
(Figure 1). Figure 2a and 2b shows two representative
examples dominated by bending and twisting defor-
mations, respectively. This idea can also be extended
to build multi-level constructions through multiple,
hierarchical levels of buckling. An example appears
in Figure 2c. Here, three ribbons at the center con-
nect the precursor structures at regions where the
assembly process would otherwise yield the maximum
out-of-plane displacements. During the 2D-3D trans-
formation, these ribbons undergo an additional level
of buckling to form elevated “second floor” and “third
floor” suspended above the reach of buckling that rep-
resents the “first floor”. In all of these examples, the
finite element analyses (FEA) give accurate predic-
tions of the final 3D geometries, as evidenced by the
remarkable agreement with the experiments. In addi-
tion, FEA can be adopted in the optimization of layouts
of 2D precursors to keep the maximum material strains
below the fracture threshold.

Figure 1. Schematic illustration of the mechanically-guided
3D assembly process. From the top to the bottom: form-
ing 2D micro/nanostructures using lithographic and etching
techniques, transferring these structures to a stretched sili-
cone elastomer with bonding at selected sites, and releasing
the elastomer to form 3D mesostructures. Adapted with per-
mission from Reference (Yan et al., 2017), Copyright 2017,
Elsevier.

Figure 2. 2D precursors, FEA predictions, and optical
micrographs for (a) two-layer flower, (b) circular helix, and
(c) triple-level 3D mesostructure. Adapted with permission
from Reference (Xu et al., 2015), Copyright 2015, American
Association for the Advancement of Science.
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Figure 3. 2D precursors, FEA predictions and optical
images for triple-floor structures made of SiNx and bilayers
of gold and polymer (SU8). Adapted with permission from
Reference (Fu et al., 2017), Copyright 2017, Wiley.

The above design concept can be combined with
the residual-stress strategy to broaden the accessible
range of 3D geometries. By fabricating a thin film
(e.g., SiNx layer) with well-defined residual stress (Yu
et al., 2015, Froeter et al., 2013), and adhering it to the
2D precursor at strategically designed regions, higher
order buckling mode can be achieved upon release
of elastomer. Here, the stress-controlling layers serve
as an external perturbation to select desired buckling
modes whose strain energies are comparable to that
of the first-order mode. Figure 3 presents FEA pre-
dictions and experimental results for three complex
mesostructures in SU8 (blue), which have similar 2D
presursors with that in Figure 1c, but incorporates
SiNx layer (indigo) in some local regions. With the
addition of these SiNx layers, the central ribbon can
either deform in an asymmetric manner (Figure 3, mid-
dle) or pop down (Figure 3, bottom), different from
the original mode (Figure 3, top). In addition to mode
selection, the stress-controlling layer also can elimi-
nate near degeneracies that sometimes occur between
the lowest order mode and other modes of complex
3D configurations, thereby enhancing the yields in
realizing targeted outcomes.

2.2 Assembly of kirigami-inspired membrane
architectures

Different from the filamentary structures, membranes
are more likely to suffer from mechanical failure in
local region during the compressive buckling. Specif-
ically, 2D precursors without carefully placed cuts tend
to undergo sharp, localized, ‘kink’ deformations, due
to the lateral constraints imposed by the strong bond-
ing regions. The resulting stress concentration can
potentially lead to fracture of the constituent mate-
rials. To eliminate this type of localized deformations,

Figure 4. Maximum material strain as a function of the
dimensionless widths of cuts in membranes with t/L= 0.0011
and lcut /L= 1.68 (for circumferential cuts) or 0.76 (for radial
cuts), under a compressive strain of 50%, and the associated
strain distributions. Reproduced with permission from Refer-
ence (Zhang et al., 2015), Copyright 2015, NationalAcademy
of Sciences.

the kirigami-inspired concepts were introduced, which
involves precisely engineered cuts to guide the defor-
mations during assembly (Zhang et al., 2015). Figure 4
depicts the maximum strain level across two repre-
sentative membrane structures with different ratios
(wcut/L) of cut width to overall dimension, under a
compressive strain of 50%. Here, the introduction of
cuts can dramatically relieve the strain concentrations,
as shown by the reduced maximum strain with increas-
ing wcut/L. This figure also suggests that the locations
and patterns of cuts play critical roles in decreasing
the local strain.

In addition to strain reduction as discussed above,
the kirigami-inspired concepts afford great versatility
in the design of 3D structures. Figure 5 demon-
strates a series of 3D nanomembrane structures formed
with silicon (300 nm)/polyimide (PI, 300 nm) bilayers,
where the differences arise only from the locations
and patterns of cuts. Such capabilities in diversifying
the variety of 3D membrane geometries broaden the
range of applications for this mechanically-guided 3D
assembly.

2.3 Assembly of origami-inspired folding
structures

During the process of compressive buckling, both
the filamentary networks and kirigami-inspired mem-
brane architectures undergo relative continuous and
global deformations in terms of bending and/or
twisting. However, these layouts do not allow well-
controlled, localized folding deformations that are
essential to the notion of origami. As a solution, a
strategy relying on a spatial variation of thickness in
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Figure 5. 2D precursors, FEA predictions, and SEM images
for four 3D membrane mesostructures. Adapted with permis-
sion from Reference (Zhang et al., 2015), Copyright 2015,
National Academy of Sciences.

the 2D precursor (Yan et al., 2016b) was proposed.
This concept is illustrated using a straight ribbon
with engineered creases as an example, as shown in
Figure 6a–6c. This ribbon (length L, excluding the
bonding locations) consists of five segments (Fig-
ure 6a), two (with length L1 and thickness t1) of
which are thicker than the other three (with length
L2 and thickness t2). As the thickness ratio (t2/t1)
decreases (e.g., <1/3), the radius of curvature in the
thin segments decreases. The deformations of thick
segments are negligible, due to its bending stiffness
that is much larger than that of creases. The thin seg-
ments also tend to accommodate the compression via
folding for relatively small length ratios (L2/L) (e.g.,
<0.1). These results indicate that both small thickness
ratio (t2/t1< 1/3) and small length ratio (L2/L< 0.1)
are essential for creating sharp creases at the thinner
segments.

As most of the deformations are localized at the
creases in the buckling process, it is of importance to
predict the strain level in the creases to avoid mechan-
ical failure. A scaling law for the maximum strain (εm)
is established as εm =F(εpre)t2/L2, in which εpre is the
prestrain and F(εpre) denotes a function that can be
determined from FEA. According to this scaling law,
reductions in the crease thickness (t2) and increases in
the crease length (L2) can well reduce the maximum
strains.

Figure 6d provides a representative origami
mesostructure achieved with this strategy. It con-
sists of a hollow square (bilayer of silicon/SU8),
with creases (grey) located radially. After releasing
the prestrain in the elastomer, a windmill structure

Figure 6. Top and cross-sectional views of a straight rib-
bon with two different thicknesses (a); and FEA results
and corresponding SEM images of deformed mesostructures
under two different levels (60% and 160%) of prestrain,
for the non-uniform ribbons with (b) fixed thickness ratio
(t2/t1= 1/4) and three different length ratios (L2/L), or with
(c) fixed length ratio (L2/L= 0.05) and three different thick-
ness ratios (t2/t1). 2D precursors, FEA predictions, and SEM
images of Origami assembly of 3D mesostructures from cor-
responding 2D membranes. (d) a windmill mesostructure
and (e) a car mesostructure formed with biaxial prestrain.
Adapted with permission from Reference (Yan et al., 2016b),
Copyright 2016, Wiley.

is formed. This design concept can be extended to
achieve 3D structures with hierarchical forms of fold-
ing. Figure 6e shows a complex mesostructure (bilayer
of gold/SU8) that resembles a car, with carefully
selected non-equal biaxial prestrains (εx-pre= 33% and
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Figure 7. Multilayer 2D precursors, FEA predictions, and
SEM images of the assembled 3D structure formed with the
use of biaxial prestrain in the substrate. (a) a tree mesostruc-
ture; (b) a spire mesostructure.Adapted with permission from
Reference (Yan et al., 2016a), Copyright 2016, American
Association for the Advancement of Science.

εy-pre= 53%). FEA predictions agree well with the
SEM images for both of the examples.

2.4 Assembly of dense, multilayer frameworks

The mesostructures described in the previous sections
result from 3D transformation of single-layer 2D pre-
cursor. The intrinsic nature of the buckling processes
(for example, proportional dependence of maximum
strain on precursor thickness) in these cases sets lim-
itations to the range of realizable 3D mesostructures,
primarily in the form of open-layout geometries with
largely hollow interior regions. The strategy through
use of releasable, multilayered 2D precursors provides
a solution (Yan et al., 2016a). In addition, this strategy
enables formation of 3D mesostructures with geome-
tries inaccessible previously, such as those with local
force actuators and structural support.

In this approach, 2D precursors with different
shapes and materials are transfer printed onto the
substrate in a layer-by-layer fashion, with selective
bonding sites in the underlying layers or in the sub-
strate.The resulting multilayered 2D presursor enables
the formation of 3D overlapping, nested mesostruc-
tures by compressive buckling. Figure 7a shows a
representative example in SU8 that resembles a tree.
Here, each layer assembles independently, without
mechanical interactions with other layers. Tailored
interactions between multiple layers are also possible
with appropriate designs. Figure 7b presents a spire-
shaped 3D bilayer mesostructure in polyimide (PI).
Here, the bottom-layer ribbon buckles upon compres-
sion, which drives the transformation of the top-layer
coil into 3D spires.

2.5 Assembly of 3D structures with engineered
substrate

The aforementioned design concepts focus on the 2D
precursors, while the assembly platform can provide
only spatially uniform compression. By exploiting an
elastomer substrate with engineered variations in the
thickness (Nan et al., 2016), a spatially non-uniform
compression can be achieved in a precise manner.
With this design, the stretching uniformly applied to

Figure 8. Optical images of 3D structures (top), and corre-
sponding FEA results, including illustrations of the substrate
geometries (bottom; only the central part of substrate is
shown).The insets show magnified SEM views of the regions
identified with red boxes in each optical image. Experimen-
tal and FEA results of 3D structures formed using the same
2D precursors but with uniform substrates are on the right.
Reproduced with permission from Reference (Nan et al.,
2016), Copyright 2016, Wiley.

the edges of the substrate lead to spatial patterns of
strain that correlate to the variations in thickness,
with larger strains in thinner regions. Upon release
of the prestrain, the compressive forces vary spatially
in a corresponding manner, thereby leading to the
formation of non-uniform 3D structures.

To provide a precise control over the compressive
forces, a detailed numerical model is built for the uni-
axially stretched engineered substrate. Based on the
parametric study of three key parameters (i.e., applied
strain, thickness ratio (tmax/tmin) and the geometry of
the thickness variation), an inverse design approach is
established to allow selection of profiles in thickness to
offer desired strain distributions for different stretch-
ing levels. In this approach, an initial trial solution is
determined by assuming a constant tangent modulus,
where the thickness distribution is roughly inversely
proportional to the target strain distribution. FEA then
takes into account the local strain levels to refine the
substrate geometry, which serves as an input to the
model to update the strain-dependent tangent modulus.

Repeated iteration of this process yields an opti-
mized substrate geometry that renders the desired
strain profile. This idea can also be extended to
the biaxially stretched substrate, and the experi-
ment results of strain distribution agree well with
the FEA predictions. This design concept enables
both the gradual and dramatic geometrical changes
in mechanically-guided 3D mesostructures. Figure 8
shows an array of radially oriented ribbons in gold
(40 nm)/SU8 (7 µm) bilayers, formed by engineered
substrate and uniform substrate, respectively. In this
mesostructure, the central unit is subject to larger
deformations than the surrounding counterparts, due
to the presence of an aligned hole (diameter= 1.2 mm)
through the substrates. In this case, the hole region
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(e.g., zero thickness) has zero stiffness, leading to large
radial and circumferential deformations upon uniform
biaxial stretching.

3 THEORETICAL MODELING FOR
MECHANICALLY-GUIDED FORMATION
OF 3D HELICAL MESOSTRUCTURES

Due to the complicated deformation mechanisms, it
is very challenging to develop analytic models that
predict accurately the process of mechanically-guided
assembly for complex 2D precursors (Fan et al., 2017).
Partly as a result, the underlying relations between
the 3D configurations, fracture-induced failure, and
fabrication related parameters (e.g., prestrain level,
the geometric parameters of 2D precursors) remain
unclear. To present a systematic investigation of buck-
ling behavior in 3D mesostructure, an analytic model
of compressive buckling was formulated for simple
2D precursors in serpentine layouts (Liu et al., 2016).
This study sheds light on scaling laws for general 3D
filamentary structures.

In this model, the displacements and the twist angle
of resulting helical mesostructures are characterized
by a set of functions with dimensionless parameters,
carefully selected to fit the boundary conditions.These
dimensionless parameters are determined based on
the minimization of total energy. As a result, analytic
solutions are obtained for the key physical quanti-
ties, including displacement, curvature and maximum
strain. According to the analytic solutions, the max-
imum strain has a square root dependence on the
applied strain, and a proportional dependence on the
normalized thickness (t/R), where R is the radius of the
arc in 2D precursor. These analytic solutions exhibit
reasonable agreement with the FEA and experiments,
thereby providing guidelines for choosing various
design parameters to avoid the brittle fracture or plastic
yield during the assembly process.

4 SUMMARY

Developments in the mechanics and materials strate-
gies described above establish the mechanically-
guided assembly through compressive buckling as a
promising route to 3D mesostructures in advanced
materials. An intriguing feature is its versatile appli-
cability, not only to a wide range of length scales, but
to a broad set of material classes. As such, many new
applications are possible with this assembly approach,
as demonstrated in the developments of tunable elec-
tromagnetic components and new biomedical devices.
Many opportunities still exist in this young area. For
example, developments of finite-deformation models
with appropriate assumptions to enable predictions of
buckling process are needed for an efficient 3D design.
Extension of the current scheme to assembly of 3D
structures with lateral sizes in the nanoscale regime
also represents a promising direction to explore.
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Topology and material optimization of plates and shells

T. Lewiński, S. Czarnecki, R. Czubacki & T. Sokół
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ABSTRACT: The paper deals with the problem of compliance minimization of thin transversely homogeneous
shells and plates within the framework of the free material design. The elastic moduli are design variables, while
the isoperimetric condition is expressed by the integral of the trace of Hooke’s tensor. The optimum design
problems, in various settings, are reduced to the two mutually dual auxiliary problems similar to those known
from Michell’s theory of structures of minimal weight. Like Michell’s structures, the optimal shells are cut
out from the design domain by the procedure of solving the auxiliary problems. The method proposed solves
simultaneously two problems: optimal material layout and optimal shape of the structure, without any restrictions
on the number of holes emerging in the optimal design.

1 INTRODUCTION

The compliance, denoted as℘ in the paper, is the most
important notion of the theory of optimization of struc-
tural topology. It is defined as the work of the load, or
the value of the virtual work on the displacement field
caused by the same load. On the other hand (1/2)℘
is equal to the minimum value of the complemen-
tary energy over the trial stress fields taken from the
set 
(�) of statically admissible stresses. The latter
formula is crucial for the present treatment. In some
rare cases the set 
(�) consists of a single element,
which makes the minimization operation trivial. The
fundamental optimization problem (P):

from a given amount of an elastic material make up
the least compliant structure which transmits a given
load to the given support domain

turns out to be badly posed. The solution should be
looked for in the class of structures made of com-
posites whose anisotropic properties are determined
by the material layout within the representative vol-
ume elements. These properties vary within the design
domain, thus making the structure simultaneously
inhomogeneous and anisotropic.Thus, the initial prob-
lem of structural optimization transforms into the opti-
mum design problem of composites of unknown and
inhomogeneous porosity. The shape design assumes
the form of a generalized shape design, see Cherkaev
(2000), Allaire (2002, Sec. 4.1.3). In its generalized
form, the problem (P) reads

where m stands for the volume fraction and

while τ, U ∗,
(�)) depend on the formulation. This
generalized form is constructed by the method called:
relaxation by homogenization.

In the case of in-plane loaded plates the field τ rep-
resents in-plane resultants N of stresses, the potential
U ∗(τ, m) being known, see (Cherkaev 2000, Allaire
2002) and Lewiński (2004b, Eq. 34). Locally, the field
τ belongs to the set E2

s of symmetric tensors of 2nd

rank. This problem will be called (P1).
In the case of bending plates τ represents the cou-

ple resultants (or moments) M, 
(�) being the set
of statically admissible moments compatible with the
transverse load; the potential U ∗ can be found in
Cherkaev (2000), see (Lewiński & Telega 2000, Eq.
26.7.12). This problem will be called (P2).

In the case of plates simultaneously loaded in-plane
and out of plane the fields τ are pairs (N, M); the set

(�) comprises all the pairs (N, M) which satisfy the
equilibrium equations, along with static boundary con-
ditions. The explicit form of the potential U ∗ is still
unknown; its approximation has been constructed by
Dzierżanowski (2012) thus making it possible to pose
and solve this problem, called (P3) in the sequel.

It seems that the problem (1, 2) can be put in the
form

yet the explicit form of FV (τ) in problems (P1),
(P2) is highly complex, while in problem (P3) is

19

yet the explicit form of FV (τ) in problems (P1),
(P2) is highly complex, while in problem (P3) is

19

min J(m) 
mEL=(n ; [0,1]) 

J0 mdx = V 

( 1) 

J(m) = min r U*(T ,m)dx 
T EE(n ) l n 

min r Fv (T )dx 
T EE(rl) } n 

(2) 

(3) 



still unknown. The passage from (1, 2) to (3) means
performing minimization of U ∗(τ, m) over m with
additional constraints: 0≤m≤ 1, which make the
operation complicated. Thus, due to complex form
of FV (τ) in problems (P1)–(P3) one can assume that
the problems considered cannot be effectively put in
the form (3). Let us remind here that the fundamental
problem (PM) by Michell (1904):

in a given design domain construct the lightest struc-
ture, stressed up to a given limit, capable of transmit-
ting the given load to the given support domain.

can be put in the form

where

and λi(τ) are eigenvalues of τ while n is the dimension
of the space R

n in which the design domain is defined.
In regular cases: d�M= �Mdx, dx being Lebesgue
measure. The formulation (4, 5) can be found in
Rozvany (1976) for the problem (P2) and in Strang &
Kohn (1983) for problem (P1), cf. Bouchitté et al.
(2008) for the contemporary and complete setting.

The role of problem (4) is fundamental. It occurs
that the shape of the optimal structure is given by the
support of the measure�M.The integrand�M(τ) grows
linearly; consequently the minimizer τ̂ may vanish on
a subdomain of the design domain. Thus, the problem
(4) delivers a tool for cutting out the material domain
�m from the design domain �. The material domain
�m may be multiconnected.This process of cutting out
the material domain from the design domain is cleared
up in Fig. 1 concerning an illustrative planar Michell
problem.

The field ρM(τ) determines a fibrous microstruc-
ture of the optimal design. Due to the presence of the
point loads the optimal structure becomes strength-
ened by ribs along some of its boundaries, interacting
with the fibrous interior. We note that the boundary of
the optimal structure is sharp, even when the boundary
is not reinforced by a rib.

The possibility of reducing the initial optimization
problem to an auxiliary problem can be viewed as the
condition of its correctness. Note, that the relaxation
by homogenization method leads to (4) only theoret-
ically; the integrand cannot be expressed explicitly.
Thus, it is helpful to propose alternative methods deliv-
ering explicit forms of problem (4). Let us emphasize
here that the recently developed versions of the Free
Material Design (FMD) satisfy this requirement. The
aim of the paper is to specify and discuss these methods
for optimum design of plates and shells.

The origin of FMD can be found in Bendsøe
et al. (1994). The problem posed there will be named

Figure 1. a) problem formulation; b) solution to the
Michell’s problem found by T. Sokół by the ground struc-
ture method, see Sokół (2011); c) a sketch of the analytical
solution.

anisotropic material design (AMD), since no restric-
tions on anisotropy have been imposed there.The merit
function is the compliance, while all the elastic mod-
uli (viz. components of Hooke’s tensor C) are design
variables. The tensor C is subject to the condition
of positive semi-definiteness (to be written symboli-
cally as C≥ 0) and to the known symmetry conditions
characteristic for Hooke’s tensors, reflected in the
requirement: C∈E

4
s . The isoperimetric condition is

assumed in the form

where tr C is the sum of eigenvalues of C. Let us stress
that in the AMD problem the tensor C is constrained
only by the conditions mentioned above. Let us formu-
late the anisotropic material design problem (PAMD):

find the least compliant elastic anisotropic body whose
moduli constitute a positive semidefinite Hooke tensor
field C satisfying the isoperimetric condition (6).

It turns out that the problem above leads to the aux-
iliary problem of type (4) with the integrand expressed
by the Euclidean norm: �(τ)= ||τ||, ||τ|| =√τ · τ.
Having found the minimizer τ̂ one can construct
the optimal tensor Ĉ, cf. Czarnecki & Lewiński
(2014). The optimal tensor Ĉ shows only one non-zero
eigenvalue; the solution is highly singular. Optimal
anisotropy is ideally made up for the given load and is
incapable to resist to any other load. Tensor Ĉ is deter-
mined only there, where τ̂ is non-zero. The domain
where τ̂ is zero is cut out; this domain is empty or
non-material.

A natural variant of FMD is the cubic material
design (CMD) in which tensor C is a priori subject
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to the condition of cubic symmetry. Such symme-
try is characteristic for many crystalline bodies. The
isoperimetric condition (6) is kept unchanged. The
minimization operation leads to the auxiliary problem
of type (4) with the integrand

In the 3D case n= 3 and γ =√2. In any case of load
and design domain one of the eigenvalues of C, of mul-
tiplicity equal 3, vanishes, see Czubacki & Lewiński
(2015).

The next natural alternative is assuming isotropy. In
the IMD version the isotropic material design problem
(PIMD) reads:

construct the least compliant body made of isotropic
material characterized by the non-negative bulk mod-
ulus k(x) and the non-negative shear modulus µ(x)
satisfying the isoperimetric condition (6).

Thus, the fields k ,µ are the only design vari-
ables. In the case of isotropy the eigenvalues of C
are: (3k , 2µ, 2µ, 2µ, 2µ, 2µ), hence tr C= 3k + 10µ.
One can prove that the IMD problem reduces to (4)
with the integrand �√5(τ). The problem (4), with this
norm, determines a minimizer τ̂. This field establishes
the optimal isotropic moduli k̂ and µ̂; k̂ is propor-
tional to |tr τ̂| and µ̂ is proportional to ||dev (τ̂)||, see
(Czarnecki 2015 and Czarnecki & Wawruch 2015).

The simplest version of FMD is YMD: designing
the Young modulus E(x), keeping the Poisson ratio
ν= ν(x) fixed. The isoperimetric condition (6) is kept.
If ν= const , the unit cost is simply proportional to E.
The YMD problem (PYMD) reads:

construct the least compliant body made of isotropic
material of the prescribed Poisson ratio field ν(x). Find
the optimal distribution of Young’s modulus E(x)≥ 0,
satisfying the isoperimetric condition (6).

This problem leads to an auxiliary problem (4) with
the integrand given by

for n= 3 and n= 2, respectively. Let τ̂ be the mini-
mizer of this auxiliary problem. The optimal Young’s
modulus Ê is proportional to �Y (τ̂), see (Czarnecki &
Lewiński 2017, Eq. 2.34). The effective domain of τ̂
cuts out the material domain �m from �.

The YMD is the only method which always deter-
mines the optimal tensor Ĉ in the material domain�m
as a non-singular tensor. Note, that the IMD method
divides the design domain into the subdomains: �m1

where k̂ > 0 and µ̂> 0; �m2 where k̂ = 0 and µ̂> 0,

�m3 where k̂ > 0 and µ̂= 0, �4=�\�m, where both
k̂ and µ̂ vanish. On the other hand, the CMD always
leads to singular C. The most dramatic singularity is
produced by AMD; the optimal C exhibits only one
non-zero eigenvalue. We conclude that the greatest
choice the strongest singularity of the result.

The possible remedy is to optimize the structure
with respect to many load variants. In the case of
the AMD approach the 3(n− 1) load variants suffice
to make C non-singular. Then the number of load
variants equals the number of stress components, cf.
Czarnecki & Lewiński (2014).

The FMD methods have been already applied to
shells in Gaile et al. (2009), where Naghdi’s (1963)
shell model has been used. The AMD problem has
been reduced there to an auxiliary problem of max-
imization of the virtual work (with extra terms) over
virtual displacements being locally bounded, see prob-
lem (29) therein. A direct comparison is not possible,
since even if the transverse shear deformations are
neglected, the AMD problem in Gaile et al. (2009)
does not coincide with the problem discussed in the
present paper; it involves some extra conditions omit-
ted here. Nevertheless, this problem (29) can be viewed
as a counterpart of the problem dual to (4) with an
appropriately modified integrand. Moreover, solving
the problem (4) paves the way towards optimal mod-
uli, while solving its dual only starts a long procedure
to determine the moduli. This will be cleared up in
the paper. Recently, a new numerical procedure for
the FMD problems of shells and laminates has been
presented in Weldeysus & Stolpe (2016).

The simplest version of (PAMD) for thin shells has
been proposed in Czarnecki et al. (2014). The prob-
lem has been reduced there to the form (4) with the
integrand of linear growth. This formulation will be
complemented here by its dual form in Sec. 5.3.

The main aim of the paper is to extend the IMD
and YMD formulations (known for plates loaded in
plane and for 3D setting) towards coupled problems
of plates and shells. The optimum design problems
will be reduced to the form (4) to have the tool of
cutting the material domain from the design domain.
For maximum simplicity we assume that the shell is
transversely homogeneous, sufficiently thin to neglect
transverse deformations, and its thickness is constant.
The shape of the middle surface is not subject to opti-
mization. The only design variables are elastic moduli,
regarded as fields referred to the middle surface. The
optimum design will lead to the membrane-bending
coupling even in the case where the statics problem is
decoupled.

2 DESIGN OF ISOTROPIC PROPERTIES (IMD)
OF THIN TRANSVERSELY HOMOGENEOUS
PLATES

Consider a thin isotropic transversely homogeneous
plate of middle plane � and constant thickness h. Let
the Cartesian coordinates (x1, x2) parameterize �; the
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unit basis vectors being e1, e2. Let x3 be orthogonal to
the plane. The domain of the plate is: x= (x1, x2)∈�,
|x3|,≤ h/2. Let u= (u1, u2) represent in-plane dis-
placements while w is deflection along x3. Assume
generalized plane stress state, as usual in the plate
theory. The isotropic Hooke tensor is represented by

where k andµ are bulk and shear moduli, respectively.
Moreover

and I4 is the unit tensor in E
4
s . The moduli k and µ are

linked with Young’s modulus E and Poisson ratio ν by

Note that tr C= 2k + 4µ. We assume that the plate is
transversely homogeneous, hence k and µ depend on
x= (x1, x2) only. The stress resultants N= (Nαβ) and
couple resultants M= (Mαβ) of the plate are linked
with in-plane strains γαβ= εαβ(u) and changes of
curvature καβ=−w,αβ by

Here εαβ(u) is the symmetric part of ∇u and
∇u= (uα,β). Let V (�) be the space of kinemati-
cally admissible displacements (u, w) and let f (u, w)
represent the virtual work of the load.

The fields (N, M) are regarded statically admissi-
ble if

where κ(v)= (−v,αβ). Next we write (N, M)∈
0(�),
the set
0(�) comprises all the fields (N, M) statically
admissible.

According to Castigliano theorem the compliance
of the plate, viewed here as a function of k and µ, is
expressed by

If the pair (N, M) solves this problem, there exist
the fields (u, w)∈V (�) such that (12) holds, where
γ = ε(u), κ= (−w,αβ). The value �(k ,µ) is equal
f (u, w).

Let K(1)=N, K(2)=
(√

12
h

)
M, κ=

(
h√
12

)
κ.

If (N, M)∈
0(�) then (K(1), K(2))∈
(�).

Let us re-write problem (14) as

where C−1 is given by (9) with (2k , 2µ) being replaced
by their inverses. Note that for τ ∈E

2
s

Assume that the unit cost of the design is equal to tr C.
Let the total cost of the design

be given. The optimum design problem is

Thus, the aim is to find the optimal layouts of (k ,µ)
on the domain � to make the plate as stiff as possible
among the plates of given cost (17). We interchange
the minimization operations and perform minimiza-
tion over the design variables (k ,µ) analytically. The
result is

with

where

If α= 1 then this norm assumes the form (7) for n= 2.
The function �√2(·) is a norm in E

2
s ×E

2
s . Assume that

(K̂(1), K̂(2)) is a minimizer of (20). Then the optimal
moduli of the material are expressed by
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We note that the moduli found above satisfy the cost
condition (17). The optimal Ê, ν̂ are given by (11).

In general, the minimizer of (20) is a pair of two
Radon measures. In the regular case they are functions
and the integrand of (20) reads �√2(K(1), K(2))dx, dx
being Lebesgue measure.

The passage from (18) to (19) is based on the fol-
lowing result, valid for appropriately regular function
F ≥ 0 defined in �:

and the minimum is attained for

The proof is based on Cauchy-Schwarz inequality,
see (Sec. 2 in Czarnecki & Lewiński 2017). The cru-
cial observation is that if F grows quadratically, the
integrand at the r.h.s. of (23) grows linearly. Conse-
quently, the minimizers of (20) are, in general, Radon
measures. The problem (20) should be discussed and
solved with a simultaneous analysis of its dual, which
reads

where κ(v)=
(

h√
12

)
(−v,αβ) and �∗√

2
(·, ·) is a norm

dual to the norm �√2(·, ·); it has the form

One can prove that Z1= Z2. A rigorous proof can be
performed by following the arguments of Bouchitté &
Buttazzo (2001). Problem (20) resembles (4), which
links the discussed problem with Michell’s theory.

The solution of (20) divides the middle plane of
the plate into subdomains: a) material domain where
both k̂ and µ̂ are positive, b) material domain for
which k̂ > 0 but µ̂= 0, c) material domain where k̂ = 0
and µ̂> 0 and d) empty domain in which k̂ = 0 and
µ̂= 0. The first three domains determine the mate-
rial subdomain �m which is cut out from the design
domain�.Thus, the method delivers the tool for shape
design. The material design discussed here turns out
to encompass the shape design tool.

3 YOUNG MODULUS DESIGN (YMD) OF THIN
TRANSVERSELY HOMOGENEOUS PLATES

Assume that the Poisson’s ratio field ν is transversely
homogeneous and given; ν= ν(x), x= (x1, x2).Young’s

modulus E=E(x) will be the only design variable.The
isoperimetric condition is still assumed by (6), it reads
now

Let us write down the representation (9) in the form

explicitly dependent on E1. The compliance ℘(E1) of
the plate is given by (15), where C is given by (28).
Let us consider the optimum design problem in which
the Young’s modulus is the only design variable, by
analogy to (18) we have

We interchange the sequence of minimization opera-
tions. Minimization over E1 can be performed analyti-
cally using (23), (24). Thus we once again come across
the result in the form (19), (20) where the integrand is
given by the norm now:

Let (K̂(1), K̂(2)) be the minimizer of the problem
(20) with the norm (30). The optimalYoung’s modulus
is given by

The condition (27) is fulfilled.
The problem (20) with the norm (30) should be con-

sidered jointly with its dual. It has the form (25) in
which the norm �∗√

2
(·, ·) should be replaced with the

norm dual to (30), or

The YMD method outlined here solves two problems
simultaneously: the optimum shape and material prob-
lems. The domain, where E1> 0 is the domain of the
plate; the domain where E1= 0 is cut out from the
design domain. In the case of the in-plane loaded
structures the YMD reduces to solving (4) with the
integrand given by (8), the case of n= 2. An illustra-
tiveYMD solution is shown in Fig. 2 corresponding to
the problem stated in Fig. 1.
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Figure 2. The YMD solution for the problem posed in
Fig. 1(a). The optimal layout of the Young’s modulus E:
a) contour plot; b) 3D plot.

4 ON OPTIMUM DESIGN OF MEMBRANE
SHELLS

4.1 Michell’s problem of torsion

Consider the problem of Fig. 3: to construct the lightest
structure of a bounded stress level between two rings
subjected to circumferential loadings of intensities: pa,
pb, giving two resultant torques M of opposite direc-
tions; the radii of the rings are: a and b.The equilibrium
condition implies

Michell (1904) noted that the lightest structure is a
membrane spherical shell.

Since this statement is still not proved, let us assume
now that the solutions should be sought among mem-
brane shells of revolution. This problem takes the form
(4), (5) where τ=N is the field of stress resultants of
the membrane shell. The problem thus formulated has
been solved in Lewiński (2004a), where an elemen-
tary proof is given that the spherical shell is lighter
than other membrane shells of revolution subjected to a
given torsional load.The results of this paper have been
recently confirmed numerically in Zegard & Paulino
(2015).

The advanced numerical analysis of Zegard &
Paulino (2015) confirms a spectacular prediction by
Michell that a spherical shell is the solution to this tor-
sion problem. The shape of a shell emerges due to the
specific load applied along the curved lines.

Let us add that Kobelev has recently (2016) proved
that the spherical shell is the stiffest among all elastic
and isotropic shells loaded as in Fig. 3.

4.2 Emerging of latticed shells of minimal weight

If the load is concentrated at points or along curves
in space the effective domain of the solution to
problems (4), (5) may concentrate on surfaces, thus
forming optimum designs in the form of shells of
fibrous microstructure. The contemporary version of

Figure 3. Michell’s problem of torsion: a) posing the prob-
lem; b) sketch of the exact solution.

the ground structure method (see Gilbert & Tyas 2003;
Pritchard et al. 2005; Sokół 2011, 2016) makes it pos-
sible to create such 3D solutions. The starting point
is the ground structure: a truss of all possible mem-
bers linking the joints within a given feasible domain.
We consider here the problems (4), (5) corresponding
to the four horizontal point loads of equal magnitudes
applied at the vertices of the cuboid, orthogonally to the
diagonals of the upper square side. The bottom square
basis plays the role of the support domain. The optimal
solution designed within the cuboid turns out to be a
latticed shell of a non-smooth shape, arising from the
square line of the support towards the points of applica-
tion of the forces, see Fig. 4. The interior points of the
support are left unused. The shell turns out to be stiffer
than all other fibrous structures transmitting the given
load to the support. The numerical solution presented
in Fig. 4 was carried out using the program devel-
oped by Sokół (2016) with the spatial ground structure
of 30× 30× 60 cells and almost 1.5× 109 bars. The
analytical solution to this problem is unknown.
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Figure 4. The lightest fully stressed structure transmitting
the given four concentrated forces to the basis of the cuboid,
being the design domain.The optimal latticed shell lies on the
lateral sides of the feasible domain, thus making the interior
of this domain almost empty.

4.3 Isotropic material design

In the membrane theory of shells the stretching tensor
γαβ is expressed by both the fields: u and w rep-
resenting displacements in the tangent and normal
directions, respectively, see (Naghdi 1963, Eq. 6.51).
The field N is said to be statically admissible if

Here f (·, ·) must be compatible with the membrane the-
ory which admits only the loads tangent to the edges,
see Gol’denveizer (1976). Such fields N constitute the
set 
(�). There exists a class of problems in which
this set is one element. These problems are consid-
ered statically determinate. Let R be the set of fields
(v, v)∈V (�) such that γ(v, v)= 0.

This is the set of inextensional deformations (some
say: isometric deformations). If the shell is closed
and convex, then R reduces to rigid motions: small
rotations and translations, which has been proved by
special tools of complex analysis, see Vekua (1982).
If the shell is open and the edge is free, there exist
isometric deformations not being rigid motions. For

the spherical shell they have been already found by
Rayleigh in the middle of XIX century and then
repeated by A.E.H.Love in his seminal paper of 1889.
One of such deformations can be seen on the cover of
the book by Mazurkiewicz (2004).

The necessary condition of solvability of the mem-
brane theory is: f (v, v)= 0 ∀ (v, v)R ∩ V (�) to make
both sides of the virtual equation (34) compatible. In
the membrane theory the Castigliano theorem does
not hold, but the compliance can be still defined in the
form similar to (15) or

where C is given by (9), while the basis eα is now
local. Consider the problem (18) of construction of the
fields k and µ on the shell middle surface, assuming
transverse homogeneity. Minimization over k , µ leads
to (19) where Z1 takes the form

and �√2(·) is given by (7), n= 2, γ =√2.

Let N̂ be the minimizer of (36). The optimal moduli
are given by the formulae

which satisfy the isoperimetric condition (17) iden-
tically. There exists a rich class of problems where
the set 
(�) is one element and then (37) determine
the isotropic moduli directly by the membrane stress
resultants fields.

4.4 Young’s modulus design

Consider transversely homogeneous shells of a pre-
scribed Poisson’s ratio distribution ν= ν(x). The aim
is to minimize the compliance (35), treated now as a
function ℘(E1) where E1 is defined by (27). The prob-
lem reduces to the construction of the minimizer N̂ of
the problem

where �Y (·) is given by (8), n= 2. Having found N̂
one can determine the optimal distribution of Young’s
modulus by (31) or
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and Ê1= aÊ satisfies (27). We note that if ν= const,
then Ê is proportional to the energy density.

Remark 4.1
Gol’denveizer (1976) noted that the system of equi-
librium equations of membrane shells is elliptic at a
point, if there the Gauss curvature K > 0; it is hyper-
bolic, if K < 0 and it is parabolic if K vanishes, see
also Ciarlet & Sanchez-Palencia (1996). Therefore, if
K > 0 then the fields N from the set 
(�) will not
vanish on subdomains of positive measure. We con-
clude that if the shell has a positive Gauss curvature
everywhere (then we say that the middle surface is
uniformly elliptic), the methods IMD and YMD will
not predict emerging of the openings and will not tend
to cut out boundary segments from the initial design
domain. In other cases we should expect that cutting
out some domains may lead to better designs. Note,
that in the case of uniformly elliptic shells the normal
displacement field may be eliminated thus leading to
a reduced problem, see Ciarlet & Sanchez-Palencia
(1996), which can be a proper starting point for any
optimum design methods.

5 ON OPTIMUM DESIGN OF THIN
TRANSVERSELY HOMOGENEOUS SHELLS
OF CONSTANT THICKNESS

For the correct formulation of the optimum design
of general thin elastic shells an appropriate theory is
necessary in which Castigliano theorem holds and in
which all the strain and stress measures are symmetric.
A broad class of such theories have been discussed in
(Naghdi 1963, Budiansky & Sanders 1963). Among
these theories one can select a narrow class of theories
in which the static-geometric analogy (discovered by
A.I. Lur’e and A.L. Gol’denveizer in 1940’s) holds. It
turns out that just this analogy is very useful in the
formulation and in the process of solving numerically
the specific optimum design problems discussed in
the paper. This analogy takes place in the so called
”best” version of the 1st order Love’s theories, see
Budiansky & Sanders 1963. This theory is usually
named: Budiansky-Sanders-Koiter theory and will be
here named shortly: BSK theory.

The equations of equilibrium are encompassed by
the variational equation

in which the strain measures γ(v, v), κ(v, v) are
defined in Budiansky & Sanders 1963, see also
(Lewiński & Telega 2000, Secs. 16.2, 16.3).

The set of pairs (N, M) satisfying this equation
forms a set 
0(�) of statically admissible stress
and couple resultants. The constitutive equations are
decoupled, like in all 1st order Love’s theories.

5.1 The IMD method

The fields k(x) andµ(x) are design variables on�.The
compliance is correctly expressed by (15), since the
chosen theory satisfies all desired criteria of correct-
ness. The minimum compliance problem (15) can
be reduced to the problem (19), (20). Having found
the minimizer (N̂, M̂) we made up the solution by
(22). The numerical method can be augmented by
means of simultaneous analysis of the dual problem.

In order to construct the set
0(�) one can make use
of the stress functions representations which hold in
the selected shell theories. Let εαβ be Ricci’s pseudo–
tensor referred to the basis (g1, g2) on the middle
surface. Let us express the stress and couple resul-
tants in terms of new unknown fields ψ= (ψ1,ψ2),ψ:
according to

Substitution of these representations into the homoge-
neous equilibrium equations leads to identities. Thus,
in the case of the load applied along the edges the
formulae (41) determine the unknown fields N, M.
If a surface load is applied, the formulae (41) should
be complemented by particular solutions to the equi-
librium equations but also here a special care is
necessary, see Pietraszkiewicz (1968). Minimization
over six fields (N, M)∈
0(�) reduces to minimiza-
tion over three fieldsψ1,ψ2,ψ satisfying the boundary
conditions, expressed now in terms of ψα,ψ and its
derivatives along the loaded edges. Let us denote this
set by S(�). Note that the fields of this set are not
subject to differential constraints within the design
domain.

Let us come back to the minimum compliance prob-
lem. By using (41) the complementary energy of the
stress and couple resultants may be expressed in the
form

where κ=κ(ψ,ψ), γ = γ(ψ,ψ) and the components
of the tensor E in the basis (g1, g2) are given by

Let κ
(1)=κ, κ

(2)=
√

12
h γ . The integrand of the com-

pliance (14) is expressed as below

If tensor C is isotropic, see (9), the components of �1,
�2 refer to the basis (g1, g2) of the curvilinear system
with the metric tensor (gαβ). Then
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Thus the compliance of the shell can be expressed by

where κ
(α) depend on ψ,ψ according to the definitions

of the BSK theory.
Let us impose the isoperimetric condition (17)

and consider the optimum design problem (18). Per-
forming minimization over k and µ analytically, the
auxiliary problem is obtained

with κ
(1)(ψ,ψ)=κ(ψ,ψ), κ

(2)(ψ,ψ)=
√

12
h γ(ψ,ψ)

and �√2(·, ·) is given by (21). Let (ψ̂, ψ̂) be the mini-
mizer of (47). The optimal moduli are expressed by

where Z1 is given by (47).

5.2 The YMD method

Assume that the material of the shell is transversely
homogeneous and isotropic. The Poisson’s ratio field
ν(x) is given. The Young’s modulus E(x, x3)=E(x) is
subject to the isoperimetric constraint (27), where inte-
gration refers to the middle surface now. The tensor C
is represented by (28). The shell is loaded along the
edges and its compliance is expressed by (15) where dx
is replaced by d�. The field E1 is the design variable,
see (27). Let us consider the problem (29) referring
now to the thin shell. Minimization over E1 is done in
the first step. We get (19) with Z1 given by

where �Y (·, ·) is defined by (30). Let (ψ̂, ψ̂) be the
minimizer of (49). The optimal Young’s modulus is
expressed by

Let �m be the support of Ê. The minimizer (ψ̂, ψ̂)
determines K̂(α) and N̂, M̂ by (41). In the shell with
theYoung’s modulus Ê there appear the stress and cou-
ple resultants Ň, M̌. These fields are minimizing (14)

where C is expressed by Ê and a given field ν. Let us
note that the integrand in (14) is expressed by

with

and α=�/Z1. Thus, the pair (Ǩ(1), Ǩ(2)) is the mini-
mizer of the problem

with

Let us prove that

To this end we estimate the integral of�Y = �Y (K(1),
K(2)) by using Cauchy-Schwarz inequality

Hence

According to the choice of (K̂(1), K̂(2)) as the
minimizer of the integral of �Y (K(1), K(2)) over
(K(1), K(2))∈
(�) we estimate

Hence (56) implies

The equality is attained for �Y = �̂Y . Thus, the mini-
mum in (53) is attained if K(α)= K̂(α) and then (54)
holds. The substitution of (54) into (53) gives
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or (19) is confirmed. We conclude that the stress and
couple resultants within the optimal shell are the same
as those which solve the auxiliary problem

The pair of the fields: (N̂, M̂), the minimizer of (60),
may concentrate on lines, which represents the rein-
forcing ribs. Thus the expression (60) encompasses
the energy of ribs. Thus, the support of (N̂, M̂) deter-
mines: the shape of the middle surface as well as the
position and shape of the reinforcing ribs.

The problem (60) should be solved simultaneously
with its dual. The latter takes the form (25) where now
�∗√

2
(·, ·) should be replaced by �∗Y (·, ·) see (32).

Let us compute the strains associated with (Ň, M̌).
These strains appear in the optimal shell:

Thus, upon taking into account (28), (50) we arrive at
the constitutive equations for the optimal shell

These strains are subject to the point-wise condition

We conclude that the optimization process leads to
making the strain distribution uniform in the norm
�∗Y (·, ·).

Given K̂(α) we may compute (γ̌ , κ̌), but not vice
versa. The equations (62) are non-invertible.

5.3 The AMD design

Let us consider the minimum compliance problem of
thin shells formulated by (14) with (N, M) being stress
and couple resultants in the thin shell; they satisfy the
equilibrium equation (40), which will be written as
(N, M)∈
0(�). The compliance ℘ is considered a
functional of argument C; the tensor C is subject to
Hooke’s tensor symmetries, to the condition of posi-
tive semidefiniteness (C≥ 0) and to the isoperimetric
condition (6). Consider the problem

where ℘(C) is given by (14), and (N, M) satisfy (40).
Czarnecki et al. (2014) proved that the compliance (64)
is expressed by (19) with

where

and ai(τ(1), τ(2)) is the i-th eigenvalue of the Gram
matrix [τ(α) · τ(β)]. The norm (66) may be expressed
via singular values

where K is formed by the columns K(α). The function
(67) is so called Schatten’s 1-norm of matrix K. We
know from algebra that the norm dual to the Schatten’s
1-norm (67) is expressed as below

where ε is formed by columns: ε(α).
Thus we conclude that the problem dual to (65)

assumes the form

The maximization operation chooses the greatest sin-
gular value. The result (68), (69) complements the
discussion in Czarnecki et al. (2014). The proof of the
equality Z1= Z2 is neglected here. The problem (69)
may be regarded as a counterpart of the problem (29)
in Gaile et al. (2009).

The minimizer (K̂(1), K̂(2)) of the problem (65)
determines the tensor field Ĉ. Its eigenvalues are
expressed by Eqs (18) in Czarnecki et al. (2014). One
of the eigenvalues vanishes, which is the consequence
of considering a single load condition only.

6 FINAL REMARKS

The compliance minimization problem of thin shells
leads to the auxiliary minimization problem (20) and to
its dual form (25) involving maximization operation.
Both the problems are counterparts of the celebrated
Michell’s problem of weight minimization. Solving
these problems we determine the material domain
which is cut out from the design domain. This method
paves the way towards 3D printing of the specimens
of small dimensions, see Smith et al. (2016).
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Solid-shell formulations based on reduced integration—investigations of
anisotropic material behaviour, large deformation problems and stability

S. Reese, O. Barfusz, M. Schwarze & J.-W. Simon
Institute of Applied Mechanics, RWTH Aachen University, Aachen, Germany

ABSTRACT: In the paper, a solid-shell finite element is proposed for composite structures consisting of woven
fabrics, with two families of fibres, embedded in a matrix material. It is particularly suited for application to
thin shell structures curing locking phenomena by implementing both the EAS and the ANS concept. Moreover,
using reduced integration with hourglass stabilization leads to high computational efficiency, still representing
satisfactorily the through-the-thickness stress distribution, since the number of integration points can be chosen
arbitrarily. Orthotropic material behaviour is incorporated by means of a micromechanically motivated model,
which is based on structural tensors representing different fibre orientations.

1 INTRODUCTION

Composite materials are very promising in lightweight
structures due to their very high stiffness and low den-
sity at the same time.They consist e.g. of multi-layered
fabric embedded in a matrix material. The fabric is
usually woven out of glass, aramide or carbon fibres,
whereas the matrix is made of thermoplastics or ther-
mosets. In addition, in aerospace structures one can
find metal matrices or ceramics which can be used
for both fibres and matrices. Besides the anisotropic
structure, the stress-strain behaviour of fibre com-
posite materials is highly non-linear. Moreover, the
material response in tension and compression differs
significantly.

Models for anisotropic material behaviour at finite
strains have been developed mostly in the field of
biomechanics. For instance, in (Holzapfel, Eberlein,
Wriggers, & Weizsäcker 1996) the authors investigate
axisymmetric orthotropic blood vessels, whereas bio-
logical soft tissues are modelled in (Weiss, Maker, &
Govindjee 1996) based on an incompressible trans-
versely isotropic law for moderate deformations. The
transversely isotropic behaviour of rubber is described
in (Rüter & Stein 2000), and orthotropic constitutive
equations are presented in (Bonet & Burton 1998) for
the simulation of human leg impact problems. In the
paper we use a modification of the micromechani-
cally motivated model proposed in (Reese, Raible, &
Wriggers 2001) and (Reese 2003). Therein, an
anisotropic model has been presented for the hyper-
elastic material behaviour of pneumatic membranes
reinforced with woven fibres which is particularly suit-
able for the fibre reinforced composites considered
here.

The introduction of fully three-dimensional mate-
rial models is not straightforward in classical shell
formulations because of the assumption of plane

stress. Even though there exist shell formulations
which take into account the through-the-thickness
stretching, see e.g. (Bischoff & Ramm 1997, Brank,
Korelc, & Ibrahimbegović 2002, Cardoso & Yoon
2005) as well as (Klinkel, Gruttmann, & Wagner 2008,
Kim & Bathe 2008), the implementation of three-
dimensional material models is much simpler in the
context of solid elements. On the other hand, it is a
well-known fact that solid elements provide a poor
performance when being applied to thin shell-like
structures. In particular, there are different locking
phenomena which cause overestimation of the stress
state and underestimation of the deformation.

One possible strategy to deal with this problem is
to use solid-shells which combine the advantages of
both solid elements and shell elements at the same
time. These allow for displaying realistically the three-
dimensional geometry and enable the definition of
surface friction, while still providing the suitable shape
for thin structures in accordance to shell elements. To
eliminate volumetric locking in the case of (nearly)
incompressible materials as well as the Poisson thick-
ness locking due to the non-constant distribution of
transverse normal strain over the thickness in bend-
ing problems of shell-like structures, the enhanced
assumed strain (EAS) concept is used. In the literature,
several solid-shell formulations incorporating the EAS
concept have been presented, see e.g. (Vu-Quoc & Tan
2003, Valente, Sousa, & Jorge 2004) Alves de Sousa,
Cardoso, Fontes Valente, Yoon, Grácio, & Natal Jorge
2006) as well as in (Reese 2007) to name only a few.

To cure the transverse shear locking which
is present in standard eight-node hexahedral ele-
ments, the assumed natural strain (ANS) method
is applied. In the context of full integration for-
mulations the ANS method can be found e.g. in
(Vu-Quoc & Tan 2003, Kim, Liu, & Han 2005,
Klinkel, Gruttmann, & Wagner 2006) and for reduced
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integration solid-shell formulations e.g. in (Cardoso,
Yoon, Mahardika, Choudhry, Alves de Sousa, &
Fontes Valente 2008, Schwarze & Reese 2009,
Schwarze & Reese 2011, Schwarze, Vladimirov, &
Reese 2011). Note, that the hourglass stabilization is
also formulated in such a way, that neither volumetric
nor transversal shear locking occur.

2 ANISOTROPIC MATERIAL MODEL

The fibre composites considered here are composed
of several layers, each layer consists of a woven fabric
embedded in a matrix material. In order to describe the
anisotropic material behaviour on a phenomenologi-
cal level, we adopt a micro-mechanically motivated
model proposed in (Reese, Raible, & Wriggers 2001).
The basic equations of the continuum model are sum-
marized in the following. The material parameters
are chosen such that the behaviour of carbon fibers
embedded in an epoxy resin matrix is approximately
represented.

2.1 Concept of structural tensors

Introducing the deformation gradient F, deformation
of a continuous body is represented by the right
Cauchy-Green tensor

The characterization of a hyperelastic body is then
given by the existence of a scalar potential which is
the stored energy function ψ=ψ(C), such that

is the second Piola-Kirchhoff stress tensor. In the case
of orthotropic material behaviour, the energy function
ψ(C) reduces to an isotropic function of C and the
structural tensors M1 and M2 which are defined by

where the vectors n1 and n2 are oriented parallel to the
fibres, see Figure 1.

For a discussion of the theoretical background we
refer to (Svendsen 1994) and the references therein.

Figure 1. Fabric structure with vectors n1 and n2.

The strain energy function ψ can be represented by
the following invariants:

2.2 Strain energy function

The proposed model from (Reese, Raible, & Wriggers
2001) covers different situations:

• in the small strain regime, due to the woven
microstructure, the fibres are not pulled straight.
Then the influence of the fibres is not considered.
In this case, the material behaviour is isotropic.

• for compression in fibre direction, the fibre buck-
les. Its influence on the mechanical behaviour is not
considered too.

• compression in one direction and tension in the
other one, the material can be considered to be
transversely isotropic.

• tension in both directions, the behaviour is predom-
inated by the fibres.

Nevertheless, we consider the carbon fibres being
embedded, such that the matrix acts as an elastic con-
tinuous support. Thus, in the current implementation
it is assumed that the fibres influence the overall
behaviour in the compression case as well. Except
of this, we adopt the mentioned model and use the
following strain energy function:

Here, ψNH denotes the Neo-Hookean part displaying
the isotropic case. The corresponding strain energy
function is given by

where µ and � are the Lamé parameters. If incom-
pressibility is assumed, � remains undetermined.
Since even in the isotropic case the stiffening in the
large strain regime cannot be captured by this, we add
an additional term
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The anisotropic behaviour of the fabric is introduced
by the part

Note that in (Reese, Raible, & Wriggers 2001) further
coupling terms have been introduced. However, the
latter could be shown to have almost no influence in
the computer experiments. Thus, they are neglected
from the beginning. The model includes 16 material
parameters (15 in the case of incompressibility). In
order to ensure that neither the stress tensor S nor the
material tensor L= 4 ∂2ψ

∂C2 contain any undetermined
values, all exponents αi,βi, γi, ξ (i= 1, 2) are chosen
to be integers larger than 2.

2.3 Reduction to orthotropic linear hyperelasticity

In order to reduce the proposed model to the case of
orthotropic linear hyperelasticity, we require the sec-
ond Piola-Kirchhoff stress tensor S obtained from (2)
to be linear in C. Note, that the restriction to linear
elasticity weakens the aforementioned constraints for
the exponents in the strain energy function ψlin which
are chosen to take the following values:

In order to obtain a stress-free undeformed state, the
terms

must be added to the strain energy function. Finally,
the linear model reads

Further, comparison with isotropic linear elasticity
yields the following relations:

3 SOLID-SHELL FORMULATION

The implementation of the described three-dimensional
material model into classical shell elements is not
straightforward, because these usually assume plane
stress. On the other hand, using standard solid elements
requires a fine discretization to predict the stress dis-
tribution with sufficient accuracy. In fact, it is not even
clear whether or not the converged solution using solid
elements is equal to the solution using shell elements.
This holds especially in case of thin structures, where
locking phenomena often occur.To overcome different
types of locking and to achieve efficient computa-
tions, we use the solid-shell concept. The one, based
on the works of (Reese 2007, Schwarze & Reese 2011,
Schwarze, Vladimirov, & Reese 2011) is chosen here.

Moreover, the use of the solid-shell formulation
enables to choose arbitrarily many Gauss points over
the shell thickness. Since the material parameters can
be defined for each Gauss point separately, this con-
cept provides an easy way to deal with layers of
different fibre orientations.

3.1 Finite element framework and interpolation

The solid-shell concept is based on the well known
two-field variational functional

where gext denotes the virtual work of the external
loading. The total Green-Lagrange strain tensor E
is split additively into a compatible part Ec and an
enhanced part Ee based on the EAS concept:

Considering a standard eight-node hexahedral finite
element based on the isoparametric concept, the
position vector of the reference configuration
X(ξ)= [X1, X2, X3]T and the displacement vector
U(ξ)= [U1, U2, U3]T can be approximated by

respectively, using tri-linear shape functions
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The position vector of the current (deformed) config-
uration reads

Then, introducing the displacement gradient D= ∂U/
∂ξ, the Jacobian matrices J and J̃ of the reference and
the current configuration, respectively, can be written
as follows:

The columns of J and J̃ represent the covariant base
vectors with respect to the reference and current
configuration, respectively.

It is a crucial point of the finite element formu-
lation that the hourglass stabilization part can be
computed analytically. For this purpose the inverse of
the Jacobian matrix must have polynomial form. Fur-
thermore earlier investigations have shown that it is
not sufficient to work with the center part of J. The
incorporation of the linear and bilinear terms enables
to reduce mesh distortion sensitivity. Hence we con-
sider the polynomial form of the Jacobian matrices
defined in (21), which can be obtained by

The contravariant base vectors with respect to the
initial configuration and the current configuration are
denoted by

These represent the rows of the inverse Jacobian matri-
ces J−1 and J̃−1, respectively, the coefficients of which
are denoted by jij = (J−1)ij and j̃ij = (J̃−1)ij .

With this definition, the Green-Lagrange strain ten-
sor can be written in terms of its cartesian and covariant
components Eij and Ēij =Eξiξj , respectively,

Denoting theVoigt notation by (•̂) and exploiting sym-
metry as well as Γij= 2Eij, the latter can be stored into
the 6× 1 vectors

The two vectors can be transformed into each other by
means of the relation

where

is the 6× 6 transformation matrix, which includes the
coefficients of the inverse Jacobian matrix J−1 with
respect to the reference configuration.

3.2 Green-Lagrange strain field

Therewith, the compatible Green-Lagrange strain can

be written in the form Êc=T ˆ̄Ec. In order to obtain the
components of the compatible Green-Lagrange strain

tensor ˆ̄Ec in polynomial form, the Jacobian matrix J
and the displacement gradient D are split as follows:

Hence, the covariant compatible Green-Lagrange
strain components are given by
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Figure 2. Sampling points of the ANS concept at reference
element.

In order to cure the curvature thickness locking,
we adopt the ANS concept proposed by Betsch and
Stein and Bischoff and Ramm (Bischoff & Ramm
1997). The covariant compatible transverse normal
strain terms Ec ζζ|ξK :=EK

c ζζ are evaluated at so-called
sampling points K=A, . . . , D, depicted in Figure 2.

Simultaneously, the covariant compatible strains
are interpolated within the shell midplane of the
reference element by means of bilinear shape func-
tions Hence, the assumed transverse normal strain
distribution reads

The present solid-shell formulation incorporates
a reduced integration scheme within the shell plane
(using one integration point), whereas a full integra-
tion is used in thickness direction, which allows for
choosing arbitrary numbers of integration points (at
least two), see Figure 3. Thus, all integration points
are located on the normal through the center of the
element defined by ξ∗:= (0, 0, ζ)T .

In order to cure volumetric locking as well as
Poisson thickness locking, the EAS concept is adopted.
These locking effects are treated on the level of the inte-
gration points, which can be expressed by Êe= Ê∗e ,
indicating values to be evaluated in the integration
points by ∗. Since in (34) the assumed transverse nor-
mal strain EANS

c ζζ has been defined independently of ζ,

Figure 3. Solid-shell element with integration points at
ξ= ξ∗:= (0, 0, ζ)T .

the value Ee ζζ is constructed linear in ζ in order to
overcome the locking effects, and reads

in which the interpolation matrix

requires only one EAS degree-of-freedom We. Here,
T0 is the transformation matrix (31a) evaluated in the
center of the element. For the reason of completeness,
we additionally write

representing the virtual cartesian-enhanced strain.
In order to achieve a polynomial decoupling of the

compatible Green-Lagrange strain tensor, Êc=T ˆ̄Ec,
a Taylor expansion of the inverse Jacobian matrix is
carried out with respect to the center of the element

up to the linear terms. The task is completed using the
Taylor expansion of

as well as JJ−1= I, which holds for arbitrary
ξ= (ξ, η, ζ)T = (ξ1, ξ2, ξ3)T . Inserting the coefficients
of (43) into (31a), the transformation matrix is given by

in polynomial form, where terms of higher order have
been dropped, as proved sufficient in (Schwarze &
Reese 2009). Nevertheless, using the approximation
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(31a), the Cartesian compatible strain still repre-
sents a polynomial of higher order. For this reason, a
Taylor expansion of the Cartesian compatible Green-
Lagrange strain

is also carried out with respect to the center of the
element. The hourglass strain term Êhg

c represents an
excellent basis for the construction of the hourglass
stabilization. However, Ê∗c is no longer quadratic in ζ.
Thus, the according quadratic term is added:

3.3 The 2nd Piola-Kirchhoff stress tensor

In this section, an efficient stress state Ŝ : = Ŝ∗ + Ŝhg

is derived for the reduced integration, represented by
the second Piola-Kirchhoff stress tensor. Here, Ŝ∗ is
computed at the integration points placed at ξ= ξ∗ and
must be able to take into account the highly nonlinear
stress distributions in thickness direction. The hour-
glass stress part Ŝhg assures that the element is free
of hourglass instabilities. Following (Reese 2007), a
Taylor expansion of the stress field is carried out with
respect to ξ= ξ∗.

The tangent Ĉ∗ is nonlinear in the thickness direc-
tion ζ but independent of ξ and η. In order to enable
an analytical integration of the hourglass stabiliza-
tion terms, Ĉ∗ is replaced by the deviatoric part of

the linear-elastic material tangent Ĉhg, which reads in
Voigt notation

and which only depends on the artificial hourglass
shear modulus µhg. In elastic problems µhg is equal to
the elastic shear modulus µ=E/(2(1+ ν)), whereas
in elastoplasticity it reads as follows:

Here, the superscript “dev” indicates the deviatoric
part of the considered term. Summing up over the
number of integration points (i= 1, . . . , nip) leads to
the following effective hourglass shear modulus

where the weighting factors ωi are scaled, such that∑nip
i=1 ωi = 1 holds.

3.4 Discretized weak form

Introducing the virtual form of the cartesian enhanced
Green-Lagrange strain δÊe together with (48), Eq. (15)
reads

Note that the infinitesimal volume element dV e=
J d�e has been approximated by means of dV e≈
J 0 d�e. Thereby, the integral

∫
�e δÊ∗ T

e Ŝ∗ J 0 d�e van-
ishes, because (40) is only linear in ζ. Further, the
virtual forms of (46) and (47) together with (48)
are incorporated into (14), which can be written on
element level as
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Figure 4. Cylindrical geometry.

All the terms linear in the natural coordinates drop
out. This leads to the desired decoupling of the parts
corresponding to the integration point and the hour-
glass stabilization. Since the hourglass stress has devi-
atoric character (see Eqs. (48) and (49)), the hourglass
residual vector Rhg

u simplifies to

in which the integration over the element domain is
performed analytically. Further, bilinear terms in ξη
drop out, because Ŝhg does not include any dependent
summand.

3.5 Curved structures

For the special case of a curved structure, the vec-
tor n1 tangential to the fibre direction is not constant.
Therefore, we have to evaluate the structural tensor in
each element and integration point, respectively, using
information such as geometry of the structure and the
orientation angle α, see Figure 4.

The covariant basis

can be easily determined by means of the Jacobi matrix
J= ∂X

∂ξ
. A vector

is created fulfilling the condition G1 · T3= 0. Then,
T3 is perpendicular to G1 and lies in the plane given

Figure 5. Pinched cylinder: geometry.

by G1 and G3. The “structural vector” n1 is calculated
using the relationship

where T̄3=T3/|T3| and Ḡ1=G1/|G1| denote nor-
malized vectors. This procedure is very efficient from
the computational point of view and can be carried out
for any shell geometry. Note that in the special case
of a cylinder, we obtain G13= 0 and, as indicated in
Figure 4, G3=T3.

4 NUMERICAL EXAMPLE

As an example we investigate the pinched cylinder
depicted in Figure 5. The performance of the present
solid-shell element formulation is compared with the
one of a classical shell element. The geometry data of
the structure are defined by the length l= 10 m, radius
R= 5 m and thickness t= 0.5 m. The distributed load-
ing at the top of the structure is given by q= 4.0 kN/m.
The cylinder is clamped at the bottom and consists of
unidirectional laminate layers. To carry out a compar-
ison with the shell formulation of (Stein & Tessmer
1999) a transversely isotropic model of linear elas-
ticity is assumed, derived from the section 2.3. The
material parameters of the solid-shell formulation are
chosen as follows [106 kN/m2]:

The corresponding material parameters of the shell
formulation read [106 kN/m2]:

In Figure 6, the vertical displacements of the cylin-
der with one unidirectional layer (α= 30◦) are shown
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Figure 6. Vertical displacement [cm], one layer 30◦.

Figure 7. Stress in axial direction [kN/cm2], one layer 30◦.

(discretization with solid-shell elements at the top, dis-
cretization with shell elements at the bottom). As a
result of the fiber orientation, the displacements are
pointwise symmetric. Both the values of displacement
and its distribution agree well. The same holds for the
corresponding stresses in axial direction, see Figure 7.

In further computations, we assume that the struc-
ture shown in Figure 5 consists of two layers
(α=±30◦). A good agreement is achieved again (see
e. g. the stresses in axial direction in Figure 8). Note

Figure 8. Stress in axial direction [kN/cm2], two layers
±30◦.

that these stresses are not perfectly symmetric because
of the thickness effects. The deviation between the 3D
and the shell computation is larger here, since the shell
results have been evaluated exactly in the shell mid-
surface whereas the stress in the upper part of Figure 8
(3D computation) refers to the middle of either the
upper or the lower layer.

5 CONCLUSION

We have proposed a solid-shell finite element based
on the EAS and ANS concepts which particularly
suits for application to thin shell-like structures.
A micromechanically motivated three-dimensional
material model for fibre reinforced composites has
been adopted to represent the anisotropic constitu-
tive behaviour. Due to the use of reduced integration
and hourglass stabilization, all integration points are
located on the normal through the centre of the ele-
ment, where the number of integration points can be
chosen arbitrarily. The proposed solid-shell element
has been successfully applied to a pinched cylin-
der consisting of one and two unidirectional layers,
respectively.
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